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Abstract. In this paper, we introduce new compression function design
principles supporting variable output lengths (multiples of size n). They
are based on a function or block cipher with an n-bit output size. In the
case of the compression function with a (t + 1)n-bit output size, in the
random oracle and ideal cipher models, their maximum advantages from

the perspective of collision resistance are O( t
2
q

2tn + q
2

2(t+1)n ). In the case of
t = 1, the advantage is near-optimal. In the case of t > 1, the advantage
is optimal.
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1 Introduction.

In 2004 and 2005, Wang et al. [19–22] introduced a new strategy for finding a col-
lision of widely used hash functions such as MD5 [13], SHA-1 [6] etc. Since fatal
weaknesses of MD5 and SHA-1 were exposed by Wang et al., many cryptogra-
phers have recognized the necessity of new hash functions as their replacements.
Impelled by this recognition, NIST announced the development of one or more
additional hash algorithms via a public competition similar to AES [7]. NIST also
announced that the algorithm must support 224, 256, 384, and 512-bit message
digests, and a maximum message length of at least 264 bits. Therefore, it is im-
portant to develop provably secure design principles supporting variable length
output. As one method, for each output length we can design hash functions
independently similar to SHA-family. We can also design stream cipher-style
hash functions such as RadioGatún [1] and RC4-Hash [4], which use an iterative
function to obtain the desired size of hash output. As an alternative method, we
can design variable output length-hash functions with one small output-length
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algorithm. Double Block Length (DBL) hash functions by Nandi [11] and Hirose
[8, 9] are representative of this. Nandi [11] proved that his construction has the
near-optimal collision resistance in the random oracle model. Based on his idea,
Hirose [8, 9] proposed block cipher based DBL hash functions and proved its
near-optimality of the collision resistance. However, since they only considered
DBL hash functions, their constructions have the limitation that they can not
support variable sizes of hash outputs.

In this paper, we focus on designing compression functions because the
Merkle-Damg̊ard construction can be used to construct a hash function from
a compression function. Via the generalization of Nandi’s result we show that
we can handle arbitrary output lengths of compression functions from a small
function. Especially, in the case of our construction with at least a 3n-bit output
size where n-bit is the output size of the underlying function, we prove the op-
timal collision resistance in the random oracle model. Furthermore, we propose
a new block cipher based compression function with variable output length and
prove its near-optimal collision resistance (in the case of 2n-bit output size) and
optimal collision resistance (in the case of at least 3n-bit output size). Based on
the results, with a 128-bit RC6 [14] and 64-bit Blowfish [15] (where RC6 has a
maximum key size of 2,040 bits, and Blowfish has that of 448 bits.) we can de-
sign a hash function to handle a maximum of 1,920-bit and 384-bit compression
function outputs, respectively.

2 Definitions and Previous Works

In this section, we define the notation and symbols and describe previous work.

Random Oracle. Let Func(m, n) denote the set of all functions from {0, 1}m

to {0, 1}n. In the random oracle model, a function f is chosen at random from
Func(m, n) and any adversary in the random oracle model can access the function
f as if it is a black-box. It is clear that for any xi ∈ {0, 1}m, (it can be any
function of x1, · · · , xi−1 ∈ {0, 1}m and y1, · · · , yi−1 ∈ {0, 1}n) and yi ∈ {0, 1}n

such that xi 6= xj for all j < i the following is valid:

Pr[f(xi) = yi|f(x1) = y1, · · · , f(xi−1) = yi−1] = 1/2n.

Note that xi can be any random variable independent of the random oracle f
such that xi 6= xj for all j < i with probability 1. Let Af be any adversary with
access to the random oracle f , and suppose xi is the i-th query and yi is the
i-th response of the random oracle. In this paper, we assume that all queries are
distinct, that is, xi 6= xj for all i 6= j. This is obviously a reasonable assump-
tion. Under this assumption, the conditional probability distribution of the i-th
response is uniformly and independently distributed over {0, 1}n.

Ideal Cipher. The ideal cipher E has an n-bit block size with a k-bit key size.
For any key a ∈ K, Ea(·) is a random permutation. Equivalently, the ideal cipher
E is selected randomly from Block(k, n), which denotes the set of all block ciphers



with an n-bit block size and a k-bit key size. For a key-plaintext query (1, a, x),
the ideal cipher outputs y = Ea(x). For a key-ciphertext query (−1, a, y), the
ideal cipher outputs x = E−1

a (y). We denote the j-th query-response pair by
(wj , aj , xj , yj), where wj = 1 means the encryption query, wj = −1 means the
decryption query, aj is a key, xj is a plaintext, and yi is a ciphertext.

Padding Rule. A padding rule g has an input of arbitrary length and an output
of a multiple of d−s (d > s+64) which are defined in MD

F
g in the next paragraph.

There are many kinds of padding rules but, here, we fix g for any M ∈ {0, 1}∗

as follows:

g(M) = M ||10t||bin64(|M |),

Where t is the smallest non-negative integer such that g(x) is a multiple of d− s
and bin64(x) means the 64-bit binary representation of x.

MD
F
g Construction. MD

F
g : {0, 1}∗ → {0, 1}s is the design principle proposed

by Merkle and Damg̊ard. It is the method of designing a hash function from a
compression function F : {0, 1}d → {0, 1}s with the padding rule g [5, 10]. They
proved that if F is collision resistant then MD

F
g is also collision resistant. MD

F
g

is defined as follows.

MD
F
g (M) = MD

F (g(M))
= F (· · ·F (F (F (IV, m0), m1), m2) · · · , mt)

Where g(M) = (m0||m1|| · · · ||mt), IV (or h0) is the s-bit initial value, hi =
F (hi−1, mi), and each mi is d− s bits.

Non-adaptive and Adaptive Models. When the adversary A is permitted
to make q queries to a given oracle, in the non-adaptive model A can only make
a maximum of q queries simultaneously, then, A can obtain all responses. In the
adaptive model A can make the i-th query after he obtains i−1 query-responses.
In this paper, we consider the adaptive model, which is the strongest model from
the security perspective. Moreover, an adaptive adversary A can be reasonably
considered for a public compression function or public block cipher as a random
oracle model. An adversary A can adaptively compute the outputs of these.

We assume that adversary A can make a maximum of q queries, and that
he is deterministic and computationally unbounded. It is easy to prove that if
a scheme is secure from all deterministic and computationally unbounded ad-
versaries, then, it is secure against all probabilistic adversaries. Let the i-th
query be xi and yi be the oracle response O(xi). We define the view VO

A (i) =
((x1, y1), (x2, y2), · · · , (xi, yi)) which is all A’s information. Here, since A is adap-
tive and deterministic, his i-th query is uniquely determined from the view
VO

A (i− 1). Equivalently,

AO((x1, y1), (x2, y2), · · · , (xi−1, yi−1)) = xi.



In the ideal cipher model, it can be similarly defined.

Collision Resistance. We only focus on security against collision resistance.
Informally, collision resistance means the difficulty of finding two different inputs
X and X ′ such that their hash outputs are identical. Firstly, we define the colli-
sion resistant measurement of compression function F and hash function MD

F
g

in the random oracle and ideal cipher models. We assume that F is constructed
from the random oracle f or ideal cipher E. We assume that the adversary A is
deterministic and computationally unbounded and he can make a maximum of q
queries. Then, we can define the collision resistance of the compression function
F to the adversary A in the random oracle model as follows:

Adv
coll
F (A(q)) = Pr[f ←R Func(m, n); X, Y ← Af (q)

: (X 6= Y ) ∧ (F (X) = F (Y ))].

Similarly, we can define the collision resistance of compression function F to
the adversary A in the ideal cipher model as follows:

Adv
coll
F (A(q)) = Pr[E ←R Block(k, n);

X, Y ← AE,E−1

(q) : (X 6= Y ) ∧ (F (X) = F (Y ))].

The collision resistance of MD
F
g is similarly defined as follows:

Adv
coll
MDF

g
(A(q)) = Pr[f ←R Func(m, n); M, M ′ ← Af (q)

: (M 6= M ′) ∧ (MD
F
g (M) = MD

F
g (M ′))].

Adv
coll
MDF

g
(A(q)) = Pr[E ←R Block(k, n);

M, M ′ ← AE,E−1

(q) :
(M 6= M ′) ∧ (MD

F
g (M) = MD

F
g (M ′))].

We also define their maximum advantages over all adversaries as follows:

Adv
coll
F (q) = MaxA[Adv

coll
F (A(q))].

Adv
coll
MDF

g
(q) = MaxA[Adv

coll
MDF

g
(A(q))].

We state that F (or MD
F
g ) is collision resistant (has collision resistance) if

the maximum advantage is negligible. Especially, we state that F (or MD
F
g ) is

optimally collision resistant (has optimal collision resistance) if the maximum
advantage is O(q2/2s), where the output length is s-bit. We know the following
by [5, 10].

Adv
coll
MDF

g
(q) 6 Adv

coll
F (q).

The above relation means that if F is collision resistant (optimally collision
resistant) then MD

F
g is also collision resistant (optimally collision resistant). So,



we focus on designing a compression function F and showing that the upper
bound of Adv

coll
F (q) is negligible. Especially, we show that our compression func-

tions are near-optimally or optimally collision resistant in the random oracle or
ideal cipher models.

Note 1. We assume that the adversary does not repeatedly make identical
queries. In the random oracle model, all queries xi’s are different. In the ideal
cipher model, once he obtains (a, x, y) such that Ea(x) = y (or E−1

a (y) = x),
he does not make a decryption query (a, y) or encryption query (a, x). Secondly,
as mentioned in [3], we assume that when the adversary A finally outputs two
message X and X ′, A has already computed F (X) and F (X ′), in the sense that
A has made necessary oracle queries to compute F (X) and F (X ′). As described
in [18], if the second assumption is not made, the adversary can output two very
long messages (which are not related to A’s view) which will collide with a high
probability. As mentioned in [3], an adversary A not obeying these assumptions
can easily be modified to given an adversary A′ having similar computational
complexity that obeys these assumptions and has the same advantage as A.

Note 2. Our goal is to show that the maximum advantage of our design prin-
ciples are negligible in the random oracle and ideal cipher models. According
to the definition of the advantage from the perspective of collision resistance,
the advantage arises from the probability that final outputs of the adversary
collide. Based on the second assumption in the Note 1, if the adversary finds
collisions, the collisions should be constructed from the final view. Equivalently,
without considering final outputs of the adversary, we can directly obtain the
upper bound of the advantage from the final view. So, we focus on the proba-
bility that there is a collision constructed from the final view.

Nandi [11]. Nandi proposed the following compression function F from a func-
tion f of small output size n. Since the output size of F is double of that of f ,
we call F a Double Block Length (DBL) compression function:

F (X) = f(X)||f(P (X)),

where f : {0, 1}m → {0, 1}n (m > 2n) and P is a permutation with no fixed
point such that P 2 is the identity permutation. Also Nandi proved that F is
near-optimally collision resistant in the random oracle model, where f is a ran-
dom oracle. The hash function MD

F
g based on the DBL compression function F

is called the DBL hash function.

Hirose [8, 9]. Hirose constructed f with a block cipher as follows [8]:

f(h||g||m) = Eh||m(g)⊕ g,

where |h| = |g| = |m| = n and the block cipher E has a 2n-bit key size and
an n-bit block size. Hirose proved that if f is applied to Nandi’s construction,
MD

F
g is near-optimally collision resistant in the ideal cipher model. Hirose also



proposed five other constructions [9] and proved their near-optimal collision re-
sistance. These six constructions are classified as DBL hash functions.

Hash Rate The term Hash Rate is used to indicate the efficiency of the hash
function. A rate is defined as follows:

Rate =
R

T× S
,

where R is the size of the message used in a compression function, T is the num-
ber of an atomic function used in a compression function, and S is the output
size of an atomic function. For example, the rate of Nandi’s construction (the
atomic function is f) is m−2n

2n
. In the case of Hirose’s construction (the atomic

function is E), the rate is 1/2.

3 Compression Function with Variable Output Size in

the Random Oracle Model

In this section, we explain Nandi’s construction [11] and reformulate its proof
for easy generalization.

3.1 Nandi’s Construction and Its Security

In [11], Nandi proved that F is near-optimally collision resistant in the random
oracle model as follows:

Theorem 1. In the random oracle model, an upper bound of the maximum ad-

vantage from the perspective of the collision resistance of F is expressed as fol-

lows:

Adv
coll
F (q) 6

q − 1

2n
+

q2 − 1

22n+1
.

Proof : We prove the theorem in four steps. Let A be any deterministic and
computationally unbounded adversary. We assume that A makes q queries to
the oracle.

1. For any final view Vf
A(q) = ((x1, y1), (x2, y2), · · · , (xq, yq)) generated from

the random oracle f , a maximum of q input-output pairs of F can be con-
structed. For an even q, there is an adversary to construct q input-output
pairs of F from q input-output pairs of f .

Proof) We assume that q input-output pairs of F are given. Equivalently,
we have {(Xi, Yi)}16i6q where F (Xi) = Yi and Xi 6= Xj for all i and j
(i 6= j). Since F (X) = f(X)||f(P (X)), we need to make at least q queries
Xi (1 6 i 6 q) to the random oracle f to obtain q input-output pairs of F .
Therefore, a maximum of q input-output pairs of F can be constructed from q



input-output pairs of f . Next, we need to construct an adversary to construct
q input-output pairs of F from q input-output pairs of f . This is simple. In
order to obtain F (X) = f(X)||f(P (X)), we need to make two queries X and
P (X), to the random oracle f . Once we obtain F (X) = f(X)||f(P (X)), it
is clear that F (P (X)) = f(P (X))||f(X) without additional queries. There-
fore, we can obtain two input-output pairs of F from two input-output pairs
of f . Likewise, when q is even, we can obtain q input-output pairs of F from
q input-output pairs of f .

2. Let F [Vf
A(q)] be the set of input-output pairs of F to be generated from the

final view VO
A (q). Based on the result of Step 1, we state that F [Vf

A(q)] =
{(X1, Y1), (X2, Y2), · · · , (Xp, Yp)}, where p 6 q and Xi 6= Xj for all i and
j (i 6= j). Here, we need to compute the probability that F (Xi) = F (Xj)
for any i and j (where i 6= j). The following is valid for any i and j, where
j < i 6 p.

(a) If Xi = P (Xj) : Pr[F (Xi) = F (Xj)] = Pr[f(P (Xj)) = f(Xj)] = 1/2n.

(b) If Xi 6= P (Xj) : Since {Xi, Xj} ∩ {P (Xi), P (Xj)} = ∅,

Pr[F (Xi) = F (Xj)]
= Pr[f(Xi) = f(Xj) ∧ f(P (Xi)) = f(P (Xj))]
= Pr[f(Xi) = f(Xj)|f(P (Xi)) = f(P (Xj))]
× Pr[f(P (Xi)) = f(P (Xj))] = Pr[f(Xi) =
f(Xj)]× Pr[f(P (Xi)) = f(P (Xj))]

= 1
2n ×

1
2n = 1

22n .

3. Let the event Ci be the event for which there is a j (where j < i) such that
F (Xi) = F (Xj). Then, Pr[C2] 6 1

2n , and, for i > 2, Pr[Ci] 6 1
2n + i−1

22n .

Proof) Based on the result of Step 2-(a) and (b), Pr[C2] = Pr[F (X2) =
F (X1)] 6 Max( 1

2n , 1
22n ). For i > 2, the case of Step 2-(a) occurs at most one

time, and, the case of Step 2-(b) occurs a maximum of i−1 times. Therefore,
Pr[Ci] 6 1

2n + i−1
22n .

4. From the above results, we can compute the upper bound of the advantage
of the collision resistance of F .

Adv
coll
F (q) = MaxA[Adv

coll
F (A(q))]

= MaxA[PrA[C2 ∨ C3 · · · ∨ Cq]]
6 MaxA[PrA[C2] +

∑q
i=3 PrA[Ci]]

6 MaxA[ 1
2n +

∑q

i=3(
1
2n + i−1

22n )]

6
q−1
2n + q2−1

22n+1 . �



3.2 Generalization

In this subsection, we generalize the result by Nandi. Firstly, we propose the
generalized construction, then, we prove its optimal collision resistance.

Generalized Construction. We need to construct F from a function f which
has an m-bit input and an n-bit output such that m > (t + 1)n.

F (X) = f(P0(X))||f(P1(X))||f(P2(X))|| · · · ||f(Pt(X))

Where P0 is the identity permutation, Pi is a permutation with no fixed point
such that P 2

i is the identity permutation. For any i and j (where i 6= j),
PiPj = PjPi. For all (i1, i2, · · · , it) ∈ {0, 1}t \ {0}t, P i1

1 P i2
2 · · ·P

it

t has no fixed
point. For example, in the case of t 6 n, we can define Pi(x) = x⊕(1000 · · ·0)≪i

where (1000 · · ·0) denotes only zero-bits except that the left-most bit is one, and
≪ i means the i-bit left-rotation. Then, we can prove the following theorem for
t > 2.

Theorem 2. In the random oracle model, an upper bound of the maximum ad-

vantage from the perspective of the collision resistance of F is expressed as fol-

lows:

Adv
coll
F (q) 6

t(t + 3)(q − 1)

2tn+1
+

q2 − 1

2(t+1)n+1
where t > 2.

Proof : Its proof is similar to that of Theorem 1. Here, A is any deterministic
and computationally unbounded adversary. We assume that A makes q queries
to the oracle.

1. For any final view Vf
A(q) = ((x1, y1), (x2, y2), · · · , (xq, yq)) generated from

the random oracle f , a maximum of q input-output pairs of F can be con-
structed.

Proof) We assume that q input-output pairs of F are given. Equivalently,
we have {(Xi, Yi)}16i6q where F (Xi) = Yi and Xi 6= Xj for all i and j
(where i 6= j). Since F (X) = f(X)||f(P1(X))|| · · · ||f(Pt(X)), we must make
at least q queries Xi (where 1 6 i 6 q) to the random oracle to obtain q
input-output pairs of F . Therefore, a maximum of q input-output pairs of
F can be constructed from q input-output pairs of f .

2. Let F [Vf
A(q)] be the set of input-output pairs of F to be generated from final

view VO
A (q). Based on the result of Step 1, we state F [Vf

A(q)] = {(X1, Y1), (X2, Y2), · · · , (Xp, Yp)}
where p 6 q and Xi 6= Xj for all i and j (where i 6= j). Here, we want to
compute the probability that F (Xi) = F (Xj) for any i and j (where i 6= j).
The following is valid for any i and j where j < i 6 p:



(a) If Xi = Pu(Xj) (for a u, 1 6 u 6 t): Firstly, we compute the number of el-
ements of Tu = {{PrPu(Xj), Pr(Xj)}}06r6t. r = 0 indicates the element
{Pu(Xj), Xj} of Tu and r = u indicates the element {Xj, Pu(Xj)} of Tu.
That is, r = 0 and r = u correspond to an identical element. And by
the relations among Pi’s, |Tu| = t and for any l, k (l 6= k,{l, k} 6= {0, u}),
{PlPu(Xj), Pl(Xj)} ∩ {PkPu(Xj), Pk(Xj)} = ∅. Therefore, Pr[F (Xi) =
F (Xj)] = ( 1

2n )t = 1
2tn .

(b) If Xi = PvPu(Xj) (for some v and u, where 1 6 v < u 6 t): Firstly, we
compute the number of elements of Tv,u = {{PrPvPu(Xj), Pr(Xj)}}06r6t.
r = v indicates the element {Pu(Xj), Pv(Xj)} of Tu and r = u indicates
the element {Pv(Xj), Pu(Xj)} of Tu. That is, r = 0 and r = u corre-
spond to an identical element. And by the relations among Pi’s, |Tu| = t
and for any l, k (l 6= k and {l, k} 6= {u, v}), {PlPvPu(Xj), Pl(Xj)} ∩
{PkPvPu(Xj), Pk(Xj)} = ∅. Therefore, Pr[F (Xi) = F (Xj)] = ( 1

2n )t =
1

2tn .

(c) If Xi 6= PvPu(Xj) (for all v and u, where 0 6 v < u 6 t): If T =
{{Pr(Xi), Pr(Xj)}}06r6t, by the relations among Pi’s, |T | = t + 1 and
the intersection of any two elements of T is the empty set. Therefore,
Pr[F (Xi) = F (Xj)] = ( 1

2n )t+1 = 1
2(t+1)n .

3. Let Ci be the event for which there is a j (where j < i) such that F (Xi) =

F (Xj). Then, Pr[C2] 6 1
2tn and for i > 2, Pr[Ci] 6

t(t+3)
2tn+1 + i−1

2(t+1)n .

Proof) Based on the result of Step 2-(a), (b) and (c), Pr[C2] = Pr[F (X2) =
F (X1)] 6 Max( 1

2tn , 1
2(t+1)n ). Step 2-(a) contains a maximum of t cases,

and Step 2-(b) contains a maximum of t(t+1)
2 cases, and Step 2-(c) con-

tains a maximum of i− 1 cases. Therefore, Pr[Ci] 6 t
2tn + t(t+1)

2tn+1 + i−1
2(t+1)n 6

t(t+3)
2tn+1 + i−1

2(t+1)n .

4. From the above results, we can compute the upper bound of the advantage
of the collision resistance of F as follows:

Adv
coll
F (q) = MaxA[Adv

coll
F (A(q))]

= MaxA[PrA[C2 ∨ C3 · · · ∨ Cq]]
6 MaxA[PrA[C2] +

∑q

i=3 PrA[Ci]]

6 MaxA[ 1
2tn +

∑q

i=3(
t(t+3)
2tn+1 + i−1

2(t+1)n )]

= t(t+3)(q−1)
2tn+1 + q2−1

2(t+1)n . �



4 Compression Function with Variable Output Size in

the Ideal Cipher Model

4.1 Limitation of Proofs in Previous Work Using Only a Single
Block Cipher

There are several papers which proved the security of hash functions based on a
block cipher. For example, Black et al. [3] proved the optimal collision resistance
of 20 PGV schemes in the ideal cipher model. The security of MDC-2 [18] and
Hirose’s constructions [8, 9] were also proved in the ideal cipher model. All their
proofs share commonalities; the upper bound of the number of queries is q <
2n. This is because, in the case of a fixed key, the block cipher is a random
permutation. For example, for a key a, we assume that we have query-response
pairs (a, xi, yi) (1 6 i 6 t) such that the block size is an n-bit and Ea(xi)⊕xi =
yi. Then, if we make a new encryption query (a′, xt+1) to the ideal cipher (where
a′ may not equal to a), we know that yt+1 is selected randomly from among at
least 2n − t candidates. That is, when q < 2n, we can consider a block cipher-
based function as a random function in the set of at least size 2n−q. This insight
helps us to prove the security of hash functions based on the block cipher. The
restriction q < 2n is significant in double block length hash functions, because
with a high probability the adversary can find a collision with q (close to 2n)
queries. However, in the case of hash functions of at least three block output size
(3n-bit), q < 2n is not sufficient. This is because we can only guarantee that the
security of a hash function with a 3n-bit output is at least a 2n-bit security. In
fact, the optimal security is a 3n-bit security. In this paper, we give a solution to
the problem of overcoming this barrier to prove the security of a hash function
with at least triple block output size. In the case of the construction described
in the Section 4.3, q is any value and collision resistance is optimal in the case
of t > 2.

4.2 New DBL Compression Function based on a Block Cipher.

We consider the following function f based on a block cipher E:

f(X) = EX(c) and F (X) = f(X)||f(P (X)),

where X is an m-bit input and c is an n-bit constant, m > 2n and F is Nandi’s
construction explained in Section 3.1. Then, based on Lemma 1, we can prove
the near-optimal collision resistance of F in Theorem 3.

The goal of the collision finding adversary is to find X and X ′, where F (X) =
F (X ′) and X 6= X ′. In the ideal cipher model, the adversary can make queries
to both oracles E and E−1. In our construction, plaintexts of meaningful query-
response pairs should be c, because, in our construction the plaintext is always
the fixed c as f(X) = EX(c). Therefore, we prove the following equality:



Lemma 1. For any A who can have query-response pairs such that the plaintext

is not c, there is B such that:

Adv
coll
F (A(q)) = Adv

coll
F (B(q)),

where B is any adversary who can only make encryption queries for which the

plaintext is always c.

Proof : Let A be a collision-finding adversary with access to both oracles E and
E−1. We can define an adversary BE which only makes an encryption query
with plaintext c.

Adversary B = (B1, B2).

B = (B1, B2) first runs A and communicates with A as follows:

– When the A’s i-th query is an encryption query (1, x, y) to B1 where x is a
key and y is a plaintext, B keeps z∗ which is the response of the oracle E
for the query (1, x, c), and then does as the followings:

• If y = c, B forwards z∗ to A.
• If y 6= c, B chooses an element z randomly from the set {0, 1}n \ {z∗} ∪

{z′|(w′, x, y′, z′) ∈ VB1,B2

A (i− 1)}. Then, B forwards z to A.

– When the A’s i-th query is an decryption query (−1, x, z) to B2 where x is
a key and z is a ciphertext, B keeps z∗ which is the response of the oracle
E for the query (1, x, c), and then does as the followings:

• If z = z∗, B forwards c to A.
• If z 6= z∗, B chooses an element y randomly from the set {0, 1}n \ {c} ∪

{y′|(w′, x, y′, z′) ∈ VB1,B2

A (i− 1)}. Then, B forwards y to A.

– B’s final output is that of A.

Regarding Adversary B, whenever A finds a collision, B can also obtain a
collision. Moreover, B perfectly simulates the ideal block cipher for A. Thus, the
following is true:

Adv
coll
F (A(q)) = Adv

coll
F (B(q)). �

Based on Lemma 1, we need to compute the upper bound of Adv
coll
F (B(q)) for

any Adversary B defined in Lemma 1. Since the queries are different, in our
construction the key of the block cipher should be different. Therefore, in the
ideal cipher model, the response of the query is random. Therefore, we can prove
the following theorem in a similar manner to that used in Section 3.

Theorem 3. In the ideal cipher model, an upper bound of the maximum advan-

tage from the perspective of the collision resistance of F is expressed as follows:

Adv
coll
F (q) 6

q − 1

2n
+

q2 − 1

22n+1
.

We can also generalize the above result as the following Section 4.3.



4.3 Block Cipher based Generalized Construction I

We consider the following function f based on a block cipher E:

f(X) = EX(c) and
F (X) = f(P0(X))||f(P1(X))|| · · · ||f(Pt(X)),

where X is an m-bit input and c is an n-bit constant, m > (t+1)n, and F is the
general construction explained in Section 3.2. Then, for t > 2 we can prove the
optimal security of F in the following theorem. In the case of 128-bit RC6 with
a key size of 2,040 bits, X = hi−1||mi is 2,040-bit such that hi−1 is 1,920-bit,
mi is 120-bit, and t = 14.

Theorem 4. In the ideal cipher model, an upper bound of the maximum advan-

tage from the perspective of the collision resistance of F is expressed as follows:

Adv
coll
F (q) 6

t(t + 3)(q − 1)

2tn+1
+

q2 − 1

2(t+1)n+1
where t > 2.

4.4 Block Cipher based Generalized Construction II

We consider the following function F based on a block cipher E:

F (X) = EX(c1)||EX(c2)|| · · · ||EX(ct),

where X is an m-bit input, and ci’s (where for i 6= j, ci 6= cj) are n-bit constants,
and m > tn. Then, for any positive integer t we can prove the near-optimal se-
curity of F in Theorem 5 using Lemma 2.

Lemma 2. For any A who can have query-response pairs such that plaintext is

not one among ci’s, there is B such that

Adv
coll
F (A(q)) = Adv

coll
F (B(tq)),

where B is any adversary who can only make encryption queries for which the

plaintext is always one among ci’s.

Proof : Let A be a collision-finding adversary with access to both oracles E and
E−1. We can define an adversary BE , which only makes an encryption query
such that the plaintext is one among ci’s (where 1 6 i 6 t).

Adversary B = (B1, B2).

B = (B1, B2) first runs A and communicates with A as follows:

– When the A’s i-th query is an encryption query (1, x, y) to B1, where x is a
key and y is a plaintext, for 1 6 i 6 t B keeps z∗i which is the response of
the oracle E for the query (1, x, ci) and then does as the followings:



• If y = ci for a i, B forwards z∗i to A.

• If y 6= ci for all i, B chooses an element z randomly from the set {0, 1}n\

{z∗1 , · · · , z∗t } ∪ {z
′|(w′, x, y′, z′) ∈ VB1,B2

A (i− 1)}. Then, B forwards z to
A.

– When the A’s i-th query is an decryption query (−1, x, z) to B2 where x is
a key and z is a ciphertext, for 1 6 i 6 t B keeps z∗i which is the response
of the oracle E for the query (1, x, ci) and then does as the followings:

• If z = z∗i for a i, B forwards ci to A.

• If z 6= z∗i for all i, B randomly chooses an element y from the set {0, 1}n\

{c1, · · · , ct} ∪ {y
′|(w′, x, y′, z′) ∈ VB1,B2

A (i − 1)}. Then, B forwards y to
A.

– B’s final output is that of A.

Regarding Adversary B, whenever A finds a collision, B can also obtain a
collision. Moreover, B perfectly simulates the ideal block cipher for A. Thus, the
following is true:

Adv
coll
F (A(q)) = Adv

coll
F (B(tq)). �

Theorem 5. In the ideal cipher model, an upper bound of the maximum advan-

tage from the perspective of the collision resistance of F is expressed as follows:

Adv
coll
F (q) 6

t2q2 − tq

2tn+1
where t > 1.

Proof : Since we showed in Lemma 2 that Adv
coll
F (A(q)) = Adv

coll
F (B(tq)), we

have only to show that Adv
coll
F (B(tq)) 6

t2q2−tq
2tn+1 , where t > 1 and B is any adver-

sary BE which only makes an encryption query with a plaintext cj (where cj is
one among ci’s). We let fi(X) = EX(ci). So, F (X) = f1(X)||f2(X)|| · · · ||ft(X).
Since each fi’s output distribution is uniform and random and independent of
other fj ’s by the property of the ideal cipher, the probability that there is a

collision of F is at most t2q2−tq
2tn+1 by the birthday probability. �

5 Conclusion

In this paper, we investigated the means to design compression functions with
variable lengths from an atomic function of a fixed output length. Our results
are significant because we can make hash functions with variable output sizes
with only a single function. Recently, several constructions were suggested, where
some independent and uniform random functions were used [12, 16, 17]. We hope
that our results are applied to the reduction of the number of random functions
required to guarantee the collision resistance of constructions proposed in [12,
16, 17].
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