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Abstract

Predicate encryption is a new paradigm for public-key encryption generalizing, among other
things, identity-based encryption. In a predicate encryption scheme, secret keys correspond to
predicates and ciphertexts are associated with attributes; the secret key SKf corresponding to
a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if
f(I) = 1. Constructions of such schemes are currently known for certain classes of predicates.

We construct such a scheme for predicates corresponding to the evaluation of inner products
over ZN (for some large integer N). This, in turn, enables constructions in which predicates
correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, or threshold
predicates (among others). Besides serving as a significant step forward in the theory of predicate
encryption, our results lead to a number of applications that are interesting in their own right.

1 Introduction

Traditional public-key encryption is coarse-grained: a sender encrypts a message M with respect to
a public key PK, and only the owner of the (unique) secret key associated with PK can decrypt the
resulting ciphertext and recover the message. These straightforward semantics suffice for point-to-
point communication, where encrypted data is intended for one particular recipient who is known
in advance to the sender. In other settings, however, the sender may instead want to define a
policy determining who is allowed to recover the encrypted data. For example, classified data
might be associated with certain keywords; this data should be accessible both to users who are
allowed to read all classified information, as well as to users allowed to read information associated
with the particular keywords in question. Or, perhaps a patient’s records should be accessible
only to physicians who have treated that patient in the past. In other applications, it may be
sufficient to detect only whether a certain predicate is satisfied; for example, an email firewall should
potentially be able to evaluate whether an encrypted email satisfies certain attributes (so that it
can be forwarded appropriately), without learning anything else about the encrypted message.

Applications such as those sketched above require new cryptographic mechanisms that provide
more fine-grained control over access to encrypted data. Predicate encryption offers one such tool.
At a high level (formal definitions are given in Section 2), secret keys in a predicate encryption
scheme correspond to predicates (i.e., boolean functions) in some class F , and a sender associates
a ciphertext with an attribute in a set Σ; a ciphertext associated with the attribute I ∈ Σ can be
decrypted by a secret key SKf corresponding to the predicate f ∈ F if and only if f(I) = 1.

The “basic” level of security achieved by such schemes guarantees, informally, that a ciphertext
associated with attribute I hides all information about the underlying message unless one is in
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possession of a secret key giving the explicit ability to decrypt. I.e., if an adversary A holds keys
SKf1 , . . . , SKf`

, then A learns nothing about the message if f1(I) = · · · = f`(I) = 0. We refer to
this security notion as payload hiding. A stronger notion of security, that we call attribute hiding,
requires that the ciphertext hide the message as above, but additionally requires that the ciphertext
hide all information about the associated attribute I except that which is explicitly leaked by the
keys in one’s possession; i.e., an adversary holding secret keys as above learns only f1(I), . . . , f`(I)
(and the message, in case one of these evaluates to 1), and learns nothing else about I. See Section 2
for formal definitions.

Much recent work aimed at constructing different types of fine-grained encryption schemes can
be cast in the framework of predicate encryption. Identity-based encryption (IBE) [24, 10, 16, 4,
5, 27] can be viewed as predicate encryption for the class of equality tests; the standard notion of
security for IBE [10, 15] corresponds to payload hiding, while anonymous IBE [9, 13, 17] corresponds
to the stronger notion of attribute hiding. Attribute-based encryption schemes [23, 18, 3, 22], as
well as a recent scheme handling range queries [25], can also be cast in the framework of predicate
encryption, though in this case all the listed constructions achieve payload hiding only. Boneh and
Waters [12] construct a predicate encryption scheme that handles conjunctions of, e.g., equality
tests; their scheme satisfies the stronger notion of attribute hiding.

Other work introducing concepts related to the idea of predicate encryption includes [2, 1]. In
contrast to the present work, however, the threat model in those works do not consider collusion
among users holding different secret keys.

1.1 Our Results

An important research direction is to construct predicate encryption schemes for predicate classes
F that are as expressive as possible, with the ultimate goal being to handle all polynomial-time
predicates. In addition, it is of independent interest to explore constructions of attribute-hiding (in
contrast to payload-hiding) schemes. In this work, we make progress in both these directions.

The aim of our work is to construct attribute-hiding schemes handling disjunctions. Most prior
work (as surveyed above) yields only payload-hiding schemes, and the existing techniques for ob-
taining attribute hiding were limited to enforcing conjunctions. (Indeed, handling disjunctions was
left as an open question in [12].) On a technical level, this is because the underlying cryptographic
mechanism used in the schemes enforcing conjunction is to pair components of the secret key with
corresponding components of the ciphertext and then multiply the intermediate results together; a
“cancelation” in the exponent occurs if everything “matches”, but a random group element results
if there is any “mismatch”. Thus, the holder of a non-matching secret key learns only that there
was a mismatch in at least one position, but does not learn the number of mismatches or their
locations (as required for attribute hiding). On the other hand, very different techniques seem
needed to support disjunctions since now a mismatch in a single position should not give a random
group element but must instead somehow result in a “cancelation” if there is a match in any other
position. (We stress that what makes this difficult when attribute hiding is desired is that we must
hide the position of a match and only reveal the existence of a match in at least one position.)

As we have mentioned, the aim of our work is to construct attribute-hiding schemes handling
disjunctions. As a stepping stone toward this goal, we first focus on predicates corresponding to
the computation of inner products over ZN (for some large integer N). Formally, we take Σ = Zn

N

as our set of attributes, and take our class of predicates to be F = {f~x | ~x ∈ Zn
N} where f~x(~y) = 1

iff 〈~x, ~y〉 = 0. (Here, 〈~x, ~y〉 denotes the standard inner product
∑n

i=1 xi · yi mod N of two vectors ~x
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and ~y.) We construct a predicate encryption scheme for this F without random oracles, based on
two new assumptions in composite-order groups equipped with a bilinear map. Our assumptions are
non-interactive and of fixed size (i.e., not “q-type”), and can be shown to hold in the generic group
model. A pessimistic interpretation of our results would be that we prove security in the generic
group model, but we believe it is of importance that we are able to distill our necessary assumptions
to ones that are compact and falsifiable. Our construction uses new techniques, including the fact
that we work in a bilinear group whose order is a product of three primes.

We view our main construction as a significant step toward increasing the expressiveness of
predicate encryption in general. Moreover, we show that any predicate encryption scheme sup-
porting “inner product” predicates as described above can be used as a building block to construct
predicates of more general types:
• As an easy warm-up, we show that it implies (anonymous) identity-based encryption as well

as hidden-vector encryption [12]. As a consequence, our work implies all the results of [12].

• We can also construct predicate encryption schemes supporting polynomial evaluation. Here,
we take ZN as our set of attributes, and predicates correspond to polynomials over ZN of
some bounded degree; a predicate evaluates to 1 iff the corresponding polynomial evaluates
to 0 on the attribute in question. We can also extend this to include multi-variate polynomials
(in some bounded number of variables). A “dual” of this construction allows the attributes
to be polynomials, and the predicates to correspond to evaluation at a fixed point.

• Given the above, we can fairly easily support predicates that are disjunctions of other pred-
icates (e.g., equality), thus achieving our main goal. In the context of identity-based en-
cryption, this gives the ability to issue a secret key corresponding to a set S of identities
that enables decryption whenever a ciphertext is encrypted to any one of the identities in S
(without leaking which identity was actually used to encrypt).

• We also show how to handle predicates corresponding to DNF and CNF formulas of some
bounded size.

• Working directly with our “inner product” construction, we can derive a scheme supporting
threshold queries of the following form: Attributes are subsets of A = {1, . . . , `}, and pred-
icates take the form {fS,t | S ⊆ A} where fS,t(S′) = 1 iff S ∩ S′ = t. This is useful in the
“fuzzy IBE” setting of Sahai and Waters [23], and improves on their work in that we achieve
attribute hiding (rather than only payload hiding) and handle exact thresholds.

We defer further discussion regarding the above until Section 5.

2 Definitions

We define the syntax of predicate encryption and the security properties discussed informally in the
Introduction. (Our definitions follow the general framework of those given in [12].) Throughout
this section, we consider the general case where Σ denotes an arbitrary set of attributes and F
denotes an arbitrary set of predicates over Σ. Formally, both Σ and F may depend on the security
parameter and/or the master public parameters (and, indeed, this will be the case in our main
constructions); for simplicity, we leave this dependence implicit.

Definition 2.1. A predicate encryption scheme for the class of predicates F over the set of attributes
Σ consists of four ppt algorithms Setup,GenKey,Enc,Dec such that:
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• Setup takes as input the security parameter 1n and outputs a (master) public key PK and a
(master) secret key SK.

• GenKey takes as input the master secret key SK and a (description of a) predicate f ∈ F .
It outputs a key SKf .

• Enc takes as input the public key PK, an attribute I ∈ Σ, and a message M in some
associated message space. It returns a ciphertext C. We write this as C ← EncPK(I, M).

• Dec takes as input a secret key SKf and a ciphertext C. It outputs either a message M or
the distinguished symbol ⊥.

For correctness, we require that for all n, all (PK, SK) generated by Setup(1n), all f ∈ F , any key
SKf ← GenKeySK(f), and all I ∈ Σ:

• If f(I) = 1 then DecSKf
(EncPK(I, M)) = M .

• If f(I) = 0 then DecSKf
(EncPK(I, M)) =⊥ with all but negligible probability.

A useful variant of the above is a predicate-only scheme. Here, Enc takes only an attribute I (and
no message), and the correctness requirement is that DecSKf

(EncPK(I)) = f(I) (except possibly
with negligible probability). Actually, our construction achieves “computational correctness” only:
namely, that it is hard to find f and I for which DecSKf

(EncPK(I)) 6= f(I).
Our definition of attribute-hiding security corresponds to the notion described informally earlier.

Here, an adversary may request keys corresponding to the predicates f1, . . . , f` and is also given
either EncPK(I0,M0) or EncPK(I1,M1) for attributes I0, I1 such that fi(I0) = fi(I1) for all i.
Furthermore, if M0 6= M1 then it is required that fi(I0) = fi(I1) = 0 for all i. The goal of the
adversary is to determine which attribute/message pair was encrypted, and the stated conditions
ensure that this is not trivial. Our definition uses the “selective” notion of security introduced
in [15]. Observe that when specialized to the case when F consists of equality tests on strings, this
notion corresponds to anonymous identity-based encryption (with selective-ID security).

Definition 2.2. A predicate encryption scheme with respect to F and Σ is attribute hiding if for
all ppt adversaries A, the advantage of A in the following experiment is negligible in the security
parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.

2. Setup(1n) is run to generate PK and SK, and the adversary is given PK.

3. A may adaptively request keys for any predicates f1, . . . , f` ∈ F subject to the restriction that
fi(I0) = fi(I1) for all i. In response, A is given the corresponding keys SKfi

← GenKeySK(fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) = fi(I1) = 1,
then it is required that M0 = M1. A random bit b is chosen, and A is given the ciphertext
C ← EncPK(Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the same
restrictions as before.

6. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

For predicate-only encryption schemes, attribute hiding is define by simply omitting the messages
in the above experiment. Payload hiding, a strictly weaker notion of security, is defined by forcing
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I0 = I1 = I in the above experiment (in which case A has no possible advantage if it ever holds
that fi(I) = 1).

3 Background on Pairings and Complexity Assumptions

We assume some familiarity with bilinear maps as used, e.g., in [19, 20, 10], though our treatment
will be self-contained. We will specifically focus on bilinear groups of composite order, first used
in cryptographic applications by [11]. In contrast to all prior work using composite-order bilinear
groups, however, we use groups whose order N is a product of three (distinct) primes.

Let G be an algorithm that takes as input a security parameter 1n and outputs a tuple
(p, q, r, G, GT , ê) where p, q, r are distinct primes, G and GT are two cyclic groups of order N = pqr,
and ê : G × G → GT is a non-degenerate bilinear map, i.e., ∀u, v ∈ G and ∀a, b ∈ Z we have
ê(ua, vb) = ê(u, v)ab, and if g generates G then ê(g, g) generates GT . We assume multiplication in
G and GT , as well as the bilinear map ê, are all computable in time polynomial in n. Furthermore,
we assume that the descriptions of G and GT include generators of G and GT , respectively.

We use the notation Gp, Gq, Gr to denote the subgroups of G having order p, q, and r, respec-
tively. Observe that G = Gp ×Gq ×Gr. Note also that if g is a generator of G, then the element
gpq is a generator of Gr; the element gpr is a generator of Gq; and the element gqr is a generator
of Gp. Furthermore, if hp ∈ Gp and hq ∈ Gq then

ê(hp, hq) = ê
(
(gqr)α1 , (gpr)α2

)
= ê

(
gα1 , grα2

)pqr
= 1,

where α1 = loggqr hp and α2 = loggpr hq. A similar rule holds whenever ê is applied to elements in
distinct subgroups.

3.1 Our Assumptions

We now state the assumptions we use to prove security of our construction. As remarked earlier,
these assumptions are new but we justify them in Appendix A by proving that they hold in the
generic group model under the assumption that finding a non-trivial factor of N (the group order)
is hard. At a minimum, then, our construction can be viewed as secure in the generic group model.
Nevertheless, we state our assumptions explicitly and highlight that they are non-interactive (in
contrast to, e.g., the LRSW assumption [14]) and of fixed size (in contrast to, e.g., the q-SDH
assumption [6]).

Assumption 1. Let G be as above. We say that G satisfies Assumption 1 if the advantage of any
ppt algorithm A in the following experiment is negligible in the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

2. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, s ∈ Zp, and a random
bit b. Give to A the values (N, G, GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

If b = 0 give A the value T = gb2s
p R3, while if b = 1 give A the value T = gb2s

p Q3R3.

3. A outputs a bit b′, and succeeds if b′ = b.
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The advantage of A is the absolute value of the difference between its success probability and 1/2.

Assumption 2. Let G be as above. We say that G satisfies Assumption 2 if the advantage of any
ppt algorithm A in the following experiment is negligible in the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

2. Choose random h ∈ Gp and Q1, Q2 ∈ Gq, random s, γ ∈ Zq, and a random bit b. Give to A
the values (N, G, GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

pQ2, ê(gp, h)γ .

If b = 0 then give A the value ê(gp, h)γs, while if b = 1 then give A a random element of GT .

3. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Both the above assumptions imply the hardness of finding any non-trivial factor of N .

4 Our Main Construction

Our main construction is a predicate encryption scheme where the set of attributes is Σ = Zn
N , and

the class of predicates is F = {f~v | ~v ∈ Zn
N} with f~v(~x) = 1 iff 〈~v, ~x〉 = 0 mod N . We will begin by

presenting a predicate-only version of the scheme, and discuss in Appendix C how to generalize it
to a full-fledged predicate encryption scheme in a fairly straightforward manner. Before giving the
details, we provide some intuition for the construction.

4.1 Intuition for the Construction

In our construction, each ciphertext has associated with it a (secret) vector ~x, and each secret key
corresponds to a vector ~v. The decryption procedure must check whether ~x · ~v = 0 mod N , and
reveal nothing about ~x but whether this is true. To do this, we will make use of a bilinear group G
whose order N is the product of three primes p, q, and r. Let Gp, Gq, and Gr denote the subgroups
of G having order p, q, and r, respectively. We will (informally) assume, as in [11], that a random
element in any of these subgroups is indistinguishable from a random element of G.1 Thus, we can
use random elements from one subgroup to “mask” elements from another subgroup.

At a high level, we will use these subgroups as follows: Gq will be used to encode the vectors
~x and ~v in the ciphertext and secret keys, respectively. (This will be done, e.g., in the case of
ciphertexts, by putting each element of the vector ~x = (x1, . . . , xn) in the exponent of its own
component of the ciphertext.) Computation of the inner product 〈~v, ~x〉 will be done in Gq, in the
exponent, using the bilinear map. The subgroup Gp will be used to encode an equation (again
in the exponent) that evaluates to zero when decryption is done properly. This subgroup is used
to prevent an adversary from improperly “manipulating” the computation (by, e.g., changing the
order of components of the ciphertext or secret key, raising these components to some power, etc.).
On an intuitive level, if the adversary tries to manipulate the computation in any way, then the
computation occurring in the Gp subgroup will no longer yield the identity (i.e., will no longer yield

1This is only for intuition. Our actual computational assumptions are given in Section 3.
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0 in the exponent), but will instead have the effect of “masking” the correct answer with a random
element of Gp (which will invalidate the entire computation). Elements in Gr are used for “general
masking” of terms in other subgroups; i.e., random elements of Gr will be multiplied with various
components of the ciphertext (and secret key) in order to “hide” information that might be present
in the Gp and Gq subgroups.

4.2 A Predicate-Only Encryption Scheme

We now describe our scheme in detail.

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp, Gq, and Gr, respectively. It then chooses
R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈ Gr uniformly at
random. The public parameters include (N = pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1

)
.

The master secret key SK is
(
p, q, r, gq, {h1,i, h2,i}ni=1

)
.

EncPK(~x) Let ~x = (x1, . . . , xn) with xi ∈ ZN . This algorithm chooses random s, α, β ∈ ZN and
R3,i, R4,i ∈ Gr for i = 1 to n. (Note: a random element R ∈ Gr can be sampled, even without
knowing the factorization of N , by choosing random δ ∈ ZN and setting R = gδ

r .) It outputs the
ciphertext

C =
(
C0 = gs

p,
{

C1,i = Hs
1,i ·Qα·xi ·R3,i, C2,i = Hs

2,i ·Qβ·xi ·R4,i

}n

i=1

)
.

GenKeySK(~v) Let ~v = (v1, . . . , vn), and recall SK =
(
p, q, r, gq, {h1,i, h2,i}ni=1

)
. This algorithm

chooses random r1,i, r2,i ∈ Zp for i = 1 to n, random R5 ∈ Gr, random f1, f2 ∈ Zq, and random
Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

)
.

DecSK~v
(C) Let C =

(
C0, {C1,i, C2,i}ni=1

)
and SK~v =

(
K, {K1,i, K2,i}ni=1

)
be as above. The

decryption algorithm outputs 1 iff

ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)
?= 1.
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Correctness. To see that correctness holds, let C and SK~v be as above. Then

ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= ê

(
gs
p, R5Q6

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê
(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)
= ê

(
gs
p,

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·

n∏
i=1

ê
(
hs

1,i · gα·xi
q , g

r1,i
p gf1·vi

q

)
· ê
(
hs

2,i · gβ·xi
q , g

r2,i
p gf2·vi

q

)
=

n∏
i=1

ê(gq, gq)(αf1+βf2)xivi = ê(gq, gq)(αf1+βf2 mod q)·〈~x,~v〉,

where α, β are random in ZN and f1, f2 are random in Zq. If 〈~x,~v〉 = 0 mod N , then the above
evaluates to 1. If 〈~x,~v〉 6= 0 mod N there are two cases: if 〈~x,~v〉 6= 0 mod q then with all but
negligible probability (over choice of α, β, f1, f2) the above evaluates to an element other than the
identity. The other possibility is that 〈~x,~v〉 = 0 mod q, in which case the above would always
evaluate to 1; however, this would reveal a non-trivial factor of N and so this occurs with only
negligible probability (recall, our assumptions imply hardness of finding a non-trivial factor of N).

There may appear to be some redundancy in our construction; for instance, the C1,i and C2,i

components play identical roles. In fact we can view the encryption scheme as consisting of two
parallel sub-systems linked via the C0 component (and the K component of the secret key). A
natural question is whether this redundancy can be eliminated to achieve better performance.
While such a construction appears to be secure, our current proof relies in an essential way on
having these two parallel sub-systems.

4.3 Proof Intuition

The most challenging aspect to providing a proof of our scheme arises from the disjunctive capabil-
ities of our system. In the previous attribute-hiding conjunctive scheme [12], security was proved
via a sequence of hybrid games in which the “challenge ciphertext” associated with a vector ~x
was changed component-by-component to a challenge ciphertext associated with a vector ~y. The
adversary in that case was only allowed to request secret keys that did not match either of ~x or ~y,
and so in every hybrid game it was the case that the adversary’s secret keys would not “match” the
challenge ciphertext. Thus, the hybrids could be handled in a relatively straightforward manner.

In our proof the adversary will again try to determine whether the challenge ciphertext is
associated with either of two vectors ~x or ~y. However, in our case the adversary can legally request
a secret key SK~v that “matches” both ~x and ~y, i.e., the adversary may request a secret key SK~v

for which both 〈~x,~v〉 = 0 and 〈~y,~v〉 = 0. This means that we cannot use a naive sequence of
hybrid games as outlined above. To see why, note that if we change one component at a time in the
challenge ciphertext, then the hybrid vector used in an intermediate step will likely not “match”
SK~v (i.e., will not be orthogonal to ~v), and the adversary can detect this just by running the legal
decryption procedure.
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Therefore, we need to use a sequence of hybrid games in which an entire vector used in the
challenge ciphertext is changed in one step, instead of using a sequence of hybrid games where
the vector is changed component-by-component. To do this we take advantage of the fact that, as
noted at the end of the previous section, our encryption scheme contains two parallel sub-systems.
In our proof we will use hybrid games where a challenge ciphertext will be encrypted with respect
to one vector in the first sub-system and a different vector in the second sub-system. (Note that
such a ciphertext is ill-formed, since any honestly-generated ciphertext will always use the same
vector in each sub-system.) Let (~a,~b) denote a ciphertext encrypted using vector ~a in the first
sub-system and ~b in the second sub-system. To prove indistinguishability between the case when
the challenge ciphertext is associated with ~x (which corresponds to (~x, ~x)) and the case when
the challenge ciphertext is associated with ~y (which corresponds to (~y, ~y)), we use a sequence of
intermediate hybrid games (~x,~0), (~x, ~y), (~0, ~y), showing indistinguishability in each case. That is,
we show

(~x, ~x) ≈ (~x,~0) ≈ (~x, ~y) ≈ (~0, ~y) ≈ (~y, ~y),

proving our desired result. (We use the 0-vector since it is orthogonal to everything.) Using
this structure in our proof allows us to use a simulator that will essentially work in one sub-
system without “knowing” what is happening in the other one. The simulator embeds a “subgroup
decision-like” assumption into the challenge ciphertext for each experiment. The structure of the
challenge will determine whether a sub-system encrypts the given vector or the zero vector. Details
of our proof and further discussion are given in the following section.

4.4 Proof of Security

This section is devoted to a proof of the following theorem:

Theorem 4.1. If G satisfies Assumption 1 then the scheme described in Section 4 is an attribute-
hiding, predicate-only encryption scheme.

We use only Assumption 1 for proving security of our predicate-only scheme; we additionally rely on
Assumption 2 when proving security of our full-fledged predicate encryption scheme in Appendix C.

For convenience, we include in Appendix B a re-statement of the definition of security for the
particular inner-product predicate we use. Note that the particular predicate we use introduces a
slight change in the definition, since the attribute space depends on the master public key (but, in
Definition 2.2 the adversary is supposed to output I0, I1 before receiving the public key). We adapt
the definition in the natural way by giving A the modulus N first, then requiring it to output I0, I1

before being given the rest of the public key. See Definition B.1 for the details.
We establish the theorem using a sequence of games, defined as follows:

Game1: The challenge ciphertext is generated as a proper encryption using ~x. (Recall from
Definition B.1 that we let ~x, ~y denote the two vectors output by the adversary.) That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i

}n

i=1

)
.

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}n

i=1

)
.

9



Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

Game4 and Game5: These games are defined symmetrically to Game2 and Game3: In Game4 the
{Ci,1} components are generated using ~0. That is, we choose random s, α, β ∈ ZN and random
{R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,i R3,i, C2,i = Hs

2,iQ
βyiR4,i

}n

i=1

)
.

In Game5, the {Ci,1} components are generated using ~y. I.e., we choose random s, α, β ∈ ZN

and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αyiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

In Game5 the challenge ciphertext is a proper encryption with respect to the vector ~y. So, the
proof of the theorem is concluded once we show that the adversary cannot distinguish between
Gamei and Gamei+1 for each i.

As discussed in Section 4.2, it is difficult to proceed directly from a game in which the challenge
ciphertext is generated as a proper encryption using ~x, to a game in which the challenge ciphertext
is generated as a proper encryption using ~y. (Indeed, this is the reason our construction uses two
“sub-systems” to begin with.) That is why our proof proceeds via the intermediate Game3 where
half the challenge ciphertext corresponds to an encryption using ~x and the other half corresponds to
an encryption using ~y. Intermediate games Game2 and Game4 are used to simplify the proof; it helps
when part of the ciphertext corresponds to an encryption using ~0 since this vector is orthogonal to
everything.

The main difficulty in our proofs will be to answer queries for decryption keys. In considering
the indistinguishability of Game1 and Game2 (and, symmetrically, Game4 and Game5), we will
actually be able to construct all decryption keys (i.e., even keys that would allow the adversary
to distinguish an encryption relative to ~x from an encryption relative to ~y). In essence, we will be
showing that even such keys cannot be used to distinguish a well-formed encryption of ~x (or ~y)
from a badly-formed one.

On the other hand, in considering the indistinguishability of Game2 and Game3 (and, symmet-
rically, Game3 and Game4) we will not be able to construct all decryption keys. Instead, we will
deal separately with the problems of (1) providing keys for vectors ~v with 〈~v, ~x〉 = 0 = 〈~v, ~y〉 and
(2) providing keys for vectors ~v with 〈~v, ~x〉 6= 0 6= 〈~v, ~y〉.

4.4.1 Indistinguishability of Game1 and Game2

Fix an adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along with the
elements gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element T =

gb2s
p gβ

q gR3
r where β is either 0 or uniform in Zq (cf. Assumption 1).

Before describing the simulation in detail, we observe that the simulator can sample a random
element R ∈ Gr by choosing random δ ∈ ZN and setting R = gδ

r . Although there is no direct wat

10



for the simulator to sample a random element of Gq (since gq is not provided to the simulator), it

is possible for the simulator to choose an independent random element QR ∈ Gqr
def= Gq × Gr by

choosing random δ1, δ2 ∈ ZN and setting QR = (gqR1)δ1 · gδ2
r . Henceforth, we simply describe the

simulator as sampling uniformly from Gr and Gqr with the understanding that such sampling is
done in this way.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the remaining values as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i, H2,i = (kp)xig

w2,i
p R2,i

})
.

By doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kxi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. We now describe how the simulator prepares the secret key corresponding to
the vector ~v = (v1, . . . , vn). We stress that although Definition B.1 restricts the vectors ~v for which
the adversary is allowed to request secret keys, we do not rely on this restriction here. This is
because the purpose of this hybrid proof is to show that the adversary cannot distinguish between
properly formed encryptions of ~x and improperly formed encryptions (that are a combination of
an encryption of ~x and an encryption of ~0).

We begin with some intuition. We must construct the K1,i and K2,i components of the key.
Note that we do not have access to gq, but we do have gqg

a
p . We will use this element here. This

will give rise to terms containing a in the exponent of gp. Note, however, that we will later have to
construct the K component of the key, whose purpose is to cancel out terms in the Gp subgroup.
If 〈~v, ~x〉 6= 0, then additional terms involving ab and ab2 will have to appear in K. However, we
do not have access to gab2

p ; indeed if we did, the assumption would be false and we could easily
distinguish between Game1 and Game2. We deal with this problem by adding a term (using the
gab
p gd

q term given in the assumption) to the K1,i components that will allow us to cancel out the
ab2 terms that will appear in K due to the K2,i components.

The simulator begins by choosing random f ′
1, f

′
2, {r′1,i}, {r′2,i} ∈ ZN . In constructing the key,

implicitly the simulator will be setting:

r1,i = r′1,i + vi · (af ′
1 − abf ′

2) (1)
r2,i = r′2,i + a f ′

2 vi, (2)

as well as f1 = f ′
1 − d f ′

2 and f2 = f ′
2, where we set d = loggq

Q1. Note that these values are
each independently and uniformly distributed in ZN , just as they would be in actual secret key
components.

Next, for all i the simulator computes:

K1,i =
(
ga
pgq

)f ′
1vi ·

(
gab
p Q1

)−f ′
2vi

· g
r′
1,i

p

= g
(af ′

1−abf ′
2)·vi+r′

1,i
p · g(f ′

1−df ′
2)·vi

q

and

K2,i =
(
ga
pgq

)f ′
2vi · g

r′
2,i

p

= g
af ′

2vi+r′
2,i

p · gf ′
2vi

q .
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The simulator will next construct the K element of the decryption key. Recall that h1,i =
(gp)bxig

w1,i
p . Therefore, the exponents in K will contain a term of the form

∑
i r1,ibxi. But because

of how we chose r1,i, we have
∑

i r1,ibxi = k(abf ′
1 − ab2f2) +

∑
i r

′
1,ixi where k = 〈~v, ~x〉. A similar

equation holds for the terms arising from the h2,i parts of K, and allows the simulator to cancel
out all the ab2 terms that arise in K.

The simulator computes K as follows: Let k = 〈~v, ~x〉. The simulator then chooses random
QR ∈ Gqr and computes

K = QR ·
(
gab
p Q1

)−k·f ′
1

·
∏

i

(
ga
pgq

)−f ′
1viw1,i−f ′

2viw2,i ·
(
gab
p Q1

)f ′
2viw1,i

· g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−xi·r′
2,i

p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}ni=1) as the key.
To see formally that the K component has the correct distribution, let Kp,Kq, and Kr denote the

projections of K in Gp, Gq, and Gr, respectively. It is easy to see that Kq and Kr are independently
and uniformly distributed, as required. Furthermore,

Kp = g
−abkf ′

1
p ·

∏
i

g
−af ′

1viw1,i−af ′
2viw2,i

p g
abf ′

2viw1,i
p g

−w1,ir
′
1,i−w2,ir

′
2,i

p h
−xir

′
1,i

p k
−xir

′
2,i

p

= h
−akf ′

1
p

∏
i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′

2vi
p

)
=

∏
i

h
−axivif

′
1

p ·
(

h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(
h

abxivif
′
2

p · h−abxivif
′
2

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′

2vi
p

)
,

using the fact that k = 〈~x,~v〉 =
∑

i xi, vi. Using simple (but tedious) algebra, we obtain

Kp

=
∏

i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p h
−xivi·(af ′

1−abf ′
2)

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p k
−xiaf ′

2vi
p g

−w2,iaf ′
2vi

p

)
=

∏
i

(
hxi

p g
w1,i
p

)−r1,i
(
kxi

p g
w2,i
p

)−r2,i =
∏

i

h
−r1,i

1,i h
−r2,i

2,i

(using Eqs. (1) and (2)), and thus Kp has the correct distribution. We conclude that K has the
correct distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way, as
follows. The simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C1 equal to gs

p, and computes:

C1,i =
(
gbs
p Q2R2

)xi

· (gs
p)

w1,i ·R7,i

= hxis
p g

w1,is
p Qxi

2 R′
7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T xi · (gs
p)

w2,i ·R8,i

= (h2,i)s
(
gβ
q

)xi

R′
8,i,
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where {R′
7,i, R

′
8,i} are random elements of Gr whose exact values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when β is random the challenge ciphertext is distributed
exactly as in Game1, whereas if β = 0 the challenge ciphertext is distributed exactly as in Game2.
We conclude that, under Assumption 1, these two games are indistinguishable.

4.4.2 Indistinguishability of Game2 and Game3

Fix again some adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along
with the elements gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element

T = gb2s
p gβ

q gR3
r where β is either 0 or uniform in Zq. Recall that sampling uniform elements from

Gr and Gqr can be done efficiently. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the public parameters as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i H2,i = (kp)yig

w2,i
p R2,i

})
.

By doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kyi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors,
and we now describe how the simulator prepares the secret key corresponding to the vector ~v =
(v1, . . . , vn). Here, the simulator will only be able to produce the appropriate secret key when the
vector ~v satisfies the restriction imposed by Definition B.1. We distinguish two cases, depending
on whether 〈~v, ~x〉 and 〈~v, ~y〉 are both zero or whether they are both non-zero.

Case 1. We first consider the case where 〈~v, ~x〉 = 0 = 〈~v, ~y〉. The simulator begins by choosing
random f1, f2, {r′1,1}, {r′2,1} ∈ ZN . Then for all i it computes:

K1,i =
(
ga
pgq

)f1vi · (gp)r′
1,i

= g
af1vi+r′

1,i
p · gf1vi

q

K2,i =
(
ga
pgq

)f2vi · (gp)r′
2,i

= g
af2vi+r′

2,i
p · gf2vi

q .

Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR ·
∏

i

(
ga
pgq

)−f1viw1,i−f2viw2,i · g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−yi·r′
2,i

p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the values f1, f2 are random; furthermore, the simulator implicity sets

r1,i = r′1,i + af1vi

r2,i = r′2,i + af2vi,
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which are uniformly distributed as well. Looking at Kp, the projection of K in Gp (as in the proof
in the previous section), we see that

Kp =
∏

i

g
−af1viw1,i−af2viw2,i
p · g

−w1,i·r′
1,i−w2,i·r′

2,i
p · h

−xi·r′
1,i

p · k
−yi·r′

2,i
p

=
∏

i

h−af1xivi
p · k−af2yivi

p · g−af1viw1,i−af2viw2,i
p · g

−w1,i·r′
1,i−w2,i·r′

2,i
p · h

−xi·r′
1,i

p · k
−yi·r′

2,i
p ,

using the fact that
∏

i h
−af1xivi
p = h

−af1·
P

i xivi
p = 1 =

∏
i k

−af2yivi
p (because 〈~v, ~x〉 = 0 = 〈~v, ~y〉).

Algebraic manipulation as in the previous section shows that Kp has the correct distribution.

Case 2. Here, we consider the case where 〈~v, ~x〉 = cx 6= 0 and 〈~v, ~y〉 = cy 6= 0. The simulator
begins by choosing random f ′

1, f
′
2, {r′1,1}, {r′2,1} ∈ ZN . Next, for all i it computes

K1,i =
(
ga
pgq

)f ′
1vi
(
gab
p Q1

)−cy ·f ′
2vi

· (gp)r′
1,i

= g
(af ′

1−abcyf ′
2)·vi+r′

1,i
p · g(f ′

1−cydf ′
2)·vi

q

K2,i =
(
ga
pgq

)cx·f ′
2vi · (gp)r′

2,i

= g
acxf ′

2vi+r′
2,i

p · gcx·f ′
2vi

q ,

where we set d = loggq
Q1 as in the previous proof. Finally, the simulator chooses random QR ∈ Gqr

and computes

K = QR · (gab
p Q1)−cxf ′

1

·
∏

i

(
ga
pgq

)−f ′
1viw1,i−f ′

2cxviw2,i · (gab
p Q1)f ′

2cyviw1,i · g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−yi·r′
2,i

p .

The simulator then hands the key SK~v = (K, {K1,i,K2,i}) to the adversary.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator implicity sets

r1,i = r′1,i + (af ′
1 − cyabf ′

2) · vi

r2,i = r′2,i + acxf ′
2vi,

as well as f1 = f ′
1− cy · df ′

2 and f2 = cx · f ′
2. It is clear that f1 and the {r1,i, r2,i} are independently

and uniformly distributed in ZN . The value f2 is also uniformly distributed in ZN as long as
gcd(cx, N) = 1. (If gcd(cx, N) 6= 1, then the adversary has found a non-trivial factor of N . This
occurs with negligible probability under Assumption 1.)

As for element K of the secret key, it is once again easy to see that the projection of K in Gqr

is uniformly distributed. Looking at Kp, the projection of K in Gp (as in the previous section), we
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see that

Kp = g
−abcxf ′

1
p ·

∏
i

g
−af ′

1viw1,i−af ′
2cxviw2,i

p · gabf ′
2cyviw1,i

p · g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−yi·r′
2,i

p

=
∏

i

h
−axivif

′
1

p · g−af ′
1viw1,i−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)r′

1,i(h2,i)r′
2,i

= h
cxcyabf ′

2
p · h−cxcyabf ′

2
p

∏
i

g
−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)−r′

1,i−avif
′
1(h2,i)−r′

2,i

=
∏

i

h
xivicyabf ′

2
p · k−cxyiviaf ′

2
p · g−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)−r′

1,i−avif
′
1(h2,i)−r′

2,i

=
∏

i

(h1,i)−r′
1,i−avif

′
1+abf ′

2cyvi(h2,i)−r′
2,i−acxvif

′
2 =

∏
i

(h1,i)−r1,i(h2,i)−r2,i ,

and so Kp has the right distribution. We conclude that K has the correct distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way. The
simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C1 = gs

p, and computes:

C1,i =
(
gbs
p Q2R2

)xi

· (gs
p)

w1,i ·R7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T yi(gs
p)

w2,iR8,i

= (h2,i)s
(
gβ
q

)yi

R′
8,i,

where {R′
7,i, R

′
8,i} again refer to random elements of Gr whose exact values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when β is random the challenge ciphertext is distributed
exactly as in Game3, whereas if β = 0 the challenge ciphertext is distributed exactly as in Game2.
We conclude that, under Assumption 1, these two games are indistinguishable.

4.4.3 Completing the Proof

Our scheme is symmetric with respect to the roles of h1,i and h2,i. Thus, the proof that Game3 and
Game4 are indistinguishable exactly parallels the proof (given in the previous section) that Game2

and Game3 are indistinguishable, while the proof that Game4 and Game5 are indistinguishable
exactly parallels the proof (given in Section 4.4.1) that Game1 and Game2 are indistinguishable.
This concludes the proof of our theorem.

5 Applications of Our Main Construction

In this section we discuss some applications of predicate encryption schemes of the type constructed
in this paper. Our treatment here is general and can be based on any predicate encryption scheme
supporting “inner product” queries; we do not rely on any specific details of our construction.

Given a vector ~x ∈ Z`
N , we denote by f~x : Z`

N → {0, 1} the function such that f~x(~y) = 1

iff 〈~x, ~y〉 = 0 mod N . We define F`
def= {f~x | ~x ∈ Z`

N}. An inner product encryption scheme of
dimension ` is an attribute-hiding predicate encryption scheme for the class of predicates F`.
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5.1 Anonymous Identity-Based Encryption

As a warm-up, we show how anonymous identity-based encryption (IBE) can be recovered from
any inner product encryption scheme of dimension 2. To generate the master public and secret keys
for the IBE scheme, simply run the setup algorithm of the underlying inner product encryption
scheme. To generate secret keys for the identity I ∈ ZN , set ~I := (1, I) and output the secret key
for the predicate f~I . To encrypt a message M for the identity J ∈ ZN , set ~J := (−J, 1) and encrypt
the message using the encryption algorithm of the underlying inner product encryption scheme and
the attribute ~J . Since

〈
~I, ~J
〉

= 0 iff I = J , correctness and security follow.

5.2 Hidden-Vector Encryption

Given a set Σ, let Σ? = Σ ∪ {?}. Hidden-vector encryption (HVE) [12] corresponds to a predicate
encryption scheme for the class of predicates Φhve

` = {φhve
(a1,...,a`)

| a1, . . . , a` ∈ Σ?}, where

φhve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or ai = ?
0 otherwise

.

A generalization of the ideas from the previous section can be used to realize hidden-vector en-
cryption with Σ = ZN from any inner product encryption scheme (Setup,GenKey,Enc,Dec) of
dimension 2`:
• The setup algorithm is unchanged.

• To generate a secret key corresponding to the predicate φhve
(a1,...,a`)

, first construct a vector
~A = (A1, . . . , A2`) as follows:

if ai 6= ? : A2i−1 := 1, A2i := ai

if ai = ? : A2i−1 := 0, A2i := 0.

Then output the key obtained by running GenKeySK(f ~A).

• To encrypt a message M for the attribute x = (x1, . . . , x`), choose random r1, . . . , r` ∈ ZN

and construct a vector ~X~r = (X1, . . . , X2`) as follows:

X2i−1 := −ri · xi, X2i := ri

(multiplication is done modulo N). Then output the ciphertext C ← EncPK( ~X~r,M).
To see that correctness holds, let (a1, . . . , a`), ~A, (x1, . . . , x`), ~r, and ~X~r be as above. Then:

φhve
(a1,...,a`)

(x1, . . . , x`) = 1 ⇒ ∀~r :
〈

~A, ~X~r

〉
= 0 ⇒ ∀~r : f ~A( ~X~r) = 1.

Furthermore, assuming gcd(ai − xi, N) = 1 for all i:

φhve
(a1,...,a`)

(x1, . . . , x`) = 0 ⇒ Pr~r
[〈

~A, ~X~r

〉
= 0
]

= 1/N ⇒ Pr~r
[
f ~A( ~X~r) = 1

]
= 1/N,

which is negligible. Using this, one can prove security of the construction as well.
A straightforward modification of the above gives a scheme that is the “dual” of HVE, where

the set of attributes is (Σ?)` and the class of predicates is Φ̄hve
` = {φ̄hve

(a1,...,a`)
| a1, . . . , a` ∈ Σ} with

φ̄hve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or xi = ?
0 otherwise

.
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5.3 Predicate Encryption Schemes Supporting Polynomial Evaluation

We can also construct predicate encryption schemes for classes of predicates corresponding to
polynomial evaluation. Let Φpoly

≤d = {fp | p ∈ ZN [x], deg(p) ≤ d}, where

fp(x) =
{

1 if p(x) = 0 mod N
0 otherwise

for x ∈ ZN . Given an inner product encryption scheme (Setup,GenKey,Enc,Dec) of dimension d+1,
we can construct a predicate encryption scheme for Φpoly

≤d as follows:
• The setup algorithm is unchanged.

• To generate a secret key corresponding to the polynomial p = adx
d + · · · + a0x

0, set ~p :=
(ad, . . . , a0) and output the key obtained by running GenKeySK(f~p).

• To encrypt a message M for the attribute w ∈ ZN , set ~w := (wd mod N, . . . , w0 mod N) and
output the ciphertext C ← EncPK(~w,M).

Since p(w) = 0 iff 〈~p, ~w〉 = 0, correctness and security follow.
The above shows that we can construct predicate encryption schemes where predicates corre-

spond to univariate polynomials whose degree d is polynomial in the security parameter. This can
be generalized to the case of polynomials in t variables, and degree at most d in each variable, as
long as dt is polynomial in the security parameter.

We can also construct schemes that are the “dual” of the above, in which attributes correspond
to polynomials and predicates involve the evaluation of the input polynomial at some fixed point.

5.4 Disjunctions, Conjunctions, and Evaluating CNF and DNF Formulas

Given the polynomial-based constructions of the previous section, we can fairly easily build pred-
icate encryption schemes for disjunctions of equality tests. For example, the predicate ORI1,I2 ,
where ORI1,I2(x) = 1 iff either x = I1 or x = I2, can be encoded as the univariate polynomial

p(x) = (x− I1) · (x− I2),

which evaluates to 0 iff the relevant predicate evaluates to 1. Similarly, the predicate ORa1,a2 , where
ORa1,a2(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can be encoded as the bivariate polynomial

p′(x1, x2) = (x1 − I1) · (x2 − I2).

Conjunctions can be handled in a similar fashion. Consider, for example, the predicate ANDI1,I2

where ANDI1,I2(x1, x1) = 1 if both x1 = I1 and x2 = I2. Here, we determine the relevant secret
key by choosing a random r ∈ ZN and letting the secret key correspond to the polynomial

p′′(x1, x2) = r · (x1 − I1) + (x2 − I2).

Note that if ANDI1,I2(x1, x1) = 1 then p′′(x1, x2) = 0, whereas if ANDI1,I2(x1, x1) = 0 then, with
all but negligible probability over choice of r, it will hold2 that p′′(x1, x2) 6= 0.

2In general, the secret key may leak the value of r in which case the adversary will be able to find I ′
1, I

′
2 such that

ANDI1,I2(I
′
1, I

′
2) 6= 1 yet p′′(I ′

1, I
′
2) = 0. However, this is not a problem when considering the “selective” notion of

security where the adversary must commit to I ′
1, I

′
2 at the outset of the experiment.
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The above ideas extend to more complex combinations of disjunctions and conjunctions, and
for boolean variables this means we can handle arbitrary CNF or DNF formulas. (For non-boolean
variables we do not know how to directly handle negation.) As pointed out in the previous section,
the complexity of the resulting scheme depends polynomially on dt, where t is the number of
variables and d is the maximum degree (of the resulting polynomial) in each variable.

5.5 Exact Thresholds

We conclude with an application that relies directly on inner product encryption. Here, we consider
the setting of “fuzzy IBE” [23], which can be mapped to the predicate encryption framework as
follows: fix a set A = {1, . . . , `} and let the set of attributes be all subsets of A. Predicates take
the form Φ = {φS | S ⊆ A} where φS(S′) = 1 iff |S ∩ S′| ≥ t, i.e., S and S′ overlap in at least
t positions. Sahai and Waters [23] show a construction of a payload-hiding predicate encryption
scheme for this class of predicates.

We can construct a scheme where the attribute space is the same as before, but the class of
predicates corresponds to overlap in exactly t positions. (Our scheme will also be attribute hiding.)
Namely, set Φ′ = {φ′

S | S ⊆ A} with φ′
S(S′) = 1 iff |S ∩ S′| = t. Then, given any inner product

encryption scheme of dimension ` + 1, we construct a scheme as follows:
• The setup algorithm is unchanged.

• To generate a secret key for the predicate φ′
S , first define a vector ~v ∈ Z`+1

N as follows:

for 1 ≤ i ≤ `: vi = 1 iff i ∈ S
v`+1 = 1.

Then output the key obtained by running GenKeySK(f~v).

• To encrypt a message M for the attribute S′ ⊆ A, define a vector ~v′ as follows:

for 1 ≤ i ≤ `: vi = 1 iff i ∈ S′

v`+1 = −t mod N.

Then output the ciphertext C ← EncPK(~v′,M).
Since |S ∩ S′| = t exactly when 〈~v,~v′〉 = 0, correctness and security follow.
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A Justifying our Assumptions in the Generic Group Model

We justify Assumptions 1 and 2 by showing that they hold in generic bilinear groups of composite
order N , as long as finding a non-trivial factor of N is hard. In doing so, we first prove two “master
theorems” for hardness in generic groups of composite order. These theorems generalize the result
by Boneh, Boyen, and Goh [7] in two ways: in addition to handling groups of composite order,
they can be used for proving soundness of assumptions where the target element is in the bilinear
group G (instead of the target group GT ). Thus, it also applies to assumptions such as the linear
assumption introduced by Boneh, Boyen, and Shacham [8] and the subgroup decision assumption
introduced by Boneh, Goh, and Nissim [11].

In prior work Boneh, Boyen, and Goh [7] provided a framework for proving a “class” of assump-
tions to be secure. This result has proven to be very useful in that it provides an expedient way to
verify an assumption to be generically secure. In this appendix we exapnd this framework to allow
for composite order groups and to allow the assumption target to be in the bilinear group G (as
opposed to GT ).

A.1 The Generic Group Model: an Overview

The generic group model was introduced in [21, 26]. This model provides a way to study ”generic”
group algorithms that act “independently” of the group representation (and therefore apply to any
group, as long as the group operation itself can be computed in polynomial time), in a way made
more precise below. It is important to qualify that various non-generic group algorithms are known
for specific groups, and so a proof of security in the generic group model does not guarantee any
security when the group is instantiated in some concrete fashion. It is, in part, for this reason
that we have proved security of our constructions relative to our stated assumptions (and now
justify the assumptions in the generic group model), rather than aiming for a direct proof that our
constructions are secure in the generic group model.

In the generic group model, algorithms are not given any “actual” representations of group
elements but are instead only given access to group elements via their “handles”. So, for example,
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an element g may be represented by the handle “1” and h by the handle “2”; an algorithm can
multiply these two elements by explicitly requesting mult(“1”, “2”). In response to this instruction,
the group element gh is computed. If element gh has not already been assigned a handle, a
new handle is assigned and returned to the algorithm; if gh has already been assigned a handle,
that handle is returned. (So, for example, if g were the identity element then the instruction
mult(“1”, “2”) would simply return “2”.) Note that this formalism allows the algorithm to check
equality of elements, since two elements are equal iff they have the same handle. We also allow an
exponentiation operation exp which takes as input an element’s handle and an integer and returns
the handle of the given element raised to the given power. (We allow negative exponents, so that
inverses can also be computed.) In general, we restrict the algorithm to only using as input handles
that it has already been given.3

In the setting of bilinear groups, we have two groups each with their own multiplication and
exponentiation instructions and whose elements all have distinct handles. We also have a pairing
instruction that takes as input two handles of elements from the first group and outputs the handle
of an element from the second (“target”) group.

A.2 A “Master Theorem” for Hardness in Composite Order Bilinear Groups

Before stating our theorems, we introduce some notation. We will consider cyclic bilinear groups
of order N , where N =

∏m
i=1 pi is the product of m distinct primes, each larger than 2n. Let G

denote the “base group” and let GT denote the “target group”; i.e., the bilinear map ê is from
G × G to GT . Each element g ∈ G can be written as g = ga1

p1
ga2
p2
· · · gam

pm
, where ai ∈ Zpi and gpi

denotes some fixed generator of the subgroup of order pi. We can therefore represent each element
g ∈ G as an m-tuple (a1, . . . , am). We can do the same with elements in GT (with respect to the
generators ê(pi, pi)), and will represent elements in GT as bracketed tuples [a1, . . . , am].

Using the above notation, the product of (a1, . . . , am) and (b1, . . . , bm) is the element (a1 + b1,
. . ., am + bm), where addition in component i is done modulo Zpi . Similarly (a1, . . . , am) raised to
the power γ ∈ Z is the element (γa1, . . . , γam). (Analogous results hold for elements of GT .) It will
be therefore be convenient to treat these tuples as “vectors” where vector addition corresponds to
multiplication in the group and vector multiplication by a scalar corresponds to group exponenti-
ation. The pairing of (a1, . . . , am), (b1, . . . , bm) ∈ G gives the element [a1b1, . . . , ambm] ∈ GT .

In an experiment involving the generic group, we will present an algorithm with a set of elements
generated at random according to some distribution. We will describe these random variables using
formal variables (written using capital letters) that are each chosen independently and uniformly at
random from the appropriate domain. For example, a random element of G would be described as
(X1, . . . , Xm), where each Xi is chosen uniformly from Zpi . We say a random variable expressed in
this way has degree t if the maximum degree of any variable is t. Dependencies are made explicit by
re-using the same formal variable; for example, a random “Diffie-Hellman-like” tuple (with m = 2)
would be described by the three elements (X1, X2), (Y1, Y2), and (X1Y1, X2Y2). Random variables
taking values in GT are expressed in the same way, but using the bracket notation.

Given random variables X, B1, . . . , B` (expressed as above) over the same group, we say that
X is dependent on {Bi} if there exist γi ∈ Z∗

N such that X =
∑

i γiBi, where equality refers to
equality in terms of the underlying formal variables. If no such {γi} exist, then X is said to be

3Another way to ensure this is to use randomly-generated handles that the adversary will be unable to guess
except with negligible probability.
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independent of {Bi}.
Given a random variable A = (X1, . . . , Xm), when we say that an algorithm is given A we mean

that random x1, . . . , xm are chosen appropriately and the adversary is given (the handle for) the
element (x1, . . . , xm).

We may now state our theorems.

Theorem A.1. Let N =
∏m

i=1 pi be a product of distinct primes, each greater than 2n. Let {Ai}
be random variables over G, and let {Bi}, T0, T1 be random variables over GT , where all random
variable have degree at most t. Consider the following experiment in the generic group model:

An algorithm is given N , {Ai}, and {Bi}. A random bit b is chosen, and the adversary
is given Tb. The algorithm outputs a bit b′, and succeeds if b′ = b. The algorithm’s
advantage is the absolute value of the difference between its success probability and 1/2.

Say each of T0 and T1 is independent of {Bi} ∪ {ê(Ai, Aj)}. Then given any algorithm A issuing
at most q instructions and having advantage δ in the above experiment, A can be used to find a
non-trivial factor of N (in time polynomial in n and the running time of A) with probability at
least δ −O(q2t/2n).

Thus, if N is generated in such a way that it is hard to find a non-trivial factor of N , the
advantage of any polynomial-time algorithm A is negligible in n.

Proof In the original game, each of the random variables {Ai}, {Bi}, T0, T1 are instantiated by
choosing random values for each of the formal variables and giving the handles of {Ai}, {Bi}, and
Tb to the algorithm A. The algorithm then issues a sequence of multiplication, exponentiation, and
pairing instructions, and is given in return the appropriate handles. Finally, the algorithm outputs
a bit b′ and its advantage is measured as defined above.

We next define a second game in which the formal variables are never concretely instantiated,
but instead the game only keeps track of the formal polynomials themselves. Furthermore, the game
now uses identical handles for two elements only if these elements are equal as formal polynomials
in each of their components. (So, in the original game the random variables X = (X1, . . . , Xm) and
Y = (Y1, . . . , Ym) could be assigned the same handle if it happened to be the case that Xi = Yi for
all i. In this game, however, these two tuples of formal polynomials are always treated as different.)
This only introduces a difference in case it happens during the course of the experiment that two
different formal polynomials would take on the same value. For any particular pair of elements,
the probability that this occurs is bounded by 2t/2n (since the maximum degree of any polynomial
constructed during the course of the experiment is 2t). Summing over all pairs of elements produced
during the course of the experiment shows that the statistical difference between these experiments
is O(q2 · t/2n).

In the third game, we record the formal polynomials as before except that now all computation,
in each of the m components, is done modulo N rather than modulo the appropriate pi. Now, two
elements are assigned identical handles only if they are equivalent as (tuples of) formal polynomials
over ZN . This only introduces a difference in case two polynomials are generated during the course
of the experiment that are different modulo N but would have been identical modulo one of the pi.
But whenever this occurs, a non-trivial factor of N can be recovered from the coefficients of any
two such polynomials.

Finally, we observe that in the third game the only possible way in which the algorithm can
distinguish whether it is given T0 or T1 is if the algorithm is able to generate a formal polynomial
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that would be symbolically equivalent to some previously-generated polynomial for one value of b
but not the other. But in this case, we can write (for some b)

γ · Tb =
∑
i,j

γi,j · ê(Ai, Aj) +
∑

i

γi ·Bi

where γ 6= 0 and equality denotes symbolic equality in terms of the formal variables constituting
the different random variables. By assumption of independence of T0, T1, it must be the case that
one of the coefficients of the above equation is not in Z∗

N . But then a non-trivial factor of N can
be recovered.

Theorem A.2. Let N =
∏m

i=1 pi be a product of distinct primes, each greater than 2n. Let
{Ai}, T0, T1 be random variables over G, and let {Bi} be random variables over GT , where all
random variable have degree at most t. Consider the same experiment as in Theorem A.1.

Let S
def= {i | ê(T0, Ai) 6= ê(T1, Ai)} (where inequality refers to inequality as formal polynomials).

Say each of T0 and T1 is independent of {Ai}, and furthermore that for all k ∈ S it holds that
ê(T0, Ak) is independent of {Bi} ∪ {ê(Ai, Aj)} ∪ {ê(T0, Ai)}i6=k, and ê(T1, Ak) is independent of
{Bi}∪{ê(Ai, Aj)}∪{ê(T1, Ai)}i6=k. Then given any algorithm A issuing at most q instructions and
having advantage δ, the algorithm can be used to find a non-trivial factor of N (in time polynomial
in n and the running time of A) with probability at least δ −O(q2t/2n).

Thus, if N is generated in such a way that it is hard to find a non-trivial factor of N , the
advantage of any polynomial-time algorithm A is negligible in n.

Proof The proof is identical to the proof of Theorem A.1 except for the analysis of the third
game. As in the earlier proof, in the third game the only possible way in which the algorithm can
distinguish whether it is given T0 or T1 is if the algorithm is able to generate a formal polynomial
that would be symbolically equivalent to some previously-generated polynomial for one value of b
but not the other. But then we either have (for some b)

γ · Tb =
∑

i

γiAi

(with γ 6= 0), or else we have∑
i∈S

αi · ê(Tb, Ai) +
∑
i6∈S

βi · ê(Tb, Ai) =
∑

i

γi ·Bi +
∑
i,j

γi,j · ê(Ai, Aj),

where αi 6= 0 for at least one i ∈ S (otherwise, symbolic equality would hold for both values of b).
By the independence assumptions, this implies that a non-trivial factor of N can be recovered.

A.3 Applying the Master Theorem to Our Assumptions

We now show how to apply the theorems of the previous section to prove that our assumptions
hold in the generic group model.

Assumption 2. We begin with Assumption 2 (since it corresponds to the simpler Theorem A.1).
Using the notation of the previous section, our second assumption may be written as:

A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1), A4 = (X, 0, 0)
A5 = (S, 0, 0), A6 = (XS, Y1, 0), A7 = (Γ, Y2, 0), B1 = [X Γ, 0, 0]

T0 = [X ΓS, 0, 0], T1 = [Z1, Z2, Z3]
.
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It is immediate that T1 is independent of B1 ∪ {ê(Ai, Aj)}. As for T0, the only way a dependence
can occur is if there is an element of GT with first component equal to X ΓS; this occurs only in
ê(A6, A7), but in that element there is an additional component Y1Y2 in the second component that
cannot be canceled.

Assumption 1. Assumption 1 may be written as:

A1 = (1, 0, 0), A2 = (0, 0, 1), A3 = (0, 1, Y1),
A4 = (B, 0, 0), A5 = (B2, 0, 0), A6 = (A, 1, 0),

A7 = (AB, Y2, 0), A8 = (S, 0, 0), A9 = (BS, Y3, Y4)
T0 = (B2S, 0, Z1), T1 = (B2S, Z2, Z1)

.

It is not difficult to see that both T0 and T1 are independent of {Ai}. Using the notation of
Theorem A.2, we have S = {3, 6, 7, 9}. Considering T0 first, we obtain the following tuples:

C3
def= ê(T0, A3) = [0, 0, Z1Y1] C6

def= ê(T0, A6) = [AB2S, 0, 0]

C7
def= ê(T0, A7) = [AB3S, 0, 0] C9

def= ê(T0, A9) = [B3S2, 0, Z1Y4].

It is clear that C3 and C9 are independent of anything else, since an element in GT whose third
component contains Z1Y1 (resp, Z1Y4) cannot be generated any other way. As for C6, the only other
way to obtain an element whose third component contains AB2S is by computing ê(A7, A9), which
yields the element [AB2S, Y2Y3, 0]. But there is no other way to generate an element whose second
component is Y2Y3, and hence no way to cancel that term. Finally, considering C7, there is no other
way to obtain an element containing a term of the form B3S2. Thus, each of the above elements
satisfy the independence requirement of Theorem A.1. Exactly analogous arguments apply for the
case of T1.

B Security Definition for Inner-Product Encryption

Here, we re-state Definition 2.2 in the particular setting of our main construction, which is a
predicate-only scheme where the set of attributes4 is Σ = Zn

N and the class of predicates is F =
{f~x | ~x ∈ Zn

N} such that f~x(~y) = 1 iff 〈~x, ~y〉 = 0 mod N .

Definition B.1. A predicate-only encryption scheme for Σ,F as above is attribute-hiding if for
all ppt adversaries A, the advantage of A in the following experiment is negligible in the security
parameter n:

1. Setup(1n) is run to generate keys PK, SK. This defines a value N which is given to A.

2. A outputs ~x, ~y ∈ Zn
N , and is then given PK.

3. A may adaptively request keys corresponding to the vectors ~v1, . . . , ~v` ∈ Zn
N , subject to the

restriction that, for all i, 〈~vi, ~x〉 = 0 mod N if and only if 〈~vi, ~y〉 = 0 mod N . In response, A
is given the corresponding keys SK~vi

← GenKeySK(f~vi
).

4. A random bit b is chosen. If b = 0 then A is given C ← EncPK(~x), and if b = 1 then A is
given C ← EncPK(~y).

4We consider vectors of length n, the security parameter, for convenience only.
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5. The adversary may continue to request keys for additional vectors, subject to the same
restriction as before.

6. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

C A Full-Fledged Predicate Encryption Scheme

In Section 4, we showed a construction of a predicate-only scheme. Here, we extend that scheme
to obtain a full-fledged predicate encryption scheme in the sense of Definition 2.1. The additions
in the present scheme are boxed for the reader’s convenience.

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp, Gq, and Gr, respectively. It then chooses
R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈ Gr uni-
formly at random. It also chooses random γ ∈ Zp and h ∈ Gp. The public parameters include
(N = pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, P = ê(gp, h)γ , {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1

)
.

The master secret key SK is
(
p, q, r, gq, h−γ , {h1,i, h2,i}ni=1

)
.

EncPK(~x,M) Let ~x = (x1, . . . , xn) with xi ∈ ZN , and view M as an element of GT . This algorithm
chooses random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. It outputs the ciphertext

C =
(

C ′ = M · P s , C0 = gs
p,

{
C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi ·R4,i

}n

i=1

)
.

GenKeySK(~v) Let ~v = (v1, . . . , vn). This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to n,
random R5 ∈ Gr, random f1, f2 ∈ Zq, and random Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 · h−γ ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

)
.

DecSK~v
(C) Let C and SK~v be as above. The decryption algorithm outputs

C ′ · ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i).

As we have described it, decryption never returns an error (i.e., even when 〈~v, ~x〉 6= 0). We will
show below that when 〈~v, ~x〉 6= 0 then the output is essentially a random element in the order-q
subgroup of GT . By restricting the message space to some efficiently-recognizable set of negligible
density in this subgroup, we recover the desired semantics by returning an error if the recovered
message does not lie in this space.
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Correctness. Let C and SK~v be as above. Then

C ′ · ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= M · P s · ê

(
gs
p, R5Q6h

−γ
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê
(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)
= M · P s · ê

(
gs
p, h−γ

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·

n∏
i=1

ê
(
hs

1,i g
α·xi
q , g

r1,i
p gf1·vi

q

)
· ê
(
hs

2,i g
β·xi
q , g

r2,i
p gf2·vi

q

)
= M · P s · ê(gp, h)−γs ·

n∏
i=1

ê(gq, gq)(αf1+βf2)xivi = M · ê(gq, gq)(αf1+βf2)〈~x,~v〉.

If 〈~x,~v〉 = 0 mod N , then the above evaluates to M . If 〈~x,~v〉 6= 0 mod N there are two cases: if
〈~x,~v〉 6= 0 mod q then the above evaluates to an element whose distribution is statistically close to
uniform in the order-q subgroup of GT . (Recall that α, β are chosen at random.) It is possible that
〈~x,~v〉 = 0 mod q, in which case the above always evaluates to M ; however, this reveals a non-trivial
factor of N and so an adversary can cause this condition to occur with only negligible probability.

C.1 Proof of Security

Theorem C.1. If G satisfies Assumptions 1 and 2 then the scheme described in the previous section
is an attribute-hiding predicate encryption scheme.

We prove that the scheme described in the previous section satisfies Definition 2.2. In proving
this, we distinguish two cases: when M0 = M1 and when M0 6= M1. We show that the adversary’s
probability of success conditioned on the occurrence of each case is negligibly-close to 1/2.

A proof for the case M0 = M1 follows mutatis mutandis from the proof given in Section 4.
Specifically, if M0 = M1 = M then the adversary gets no advantage from the extra term M · P s

included in the challenge ciphertext and so the only point to verify is that, throughout the proofs
in Sections 4.4.1 and 4.4.2, the simulator can compute the value P s (so that it can construct the
additional element C ′ = M · P s). This is easy to do if the simulator computes P exactly as in the
Setup algorithm, and stores h−γ . We omit the straightforward details.

Given the above, we concentrate here on proving security under the assumption that M0 6= M1.
Since we are considering only this case, we will assume the adversary is restricted to requesting keys
corresponding to vectors ~v for which 〈~v, ~x〉 6= 0 and 〈~v, ~y〉 6= 0, where ~x, ~y are the vectors output by
the adversary at the outset of the experiment (cf. Definition B.1). We establish the result in this
case using a sequence of games, defined as follows.

Game0: The challenge ciphertext is generated as a proper encryption of M0 using ~x. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr, and compute the ciphertext as

C =
(
C ′ = M0 · P s, C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i

}n

i=1

)
.
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Game1: We now generate the challenge ciphertext as a proper encryption of a random element
of GT , but still using ~x. I.e., the ciphertext is formed as above except that C ′ is chosen
uniformly from GT .

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute
the ciphertext as

C =
(
C ′, C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}n

i=1

)
.

Note that this exactly parallels Game2 in the proof of Theorem 4.1.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute the ciphertext as

C =
(
C ′, C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

Note that this exactly parallels Game3 in the proof of Theorem 4.1.

Game4 and Game5: These games are defined symmetrically to Game2 and Game3, as in the proof of
Theorem 4.1. We continue to let C ′ be a random element of GT . Note that Game5 corresponds
to a proper encryption of a random element of GT using ~y.

Game6: The challenge ciphertext is generated as a proper encryption of M1 using ~y.

In the next section we prove that, under Assumption 2, Game0 and Game1 are indistinguishable.
Indistinguishability of Game1 and Game5 follows, as earlier, mutatis mutandis from the proofs in
Sections 4.4.1 and 4.4.2. The proof that Game5 and Game6 are indistinguishable is symmetric to
the proof that Game0 and Game1 are indistinguishable, and is therefore omitted.

C.1.1 Indistinguishability of Game0 and Game1

Fix an adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along with the
elements gp, gq, gr, h, gs

p, hsQ1, gγ
pQ2, ê(gp, h)γ , and an element T which is either equal to

ê(gp, h)γs or is uniformly distributed in GT . Note that the simulator is now able to sample uniformly
from Gq and Gr using gq and gr, respectively. In particular, the simulator can sample uniformly
from Gqr = Gq ×Gr. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The sim-
ulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i}, R0 ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the remainder of the parameters as follows:

PK =
(
gp, gr, Q = gqR0, P = ê(gp, h)γ ,

{
H1,i = hxig

w1,i
p R1,i, H2,i = hxig

w2,i
p R2,i

}n

i=1

)
.

The simulator is implicitly setting h1,i = hxig
w1,i
p and h2,i = hxig

w2,i
p . Note that PK has the

appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors ~v, as
long as 〈~v, ~x〉 6= 0 (we do not use the fact that 〈~v, ~y〉 6= 0 here). We now describe how the simulator
prepares the secret key corresponding to any such vector.
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Say the adversary requests the secret key for vector ~v, and let k = 1/2 · 〈~x,~v〉 mod N . (If
gcd(〈~x,~v〉 , N) 6= 1) then the adversary has factored N ; this occurs with negligible probability.)
The simulator first chooses random f ′

1, f
′
2, {r′1,i, r

′
2,i} ∈ ZN . Next, for all i it computes:

K1,i =
(
gγ
pQ2

)−kvi · gf ′
1vi

q · g
r′
1,i

p

= g
−kviγ+r′

1,i
p · g(f ′

1−kc)·vi
q

(where we set c = loggq
Q2), and

K2,i =
(
gγ
pQ2

)−kvi · gf ′
2vi

q · g
r′
2,i

p

= g
−kviγ+r′

2,i
p · g(f ′

2−kc)·vi
q .

The simulator then chooses random QR ∈ Gqr and computes:

K = QR ·
n∏

i=1

((
g

w1,i
p hxi

)−r′
1,i ·

(
gγ
pQ2

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′
2,i ·

(
gγ
pQ2

)kviw2,i
)

.

Finally, the simulator hands the adversary SK~v = (K, {K1,i,K2,i}ni=1) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator is implicitly setting f1 = f ′
1 − kc and, for all i, r1,i = −kγvi + r′1,i (and analogously

for f2 and the {r2,i}). These values are all uniformly and independently distributed in ZN . Next,
note that

n∏
i=1

(
g

w1,i
p hxi

)−r′
1,i ·

(
gγ
p

)kviw1,i =
n∏

i=1

g
−w1,ir

′
1,i+kγviw1,i

p · h−xir
′
1,i

=
n∏

i=1

g
−w1,i·(r1,i+kγvi)+kγviw1,i
p · h−xi·(r1,i+kγvi)

=
n∏

i=1

(
hxig

w1,i
p

)−r1,i · h−γkvixi = h−γ/2 ·
n∏

i=1

h
−r1,i

1,i ,

using the fact that 〈~v, ~x〉 = 1/2k mod N . Thus, looking at Kp (the projection of K in Gp) we see
that

Kp =
n∏

i=1

((
g

w1,i
p hxi

)−r′
1,i ·

(
gγ
p

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′
2,i ·

(
gγ
p

)kviw2,i
)

= h−γ ·
n∏

i=1

h
−r1,i

1,i · h−r2,i

2,i ,

and so Kp (and hence K) is distributed appropriately.

The challenge ciphertext. The challenge ciphertext is generated as follows. The simulator
chooses random {R7,i, R8,i} ∈ Gr and Q′

1 ∈ Gq, sets C ′ = M0 · T , sets C0 = gs
p, and computes:

C1,i =
(
gs
p

)w1,i · (hsQ1)
xi ·R7,i

=
(
hxig

w1,i
p

)s ·Qxi
1 ·R7,i

C2,i =
(
gs
p

)w2,i · (hsQ1)
xi · (Q′

1)
xi ·R8,i

=
(
hxig

w2,i
p

)s · (Q1Q
′
1)

xi ·R8,i .
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Analysis. By examining the projections of the components of the challenge ciphertext in the
groups Gp, Gq, and Gr, it can be verified that when T = ê(gp, h)γs the challenge ciphertext is
distributed exactly as in Game0, whereas if T is chosen uniformly from GT the challenge ciphertext
is distributed exactly as in Game1. We conclude that, under Assumption 2, these two games are
indistinguishable.
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