Modeling Computational Security in Long-Lived Systems* **

Ran Canetti?, Ling Cheund, Dilsun Kayna?,
Nancy LyncH, and Olivier Pereirh

L IBM T. J. Watson Research Center
2 Massachusetts Institute of Technology
3 Carnegie Mellon University
4 Université catholique de Louvain

Abstract. For many cryptographic protocols, security relies on tteuasgption that adversarial entities have lim-
ited computational power. This type of security degradegmssively over the lifetime of a protocol. However,
some cryptographic services, such as timestamping seruicdigital archives, arng-livedin nature; they are
expected to be secure and operational for a very long tireg §uper-polynomial). In such cases, security cannot
be guaranteed in the traditional sense: a computationadlyre protocol may become insecure if the attacker has a
super-polynomial number of interactions with the protocol

This paper proposes a new paradigm for the analysis of liweg-becurity protocols. We allow entities to be active
for a potentially unbounded amount of real time, providesytherform only a polynomial amount of woper unit

of real time Moreover, the space used by these entities is allocateahdgally and must be polynomially bounded.
We propose a new notion tifing-term implementatigrwhich is an adaptation of computational indistinguishigbi

to the long-lived setting. We show that long-term implena¢ion is preserved under polynomial parallel composi-
tion and exponential sequential composition. We illustthe use of this new paradigm by analyzing some security
properties of the long-lived timestamping protocol of Haded Kamat.

1 Introduction

Computational security in long-lived systemSecurity properties of cryptographic protocols typicailgld only
against resource-bounded adversaries. Consequenthyematical models for representing and analyzing secufity o
such protocols usually represent all participants as resebiounded computational entities. The predominant way
of formalizing such bounds is by representing all entitisdime-bounded machines, specifically, polynomial-time
machines (a partial list of works representative of thigdiion includes [1-5]).

This modeling approach has been successful in capturingettrity of protocols for many cryptographic tasks.
However, it has a fundamental limitation: it assumes thatathalyzed system runs for only a relatively “short” time.
In particular, since all entities are polynomially-bouddi the security parameter), the system’s execution mut e
after a polynomial amount of time. This type of modeling iadequate for analyzing security properties of protocols
that are supposed to run for a “long” time, that is, an amodé@itibee that is not bounded by a polynomial.

There are a number of natural tasks for which one would inthecidterested in the behavior of systems that run
for a long time. Furthermore, a number of protocols have loesrloped for such tasks. However, none of the existing
models for analyzing security against computationallyrmed adversaries is adequate for asserting and proving
security properties of protocols for such “long-lived”itas

One such task igroactive security6]. Here, some secret information is distributed amon@ss\parties, in a way
that allows the parties to jointly reconstruct the inforimaf while preventing an adversary that breaks into any smal
subset of the parties from reconstructing the informaftamthermore, the parties periodically engage in a protfaeol
“refreshing” their shares in a way that guarantees secrittyednformation even if all parties are broken into mulépl
times, as long as not too many parties are brokenbetaeen two refresheghe overall intention is to provideng-
lived security of the system. Another such taskasvard secure signaturgg, 8], where the system runs for a “long”
time, and the signer periodically refreshes its secret kethat an adversary that corrupts the signer cannot forge

* Canetti's work on this project was supported by NSF award#0635297 and BSF award #2006317. Cheung and Lynch were
supported by NSF Award #CCR-0326227. Kaynar was supporgdd$Army Research Office grant #DAAD19-01-1-0485.
Pereira is a Research Associate of the F.R.S.-FNRS and \pasrsed by the Belgian Interuniversity Attraction Pole &/
BCRYPT.

** Extended abstract of this work appears in Proceedings of OJRI'08.

signatures that bear time prior to the time of corruptigarward secure encryptiof¥, 9] is defined analogously. Yet
another task of the same flavor is timestamping [10—12].cAlth the literature contains protocols for these longdive
tasks, we do not currently have the analytical tools to fdateuand prove interesting assertions about their security

Related work: A first suggestion for an approach might be to use existingetspduch as the PPT calculus [13],
the Reactive Simulatability [14], or the Universally Conspble security frameworks [3], with a sufficiently large
value of the security parameter. However, this would beitnded for our purpose in that it would force protocols to
protect against an overly powerful adversasen in the short runyhile not providing any useful information in the
long run. Similarly, turning to information theoretic seity notions is not appropriate in our case because unbalinde
adversaries would be able to break computationally sealrenses instantaneously. We are interested in a notion of
security that can protect protocols against an adversatytims for a long time, but is only “reasonably powerful” at
any point in time.

Recently, Miller-Quade and Unruh proposed a notioroofy-term securityfor cryptographic protocols [15].
However, they consider adversaries that try to derive médion from the protocol transcripfter protocol conclusion.
This work does not consider long-lived protocol executiod,dn particular, the adversary of [15] has polynomially
bounded interactions with the protocol parties, which issuitable for the analysis of long-lived tasks such as those
we described above.

Our approach:In this paper, we propose a new mathematical model for aimgyhe security of suclong-lived sys-
tems To the best of our knowledge our work is the first one to tathdeissue of modeling computational security in
long-lived systems. Our understanding of a long-livedaysis that some protocol parties, including adversarieg, ma
be active for an unbounded amount of real time, subject todheition that only a polynomial amount of work can be
done per unit of real time. Other parties may be active foy arghort time, as in traditional settings. Thus, the adver-
sary’s interaction with the system is unbounded, and thesa@vy may perform an unbounded number of computation
steps during the entire protocol execution. This rendaditipnal security notions insufficient: computationadiyd
even statistically secure protocols may fail if the advarsas unbounded interactions with the protocol.

Modeling long-lived systems requires significant depasudrom standard cryptographic modeling. First and fore-
most, unbounded entities cannot be modeledrababilistic polynomial time (PPTJuring machines. In search of
a suitable alternative, we see the need to distinguish lestwweo types of unbounded computation: steps performed
steadily over a long period of time, versus those perfornaeg rapidly in a short amount of time. The former conforms
with our understanding of boundedness, while the lattes dmé. Guided by this intuition, we introduce real time ex-
plicitly into a basic probabilistic automata model, the K&4OA model [5], and impose computational restrictions in
terms ofrates i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on spadech traditionally is not an issue because PPT Turing
machines can, by their nature, access only a polynomiallyyded amount of space. In the long-lived setting, space
restriction warrants explicit consideration. During tifetime of a long-lived security protocol, we expect someeo
ponents to die and other new ones to become active, for exahy to the use of cryptographic primitives that have
a shorter life time than the protocol itself. Therefore, welfit important to be able to model dynamic allocation of
space. We achieve this by restricting the use of state yagam particular, all state variables of a dormant entity
(either not yet invoked or already dead) are set to a speualalalue L. A system is regarded as bounded only if,
at any point in its execution, only a bounded amount of spaceéded to maintain all variables with nanvalues.

For example, a sequential composition (in the temporaleyesfsaan unbounded number of entities is bounded if each
entity uses a bounded amount of space.

Having appropriate restrictions on space and computatitesy we then define a ndang-term implementation
relation, <,g pt, for long-lived systems. This is intended to extend the fiammotion ofcomputational indistinguisha-
bility, where two systemsédal andideal) are deemed equivalent if their behaviors are indistirttalite from the point
of view of a computationally bounded environment. Howewetjce that, in the long-lived setting, an environment
with super-polynomial run time can typically distinguidtettwo systems trivially, e.g., by launching brute force at-
tacks. This is true even if the environment has bounded ctatipn rate. Therefore, our definition cannot rule out
significant degradation of security in the overall lifetiofea system. Instead, we require that thee of degradation is
small at any point in time; in other words, the probabilityaafewsuccessful attack during any polynomial-bounded
window of time remains bounded during the lifetime of theteys

To capture this intuition, we introduce a new type of ideateyn, one that includes designated “failure” steps
that change its behavior to allow specified forms of attack.éxample, a failure step might represent the release of

a key, or a weakening of the criteria for verifying a signaturypically, a failure step will affect only aspects of the
ideal system involving current activity, e.g., the use afeutly-active keys. In particular, if the ideal systemtgeif a
composition of components, some of which are short-liveg failure steps will generally affect only those shoretiv
components that are currently active. If failure steps stppome time, no new modifications of the specified ideal
system behavior will occur; in particular, no failures Wikt considered for short-lived ideal components that awaken
after timet. However (and seemingly unavoidably), the effects of oillifa steps may persist and propagate forever.
The ideal system specifies what effects these old failurgshage. In this way, the ideal system specifies a form of
“damage control” for the effects of old failures.

Our long-term implementation relatiofi,eg pc requires that the real system approximates the ideal'®syst
handling of failures. More precisely, we quantify over &altime pointg and require that the real and ideal systems
are computationally indistinguishable up to tithe- ¢ (whereq is polynomial in the security parameter), even if no
failures steps are taken by the ideal system in the intérval ¢]. Notice that we do allow failure steps before time
This expresses the idea that, despite any security brett@tenay have occurred before timehe success probability
of afreshattack in the intervalt, ¢ + ¢| is small. Our formal definition 0K e o+ includes one more generalization:
it considers failure steps in the real system as well as tb& &lystem, in both cases before the same realtifkis
natural extension is intended to allow repeated use.@f ., in verifying protocols using several levels of abstragtio

We show that,e ot IS transitive, and is preserved under the operations ofruoiyal parallel composition and
exponential sequential composition. The sequential caitipa result highlights the power of our model to formulate
and prove properties of an exponential number of entitiesrimeaningful way.

Example: Digital timestampingAs a proof of concept, we analyze some security propertifssodigital timestamp-

ing protocol of Haber et al. [10-12], which was designed tdrads the problem of content integrity in long-term
digital archives. In a nutshell, a digital timestampingestie takes as input a documehat a specific time, and
produces a certificatethat can be used later to verify the existencel @t timet,. The security requirement is that
timestamp certificates are difficult to forge. Haber et aternthat it is inadvisable to use a single digital signature
scheme to generate all timestamp certificates, even ifraigkeys are refreshed periodically. This is because, over
time, any single sighature scheme may be weakened due ta@/m algorithmic research and/or discovery of vul-
nerabilities. Haber et al. propose a solution in which tiraegps must be renewed periodically by generating a new
certificate for the paifd, ¢) using a new signature scheme. Thus, even if the signatuesrechsed to generatgs
broken in the future, the new certificatestill provides evidence that existed at the time, stated in the original
certificatec.

We model the protocol of Haber et al. as the composition ospatther component and a sequence of signature
services. Each signature service “wakes up” at a certaia &imd is active for a specified amount of time before
becoming dormant again. This can be viewed as a regularepfitie signature service, which may entail a simple
refresh of the signing key, or the adoption of a new signirgpathm. The dispatcher component accepts various
timestamp requests and forwards them to the appropriatatsice service. We show that the composition of the
dispatcher and the signature services is indistinguighfibm an ideal system, consisting of the same dispatcher
composed with ideal signature functionalities. Specificahis guarantees that the probability of a new forgery is
small at any given point in time, regardless of any forgetti@s may have happened in the past.

2 Task-PIOAs

We build our new framework using task-PIOAs [5], which areeasion of Probabilistic Automata [16], augmented
with an oblivious scheduling mechanism based on tasks.kisasset of related actions (e.g., actions representing the
same activity but with different parameters). We view tas&basic groupings of events, both for real time scheduling
and for imposing computational bounds (cf. Sections 3 andinihis section, we review basic notations related to
task-PIOAs.

Notation: Given a sefS, let Disc(.S) denote the set of discrete probability measure$ oRor s € .S, let4(s) denote
the Dirac measure oB, i.e.,d(s)(s) = 1. LetV be a set of variables. Eache V is associated with éstatic) type
type(v), which is the set of all possible values @f We assume thatpe(v) is countable and contains the special
symbol L. A valuations for V' is a function mapping every € V' to a value intype(v). The set of all valuations fdr

is denotedval(V'). GivenV’ C V, a valuations’ for V' is sometimes referred to apartial valuationfor V. Observe
thats’ induces a (full) valuatiomy (s") for V', by assigningL to everyv ¢ V. Finally, for any setS with L ¢ S, we
write S| = SU{Ll}.

PIOA: We define grobabilistic input/output automaton (PIOA) be a tupled = (V, S, s, I, 0, H, A), where:

(i) Vis a set ofstate variablesind.S C val(V) is a set ofstates

(i) st € Sis theinitial state;
(i) I, O andH are countable and pairwise disjoint sets of actions, refetw asnput, output and hidden actions

respectively;

(iv) ACSx (JTUOUH) x Disc(S) is atransition relation
The setdct := T U O U H is theaction alphabebf A. If I =), then A is said to beclosed The set ofexternal
actions ofA is I U O and the set olocally controlledactions isO U H. An executioris a sequenca = qpai1qias . . .
of alternating states and actions whege= st and, for eachq;, a;11, gi11), there is a transitiolg;, a; 11,) € A
with ¢;+1 € Support(). A sequence obtained by restricting an executiopldb external actions is calledteace
We write s.v for the value of variable in states. An actiona is enabledin a states if (s, a, u) € A for somepu. We
require that4 satisfy the following conditions.

— Input Enabling: For everys € S anda € I, a is enabled irs.

— Transition Determinism: For everys € S anda € Act, there is at most one € Disc(S) with (s, a, u) € A. We

write A(s, a) for suchy, if it exists.

Parallel composition for PIOAs is based on synchronizatibshared actions. PIOA4; and.A, are said to be
compatibleif V; N V; = Act,NH; = O; N O; = 0 wheneveri # j. In that case, we define theiomposition
.AlH.AQ to be <Vi U Vs, 81 x Ss, <Si1nit7si2nit>7 (11 U 12) \ (01 U 02), 01 U0y, Hi U H27A>, whereA is the set of
triples ((s1, s2), a, u1 x p2) satisfying: (i)a is enabled in some;, and (ii) for everyi, if a € Act;, then(s;,a, ;) €
A;, otherwiseu; = 4(s;). It is easy to check that input enabling and transition dhweiteism are preserved under
composition. Moreover, the definition of composition cargkeeralized to any finite number of components.

Task-PIOA: To resolve nondeterminism, we make use of the notion of tasksduced in [17,5]. Formally, gask-
PIOAis a pair{A, R) whereA is a PIOA andR is a partition of the locally-controlled actions gf The equivalence
classes iR are calledasks For notational simplicity, we often omR and refer to the task-PIOA. The following
additional axiom is assumed.

— Action Determinism: For every state and every task’, at most one action € 7' is enabled irs.
Unless otherwise stated, terminologies are inherited fitmPIOA setting. For instance, if somec 7' is enabled in
a states, thenT is said to besnabledn s.

Example 1 (Clock automatorfjigure 1 describes a simple task-P1@Qbhock(T), which has aick(t) output action for
everyt in some discrete time domaih For concreteness, we assume that N, and write simplyClock. Clock has a
single taskick, consisting of altick(t) actions. These clock ticks are produced in ordert forl, 2, In Section 3,
we will define a mechanism that will ensure that e&ick(t) occurs exactly at real time

Clock(T)
Signature Tasks
Input: tick = {tick(*)}
none States
Output:

. count € T, initially 0
tick(¢: T), ¢ >0

Transitions
tick(t)
Precondition:

count =t —1
Effect:
count : =1t

Fig. 1. Task-PIOA Code foClock(T)

Operations: Given compatible task-PIOAd; and.A;, we define theicompositiorto be (A, | A2, R1 U R2). Note
that R, U R2 is an equivalence relation because compatibility requiisint sets of locally controlled actions.
Moreover, it is easy to check that action determinism isgmesd under composition.

We also define &iding operator: givend = (V, S, s"* 1.0, H, A) and B C O, hide(A, B) is the task-PIOA
givenby(V, S, st I O’ H', A), whereO’ = O\ BandH’ = HUB. This prevents other PIOAs from synchronizing
with A via actions inB: any PIOA with an action irB in its signature is no longer compatible with

Executions and tracesA task scheduléor a closed task-PIOAA, R) is a finite or infinite sequenge= Ty, 75, . ..
of tasks inR. This induces a well-defined run gf as follows.

(i) From the start state’, we applythe first task7}: due to action- and transition-determinisif, specifies at

most one transition fro™t; if such a transition exists, it is taken, otherwise notHiagpens.

(i) Repeat with remainingy;’s.
Such a run gives rise to a uniqpeobabilistic executionwhich is a probability distribution over executions.ih
For finite p, let Istate(.A, p) denote the state distribution of after executing according t@ A states is said to be
reachableunderp if Istate(A, p)(s) > 0. Moreover, the probabilistic execution induces a unitjaee distribution
tdist(\A, p), which is a probability distribution over the set of tracéss We refer the reader to [5] for more details
on these constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unfztad lifetime but bounded processing rates. A natural
approach is to introduce real time, so that computatiorsttictions can be stated in terms of the number of steps
performed per unit real time. Thus, we defingraedtask schedule for a closed task-PIOAA, R) to be a finite or
infinite sequencéT, ¢1), (T, t2), ... such thatT; € R andt; € R for everyi, andty, s, . .. is non-decreasing.
Given a timed task schedute= (T4, 1), (T2, t2), ... andt € Rx¢, lettrunc>.(7) denote the result of removing all
pairs(T;, t;) with ¢; > t. Thelimit time, denotedtime(r), is defined as follows.

— If 7 is empty, thertime(7) := 0.

— If t1,tq,...is bounded, theftime(r) := lim;_, t;, Otherwisdtime(r) := oo.

Following [18], we associate lower and upper real time baundeach task. If andwu are, respectively, the lower
bound and upper bound for a tagkthen the amount of time between consecutive occurrencEst least and at
mostu. To limit computational power, we impose a rate bound on talmer of occurrences @f within an interval
I, based on the length df A burst bound is also included for modeling flexibility.

Formally, abound magor a task-PIOA(A, R) is a tuple(rate, burst, Ib, ub) such that: (i)rate, burst,lb : R —
R>o, (i) ub : R — R, and (iii) for all T € R, Ib(T) < ub(T). To ensure thatate andub can be satisfied
simultaneously, we requinate(7') > 1/ub(T) wheneverate(T) # 0 andub(T") # oco. From this point on, we
assume that every task-PIOA is associated with a partibaland map.

Given a timed schedule and a taskl’, let proj,-(7) denote the result of removing all paifs;, t;) with T; # T.
Let I be any left-closed interval with left endpoint 0. We say thas valid for the intervall (under a bound map
(rate, burst, Ib, ub)) if the following hold for every task".

(i) If the pair (T, t) appears irr, thent € 1.
(i) If Ib(T) > 0, then: (a) if(T,t) is the first element oproj(7), thent > Ib(T'); (b) for every intervall’ of a
non-negative real length less thi(T"), proj(7) contains at most one elemefit, t) with t € I'.
(iii) If ub(T') # oo, then, for every interval’ C I of a non-negative real length greater théT"), proj,-(7) contains
at least one elemexf’, t) with ¢ € I'.
(iv) For anyd € R>(and any interval’ of lengthd, proj(7) contains at mostate(T") - d + burst(T") elements
(T, tywitht € I'.

We sometimes say that a task scheduis valid, without specifying an interval, to mean that it &lid for the
interval [0, ltime(7)].

Note that every timed scheduteprojects to an untimed scheduyeby removing all real time information;,
thereby inducing a trace distributiadist(A, 7) := tdist(A, p). The set of trace distributions induced by all valid
timed schedules ford and (rate, burst, Ib, ub) is denotedTrDists(.A, (rate, burst, Ib, ub)). Since the bound map is
typically fixed, we often omit it and writ@rDists(.A).

In a parallel compositiott, ||.A2, the composite bound map is the union of component bound:maps

(rate1 U rates, bursty U bursty, by Ulbsy, ub; U ub2>.

This is well defined since the task partition.df || Az is R1 U Ra.

Example 2 (Bound map fdrlock). We use upper and lower bounds to ensure thatk’s internal counter evolves at
the same rate as real time. Namely, welbétick) = ub(tick) = 1. The rate and burst bounds are also set. tt is
not hard to see that, regardless of the system of automdtamiuich Clock is composed, we always obtain the unique
sequencétick, 1), (tick, 2), ... when we project a valid schedule to the tagk.

Note that we use real time solely to express constraints si dehedules. We do not allow computationally-
bounded system components to maintain real-time infoonati their states, nor to communicate real-time informa-
tion to each other. System components that require knowlefitime will maintain discrete approximations to time
in their states, based on inputs fr@riock.

4 Complexity Bounds

We are interested in modeling systems that run for an unbediachount of real time. During this long life, we expect
that a very large number of components will be active at verjgoints in time, while only a small proportion of them
will be active simultaneously. During the life time of a loetiged system, especially for systems such as those that use
short-lived cryptographic primitives, it is natural to eqt that many components will become obsolete or die, arid wil
be replaced with other components. Defining complexity loisun terms of the total number of components would
then introduce unrealistic security constraints. Thersfae find it more reasonable to define complexity bounds in
terms of the characteristics of the components that arelsimaously active at any pointin time.

To capture these intuitions, we define a notiostefp boungwhich limits the amount of computation a task-PIOA
can perform, and the amount of space it can use, in executiirggée step. By combining the step bound with the
rate and burst bounds of Section 3, we obtairoaerall bound encompassing both bounded memory and bounded
computation rates.

Note that we do not model situations where the rates of coatiout, or the computational power of machines,
increases over time. This is an interesting direction inclvhihe current research could be extended.

Step BoundWe assume some standard bit string encoding for Turing mastaind for the names of variables, actions,
and tasks. We also assume that variable valuations are ethdwthe obvious way, as a list of name/value pairs. Let
A be a task-PIOA with variable s&t. Given states, let § denote the partial valuation obtained frarby removing all
pairs of the form{v, L). We have .y (5) = s, therefore no information is lost by reducingo §. This key observation
allows us to represent a “large” valuatiemvith a “condensed” partial valuatich

Letp € N be given. We say that a statés p-bounded if the encoding dfis at mostp bits long. The task-PIOA
A is said to havestep boung if the following hold.

(i) For every variable) € V, type(v) C {0, 1}7.
(i) The name of every action, task, and variabledhas length at mogt.
(iii) The initial states™* is p-bounded.
(iv) There exists a deterministic Turing machih&,.pe satisfying: for everyp-bounded state, Menapie ON iNputs
outputs the list of tasks enableddn
(v) There exists a probabilistic Turing machihg; satisfying: for everyp-bounded state and taskl’, My on input
(3, T) decides whetherF is enabled irs. If so, M computes and outputs a new partial valuatigralong with
the uniquex € T that is enabled in. The distribution ony (§8") coincides withA(s, a).
(vi) There exists a probabilistic Turing machifé satisfying: for everyp-bounded state and actioru, M on input
(8, a) decides whether is an input action ofd. If so, M; computes a new partial valuatiéh The distribution
onty (§') coincides withA(s, a).
(vii) The encoding 0fMnapie is at mostp bits long, andM.,.be terminates after at mogtsteps on every input. The
same hold foM/z and M.

Thus, step boung limits the size of action names, which often represent maitmmessages. It also limits the
number of tasks enabled from apybounded state (Condition (iv)) and the complexity of indial transitions (Con-
ditions (v) and (vi)). Finally, Condition (vii) requireslaif the Turing machines to have description boundegby

Lemma 1 guarantees that a task-PIOA with step bqundll never reach a state in which more thawvariables
have non4 values. The proofis a simple inductive argument.

Lemma 1. Let. A be a task-PIOA with step boupdFor every valid timed task schedul@nd every state reachable
underr, there are at mosp variablesv such thats.v £ 1.

Proof. By the definition of step bounds, we hay#t is p-bounded. For a staté reachable under schedulg let s be

a state immediately precedirgin the probabilistic execution induced b{. Thuss is reachable under some prefix of
7. If the transition froms to s’ is locally controlled, we use the fact thifz always terminates after at mgssteps,
therefore every possible output, includiélg has length at most. This impliess’ is a partial valuation on at mogt
variables. If the transition fromto s is an input, we follow the same argument witfy. O

Given a closed (i.e., no input actions) task-PI@Avith step boung, one can easily define a Turing machiiig,
with a combination of nhondeterministic and probabilistratiching that simulates the execution4fLemma 1 can
be used to show that the amount of work tape needetl/hyis polynomial inp. This is reminiscent of the PSPACE
complexity class, except that our setting introduces bewmdthe computation rate, and allows probabilistic choices
Lemma 2 says that, when we compose task-PIOAs in paraleekamplexity of the composite is proportional to the
sum of the component complexities. The proof is similar @t @f the full version of [5, Lemma 4.2]. We also note
that the hiding operator introduced in Section 2 preserigstsounds.

Lemma 2. Supposd A4;|1 < i < b} is a compatible set of task-PIOAs, where eathhas step boung; € N. The
composition||%_,.A4; has step bound.omp Zle pi, Whereceomp is a fixed constant.

Overall Bound: We now combine real time bounds and step bounds. To do so, present global time using the
clock automatorClock (Figure 1). Letp € N be given and letd be a task-PIOA compatible witlock. We say that
A is p-boundedf the following hold:
(i) A has step boungl.
(i) Forevery taskl’ of A, rate(T") andburst(7") are both at most.
(iii) Foreveryt € N, letS; denote the set of state®f A| Clock such that is reachable under some valid schedule
ands.count = t. There are at mogttasksT" such thafl" is enabled in some € S;. (Here,s.count is the value
of variablecount of Clock in states).
We say thatA is quasip-boundedf A is of the form.A’||Clock where A’ is p-bounded.
Conditions (i) and (i) are self-explanatory. Conditioii) (is a technical condition that ensures that the enabling o
tasks does not change too rapidly. Without such a restricdlocould cycle through a large number of tasks between
two clock ticks, without violating the rate bound of any imidiual task.

Task-PIOA Families:We now extend our definitions to task-PIOA families, indekgdsecurity parametek. More
precisely, aask-PIOA familyA is an indexed sef.Ay } rew Of task-PIOAs. Giverp : N — N, we say thatd is p-
boundedust in case: for alk, A is p(k)-bounded. If is a polynomial, then we say thatis polynomially bounded
The notions of compatibility and parallel composition fask-PIOA families are defined pointwise. We now present an
example of a polynomially bounded family of task-PIOAs—gnsiture service that we use in our digital timestamping
example in Section 8.

Example 3 (Signature Servicé) signature schem@ig consists of three algorithmkeyGen, Sign andVerify. KeyGen

is a probabilistic algorithm that outputs a signing-vedfion key pair(sk, vk). Sign is a probabilistic algorithm that
produces a signature from a messagen and the keysk. Finally, Verify is a deterministic algorithm that maps
(m, o, vk) to a boolean. The signatuseis said to bevalid for m andvk if Verify(m, o, vk) = 1.

Let SID be a domain of service identifiers. For egck SID, we build a signature service as a family of task-
PIOAs indexed by security parameter Specifically, we define three task-PIOAseyGen(k, j), Signer(k, j), and
Verifier(k, j) for every pair(k, j), representing the key generator, signer, and verifieresely. The composition
of these three task-PIOAs gives a signature service. Wearasaufunctioralive : T — 25/ such that, for every,
alive(t) is the set of services alive at discrete tim&he lifetime of each servicgis then given byliveTimes(j) :=
{t € T|j € alive(t)}; we assume this to be a finite set of consecutive numbers.

For every valué: of the security parameter, we assume the following finite @ios1 RID;, (request identifiers),
M, (messages to be signed) abhy (signatures). The representations of elements in thesaidsrare bounded by
p(k), for some polynomigp. Similarly, the domairT;, consists of natural numbers representable ug{&g bits. Each
of the component&eyGen(k, j), Signer(k, j), andVerifier(k, j) has a set of input actiongk(¢), t € Ty, which are
intended to match with corresponding outputs from the clagtomatorClock (Figure 1). These inputs allow each

component to record discrete time information in its stateableclock. Sinceclock can produceick(t) outputs for
arbitraryt € T, this means that these new components do not receive @b@fs inputs, but only those with € Ty.

KeyGen(k, j) chooses a signing keyySK and a corresponding verification keyy VK . It does this exactly once,
at any time when servicgis alive. It outputs the two keys separately, via actisipsKey(sk),; andverKey(vk);. The
signing key goes tSigner(k,), while the verification key goes t@erifier(k, 5).

The code folKeyGen(k, j) is given in Figure 2. As we mentioned before, titek(¢) action brings in the current
time. If j is alive at timet, thenclock is set to the current time Also, if j has just become alive, as evidenced by the
fact that theawake flag is currently L, the awake flag is set tatrue. On the other hand, if is no longer alive at time
t, all variables are set to.

ThechooseKeys action usekeyGen ; to choose the key pair, and is enabled only whénawake and the keys are
currently L. Note that théleyGen algorithm is indexed by, because different services may use different algorithms.
The same applies t6ign; in Signer(k, j) and Verify, in Verifier(k, j). ThesignKey andverKey actions output the
keys, and they are enabled only wheis awake and the keys have been chosen.

KeyGen(k : N, j : SID)
Signature Tasks
Input: verKeyj = {verKey(x);}

tick(t : Tx) SignKeyj = {SignKey(*)j}
chooseKeysj = {chooseKeysj}

Output:
signKey(sk : 2%); States
verKey (vk : 2%); awake : {true} |, init L
Internal: clock : (Ty) L, init L
chooseKeys; mySK : (2F) 1, init L
myVK : (Qk)L, init L
Transitions
tick(t) signKey (sk);
Effect: Precondition:
if j € alive(¢) then awake = true
clock =t sk = mySK # L

if awake = 1 then
awake := true

else
awake, clock, mySK
myVK = L
chooseKeys;

Precondition:
awake = true
mySK = myVK = L
Effect:
(mySK, myVK)
— KeyGenj(lk)

Effect:
none

verKey (vk);
Precondition:

awake = true

vk = myVK # L
Effect:

none

Fig. 2. Task-PIOA Code foKeyGen(k, j)

Signer(k, j) receives the signing key from another component, &eyGen(k,). It then responds to signing
requests by running thigign; algorithm on the given message and the received signing key:. Figure 3 presents
the code foSigner(k, 7), which is fairly self-explanatory.

The data typgue,, represents queues with maximum length), wherep is a polynomial. The enqueue operation
automatically discards the new entry if the queue is alreddigngthp(k). This models the fact th&igner(k, j) has a
bounded amount of memory. For concreteness, we assumehhgpés the constant functioh for the queuegoSign
andsigned.

We use a variableoSign of type queue to keep track of signature requests for which 8igner has not yet
produced a signature, and another variableed of type queue to keep track of signature requests for whieh th
Signer has produced a signature but not yet output it.

Again, transitions except for clock ticks are guarded bystésat;’'s awake flag is set totrue. The signing key
arrives in arsignKey action. Note there is no explicit request for the kelgeyGen supplies it spontaneously. When a
request to sign a messagearrives, it's simply put into &oSign queue, provided that the queue isn’t full. (If it is, the
message is dropped.)

The real work is done in th&gn step. This is enabled wheris awake and has received its signing key, and some
request appears at the head of th€ign queueSigner simply dequeues the message, and (if¢he@ed queue isn't
full), Signer signs the message using its key and enqueues the resufjiragigie on theigned queue. TheespSign
step simply outputs signatures from thigned queue.

As for KeyGen, thetick transition handles the wakeup and death of the componewglaas recording the clock
time. Again, ifj is supposed to be alive at tinagit records the current time, and if it has just become alivggts all
its variables to their default starting valuesj i not supposed to be alive, then it sets all of its variakdes.t

In this code and other code to follow, we follow the generdigyoof dropping elements entirely rather than
retrying, if the target queue is full. The hope is that, in $iteations we are interested in, the queues will not fill up.

Verifier(k, j) accepts verification requests and simply runs\thefy; algorithm. The code appears in Figure 4.
Again, all queues have maximum lendth

Assuming the algorithmiseyGen;, Sign; andVerify; are polynomial time, it not hard to check that the composite
KeyGen(k, j)||Signer(k, 7)||Verifier(k, 7) has step boung(k) for some polynomiap. If rate(7") andburst(T’) are at
most p(k) for every T, then the composite is p(k)-bounded. The family {KeyGen(k,j)||
Signer(k, j)||Verifier(k, j) } ken is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of contfmuttal indistinguishability. For instance, an encryption
algorithm is (chosen-plaintext) secure if the cipherteftivo distinct but equal-length messages are indistirguis
able from each other, even if the plaintexts are generatetidgistinguisher itself. The key assumption is that the
distinguisher is computationally bounded, so that it cahaanch a brute force attack. In this section, we adapt this
notion of indistinguishability to the long-lived setting.

We define an implementation relation based on closing ensrients and acceptance probabilities. l4ebe a
closed task-PIOA with output actiarec and taskacc = {acc}. Let r be a timed task schedule fgr. Theacceptance
probability of A underr is: P,(A, 7) := Pr[f containsacc : § < tdist(A, 7)]; that is, the probability that a trace
drawn from the distributiondist(.4, 7) contains the actioacc. If A is not necessarily closed, we include a closing
environment. A task-PIO&nv is anenvironmenfor A if it is compatible with.A and.A||Env is closed. From here on,
we assume that every environment has output aeiion

In the short-lived setting, we say that a systeln implements another system, if every run of A; can be
“matched” by a run of4, such that no polynomial time environment can distinguighttio runs. As we discussed in
the introduction, this type of definition is too strong foetlong-lived setting, because we must allow environments
with unbounded total run time (as long as they have boundedirad space).

For example, consider the timestamping protocol of [11 dE&cribed in Section 1. After running for a long period
of real time, a distinguisher environment may be able tod@gignature with non-negligible probability. As a result,
it can distinguish the real system from an ideal timestagpsiystem, in the traditional sense. However, the essence
of the protocol is that such failures can in fact be toleratestause they do not help the environment to forge
signatures, after a new, uncompromised signature sereic@bes active.

This timestamping example suggests that we need a new maitiong-term implementation that makes mean-
ingful security guarantees in any polynomial-bounded wimf time, in spite of past security failures. Our new
implementation relation aims to capture this intuition.

First we define a comparability condition for task-PIOA&: and.4? are said to beomparablef they have the
same external interface, thatis, = I? andO! = OZ?. In this case, every environmehtfor A! is also an environment
for A2, providedFE is compatible withA2.

Let A! and.A% be comparable task-PIOAs. To model security failure evient®th automata, we lef be a set
of designatedailure tasksof A!, and letF? be a set ofailure tasksof A2. We assume that each taskiit and F2
hasoo as its upper bound.

Signer(k : N, j : SID)
Signature

Input:
tick(t : Tk)
signKey(sk : 2%);
reqSign(rid : RIDy,
m Mk)j
Output:
respSign(rid : RIDy,
o:X%);
Internal:

sign(rid : RID}“m : Mk)J

Transitions
tick(t)
Effect:
if j € alive(t) then
clock .=t

if awake = 1 then
awake = true
toSign, signed
= empty
else
awake, clock, mySK
toSign, signed := L

signKey (sk);
Effect:
if awake = true
AmySK = 1

thenmySK := sk

reqSign(rid, m);
Effect:
if awake = true
A= full(toSign)
thentoSign :=

Tasks

respSign,; = {respSign(*, *); }
sign; = {sign(x, *);

States

awake : {true} , init L

clock : (Tx) 1, init L

mySK : (2F) 1, init L

toSign : que, (RIDy X My) 1,
init L

signed : que, (RIDy X Xi) 1,
init L

sign(rid, m);

localo : X

Precondition:
awake = true
head(toSign) = (rid, m)
mySK # L

Effect:
toSign := deq(toSign)
o «+ Sign; (m, mySK)
signed :=

enq(signed, (rid, o))

respSign(rid, 0);
Precondition:

awake = true

head(signed) = (rid, o)
Effect:

signed = deq(signed)

enq(toSign, (rid, m))

Fig. 3. Task-PIOA Code fobigner(k, j)

Givent € R and an environmertinv for both.A' and.42, we consider two experiments. In the first experiment,
Env interacts withA! according to some valid task schedwjeof .A! ||[Env, wherer; does not contain any tasks from
F! from timet onwards. In the second experimeBby interacts with.A? according to some valid task schedue
of A?||Env, wherer, does not contain any tasks froR? from time¢ onwards. Our definition requires that the first
experiment “approximates” the second one, that igl'ifacts ideally (does not perform any of the failure task&'i)
after timet, then it simulates4?, also acting ideally from timé onwards.

More specifically, we require that, for any valig, there exists a valig, as above such that the two executions
are identical before timefrom the point of view of the environment. That is, the proifiatic execution is the same
before timet. Moreover, the two executions are overamputationally indistinguishabl@amely, the difference in
acceptance probabilities in these two experiments is gietgi providedEnv is computationally bounded.

If 7 is a schedule ofd|| B, then we defingrojz(7) to be the result of removing ≪, t;) whereT; is nota task of
B. Moreover, letExecsg(A|| B, 7) denote the distribution of executionsBfwhen executed witbd under schedule.

Definition 1. Let A and.4? be comparable task-PIOAs that are both compatible @idtk. Let F'* and F? be sets
of tasks of, respectivelyl! and.A?, such that for anyl’ € (F! U F?), ub(T) = cc. Letp,q € Nande € Rx(be

given. Then we say tha#', F') <, , . (A?, F?) provided that the following is true:
For everyt € Rxq, every quasp-bounded environmertinv, and every valid timed schedute for A!||Env for the
interval [0, ¢ + ¢] that does not contain any pairs of the fokff;, ¢;) whereT; € F! andt; > t, there exists a valid
timed schedule, for .A?||Env for the interval[0, ¢ + g] such that:

(I) projEnv(Tl) = projEnv(TQ);

(i) 7> does not contain any pairs of the forfh;, ¢;) whereT; € F? andt; > t;

(iii) Execsgny (A!||Env, truncs.(71)) = Execsgny (A?||Env, truncs(72));

(iV) |Pacc(AYEnv, 71) — Pacc(A?[|Env, 72)| < e.

The following lemma says that, , . (Definition 1) is transitive up to additive errors.

Lemma 3. Let A', A2, and.43 be comparable task-PIOAs, and IEt, F2, and F3 be sets of tasks od', .42, and
A3, respectively, such that for affy(e F' U F2U F?), ub(T) = cc. Letp,q € Nande € R>(be given. Assume that
(AL FY) <) g (A% F2)and (A2 F?) <, e, (A3 F3). Then(AY FY) <, o cie, (A3 F3).

Proof. Lett € R>o, Env a quasip-bounded environment, and a valid timed scheduléor A!||Env for the interval
[0, + ¢] be given, where; does not contain any pairs of the forfTy;, t;) whereT; € F'* andt; > t. Chooser; for
A?||Env according to the assumptidt!, F') <, , ., (A%, F?). Usingr, chooser; for .43||Env according to the
assumption(A2, F?) <, , ., (A3, F3).

Clearly, we have

- projEnv(Tl) = projEnv(TQ) = prOjEnv(7_3>;
— 73 does not contain any pairs of the fokffi,, t;) whereT; € F3 andt; > t;
— Execsgny (A!||Env, trunc>+(71)) = Execsgay (A%||Env, truncs¢(m2)) = Execsgny (A3||Env, truncs4(73)).

Finally,

| Pace (AY|Env, 71) — Pacc (A?||Env, 73)|
< | Pacc(AY|Env, 71) — Pocc (A%||Env,)|
+ | Pace (A% Env, 7o) — Pocc(A®||Env, 73)]
<€+ €. a

The relation<,, , . can be extended to task-PIOA families as follows. Aét= {(A");}xeny andA? = {(A?);.}ren
be pointwise comparable task-PIOA families. Liet be a family of sets such that ea¢Rh!);. is a set of tasks of
(Al)x and letF? be a family of sets such that ea¢h?); is a set of tasks o¢fl2)k, satisfying the condition that
each task of those sets has an infinite upper bounde LeN — R, andp,q : N — N be given. We say that
(A, F') <pg.e (A% F?) justin case((A"), (FY)i) <pt).ae),etk) ((A2)i, (F2))for everyk.

Restricting our attention to negligible error and polynahtime bounds, we obtain the long-term implementation
relation<pg ,t. Formally, a functiore : N — R is said to benegligibleif, for every constant € N, there exists
ko € Nsuchthat(k) < kl forall & > kg. (That is,e diminishes more quickly than the reciprocal of any polynaimi
Given task-PIOA familiesd' and A2 and task set familieg™! and F2, respectively, ofA! and A2, we say that
(AL FY) <pegpr (A% F?)if Yp, g Je : (AN, FL) <, ., (A2, F?), wherep, ¢ are polynomials and is a negligible
function.

Lemma 4 (Transitivity of <,eg). Let A, A%, and.A® be comparable task-PIOA families. LBt be a task set
family of A, Let F? be a task set family afl?, and let 3 be a task set family ofl3 (sat|sfy|ng the upper bound

condition). SUPPOSEA!, F1) <pegpt (A%, F2) and (A2, F?) <pegpr (A3, F3). Then(Al, F1) <pegpr (A3, F3).
Proof. Given polynomial® andg, choose negligible functions ande; according to the assumptions. Thant e
is negligible. By Lemma 3, we haved!, F') <, ; ¢, +e, (A3, F3).

6 Ideal Signature Functionality

In this section, we specify aideal signature functionalit$igFunc, and show that it is implemented, in the sense of
our <, pt definition, by the real signature service of Section 4.

As with KeyGen, Signer, andVerifier, each instance digFunc is parameterized with a security paramétemnd
an identifierj. The code fo6igFunc(k, j) appears in Figure 5. Itis very similar to the compositioSigher (%, j) and
Verifier(k, 7). The important difference is th&igFunc(k, j) maintains an additional variabléstory, which records
the set of signed messages. In additi®igFunc(k, j) has an internal actiofail ;, which sets a boolean flg@giled. If
failed = false, thenSigFunc(k, j) useshistory to answer verification requests: a signature is rejectdtistibmitted
message is not ihistory, even ifVerify ; returnsl. If failed = true, thenSigFunc(k, j) bypasses the check austory,
so that its answers are identical to those from the real gigaagervice.

Recall that, for every task' of the real signature serviceste(T") andburst(7") are bounded by(k) for some
polynomialp. We assume that the same bound applieSigbunc(k, 7). SincealiveTimes(j) is a finite set of con-
secutive numbers, it represents essentially an intervabe/tength is constant in the security paramkté&erefore,
p(k) gives rise to a boung' (k) on the maximum number of signatures generate8igfunc(k, j), wherep’ is also
polynomial. We set the maximum length of the quéueory to p’ (k). All other queues have maximum length

We claim that the real signature service implements thd gigaature functionality. The proof relies on a reduction
to standard properties of a signature scheme, namely, edemglss and existential unforgeability, as defined below.

Definition 2. A signature schentéig = (KeyGen, Sign, Verify) is completaf Verify(m, o, vk) = 1 whenevelsk, vk) —

KeyGen(1¥) ando « Sign(sk, m). We say thaSig is existentially unforgeablander adaptive chosen message at-

tacks (or EUF-CMA secure) if no probabilistic polynomiahe forger has non-negligible success probability in the

following game.

Setup The challenger run&eyGen to obtain(sk, vk) and gives the forgevk.

Query The forger submits message The challenger responds with signature— Sign(m, sk). This may be re-
peated adaptively.

Output The forger outputs a paifm*, c*) and he wins ifn* is not among the messages submitted during the query
phase and/erify(m*, o*, vk) = 1.

Forallk € Nandj € SID, we defineRealSig(;j),. to behide(KeyGen(k, j)||Signer(k, j)||Verifier(k, j), signKey ;)
andldealSig(j) to behide(KeyGen(k, j)||SigFunc(k, j), signKey;).

These automata are gathered into families in the obviousReaySig(j) := {RealSig(j) } ren andldealSig(j) :=
{ldealSig(j) }ren- Note that the hiding operation prevents the environmambfiearning the signing key.

Theorem 1. Let j € SID be given. Suppose théKeyGen;, Sign;, Verify;) is a complete and EUF-CMA secure
signature scheme. Th¢RealSig(j), 0) <negpt (IdealSig(j), {fail;}).

To prove Theorem 1, we show that, for every time peijrthe environment cannot distinguigalSig(j);, from
IdealSig(7)x with high probability between timeandt + ¢(k), whereq is a polynomial. This holds even when the
task{ fail;} is not scheduled in the interv&l ¢ + ¢]. The interesting case is whegris awakenedfter time ¢. That
implies thefailed flag is never set anBligFunc(k, j) useshistory to reject forgeries.

We use the the EUF-CMA assumption to obtain a bound on thendisshing probability of any environment.
Essentially, we build a forger that emulates the executf@uovarious task-PIOAs under some valid schedule. When
the environment interacts with tlggner andVerifier automata, this forger uses the signature oracle and veidgfica
algorithm in the EUF-CMA game. Moreover, the success priihadf this forger is maximized over all environments
satisfying a particular polynomial bound. (Note that, giylynomialp and security parametér, there are only a
finite number of quasiyk)-bounded environments.) Applying the definition of EUF-CN&curity, we obtain the
desired negligible bound on distinguishing probability.

Proof. Unwinding the definition oK+ Using the given failure sets, we need to show the followirgy:dvery pair
of polynomialsp andg, there is a negligible function such that, for every: € N, ¢ € Rx(, quasip(k)-bounded
environmen€nv for RealSig(j)x, and valid schedule; for RealSig(j)x||Env for the intervall0, ¢t 4+ g(k)], there is a
valid schedule, for IdealSig(j)||Env such that:

(I) projEnv(Tl) = projEnv(TQ);

(i) m does not contain any pairs of the forfail;, ¢;) wheret; > ¢;

(iii) Execsgny(RealSig(j)k||Env, truncs>,(71)) = Execsgny(IdealSig(j)k||Env, truncs;(72));

(iv) Pacc(RealSig(j)x| Env, 1) is at mosk(k) away fromP .. (IdealSig(j)x| Env, 72).

SinceSig is complete, we observe that the difference between theptamwee probabilities of the two automata

compared in Condition (iv) can only be non-zerctiiv succeeds in producing a forged signature (that is, a valid

signature for a message that was not previously signed b¥igheor SigFunc automata) and in having this signature
rejected when theerify andrespVer actions ofSigFunc execute.

Fix polynomialsp andq. We must obtain a negligiblebound that satisfies the four conditions above for every
k, t, Env, and validr;, for some corresponding. To definee, we rely on the EUF-CMA security @ig. However,
here we must bound, not the success probability of one spémifier, as in the EUF-CMA definition, but the success
probability of all forgers that satisfy the fixed polynomjshndq bounds, for every timé and every schedulg.

Definet, to be the time point marking the beginning;X lifetime: ¢, = min(aliveTimes(j)). We know that both
RealSig(j); andldealSig(j)x are dormant before time.

For everyk € N, we define a quagi{k)-bounded environmeriEnv,,,,..). for RealSig;,, a time (¢,)x < t;, and
a scheduléry,qq)i for RealSig, || (Envimaz) thatis valid for interval0, (tmaz)k +q(k)], wheret, .. < t;, satisfying
the following property: For every quasi+)-bounded environmeriinv for RealSig,, every timet < ¢;, and every
valid scheduler for RealSig, ||Env for the intervall0, t + ¢(k)]:

| Pacc(RealSig(j)k||Env, 1) — Pacc(IdealSig(f) x| Env, 71)]
< | Pacc(RealSig(4)k [[(EnVinaz) ks (Trmaz)k) — Pacc(IdealSig(5)k | (EnVimaz) ks (Timaz)k)|-

To see that SUCtENVinaz) ks (Bmaz)k, @NA(T1maz)k €XISt, it is enough to observe:
— The set of quasi{k)-bounded environments is finite (up to isomorphism).
— The set ofuntimedversions of the candidate schedules is finite; this follows from the rate restrictiomahe
task enabling properties (properties (i) and (iii) in thefidition of p-boundedness).
— The probability of acceptance depends only on the untimeslae of ther; schedule.
Based on these observations, we first defthes,....), and an untimed schedyghat yield the maximum difference
between the acceptance probabilities. Then wéri%,.)x and(t..)« to be any valid timed schedule and real time
that yieldp.

We use(Envinaz)k, (tmaz)k, @nd(T1maz)k, fOr all &, to define the needed negligble functianWe do this by
defining a probabilistic polynomial-time (non-uniformyfer G = {Gy }ren for Sig, in such a way that eacfy,
essentially emulates an execution of the autombtesiSig(j)x || (Envinaz) x With schedul€ 4.). More precisely,

Gy, successively reads all the tasks in the schedglg ..)r, and uses them to internally emulate an execution of
IdealSig(7)k || (Envimaz)k, Up to the following exceptions:
1. when the{verKey(x)} task has to be emulate@;, replaces the verification algorithm obtained when emudatin
the {chooseKeys} task with the one provided kig in the EUF-CMA game, and
2. when the{sign(x,)} task has to be emulate@, obtains signatures by using the signing oracle availabiken

EUF-CMA game.

Furthermore(); stores a list of all messages that the emuléed.,, ...). asked to sign, and checks whetkEniv,,, 4.)
ever asks for the verification of a message with a valid sigeahat is not in the list. If such a signature is produced,
G, outputs it as a forgery.

We observe that this emulation process is polynomial timerdled because all transitions of the emulated systems
are polynomial time-bounded, the total running time of ty&tem is bounded b + ¢(k), and Condition (jii) on the
overall bound of automata guarantees that no more than agolal number of transitions are performed per time
unit. (Althought; may be very large, it does not dependigrand so does not cause a violation of the polynomial-time
requirement.)

We also observe that the two proposed exceptions in the ¢épnlaf the execution ofdealSig(j) || (Envimaz)k
do not change the distribution of the messages tBat,,...) Sees, since the verification algorithm used®y is
generated in the same way lésyGen generates it, and since the message signatures are alsceddd a valid way.
Therefore, it is with the same probability that the enviramidistinguishes the two systems it is interacting with (by
producing a forgery early enough) in a real execution of ffferént automata and in the version emulateddy

Now, the assumption th&ig is EUF-CMA secure guarantees the existence of a negligiiletfone bounding the
success probability aff. It follows that:

|Pacc(ReQISig(j)k”(Envmax)k; (Tlmaw)k) - Pacc(ldeQISig(j)kH(Eanaw)k; (Tlmaw)k)l < G(k)

We fix this functione for the rest of our proof.

It remains to show that, for evely € N, ¢ € Rx, quasip(k)-bounded environmeriinv for RealSig(j), and
valid schedule for RealSig(j)x||Env for the intervall0, t 4+ ¢(k)], there is a valid schedute for IdealSig(j)x, ||Env
satisfying the four required conditions. Hix Env, ¢, andr;. We consider two cases.

First, suppose that < ¢. We obtainr, by inserting({fail; },¢;) immediately aftertick, ¢;). This sets thgailed
flag inSigFunc(k, j) to true immediately aftemwake becomesrue. Notice that, iffailed = true, the verify transition
bypasses the cheak < history (Figure 5). In other wordsSigFunc(k, 7) answers verify requests in exactly the
same way a¥erifier(k, j), using theVerify algorithm only. Furthermore, it is easy to check tlfiafed remainstrue
as long asSigFunc(k, j) is alive. ThereforeldealSig(j); has exactly the same visible behaviorRes|Sig(j), and
Conditions (i) through (iv) are satisfied. (For Conditiow)(iwe obtain a bound di, which implies the needed bound
of e(k).)

Second, suppose thak ¢;. Definer, := 71. Since bothRealSig(j); andldealSig(;), are dormant duringp, ¢],
Condition (i) is immediate and Condition (ii) holds becatisg is not a task oRealSig (7). Condition (iii) also must
hold. For Condition (iv), observe that,

| Pacc(Rea|Sig(j)k”EnV7 7_1) - Pacc(ldeaISig(j)k”EnVa 7—1)|
S |Pacc(ReaISig(j)kH(Envmaz)k; (Tlmaz)k) - Pacc(ldea|Sig(j)kH(Envmax)k7 (Tlmax)k” S e(k),

as needed. a

7 Composition Theorems

In practice, cryptographic services are seldom used imfigol. Usually, different types of services operate in con-
junction, interacting with each other and with multiple foreol participants. For example, a participant may submit a
document to an encryption service to obtain a ciphertexichvis later submitted to a timestamping service. In such
situations, it is important that the services are provabbuse even in the context of composition.

In this section, we consider two types of composition. That frarallel compositionis a combination of services
that are active at the same time and may interact with eadr.dBfiven a polynomially bounded collection of real
services such that each real service implement some ideatasgethe parallel composition of the real services is
guaranteed to implement that of the ideal services.

The second typesequential compositigiis a combination of services that are active in succesSioainteraction
between two distinct services is much more limited in thitiisg, because the earlier one must have finished execution
before the later one begins. An example of such a collecidhe signature services in the timestamping protocol
of [12, 11], where each service is replaced by the next ataeintervals.

As in the parallel case, we prove that the sequential cortipngif real services implements the sequential com-
position of ideal services. We are able to relax the re@tnicon the number of components from polynomial to
exponentiaP. This highlights a unique aspect of our implementation retatessentially, from any poirtton the real
time line, we focus on a polynomial length interval startfram ¢.

Parallel Composition: Using a standard hybrid argument, we show that the relatipp . (cf. Definition 1) is pre-
served under polynomial parallel composition, with somgrapriate adjustment to the environment complexity bound
and to the error in acceptance probability.

Theorem 2 (Parallel Composition Theorem).Let A}, AL ... and A% A2, ... be two infinite sequences of task-
PIOAs, with.A! comparable ta4? for everyi. Suppose thatl{*, A52, ... are pairwise compatible for any combina-
tion ofa; € {1,2}. Letb € N, and letA' and.A? denotel|’_, A! and||’_, A2, respectively. Let be a nondecreasing
function,r : N — N such that, for every, both.A} and.A? arer(i)-bounded.

For eachi, let F' and F? be sets of tasks od! and.A?, respectively, all with infinite upper bounds. Lt and
F? denoteUi.’:1 F! andUi?:1 F?, respectively.

Letp,q € Nande € Rx(. Suppose thatd!, F!) <, ... (AZ, F?) for everyi.

Letp’ € Nande’ € Rxq, Withp = ccomp - (b-7(b)+p') (Wherecomp is the constant factor for parallel composition
of task-PIOAs), and’ = b - e. Then(A!, F) <,/ ..« (A%, F?).

Proof. Lett € Rx(be given. LetEnv be a quasp’-bounded environment and lef be a valid timed task schedule
for A'||Env for the interval0, ¢ 4 ¢] wherer, contains no actions fror, occurring at or later. We must show that
| Pacc (AY||Env, 70) — Pacc (A% Env, 7,)| < be'.

® In our model, it is not meaningful to exceed an exponentiahber of components, because the length of the descriptieaaf
component is polynomially bounded.

For each) < i < b, let H; denoted?||... | A2||AL,|...[A}. In particular,Hy = ||?_, A} andH, = ||}_, A2
Similarly, let
Env := Afl... AL Al 14 | Env

for eachl < i < b. Note that everfnv; is quasip-bounded and is an environment td¢ and.4?. In fact, we have
H;_1||Env = A}||Env; and H; | Env = A?| Env;.
Sincery does not contain any tasks frafit at timet or later, it does not contain any tasks frdm from timet or
later. Sincg(A1, F1) <,.4.c (A3, F§) andr is a valid schedule for{ ||Env; in which no tasks fron¥} occur from
time ¢ onwards, We may choose a valid scheduléor A% | Env; for the intervall0, ¢t + ¢] such that

(I) prOjEnvl (7_0) = prOjEnvl (7_1>;

(i) 1 does not contain any pairs of the forffi,, t;) whereT; € F? andt; > t;
(iii) Execsgny, (A1[|Envy, truncs¢(7o9)) = Execsgny, (AF||Envy, truncs¢(m1));
(lV) |Pacc(A%||Env1, T()) — PBCC(A%HEnvl, T1)| <e.

Repeating this argument, we choose valid schedsles ., 7, for Hs||Env, ..., Hy||[Env, respectively, all satis-
fying the appropriate four conditions. SinEav is part of everyEnv;, Condition (i) guarantees thatojg,,, (70) =
projg.(7s). Using both Conditions (i) and (ii), we can infer that does not contain any pairs of the forf#;, ¢;)
whereT; € 2 = Ule F? andt; > t. SinceEnv is part of everyEnv;, Condition (iii) guarantees that

Execseny (Ho||Env, trunc>¢(70)) = Execsgny (Hp||Env, truncs(7)).

Finally,
| Pa\CC(H?:l-Az1 |Env, 79) — Pacc(”?:lA?HEnvv)|
< | Pacc(Hol|Env, 70) — Pacc (H1||Env, 71)| + - . .
+ |Pacc(HiHEnv, Ti) — Pacc(HH—lHEnVaTi-i-l)l + ...
+ | Pacc(Hbfl ||EnV; bel) - Pacc(HbHEnV; Tb)|
<b-e=¢.
Thus,| Pacc(A'||[Env, 70) — Pacc (A2||Env,)| < b- € = ¢, as needed. O

Using Theorem 2, it is not hard to prove a polynomial compasitheorem for<,. .. The theorem contains a
technicality: instead of simply assuming,e ,+ relationships for all the components, we assume a sliglbynger
property, in which the same negligible functiernis assumed for all of the components; thateiss not allowed to
depend on the component indiex

Theorem 3 (Parallel Composition Theorem for<,eg o). Let. A}, AL, ... and.A2, A2, ... be two infinite sequences
of task-PIOA families, wittd} comparable ta4? for everyi. Suppose that{*, AS?, ... are pairwise compatible for
any combination ofi; € {1,2}. Letb be any polynomial, and for eadh let (A!);, and (A2); denote||b(k)(Al and
Hb(k) (A2);, respectively. Let and s be polynomialsy, s : N — N, such that- is nondecreasing, and for eveiyk,
both(A}), and(A2), are bounded by (k) - r(i).

For eachi, let F}! be a family of sets such thak!), is a set of tasks df4}),. for everyk, and letF? be a family
of sets such thatF?), is a set of tasks ofA2);, for everyk, where all these tasks have infinite upper bounds. Let
(F1), and(£2), denotd J**) (F1), and ') (F2),, respectively.

Assume:

Vp,q e Vi (A} FL) <pge (A2 F?), Q)

wherep, ¢ are polynomials and is a negligible function.
Then(AL, F1) <pegpr (A2, F2).

Proof. By the definition of<,es o+, We need to provesp’, ¢ J¢’ (A1 Y < L (A F2), wherep/, q are polyno-
mials ande’ is a negligible function. Let polynomiajs andq be given and defing := ccomp - (b (r 0 b) + p'),
whereccomp i the constant factor for composing task-PIOAs in paraielw choose usingp, ¢, and Assumption (3).
Definee’ :=b-e.

Letk € N be given. We need to proéA'), (F1),) <pr(k)qk),e’ (k) ((A%), (F?),). Thatis,

b(k) b(k)
b(k T = b(k T =
U (AN, | (FDR) <pmamre w 108 A0 | (FDL).

=1 i=1

_For everyi, we know that A}), and(.A?);. are bounded by(k) - (i). Also, by the choice of, we have
((AD)k (FN)) <pi)qe),er) ((A2)k, (F?)i) for all i. Therefore, we may apply Theorem 2 to conclude that

(A () <pry.atioe (v) (A2, (F2),,), as needed. O

Sequential CompositionWe now treat the more interesting case, namely, exponesgéalential composition. The
first challenge is to formalize the notion of sequentialidyn a syntactic level, all components in the collection are
combined using the parallel composition operator. To a&ptive idea of successive invocation, we introduce some
auxiliary notions. Intuitively, we distinguish betweantiveanddormantentities. Active entities may perform actions
and store information in memory. Dormant entities have railalkle memory and do not enable locally controlled
actions? In Definition 3, we formalize the idea of an entity being active during a particular time interval. Then we
introduce sequentiality in Definition 4.

Definition 3. Let.A be a task-PIOA and let reals < ¢, be given. We say that is restricted tahe intervalfty, ¢o] if
for everyt ¢ [t1,ts], environmentnv for A of the formEnv'||Clock, valid schedule for A||Env for [0, ¢], and state
s reachable under, no locally controlled actions ofl are enabled irs, ands.v = L for every variablev of A.

Lemma 5 below states the intuitive fact that no environmantdistinguish two entities during an interval in which
both entities are dormant.

Lemma 5. Supposed! and.4? are comparable task-PIOAs that are both restricted to theriral [¢1, t5]. LetEnv be
an environment for boti! and.A2, of the formEnv’||Clock. Lett € R>o andq € N be given. Supposs is a valid
schedule fotd! ||Env for the intervall0, ¢ + g], and T, a valid schedule ford?||Env for [0, ¢ + ¢], satisfying:

- prOjEnv(7_1> = prOjEnv(7_2>;
— Execsgny (A||Env, truncs¢(71)) = Execsgny (A% Env, truncs(2)).

Assume further that eitheés < ¢ ort; >t + q. ThenP,.(A*||[Env, 71) = Pacc (A2 Env, 72)).

Proof. First we consider the case < t. Since A' and.A? are restricted to the intervids, 2], neither of them
enables any output actions during the intefval + ¢]. Sincer; and, agree on the tasks &hv, and the execution
distributions ofEnv just before time are identical in the two experiments. the probability tBa¢ outputsacc during
[t,t + ¢] must be identical in the two experiments. Also, since theetien distributions beforeare the same in the
two experiments, the probability thBtv outputsacc during 0, ¢) is the same in the two experiments. Therefore, the
acceptance probabilities are the same for the entire @itfrvt + ¢], as needed.

Similarly, if t; > t + ¢, then neithetd! nor 4% enables any output actions during the intefvad + ¢]. Then we
follow the same argument as above. O

Definition 4 (Sequentiality). Let A;, As, ... be pairwise compatible task-PIOAs. We say tat A, ... are se-
guential with respect tthe the nondecreasing sequengcg, . . . of nonnegative reals provided that for eveéry; is
restricted to[t;, t;11].

Note the slight technicality that each; may overlap with4;, at the boundary time; ;. Now we are ready to
state the sequential composition theorems.

Theorem 4 (Sequential Composition Theorem)Let A1, AL ... and A%, A%, ... be two infinite sequences of task-
PIOAs, with.A! comparable ta4? for everyi. Suppose thatl{*, A52, ... are pairwise compatible for any combina-
tion of; € {1,2}. LetL € N, and letA' and A% denote]|~ | Al and |, .42, respectively. Lep € N, and assume
that both.A! and.A2 are p-bounded.

® For technical reasons, dormant entities must synchromizeput actions. Some inputs cause dormant entities to beemtive,
while all others are trivial loops on the null state.

Assume thatbotid{, ..., A} and A3, ..., A2 are sequential with respect to the same nondecreasing sequd
realstq, to,.... Assume thab € N is an upper bound on the numbergk that fall into a single closed interval of
lengthg.

For eachi, let F! and 2 be sets of tasks od! and.42, respectively, all with infinite upper bounds. et and
F? denote J- | F! and{J~_, F?, respectively.

Letp,q € N ande ¢ R>o. Suppose thatA!, F') <, 4.c (A?, F?) for everyi.

Letp’ € Nande' € R>g, Withp > ccomp - (P + p') (Whereceomp is the constant factor for parallel composition),
ande’ > (b+2)-e. Then(A!, F) <, . (A% F?).

In the statement of Theorem 4, the error in acceptance pildipahcreases by a factor df + 2, whereb is the
largest number of components that may be active in a closeglititerval of lengtly. For example, if the lifetime of
each component i, thenb is 5.7 This is the key difference between parallel compositionsegliential composition:
for the former, error increases with the total number of congmts (namelyi,), and hence no more than a polynomial
number of components can be tolerated. In the sequentia) Lamay be exponential, as long Agemains small.
The proof of Theorem 4 involves a standard hybrid argumenadétive components, while dormant components are
replaced without affecting the difference in acceptanobabilities.

Proof. Lett € Rx(be given. LeEnv = EnV'||Clock be a quasp’-bounded environment and let be a valid timed
task schedule fof|| - 1A1)||Env for the interval0, ¢ + ¢] wherer, has no tasks front’! occurring at time or later.
We must findr;, for (||£,.A2)||Env such that

(I) projEnv(TO) = projEnv(TL); N

(i) 7. does not contain any pairs of the fokff;, ¢;) whereT; € F? andt; > t;
(iii) ExecsEm,(H 1Al||Env trunc>¢(79)) = Execsgny (|| £ 1AQHEnv truncs¢(71));
(V) |Pacc(lliz1ALIEV, 70) — Pacc(|l{1 A7 [|Env, 7r)| < €.

Without loss of generality, assume there is an indexch thatl¢;, t,.1] intersects with[t, ¢ + ¢|. Let [be the
smallest such index. Recall from the assumptions that at brmmnsecutive;’s fall into a closed interval of lengti.
Therefore, we know that_; < ¢t andt;, >t + g.

The rest of the proof proceeds as in the proof of Theorem 2.éljawe define

Envi == AZ||.. A7 AL - 1A [Env

for eachl < i < L. Note thatEnv; is quasip-bounded; therefore we may choose; usingr; and the assumption
that (A}, Fy) <, 4. (A?, F?). SinceEnv is part ofEnv; for everyi, Conditions (i) and (iii) are clearly satisfied at
every replacement step. Condition (ii) is satisfied bectheséollowing hold at every step

— The new task schedule,; does not contain tasks froﬁﬁq.
— Condition (i) guarantees that, ; does not contain tasks frotU;:1 Fj2.

Finally, we consider Condition (iv). There are two cases«fl—1 ori > [+b, then we can apply Lemma 5 to con-
clude thalP ,cc (A} ||Env;, 7;) in fact equal®P acc (A?|| Envi, Tit1). OtherwisePacc (A} Envi, ;) andPacc (A?||Envy, Tig1)
differ by at most. Summing over all indices we have P.c. (|| 2, ALEnv, 70) — Pacc(||12 1 AZ||Env, 7))
< (b+2)-e=¢€,as needed. O

Using Theorem 4, it is straightforward to prove the seqaetmposition theorem for neg pt.

Theorem 5 (Sequential Composition Theorem for<,eg o). Let A1, AL ... and A2, A% ... be two infinite se-
quences of task-PIOA families, with} comparable toA? for everyi. Suppose thatd{', 452, ... are pairwise
compatible for any combination ef;, € {1,2}. LetL : N — N be an exponential function and, for eakhlet
(A1), and (A2), denote|“*) (A1), and||X %) (42),, respectively. Lep be a polynomial such that botA® and.A2
are p-bounded.

Suppose there exists an increasing sequence of nonnegsiss , t-, . . . such that, for eack, both(Al)s, . . ., (A}:(k))k
and(A?)y, .. (A2)k are sequential foty, to, ... Assume there is a constant real numbsuch that consecutive
t;'s are at Ieastc apart

" Recall that two components may be active simultaneouslyeaboundary time.

For eachi, let I be a family of sets such thak!),. is a set of tasks afA}),. for everyk and letF? be a family of
sets such thatF?),, is a set of tasks df4?),, for everyk, where all these tasks have infinite upper bounds(E&},
and(F2), denotd J-"% (F}), and - (F2),, respectively.

Assume:

Vp,q 3eVi (A}, Fl) <pge (A7, F7), 2

wherep, ¢ are polynomials and is a negligible function.
Then(A', F'') <pegpe (A2, E2).

Proof. Let polynomialg’, g be given and defing := ccomp - (5 +p’), Whereccomp is the constant factor for composing
task-PIOAs in parallel. Choosefrom p, ¢ according to the assumption of the theorem. For dadkt b(k) be the
ceiling of 222 4 1. (The choice ob(k) ensures that at moatk) consecutive;’s fall within any interval of length at
mostq(k). This is necessary in order to apply Theorem 4.) Smigeconstant) is a polynomial. Define’ := b - e.
For everyk € N, we apply Theorem 4 to conclude tH&H)i, (F)x) <pr(k).atk).c (k) ((A%)k, (F2)x, as needed.
O

Next, we present a corollary to Theorem 5, which providesnapmsition result forl-bounded concurrent systems,
for d any positive integer. Informally, &bounded concurrent system is a system in which updomponents can be
simultaneously alive.

Definition 5 (d-Bounded Concurrency).Let A, A, ... be pairwise compatible task-PIOA&a positive integer. We
say thatAd;, As, . .. are d-bounded-concurrent with respectsequences, I, . . . andry, ro, . . . of nonnegative reals
provided that:

1.0<; <y <...,andforeveny,l; <r;.
2. For every positive redl, ¢ is in the interior of at mostl of the intervalgi;, r;], thatis,|[{i : ; <t < r;}| <d.
3. Foreveryi, A, is restricted tl;, r;].

Corollary 1 (d-Bounded Composition Theorem for <,eg »+). Let A}, A}, ... and A3, A3, ... be two infinite se-
quences of task-PIOA families, with: comparable ta4? for everyi. Suppose that{*, 432, ... are pairwise com-
patible for any combination of; € {1,2}. LetL : N — N be an exponential functlon and, for eakhlet (ﬁl)k
and (A2),, denote|| =) (A1), and||X")(.42),, respectively. Lep be a polynomial such that botd! and A% are
p-bounded.

Let d be a positive integer. Suppose thatls,... andry,ro, ... are two sequences of nonnegative reals, and
for eachk, both (A}, (Ad)k, ... and (A?)y, (A2), ... are d-bounded concurrent with respect tg o, ... and
r1,T2,.... Letc be a constant real number, and suppose that ¢ < r; for everyi.

For eachi, let F! be a family of sets such théE}!),. is a set of tasks ofA}),, for everyk and letF? be a family of
sets such thatF?),. is a set of tasks df4?),. for everyk, where all these tasks have infinite upper bounds(Eépk
and(F?), denoteUiL:(’f) (F}!), and UL(") (F?),, respectively.

Assume:

Vp,q e Vi (A} FL) <pge (A2 FP), 3)

wherep, ¢ are polynomials and is a negligible function.
Then(A!, F1) <qeg ot (A%, F?).

Proof. By induction ond. The base case, = 1, follows easily from Theorem 5, where the increasing segeen
t1,to, ... is simply the sequence of left interval endpoiitds,

For the inductive step, we suppose the result holds for allegaup tad — 1, and show the result fat. We extract
a pair of sequences of task-PIOA families to which we canyppkeorem 5, in such a way that the remaining pair
of sequences of task-PIOA families satisfy the inductivpdtiiesis. To extract these sequences, we select a subset
I = {iy,1q,...} of the indices, with; < i3 < ..., and consider the task-PIOA families associated with tde@s in
I.

We construct the subsétas follows: Leti; = 1. Then for eacly > 1 in turn, definem; andi; as follows: Let
my; = min{l; : [; > r;;_, }, thatis, the smallest left endpoint of any interval thatrisager than or equal to the right
endpoint of the previously-chosen interval, andilebe the smallest index with, = m;;.

Now we consider the two sequences of task-PIOA familiesaatal with the indices i, A! , Al and

Afl,AfQ, We apply Theorem 5 to these two sequences, and conclud¢éhthabmpositions olf thezse families
are related by<peg pt. More precisely, for every:, definel(k) = I'n{i : i« < L(k)}. Define task-PIOA fami-
lies B' and B2, where for even, ('), = Hzel(k) (A1), and (B?); = Hzel(k)(A)i Also define failure-task-set
families G* andG?, where(G"),, = Uic) (F}), and(G?),, = Uses () (F2),.- Observe that, for every, the se-
quences A})i, (AL)k, ... and(A2)i, (A2)k, . . . are both sequential fdf, ,l;,, Then Theorem 5 implies that
(B, GY) <neg e (B%,G2).

Let J = N — I be the set of non-selected indices. We claim thastisfiesd — 1-bounded concurrency; namely,
for every positive real, ¢ is in the interior of at mosé — 1 intervals[i;, r;] fori € J.

To see this, we argue by contradiction: Consider any tithat falls into the interior of of the intervals for indices
in J. Thent cannot also be in the interior of an interval for an indexX isince that would mean thats in the interior
of at leastd + 1 intervals overall, which violates thebounded-concurrency assumption. Similatlgannot be either
a left or right endpoint of any interval for an index Insince in either case, a slight perturbatiort @fould be in the
interior of d + 1 intervals overall. It follows that must lie in the “gap” between intervals for indicgs.; andi;, for
somej. But then we claim that at least one of #héntervals for indices in/ containingt in its interior must have its
left endpoint> r;,_, : if not, then all of these intervals would overlap the intdrfor i;_; by more than just one point,
again violatingd-bounded concurrency. But this claim violates the choick,ds the smallest left endpointr;,_,

It follows that the pair of subsequences of task-PIOA fassilassociated with the indices Jhsatisfy the as-
sumptions for the inductive hypothesis. So by the conchusibthe inductive hypothesis, the two compositions of
families of task-PIOAs associated with the indices/irare related by<,.; ... More precisely, for every;, define
J(k) = Jn{i:i < L(k)}. Define task-PIOA familie€' andC?, where for everyk, (C1)r = |lic.oc) (A
and (C)x = |ic](k)(AQ) Also define failure-task-set familie§" and F2, where(H'), = U, (F}), and
(H?), = Uies) (F7),- Then the inductive hypothesis implies thét, A7) <pegpr (C2, H?).

Finally, we combine the claimg3!, Gl) neg.pt (B%,G?) and(CY, H') <pegpt (C?, H?) using Theorem 3, to
conclude the final result A, £1) <peqpt (A2, £2). Note that, in applying Theorem 3, we need that the two négég
functionsimplicitin the claimg$B!, G') <peg.pt (82, G?) and(C', H') <pegpt (C2, H?) are the same. However, since
we are composing only two task-PIOA families, we can sim@g the maximum of the two negligible functions. The
r and s bounds follow from the fact that we are composing only two ifeas and each of these is polynomially
bounded.

8 Application: Digital Timestamping

In this section, we present a formal model of the digital Staenping protocol of Haber et al. (cf. Section 1). Recall
the real and ideal signature services from Section 6. Thestiamping protocol consists of a dispatcher component
and a collection of real signature services. Similarly,itteal protocol consists of the same dispatcher with a collec
tion of ideal signature services. Using the bounded coeaticomposition corollary (Corollary 1), we prove that the
real protocol implements the ideal protocol with respedhtlong-term implementation relaticfyeg p¢. This result
implies that, no matter what security failures (forgergsessed keys, etc.) occur up to any particular tirmew cer-
tifications and verifications performed by services thatkemaafter time will still be correct (with high probability)
for a polynomial-length interval of time after
Note that this result doe®timply that any particular document is reliably certified smper-polynomial time. In
fact, Haber’s protocol does not guarantee this: even if aic@nt certificate is refreshed frequently by new services,
there is at any time a small probability that the environntgrgsses the current certificate, thus creating a forgery.
That probability, over super-polynomial time, becomegédarOnce the environment guesses a current certificate, it
can continue to refresh the certificate forever, thus maiimg the forgery.
Let SID, the domain of service names, Be In addition toalive andaliveTimes (cf. Section 4), we assume the
following.
— pref : T — SID. For everyt € T, the servicepref(t) is the designated signer for timegi.e., any signing request
sent by the dispatcher at timgoes to serviceref(t).
— usable : T — 25P_ For everyt € T, usable(t) specifies the set of services that are accepting new veidgficat
requests.

Assume, for every € T, pref(t) € usable(t) C alive(t). If a service is preferred, it accepts both signing and
verification requests. If it is alive but not usable, no newfieation requests are accepted, but those already sidamitt
will still be processed.

— prefTimes : SID = 27, defined byprefTimes(j) = {t € T|j = pref(¢)}. This says which times a particulgis
preferred.

— usableTimes : SID = 27, defined byusableTimes(j) = {t € T|j = usable(¢)}. This says which times a
particularj is usable for verification.

Dispatcher: We defineDispatcher,, for each security parametgr If the environment sends a first-time certificate re-
questreqCert(rid, z), Dispatcher,, requests a signature from service- pref(t) via the actioneqSign(rid, (z,t, L));,
wheret is the clock reading at the time efqSign. In this communication, we instantiate the message spacas
X x Ty x (X)L, whereXy, is the domain of documents to which timestamps are assdciafter servicej returns
with actionrespSign(rid, o), Dispatcher,, issues a new certificate viaspCert(rid, o, j).
If a renew requesteqCert(rid, x,t,01, 02, j) comes inDispatcher,, first checks to see ff is still usable. If not,
it responds withrespCert(rid, false). Otherwise, it sendseqVer(rid, (x,t,01), 02); to servicej. If servicej answers
affirmatively,Dispatcher; sends a signature requesiSign(rid, (z,t, 02));-, wherej’ is the current preferred service.
When servicg’ returns with actionmespSign , (rid, 03), Dispatcher; issues a new certificate viespCert(rid, o3, j').
The task-PIOA code for the compondditpatcher appears in Figure 7. As a convention, we asgo, andos to
denote previous, current, and new signatures, respectivel

Concrete Time Scheméet d be a positive natural number. Each servjds in alive(t) fort = (j — 1)d, ..., (j +
2)d — 1, soj is alive in the real time intervd(j — 1)d, (j + 2)d]. Thus, at any real timg at most three services are
concurrently alive; more preciselylies in the interior of the intervals for at most three seegicMoreover, servicg

is preferred for signing for discrete timés— 1)d, ..., jd — 1, that is, for real times in the intervdlj — 1)d, jd — 1],
and is usable for discrete timég— 1)d, ..., (j + 1)d — 1, that is, for real times in the intervfllj — 1)d, (j +1)d — 1].
Between real time§j + 1)d and(j + 2)d, servicej continues to process requests already submitted, witkeoaiving
new requests.

Protocol CorrectnessFor every security parametgrlet SID;, C SID denote the set qf(k)-bit numbers, for some
polynomialp. Recall from Section 5 theRealSig(j)x = hide(KeyGen(k, j)||Signer(k, j)| Verifier(k, j), signKey;)
andldealSig(j)r = hide(KeyGen(k, j)||SigFunc(k, j), signKey,). Here we define

Realy = ||jesip, RealSig(j)x, Idealy = ||jesip, IdealSig(j)x, and
RealSigSys,, := Dispatcher,||Realy, IdealSigSys,, := Dispatcher,||Idealy.

Eventually, defineReal := <{Real;}ren, Ideal := {ldealy}ren, RealSigSys := {RealSigSys;}ren and
IdealSigSys := {ldealSigSys,, } ren. Our goal is to show that

(RealSigSys, 0) <neg,pt (IdealSigSys, F),

where we usd for a family of empty failure sets anBl, := ;. g, {{fail;}} for everyk (Theorem 6).
First, we observe that certain components of the real aral g{gstems are restricted to certain time intervals, in
the sense of Definition 3.

Lemma 6. Supposé € N, j € SID. ThenRealSig(j), andldealSig(j)x are restricted td(j — 1)d, (j + 2)d].

Proof. Suppose we have< (j — 1) - d, environmengnv for RealSig(j) of the formEnv'||Clock, valid scheduler
for RealSig(j)x||Env for [0,¢], and states reachable under. Recall from Section 3 that, for evety < T, the action
tick(¢') must take place at timé. Therefores does not trigger &ick(¢') action witht’ € [(j — 1)d, (j + 2)d]. On the
other hand, all variables dfealSig(j);, remainsL unless such &ck(t¢') action takes place, so we can conclude that
s.v = L for every variables of RealSig(j).

Fort > (5 + 2)d, we know thatr must have triggered the actiaitk((j + 2)d), which sets all variables of
RealSig(7) to L. Moreover, every subsequetitk(¢') hast’ > ¢, so the variables remaih.

Finally, by inspection of the code fdtealSig(j)x, we know that no locally controlled actions are enabledlif al
variables arel.

The proof forldealSig(j)x is analogous. O

Lemma 7. For everyk, bothRealSig(1), RealSig(2), . . . andldealSig(1), IdealSig(2)x, . . . are 3-bounded-concurrent.
Proof. Follows from Lemma 6.
Lemma 8. The task-PIOA familieReal andldeal are polynomially bounded.

Theorem 6. Assume the concrete time scheme described above and asmtreeery signature scheme used in the
timestamping protocol is complete and existentially ugéable. TheriRealSigSys, 0) <neg,pt (IdealSigSys, F'), where

Fi = U,esip, {{fail; }} for everyk.

Proof. We apply Corollary 1 to the two sequendeesalSig(1), RealSig(2), ... and IdealSig(1), IdealSig(2), It

is easy to see that for eaghe SID, RealSig(j) is comparable tddealSig(j), and that the needed compatibility
conditions are satisfied. The number of componentReisi;, is bounded by the cardinality of the s&fDj. Since
SIDy is the set ofp(k)-bit numbers for some polynomigl the size ofSID;, is bounded by some exponentialin
We use this exponential for the bound in Corollary 1. Lemma 8 implies that conditions on tbenplexity bounds
are met. Lemma 7 yields the needed sequences of positigfoedtbounded concurrency.

Theorem 1 implies thatRealSig(j),?) <negpt (IdealSig(j),{fail;}) for everyj € SID. We need a stronger
statement here: that, for every pair of polynomiglaind ¢, there exists aingle negligible functione such that
(RealSig(j),0) <pq. (IdealSig(j),{fail;}) for everyj € SID. That is, we require that the negligible function be
independent of. In our particular example, this independence follows heeaall of theRealSig(j) are identical
except for the parametgr and likewise for all of thédealSig(;).2 Thus, we can apply Theorem 5, which shows that
(Real,) <neg pr (deal, F).

Then, we apply Theorem 3 tDispatcher| Real and Dispatcher||Ideal. In order to apply this theorem we first
observe thaDispatcher is comparable t®ispatcher, and for eachj € SID, RealSig(j) € Real is comparable to
IdealSig(j) € Ideal. Observe also that compatibility conditions are satisfied.

It is also obvious that for every pair of polynomial@ndg, (Dispatcher, §)) <, ;o (Dispatcher,), and we just
showed that there is a negligible functiesuch thatReal, #) <, , . (Ideal, F). The fact that each of the composed
families is polynomially bounded, and that we are only cdasing the composition of a constant number of them (that
is, 2) provides the:, s bounds and guarantees the uniformity condition (3) requioe Theorem 3 (we can simply
select the larger of the bounds of the individual famili@$)ose observations are sufficient to apply Theorem 3, which
yields the result.

Abstract long-lived timestamp servicét:is possible to define a somewhat more abstract specificidica long-lived
timestamp service—one that does not include explicit iegrtations of individual short-lived services—and to show
that our ideal level system model implements this specifinain the sense oK, ,t. The abstract specification
would, for example, include global sets of signing and veaiion keys instead of individuahySK and myVK
variables, and a global table of issued certificates instéadlividual history queues. Old entries in the table that are
not recertified quickly enough would be garbage-colledtedrder to keep the model polynomial-bounded. Otherwise,
the specification would be essentially the same as our igetdim model.

Given the close correspondence between our ideal systeralrand the new abstract specification, it should be
straightforward to show that the two models are relateghy .. Then transitivity of<,; , (Lemma 4) can be used
to show that our real system model also implements the netseabspecification, in the sense Gfeg pt.

9 Conclusion

We have introduced a new model for long-lived security prots, based on task-PIOAs augmented with real-time task
schedules. We express computational restrictions in tef o cessing rates with respect to real time. The heartiof ou
model is a long-term implementation relatiofhe, ¢, Which expresses security in any polynomial-length iraeof
time, despite of prior security violations. We have provetypomial parallel composition and exponential sequéntia
composition theorems fot e :- Finally, we have applied the new theory to show securitypprtes for a long-lived
timestamping protocol.

8 In other examples, this independence might not follow, &grause not all of the services are identical. In such casesould
have to add an additional independence assumption.

This work suggests several directions for future work.t-feg our particular timestamping case study, it remains
to carry out the details of defining a higher-level abstranttionality specification for a long-lived timestamp deey
and to use<, ot t0 show that our ideal system, and hence, the real protanplements that specification.

We would also like to know whether or not it is possible to agkistronger properties for long-lived timestamp
services, such as reliably certifying a document for sygmdynomial time.

It remains to use these definitions to study additional Itiwed protocols and their security properties. The use
of real time in the model should enable quantitative analgéithe rate of security degradation. Finally, it would be
interesting to generalize the framework to allow the corapabhal power of the various system components to increase
with time.

References

1. Goldwasser, S., Micali, S., Rackoff, C.: The knowledgmptexity of interactive proof systems. In: Proceedingshaf 17th
Annual ACM Symposium on Theory of Computing (STOC’85). (39291-304
2. Pfitzmann, B., Waidner, M.: A model for asynchronous rigactystems and its application to secure message trarnemiss
In: IEEE Symposium on Security and Privacy, Oakland, CA,EREomputer Society (2001) 184—200
3. Canetti, R.: Universally composable security: A new gaya for cryptographic protocols. In Naor, M., ed.: Prodegd of
the 42nd Annual Symposium on Foundations of Computer SejdR&EE Computer Society (2001) 136-145
4. Goldreich, O.: Foundations of Cryptography: Basic Togtdume 1. Cambridge University Press (2001 (reprint of200
5. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, Rereira, O., Segala, R.: Analyzing security protocolagisime-
bounded Task-PIOAs. Discrete Event Dynamic Syst&8($) (2008) 111159
6. Ostrovsky, R., Yung, M.: How to withstand mobile virusaa#ts. In: Proceedings of 10th annual ACM Symposium on
Principles of Distributed Computing (PODC-91). (1991) 53—
7. Anderson, R.: Two remarks on public key cryptology. TechhReport UCAM-CL-TR-549, University of Cambridge (2002
8. Bellare, M., Miner, S.K.: A forward-secure digital signee scheme. In Wiener, M.J., ed.: Advances in CryptologRYETO
'99. Volume 1666 of Lecture Notes in Computer Science., g (1999) 431-448
9. Canetti, R., Halevi, S., Katz, J.: A forward-secure peHey encryption scheme. In Biham, E., ed.: Advances in @tggy
— EUROCRYPT 2003. Number 2656 in LNCS, Springer (2003) 253-2
10. Bayer, D., Haber, S., Stornetta, S.W.: Improving thecigfficy and reliability of digital time-stamping. In CapticaR.M.,
Santis, A.D., , Vaccaro, U., eds.: Sequences Il: Methodsoim@unication, Security, and Computer Science, Springelay
(1993) 329-334 (Proceedings of the Sequences Workshof).199
11. Haber, S.: Long-lived digital integrity using shosed hash functions. Technical report, HP Laboratories 200
12. Haber, S., Kamat, P.: A content integrity service foigldarm digital archives. In: Proceedings of the IS&T Archiy Con-
ference. (2006) Also published as Technical Memo HPL-2B06Frusted Systems Laboratory, HP Laboratories, Primceto
13. Mitchell, J., Ramanathan, A., Scedrov, A., Teague, V.prébabilistic polynomial-time process calculus for thalgsis of
cryptographic protocols. Theoretical Computer Scie3&&(2006) 118-164
14. Backes, M., Pfitzmann, B., Waidner, M.: Secure asynausmeactive systems. Cryptology ePrint Archive, Repo@42082
(2004)http://eprint.iacr.org/.
15. Muller-Quade, J., Unruh, D.: Long-term security andversal composability. In: Theory of Cryptography, Pratiegs of
TCC 2007. Volume 4392 of LNCS., Springer-Verlag (2007) 41P8eprint on IACR ePrint 2006/422.
16. Segala, R., Lynch, N.: Probabilistic simulations fastgabilistic processes. Nordic Journal of Compu(®) (1995) 250-273
17. Lynch, N., Tuttle, M.: An introduction to input/outpuimmata. CWI Quarterl2(3) (1989) 219-246
18. Merritt, M., Modugno, F., Tuttle, M.: Time constrainedtamata. In: Proceedings of CONCUR 1991. Volume 527 of LNCS.
(1991) 408-423

Verifier(k : N, j : SID)
Signature

Input:
tick(t : Tk)
verKey (vk : 2F);
reqVer(rid : RIDy,
m Mk,d : Ek)j
Output:
respVer(rid : RIDy,
b: Bool);
Internal:
verify(rid : RIDy,
m . Mk,d : Ek)j

Transitions
tick(t)
Effect:
if j € alive(¢) then
clock .=t

if awake = 1 then
awake = true
toVer,verified
= empty
else
awake, clock, myVK
toVer,verified := L

verKey (vk);
Effect:
if awake = true
AmyVK = L

thenmy VK = vk

reqVer(rid, m, o) ;
Effect:
if awake = true
A= full(to Ver)
thentoVer :=

enq(toVer, (rid, m, o))

Tasks

respVer; = {respVer(x,*);}
verify; = {verify (x, *, x); }

States

awake : {true} , init L
clock : (Tx) 1, init L
myVK = (2%) 1, init L
toVer : que, (RIDj x Mj,
XE]@)L, init L

verified : que,(RIDy X My
XE]@)L, init L

verify(rid, m, o);
localb : Bool
Precondition:
awake = true
AmyVK # 1
head(toVer) = (rid,m, o)
Effect:
toVer := deq(toVer)
b := Verify ;(m, o, myVK)
verified :=
enq(verified, (rid, b))

respVer(rid, b);
Precondition:

awake = true

head(verified) = (rid, b)
Effect:

verified := deq(verified)

Fig. 4. Task-PIOA Code foWerifier(k, j)

SigFunc(k : N, j : SID)
Signature

Input:
IVerifier U ISigner
Output:
OVerifier) OSigner
Internal:
HVerifier U HSigner U {fa||]}

Transitions
Same aSigner andVerifier,
except the following:

tick(t)
Effect:
if j € alive(t) then
clock .=t

if awake = 1 then
awake = true
toSign,toVer,
signed, verified
= empty
history := ()
failed := false
else
awake, clock, mySK
my VK, toSign, toVer,
signed, history, verified,
failed := L

fail
Precondition:
awake = true
Effect:
failed := true

Tasks
7?rSigner U RVerifier @] {{fa”]}}
States

All variables ofSigner
andVerifier

history : que, (M) 1, init L
failed : {true,false} ., init L

sign(rid, m);
localo : ¥
Precondition:
awake = true
AmySK # L
head(toSign) = (rid, m)
Effect:
toSign := deq(toSign)
o := Sign, (m, mySK)
signed 1=
enq(signed, (rid, o))
history :=
enq(history, m)

verify(rid, m,o);
Localb : Bool
Precondition:
awake = true
AmyVK # L
head(toVer) = (rid, m, o)
Effect:
toVer := deq(toVer)
b := (Verify(m, o, myVK)
A(m € history V failed))
verified :=
enq(verified, (rid, b))

Fig. 5. Code forSigFunc(k, 5)

Dispatcher(k : N)
Signature

Input:
tick(t : Ty)
reqCert(rid : RIDy, x : Xi)
reqCert(rid : RIDy,x : X, t : Ty,
o1:(Xk)1,02: Xk, j: SID)
reqCheck(rid : RIDy,x : Xp,t : Tk,
o1:(Xk)1,02: Xk, j: SID)
respSign(rid : RIDy,0 : X&);,5 € SID
respVer(rid : RIDy, b : Bool);, j € SID
Output:
reqSign(rid : RIDy, m : My);, j € SID

reqVer(rid : RIDy, m : My,0 : Xi);,j € SID

respCert(rid : RIDy,0 : Xy, j : SID)
respCert(rid : RIDy, false)
respCheck(rid : RIDy, b : Bool)
Internal:
denyVer(rid : RIDy, op : {'cert’,' check'},
m: My,0: Xk, j: SID)

Transitions
tick(t)
Effect:
clock ==t

reqCert(rid, x)
Effect:
if currCt < bthen
toSign := enq(toSign, (rid, (x, clock, L)))
currCt := currCt + 1

reqCert(rid, x,t, 01,02, 7)
Effect:
if currCt < bthen
toVer := enq(toVer,
(rid, cert’,{(z,t,01),02,7))
currCt := currCt + 1

reqCheck(rid, x,t, 01,02, 7)
Effect:
if currCt < bthen
toVer := enq(toVer,
{(rid,' check’,{z,t,01),02,7))
currCt := currCt + 1

reqSign(rid, m);
Precondition:
head(toSign) = (rid, m)
J = pref(clock)
—pendingSign
Effect:
pendingSign := true

Tasks

reqSign = {reqSign(x,).}
reqVer = {reqVer(x, *, %), }
respCert = {respCert(, *, x) } U {respCert(x, false)}
respCheck = {respCheck(, *)}
denyVer = {denyVer(x, %, *, x, %)}
States

clock : Ty, init 0

toSign : que, (RIDy x M), init empty
toVer : que,(RIDy x {'cert’,' check'}
x M x X x SID), init empty

pending Ver, pendingSign : Bool, init false

certified : que, ((RIDy x X' x SID)
U(RIDy, x {false})), init empty

checked : que, (RIDj, x Bool), init empty
currCt : N, init 0

respSign(rid, o3);
Effect:
if pendingSign A (3m)(head(toSign) =
(rid, m, j)) then
choosem wherehead(toSign) = (rid, m, j)
toSign := deq(toSign)
pendingSign := false
chooser, t where(Jo2)(m = (z,t,02))
certified := enq(certified, (rid, o3, 7))

denyVer(rid, op, m, o2, j)
Precondition:
head(toVer) = (rid, op, m,c2,7)
J ¢ usable(clock)
Effect:
toVer := deq(toVer)
if op =’ cert’ then
certified := enq(certified, (rid, false))
elsechecked := enq(checked, (rid, false))

reqVer(rid, m, o2);
Precondition:
(Jop)(head(toVer) = (rid, op, m, o2, j)
J € usable(clock)
—pendingVer
Effect:
pending Ver := true

Fig. 6. Task-PIOA Code fobDispatcher(k : N), Part |

Transitions
respVer(rid, b);
Effect:
if pendingVer
A(Jop, m, o2)(head(toVer) =
(rid, op, m, o2, j)) then
chooseop, m, o2 where
head(toVer) = (rid, op,m, o2, j)
toVer := deq(toVer)
pendingVer := false
if op =’ cert’ A —bthen
certified := enq(certified, (rid, false))
if op =’ cert’ A bthen
chooser, t where(3o1)(m = (x,t,01))
toSign := enq(toSign, (rid, (z,t,02)))
if op =’ check’ then
checked := enq(checked, (rid, b))

respCert(rid, false)
Precondition:

head(certified) = (rid, false)
Effect:

certified := deq(certified)

currCt := currCt — 1

respCert(rid, o3, j)
Precondition:

head(certified) = (rid, o3, j)
Effect:

certified := deq(certified)

currCt := currCt — 1

respCheck(rid, b)
Precondition:
head(checked) = (rid, b)
Effect:
checked := deq(checked)
currCt := currCt — 1

Fig. 7. Task-PIOA Code fobDispatcher(k : N), Part Il

