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Abstract. Edwards curves have attracted great interest for several rea-
sons. When curve parameters are chosen properly, the addition formulas
use only 10M+1S. The formulas are strongly unified, i.e., work without
change for doublings; even better, they are complete, i.e., work without
change for all inputs. Dedicated doubling formulas use only 3M + 4S,
and dedicated tripling formulas use only 9M + 4S.
This paper introduces inverted Edwards coordinates. Inverted Edwards
coordinates (X1 : Y1 : Z1) represent the affine point (Z1/X1, Z1/Y1)
on an Edwards curve; for comparison, standard Edwards coordinates
(X1 : Y1 : Z1) represent the affine point (X1/Z1, Y1/Z1).
This paper presents addition formulas for inverted Edwards coordinates
using only 9M+1S. The formulas are not complete but still are strongly
unified. Dedicated doubling formulas use only 3M + 4S, and dedicated
tripling formulas use only 9M + 4S. Inverted Edwards coordinates thus
save 1M for each addition, without slowing down doubling or tripling.
Keywords: Elliptic curves, addition, doubling, explicit formulas, Ed-
wards coordinates, inverted Edwards coordinates, side-channel counter-
measures, unified addition formulas, strongly unified addition formulas.

1 Introduction

In [8] Edwards proposed a new normal form for elliptic curves and gave an
addition law that is remarkably symmetric in the x and y coordinates. In [4],
using coordinates (X : Y : Z) to represent the point (X/Z, Y/Z) on an Edwards
curve, we showed that curve addition could be performed using only 10M + 1S
(i.e., 10 field multiplications and 1 field squaring) and that curve doubling could
be performed using only 3M + 4S. We presented a comprehensive survey of
speeds of our formulas and previous formulas for elliptic-curve arithmetic in
various representations. The survey showed that Edwards curves provide the
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fastest additions and almost the fastest doublings. The only faster doublings
were from doubling-oriented Doche/Icart/Kohel curves, which come with rather
inefficient addition formulas.

One of the attractive features of the Edwards addition law is that it is strongly

unified : the addition law works without change for doublings. We showed in
[4] that, when curve parameters are chosen properly, the addition law is even
complete: it works for all inputs, with no exceptional cases. Our fast addition
formulas in [4] have the same features. See Section 2 of this paper for a more
detailed review of Edwards curves.

In [2], together with Birkner and Peters, we showed that tripling on Edwards
curves could be performed using only 9M + 4S. We also analyzed the optimal
combinations of additions, doublings, triplings, windowing methods, on-the-fly
precomputations, curve shapes, and curve formulas, improving upon the analysis
in [6] by Doche and Imbert. Hisil, Carter, and Dawson independently developed
essentially the same tripling formulas; see [9].

New contributions. This paper presents an even faster coordinate system for
elliptic curves: namely, inverted Edwards coordinates, using coordinates (X : Y :
Z) to represent the point (Z/X,Z/Y ) on an Edwards curve. In Section 4 we
present formulas for curve addition in inverted Edwards coordinates using only
9M + 1S, saving 1M compared to standard Edwards coordinates.

Inverted Edwards coordinates, unlike standard Edwards coordinates, do not
have complete addition formulas: some points, such as the neutral element, must
be handled separately. But our addition formulas still have the advantage of
strong unification: they can be used without change to double a point.

In Sections 5 and 6 we present formulas for doubling and tripling in inverted
Edwards coordinates using only 3M + 4S and 9M + 4S, matching the speeds of
standard Edwards coordinates.

All of the operation counts stated above assume small curve parameters and
disregard the cost of multiplying by a curve parameter. Arbitrary curve pa-
rameters cost 1M extra for each addition, each doubling, and each tripling. The
penalty for standard Edwards coordinates is smaller: arbitrary curve parameters
cost 1M extra for addition but nothing for doubling or tripling.

In Section 7 we revisit the comparison from [4], analyzing the impact of
inverted Edwards coordinates and other recent speedups.

2 Review of Edwards curves

Let k be a field. Throughout this paper we assume that 2 6= 0 in k.
A curve in Edwards form is given by an equation

x2 + y2 = 1 + dx2y2,

where d /∈ {0, 1}. Every Edwards curve is birationally equivalent to an elliptic
curve in Weierstrass form. See [4, Section 3] for an explicit description of the
equivalence.
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One reason for the great interest in Edwards curves is that the Edwards
addition law

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1 − dx1x2y1y2

)

is strongly unified : it applies to doubling as well as to general addition, unlike the
usual Weierstrass addition law. Strongly unified addition formulas had previously
been published for Jacobi intersections, Jacobi quartics, and Weierstrass curves
in projective coordinates, but the Edwards formulas are considerably faster.

We showed in [4, Theorem 3.3] that if d is not a square in k then the Edwards
addition law has an even more attractive feature: it is complete. This means
that there are no points (x1, y1), (x2, y2) on the curve where the denominators
vanish; the Edwards addition law produces the correct output for every pair
of input points. The neutral element (0, 1) does not cause any trouble. The
Edwards curve has two singularities at infinity, corresponding to four points on
the desingularization of the curve; but those four points are defined over k(

√
d),

not over k.
To the best of our knowledge, the Edwards addition law is the only complete

addition law stated in the literature. Previous addition laws have exceptional
cases and require careful handling by the implementor to avoid the risk of in-
correct results and to avoid the risk of leaking secret information through side
channels. It should be possible to build a complete addition law for some Weier-
strass curves starting from the formulas in [5], but we would not expect the
resulting law to be nearly as fast as the Edwards addition law.

In [4] we suggested using homogeneous coordinates (X1 : Y1 : Z1), where
(X2

1
+ Y 2

1
)Z2

1
= Z4

1
+ dX2

1
Y 2

1
and Z1 6= 0, to represent the point (X1/Z1, Y1/Z1)

on the Edwards curve. Here (X1 : Y1 : Z1) = (λX1 : λY1 : λZ1) for any λ 6= 0. In
[4, Section 4] we presented explicit formulas for addition in this representation
using 10M+1S+1D+7a, where M denotes the cost of a field multiplication, S

the cost of a field squaring, D the cost of a multiplication by the curve parameter
d, and a the cost of a field addition.

Implementations can gain speed, at the expense of simplicity, by using dedi-
cated doubling formulas for additions where the inputs are known to be equal.
In [4, Section 4] we presented explicit doubling formulas using 3M + 4S + 6a.
Completeness remains beneficial in this situation: one does not need to check for
other exceptions if the curve parameter d is not a square.

3 Inverted Edwards coordinates

In this and the following sections we consider a different representation of points
on an Edwards curve x2+y2 = 1+dx2y2. We use three coordinates (X1 : Y1 : Z1),
where

(X2

1
+ Y 2

1
)Z2

1
= X2

1
Y 2

1
+ dZ4

1

and X1Y1Z1 6= 0, to represent the point (Z1/X1, Z1/Y1) on the Edwards curve.
We refer to these coordinates as inverted Edwards coordinates. As before, (X1 :
Y1 : Z1) = (λX1 : λY1 : λZ1) for any λ 6= 0.
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It is easy to convert from standard Edwards coordinates (X1 : Y1 : Z1) to
inverted Edwards coordinates: simply compute (Y1Z1 : X1Z1 : X1Y1) with three
multiplications. The same computation also performs the opposite conversion
from inverted Edwards coordinates to standard Edwards coordinates.

For computations we use the vector (X1, Y1, Z1) to represent the point (X1 :
Y1 : Z1) in inverted Edwards coordinates.

Special points. The requirement X1Y1Z1 6= 0 means that inverted Edwards
coordinates cannot represent points (x1, y1) on the Edwards curve that satisfy
x1y1 = 0. There are four such points: the neutral element (0, 1), the point (0,−1)
of order 2, and the points (±1, 0) of order 4. Additions that involve these points
as inputs or outputs must be handled by separate routines.

The four points (0, 1), (0,−1), (1, 0), (−1, 0) are (0 : 1 : 1), (0 : −1 : 1),
(1 : 0 : 1), (−1 : 0 : 1) in standard Edwards coordinates. Applying the aforemen-
tioned conversion to inverted Edwards coordinates, and ignoring the requirement
X1Y1Z1 6= 0, produces points at infinity on the projective curve (X2 + Y 2)Z2 =
X2Y 2 + dZ4: specifically, (1 : 0 : 0), (−1 : 0 : 0), (0 : 1 : 0), (0 : −1 : 0).
But then the rule (X1 : Y1 : Z1) = (λX1 : λY1 : λZ1) equates (1 : 0 : 0) with
(−1 : 0 : 0), losing the distinction between (0, 1) and (0,−1), and similarly losing
the distinction between (1, 0) and (−1, 0).

To have unique representations for the computations it is convenient to use
the vectors (1, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 1, 0) to represent (0, 1), (0,−1), (1, 0),
(−1, 0). Note that these representations are not homogeneous and that for algo-
rithmic reasons (±1, 0) correspond to (0,∓1, 0). One must be careful to check for
Z1 = 0 before adding (X1 : Y1 : Z1) to another point, and to check for X1Y1 = 0
before applying the conversions to and from standard Edwards coordinates.

In many applications one restricts attention to a subgroup of odd order, so
the only special point is the neutral element and fewer checks are required. One
can also randomize computations so that special points have a negligible chance
of occurring; see [4, Section 8] for pointers to the literature.

Geometry. Recall that the desingularization of an Edwards curve has, over
k(
√

d), four points that map to the two singularities at infinity on the curve. It
also has four points that map without ramification to (0, 1), (0,−1), (1, 0), and
(−1, 0).

Mapping the same desingularization to the projective curve (X2 + Y 2)Z2 =
X2Y 2 +dZ4 takes the first four points without ramification to (0 : ±

√
d : 1) and

(±
√

d : 0 : 1), and takes the second four points to two singularities at infinity.
When d is not a square, the first map has no ramification points over k and

allows a complete addition law on the Edwards curve. The second map always
has ramification points, and in particular is ramified at the neutral element.

For mathematicians it is perhaps more satisfying to start from the projective
curve (X2 + Y 2)Z2 = X2Y 2 + dZ4 and define an addition law on it, including
the points (0 : ±

√
d : 1) and (±

√
d : 0 : 1), without mapping to an Edwards

curve. We restricted to points (X1 : Y1 : Z1) with X1Y1Z1 6= 0 to maintain the
link with Edwards curves and the Edwards addition law.
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4 Addition

Obtaining more efficient addition formulas was our main goal in investigating
inverted Edwards coordinates. Inspecting the addition formulas in [4, Section
4] one notices that the computations of the resulting X3 and Y3 each involve a
multiplication by Z1Z2.

Inserting Zi/Xi for xi and Zi/Yi for yi in the Edwards addition law (assuming
XiYiZi 6= 0) we obtain

( Z1

X1

,
Z1

Y1

)

+
( Z2

X2

,
Z2

Y2

)

=
( (X2Y1 + X1Y2)Z1Z2

X1X2Y1Y2 + dZ2

1
Z2

2

,
(X1X2 − Y1Y2)Z1Z2

X1X2Y1Y2 − dZ2

1
Z2

2

)

=
( Z3

X3

,
Z3

Y3

)

where

X3 = (X1X2 − Y1Y2)(X1X2Y1Y2 + dZ2

1
Z2

2
)

Y3 = (X2Y1 + X1Y2)(X1X2Y1Y2 − dZ2

1
Z2

2
)

Z3 = (X1X2 − Y1Y2)(X2Y1 + X1Y2)Z1Z2.

This shows the idea behind inverted Edwards coordinates, namely that in this
representation only Z3 needs to be multiplied with Z1Z2, which saves 1M in
total. Compared to the addition in Edwards coordinates the degree of these for-
mulas is only 6 as opposed to 8 in that representation.

We then eliminate multiplications from these formulas, as in [4, Section 4],
obtaining the following formulas to compute the sum (X3 : Y3 : Z3) = (X1 : Y1 :
Z1) + (X2 : Y2 : Z2) in inverted Edwards coordinates, given (X1 : Y1 : Z1) and
(X2 : Y2 : Z2):

A = Z1 · Z2; B = dA2; C = X1 · X2; D = Y1 · Y2; E = C · D;

H = C − D; I = (X1 + Y1) · (X2 + Y2) − C − D;

X3 = (E + B) · H; Y3 = (E − B) · I; Z3 = A · H · I.

One readily counts 9M + 1S + 1D + 7a, as advertised in the introduction. We
have added these formulas to the EFD [3] for formal verification that the re-
sults coincide with the original Edwards addition law and that the formulas are
strongly unified.

Restricted additions. Mixed addition means that Z2 is known to be 1. There
is an obvious saving of 1M in this case since A = Z1 ·Z2 = Z1, leading to a total
cost of 8M + 1S + 1D + 7a.

Readdition means that (X2 : Y2 : Z2) has been added to another point before.
This means that computations depending only on (X2 : Y2 : Z2), such as X2+Y2,
can be cached from the previous addition. We have not found a way to save M

or S in this case.

Special points. The above description of addition ignored the possibility of
the special points (0, 1), (0,−1), (1, 0), (−1, 0) appearing as summands or as the
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sum. We now deal with that possibility. We represent these points as the vectors
(1, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 1, 0) respectively, as discussed in Section 3. We
assume that d is not a square.

Special points as summands are easy to handle. If Z1 = 0 or Z2 = 0 then the
sum of (X1, Y1, Z1) and (X2, Y2, Z2) is (X1X2 − Y1Y2,X2Y1 + X1Y2, Z1 + Z2).

Even if neither summand is a special point, the sum could be a special point.
If I = 0 and Y2Z1 = Y1Z2 then the sum is (1, 0, 0). If I = 0 and Y2Z1 = −Y1Z2

then the sum is (−1, 0, 0). If H = 0 and Y2Z1 = −X1Z2 then the sum is (0, 1, 0).
If H = 0 and Y2Z1 = X1Z2 then the sum is (0,−1, 0).

To derive these output rules, observe that two points (x1, y1) and (x2, y2) on
the Edwards curve have sum (0, 1) if and only if (x2, y2) = (−x1, y1). In this case
(Z2/X2, Z2/Y2) = (−Z1/X1, Z1/Y1) so, in the notation of our explicit formulas,
I = X1Y2 + Y1X2 = X1Y1Z2/Z1 − Y1X1Z2/Z1 = 0 and Y2Z1 = Y1Z2. Similarly,
two points (x1, y1) and (x2, y2) having sum (0,−1) end up with I = 0 but with
Y2Z1 = −Y1Z2; two points (x1, y1) and (x2, y2) having sum (1, 0) end up with
H = 0 and Y2Z1 = X1Z2; two points (x1, y1) and (x2, y2) having sum (−1, 0)
end up with H = 0 but with Y2Z1 = −X1Z2.

To see that the output rules are exclusive, suppose that H = 0 and I = 0.
Then X1X2 = Y1Y2 and X1Y2 + X2Y1 = 0, so X2

1
X2 = X1Y1Y2 and X1Y1Y2 +

X2Y
2
1

= 0, so (X2
1

+ Y 2
1

)X2 = 0; all variables are nonzero, so X2
1

+ Y 2
1

= 0. The
curve equation (X2

1
+ Y 2

1
)Z2

1
= X2

1
Y 2

1
+ dZ4

1
now implies 0 = X2

1
(−X2

1
) + dZ4

1
;

i.e., d = (X1/Z1)
4, contradicting the assumption that d is not a square.

5 Doubling

Doubling refers to the case that the inputs (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are
known to be equal. If X1Y1Z1 = 0 the special formulas from Section 4 apply.
Otherwise inserting Z1/X1 for x1 and x2 and Z1/Y1 for y1 and y2 in the Edwards
addition law we obtain

2(x1, y1) =

(

2X1Y1Z
2

1

X2

1
Y 2

1
+ dZ4

1

,
(X2

1
− Y 2

1
)Z2

1

X2

1
Y 2

1
− dZ4

1

)

=

(

2X1Y1

X2

1
+ Y 2

1

,
X2

1
− Y 2

1

X2

1
+ Y 2

1
− 2dZ2

1

)

.

In the second equality we have used the curve equation to replace X2

1
Y 2

1
by

(X2

1
+ Y 2

1
)Z2

1
− dZ4

1
, and then cancelled Z2

1
, reducing the overall degree of the

formulas to 4. The resulting coordinates are

X3 = (X2

1
+ Y 2

1
)(X2

1
− Y 2

1
)

Y3 = 2X1Y1(X
2

1
+ Y 2

1
− 2dZ2

1
)

Z3 = 2X1Y1(X
2

1
− Y 2

1
).

The explicit formulas in this case need 3M + 4S + 1D + 6a:

A = X2

1
; B = Y 2

1
; C = A + B; D = A − B; E = (X1 + Y1)

2 − C;

Z3 = D · E; X3 = C · D; Y3 = E · (C − 2d · Z2

1
).
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6 Tripling

In Edwards coordinates tripling (9M+4S+8a, or alternatively 7M+7S+16a)
is faster than the sequential computation of a doubling (3M+4S+6a) followed
by an addition (10M+ 1S + 1D+ 7a). The main speedup comes from using the
curve equation to reduce the degree of the tripling formulas. See Section 1 for
credits and references.

For inverted Edwards coordinates with X1Y1Z1 6= 0 we now provide two
sets of tripling formulas. Both sets have been added to the EFD [3] for formal
verification. The first set needs 9M + 4S + 1D + 10a:

A = X2

1
; B = Y 2

1
; C = Z2

1
; D = A + B; E = 4(D − d · C);

H = 2D · (B − A); P = D2 − A · E; Q = D2 − B · E;

X3 = (H + Q) · Q · X1; Y3 = (H − P ) · P · Y1; Z3 = P · Q · Z1.

The second set needs 7M + 7S + 1D + 17a:

A = X2

1
; B = Y 2

1
; C = Z2

1
; D = A + B; E = 4(D − d · C);

H = 2D · (B − A); P = D2 − A · E; Q = D2 − B · E;

X3 = (H + Q) · ((Q + X1)
2 − Q2 − A); Y3 = 2(H − P ) · P · Y1;

Z3 = P · ((Q + Z1)
2 − Q2 − C).

The second set is faster if S/M is small.
Triplings have similar speeds for inverted Edwards coordinates and standard

Edwards coordinates. Inverted Edwards coordinates speed up addition by re-
ducing the degree of the formulas, but the curve equation already appears to
have produced the minimal degrees for tripling formulas, so the lack of further
improvements does not come as a surprise. Triplings are analogous to doublings
in this respect.

Special points. Tripling special points is very easy: 3(X1, Y1, 0) = (X1,−Y1, 0).

7 Comparison

The EFD [3] is meant to provide an up-to-date database with all curve forms and
coordinate systems ever proposed. A comparison in a paper can only give a snap-
shot of what is known today. Most of the conclusions in [4] remain unchanged,
but science has developed even in the short time since then!

Duquesne in [7] proposed what we call “extended Jacobi-quartic coordi-
nates,” now described in detail in the EFD. Duquesne’s addition formulas use
9M+2S+1D, saving 1M−1S compared to standard Edwards coordinates. These
addition formulas are strongly unified but not complete: they can be used for
doublings but have some exceptional cases. In the EFD we improve Duquesne’s
formulas to use 8M + 3S + 1D, saving another 1M − 1S.

Hisil, Carter, and Dawson in [9] improved various elliptic-curve addition for-
mulas, and in particular gave doubling formulas for extended Jacobi-quartic
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coordinates using 3M + 4S. This is as fast as doubling in standard Edwards
coordinates.

However, inverted Edwards coordinates have just as fast doublings (for small
d) and even faster additions than extended Jacobi-quartic coordinates, saving
an additional 2S− 1M. Inverted Edwards coordinates have the same advantage
of being strongly unified.

The comparisons of different coordinate systems for scalar multiplications
using DBNS in [2] have been updated to include the speeds of [7] and [9], and
to include inverted Edwards coordinates. The comparison shows that, out of
currently known methods for scalar multiplication on elliptic curves, inverted
Edwards coordinates (with very few triplings) are the fastest.

To conclude we summarize the current situation: Edwards coordinates offer
the only complete addition law stated in the literature. If completeness is not
required then inverted Edwards coordinates are the new speed leader.
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