
ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE 1

Algorithms and Arithmetic Operators for
Computing the ηT Pairing in Characteristic Three

Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, Masaaki Shirase, and Tsuyoshi Takagi

Abstract— Since their introduction in constructive crypto-
graphic applications, pairings over (hyper)elliptic curves are at
the heart of an ever increasing number of protocols. Software
implementations being rather slow, the study of hardware archi-
tectures became an active research area.

In this paper, we discuss several algorithms to compute the ηT

pairing in characteristic three and suggest further improvements.
These algorithms involve addition, multiplication, cubing, inver-
sion, and sometimes cube root extraction over F3m . We propose
a hardware accelerator based on a unified arithmetic operator
able to perform the operations required by a given algorithm.
We describe the implementation of a compact coprocessor for
the field F397 given by F3[x]/(x

97 +x12 +2), which compares
favorably with other solutions described in the open literature.

Index Terms—ηT pairing, finite field arithmetic, elliptic curve,
hardware accelerator, FPGA.

I. INTRODUCTION

In 2001, Boneh, Lynn & Shacham [1] proposed a remarkable
short signature scheme whose principle is the following. They
consider an additive group G1 = 〈P 〉 of prime order q and a
map-to-point hash function H : {0, 1}∗ → G1. The secret key is
an element x of {1, 2, . . . , q − 1} and the public key is xP ∈ G1

for a signer. Let m ∈ {0, 1}∗ be a message, they compute the
signature xH(m). To do the verification, they use a map called
bilinear pairing that we now define.

Let G1 = 〈P 〉 be an additive group and G2 a multiplicati-
ve group with identity 1. We assume that the discrete logarithm
problem is hard in both G1 and G2. A bilinear pairing on (G1, G2)

is a map e : G1×G1 → G2 that satisfies the following conditions:
1) Bilinearity. For all Q, R, S ∈ G1,

e(Q+R,S) = e(Q,S)e(R,S) and

e(Q,R+ S) = e(Q,R)e(Q,S).

2) Non-degeneracy. e(P, P ) 6= 1.
3) Computability. e can be efficiently computed.

Modifications of the Weil and Tate pairings provide such maps.
The verification in the BLS scheme is done by checking if

the values e(P, xH(m)) and e(xP,H(m)) coincide. Actually, if
x′ ∈ {1, 2, . . . , q−1} satisfies e(xP,H(m)) = e(P, x′H(m)), then
we obtain e(P,H(m))x = e(P,H(m))x

′
thanks to the bilinearity

property of the pairing. From the non-degeneracy of the pairing

J.-L. Beuchat and E. Okamoto are with the Graduate School of Systems and
Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba,
Ibaraki, 305-8573, Japan.

N. Brisebarre is with Laboratoire LIP/Arénaire (CNRS – ENS Lyon –
INRIA – UCBL), ENS Lyon, 46, allée d’Italie, F-69364 Lyon Cedex 07,
France.

J. Detrey is with the Cosec group, B-IT (Bonn-Aachen International Center
for Information Technology), Dahlmannstraße 2, D-53113 Bonn, Germany.

M. Shirase and T. Takagi are with the School of Systems Information
Science, Future University-Hakodate, 116-2 Kamedanakano-cho, Hakodate,
Hokkaido, 041-8655, Japan.

we know that e(P,H(m))x = e(P,H(m))x
′

implies x = x′. The
total cost is one hashing operation, one modular exponentiation
and two pairing computations and the signature is twice as short
as the one in DSA for similar level of security.

A. Pairings in Cryptology

Pairings were first introduced in cryptology by Menezes,
Okamoto & Vanstone [2] and Frey & Rück [3] for code-breaking
purposes. Mitsunari, Sakai & Kasahara [4] and Sakai, Oghishi
& Kasahara [5] seem to be the first to have discovered their
constructive properties. Since the foundational work of Joux [6],
an already large and ever increasing number of pairing-based
protocols has been found. Most of them are described in the
survey by Dutta, Barua & Sarkar [7]. As noticed in that survey,
such protocols rely critically on efficient algorithms and imple-
mentations of pairing primitives.

According to [8], [9], when dealing with general curves pro-
viding common levels of security, the Tate pairing seems to be
more efficient for computation than the Weil pairing and we now
describe it.

Let E be a supersingular1 elliptic curve over Fpm , where p

is a prime and m a positive integer, and let E(Fpm) denote
the group of its points. Let ` > 0 be an integer relatively
prime to p. The embedding degree (or security multiplier) is
the least positive integer k satisfying pkm ≡ 1 (mod `). Let
E(Fpm)[`] denote the `-torsion subgroup of E(Fpm), i.e. the set
of elements P of E(Fpm) that satisfy [`]P = O, where O is the
point at infinity of the elliptic curve. Let P ∈ E(Fpm)[`] and
Q ∈ E(Fpkm)[`], let f`,P be a rational function on the curve
with divisor `(P ) − `(O) (see [10] for an account of divisors),
there exists a divisor DQ equivalent to (Q)− (O), with a support
disjoint from the support of f`,P . Then the Tate pairing2 of order
` is the map e : E(Fpm)[`] × E(Fpkm)[`] → F∗pkm defined by

e(P,Q) = f`,P (DQ)(p
km−1)/`. The kind of powering that occurs

in this definition is called the final exponentiation; it makes it
possible to get values in a multiplicative subgroup of F∗pkm (which
is required by most of the cryptographic applications) instead of
a multiplicative subgroup of a quotient of F∗pkm .

In [11], Barreto et al. proved that this pairing can be computed

as e(P,Q) = f`,P (Q)
pkm−1

` , where f`,P is evaluated on a
point rather than on a divisor. Thanks to a distortion map ψ :

E(Fpm)[`] → E(Fpkm)[`] (the concept of a distortion map was
introduced in [12]), one can define the modified Tate pairing ê

by ê(P,Q) = e(P,ψ(Q)) for all P, Q ∈ E(Fpm)[`].
Miller [13], [14] proposed in 1986 the first algorithm for com-

puting Weil and Tate pairings. Different ways for computing the

1See Theorem V.3.1 of [10] for a definition.
2We give here the definition from [11], slightly different from the initial

one given in [3].



2 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Tate pairing can be found in [11], [15]–[17]. In [18], Barreto et
al. introduced the ηT pairing which extended and improved the
Duursma-Lee techniques [16]. It makes it possible to efficiently
compute the Tate pairing. The ηT pairing is presented in Section II
in which we recall the relation between it and the modified Tate
pairing.

B. Implementation Challenges

The software implementations of these successive algorithmic
improvements being rather slow, the need for fine hardware
implementations is strong. This is a critical issue to make pairings
popular and of common use in cryptography and in particular
in view of a successful industrial transfer. The papers [19]–[27]
address that problem.

In this paper, we deal with the characteristic three case and,
given a positive integer m coprime to 6, we consider E, a
supersingular elliptic curve over F3m , defined by the equation
y2 = x3−x+b, with b ∈ {−1, 1}. Following the discussion at the
beginning of Section 5 of [18], there is no loss of generality from
considering this case since these curves offer the same level of
security for pairing applications as any supersingular elliptic curve
over F3m . The considered curve has an embedding degree of 6,
which is the maximum value possible for supersingular elliptic
curves, and hence seems to be an attractive choice for pairing
implementation.

C. Our Contribution

The algorithm given in [18] for computing the ηT pairing
halves the number of iterations used in the approach by Duursma
& Lee [16] but has the drawback of using inverse Frobenius
maps. In [25] Beuchat et al. proposed a modified ηT pairing
algorithm in characteristic three that does not require any inverse
Frobenius map. Moreover, they designed a novel arithmetic
operator implementing addition, cubing, and multiplication over
F397 which performs in a fast and cheap way the step of final
exponentiation [26]. Then they extended in [27] this approach to
the computation of the reduced ηT pairing (i.e. the combination
of the ηT pairing and the final exponentiation).

In this article, we present a synthesis and an improvement of
the results of the papers [25]–[27]. The outline of the paper is the
following. In Section II, we define the ηT pairing and its reduced
form, we give different algorithms to compute them and we
provide exact cost evaluations for these algorithms. Section III is
dedicated to the presentation of a reduced ηT pairing coprocessor
that is based on a unified arithmetic operator that implements
the various required elementary operations over F3m . We want
to mention that all the material (i.e. algorithms and architectures)
presented in this section can be easily adapted to work on any field
Fp[x]/(f(x)) for any prime p and any polynomial f irreducible
over Fp. We implemented our coprocessor on several Field-
Programmable Gate Array (FPGA) families for the field F397

given by F3[x]/(x
97 + x12 + 2). We provide the reader with

a comprehensive comparison against state-of-the-art ηT pairing
accelerators in Section IV and conclude our article in Section V.

II. COMPUTATION OF THE ηT PAIRING IN CHARACTERISTIC

THREE

A. Preliminary Definitions

We use here the definition of the ηT pairing as introduced by
Barreto et al. in [18]. The interested reader shall find in that

article all the details related to the mathematical construction
of the pairing, which we will deliberately not mention here for
clarity’s sake.

Let E be the supersingular elliptic curve defined by the
equation E : y2 = x3 − x + b, where b ∈ {−1, 1}. Considering
a positive integer m coprime to 6, the number of rational points
of E over the finite field F3m is given by N = #E(F3m) =

3m + 1 + µb3
m+1

2 , with

µ =


+1 if m ≡ 1, 11 (mod 12), or
−1 if m ≡ 5, 7 (mod 12).

The embedding degree k of E is then 6.
Choosing T = 3m − N = −µb3

m+1
2 − 1 and an integer `

dividing N , we define the ηT pairing of two points P and Q of
the `-torsion E(F3m)[`] as

ηT (P,Q) =


fT,P (ψ(Q)) if T > 0 (i.e. µb = −1), or

f−T,−P (ψ(Q)) if T < 0 (i.e. µb = 1),

where:
• ψ is a distortion map from E(F3m)[`] to E(F36m)[`] defined

as ψ(x, y) = (ρ−x, yσ) for all (x, y) ∈ E(F3m)[`], as given
in [11], where ρ and σ are elements of F36m satisfying the
equations ρ3 − ρ− b = 0 and σ2 + 1 = 0.
As already remarked in [20], this allows for repre-
senting F36m as an extension of F3m using the basis
(1, σ, ρ, σρ, ρ2, σρ2): F36m = F3m [σ, ρ] ∼= F3m [X,Y ]/(X2+

1, Y 3 − Y − b). Hence, all the computations over F36m can
be replaced by computations over F3m , as explicitly shown
in Appendices V and VI.

• fn,P , for n ∈ N and P ∈ E(F3m)[`], is a rational function
defined over E(F36m)[`] with divisor (fn,P ) = n(P ) −
([n]P )− (n− 1)(O).

In order to ensure that the obtained pairing values belong to
the group of the `th roots of unity of F∗36m , we actually have to
compute the reduced ηT pairing, defined as ηT (P,Q)M , where

M =
36m − 1

N
=
“
33m − 1

” `
3m + 1

´ “
3m + 1− µb3

m+1
2

”
.

In the following, we will refer to this additional step as final
exponentiation.

One should also note that, in characteristic 3, we have the
following relation between the reduced ηT and modified Tate
pairings: “

ηT (P,Q)M
”3T 2

=
“
ê(P,Q)M

”L
,

with L = −µb3
m+3

2 . Using v as a shorthand for ηT (P,Q)M , we
can compute the modified Tate pairing according to the following
formula:

ê(P,Q)M = v−2

 
v3

m+1
2

3m
q
v3

m−1
2

!−µb
.

Noting T ′ = −µbT = 3
m+1

2 + µb and P ′ = [−µb]P , we
now have to compute ηT (P,Q)M = fT ′,P ′(ψ(Q))M . Using the
Duursma-Lee techniques [16] to simplify the computation of fn,P
in Miller’s algorithm, we obtain

fT ′,P ′(ψ(Q)) =

0B@m−1
2Y
i=0

g[3i]P ′(ψ(Q))3
m−1

2 −i

1CA lP ′(ψ(Q)),



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 3

where:
• gV , for all V = (xV , yV ) ∈ E(F3m)[`], is the rational func-

tion introduced by Duursma and Lee in [16], defined over
E(F36m)[`] and having divisor (gV ) = 3(V ) + ([−3]V ) −
4(O). For all (x, y) ∈ E(F36m)[`], we have

gV (x, y) = y3
V y − (x3

V − x+ b)2.

• lV , for all V = (xV , yV ) ∈ E(F3m)[`], is the equation of the
line corresponding to the addition of

h
3

m+1
2

i
V with [µb]V ,

defined for all (x, y) ∈ E(F36m)[`]:

lV (x, y) = y − λyV (x− xV )− µbyV ,

with

λ = (−1)
m+1

2 =


+1 if m ≡ 7, 11 (mod 12), or
−1 if m ≡ 1, 5 (mod 12).

We can also rewrite the equation of lV as

lV (x, y) = y + λyV (xV − x− νb),

introducing

ν = µλ =


+1 if m ≡ 5, 11 (mod 12), or
−1 if m ≡ 1, 7 (mod 12).

The remaining of this section will present and discuss various
algorithms that can be used to effectively compute the reduced ηT
pairing. The next three subsections will focus on the computation
of ηT (P,Q) only, the details of the final exponentiation being
given in Section II-E. Finally, cost evaluations and comparisons
will be presented in Section II-F.

B. Direct Approaches

1) Direct Algorithm: From the expression of fT ′,P ′ , noting
Q̃ = ψ(Q), we can write

fT ′,P ′(Q̃) =„
. . .
“
gP ′(Q̃)3 · g[3]P ′(Q̃)

”3
. . .

«3

g»
3

m−1
2

–
P ′

(Q̃) · lP ′(Q̃).

Noting P ′ = (xP ′ , yP ′) and Q = (xQ, yQ), we have [3i]P ′ =“
x32i

P ′ − ib, (−1)iy32i

P ′

”
and Q̃ = ψ(Q) = (ρ−xQ, yQσ). Injecting

these in the expressions of g[3i]P ′ and lP ′ and defining m′ =
m−1

2 , we obtain

g[3i]P ′(Q̃) =

(−1)iy32i+1

P ′ yQσ −
“
x32i+1

P ′ + xQ + (1− i)b− ρ
”2

, and
lP ′(Q̃) =

yQσ − (−1)m
′
y32m′+1

P ′

„
x32m′+1

P ′ + xQ + (1−m′)b− ρ
«

.

An iterative implementation of the ηT pairing following
this construction is given in Algorithm 1. The cost of each
pseudo-code instruction is given as comments in terms of addi-
tions/subtractions (A), multiplications (M) and cubings (C) over
the underlying field F3m .

A few remarks concerning this algorithm:
• The multiplication by −µb on line 1 is for free. Indeed, −µb

being a constant (1 or −1) for fixed m and b, one can just
compute the value of −µb when those parameters are chosen,
and propagate sign corrections on yP throughout the whole
algorithm.

Algorithm 1 Direct algorithm for computing the ηT pairing.
Input: P,Q ∈ E(F3m)[`].
Output: ηT (P,Q) ∈ F∗36m .

1. yP ← −µbyP ;

2. xP ← x3
P ; yP ← y3

P ; (2C)
3. t← xP + xQ + b; u← yP yQ; (1M, 2A)
4. R← (−t2 + uσ − tρ− ρ2)3; (1M, 2C, 3A)

5. xP ← x9
P ; yP ← −y9

P ; (4C)
6. t← xP + xQ; u← yP yQ; (1M, 1A)
7. S ← −t2 + uσ − tρ− ρ2; (1M)
8. R← R · S; (6M, 21A)

9. for i← 2 to m−1
2 do

10. R← R3; (6C, 6A)
11. xP ← x9

P − b; yP ← −y9
P ; (4C, 1A)

12. t← xP + xQ; u← yP yQ; (1M, 1A)
13. S ← −t2 + uσ − tρ− ρ2; (1M)
14. R← R · S; (12M, 59A)
15. end for

16. S ← −yP t+ yQσ + yP ρ; (1M)
17. R← R · S; (12M, 51A)

18. return R;

• Similarly, multiplications by λ, ν and b do not have any
impact on the cost of the algorithm. The value of these
constants are known in advance, and actually only represent
sign changes in the algorithm.

• Since the representation of −t2+uσ−tρ−ρ2 as an element of
the tower field F36m is sparse, the cubing on line 4 involves
only 1 multiplication, 2 cubings and 3 additions over F3m ,
as detailed in Appendix V-B.

• Additionally, (−t2+uσ−tρ−ρ2)3 has the same sparsity, and
therefore the product of R and S on line 8 can be computed
by means of only 6 multiplications and 21 additions over
F3m , as per Appendix VI-C.

• Inside the loop, the cubing of R on line 10 is computed in
6 cubings and 6 additions over F3m (Appendix V-A).

• The multiplication of R by S on line 14 involves only 12

multiplications and 59 additions over F3m , as S is sparse
(Appendix VI-B).

• The final product on line 17 is in turn computed by means
of 12 multiplications and 51 additions, also thanks to the
sparsity of S, as detailed in Appendix VI-B.

2) Simplification using Cube Roots: Cubing the intermediate
result R ∈ F∗36m at each iteration of Algorithm 1 is quite
expensive. But one can use the fact that, due to the bilinearity
of the reduced ηT pairing,

ηT (P,Q)M =

0@ηT “P, h3−m−1
2

i
Q
”3

m−1
2

1AM ,

to compute instead

fT ′,P ′(Q̃)3
m−1

2
=

0B@m−1
2Y
i=0

g[3i]P ′(Q̃)3
m−1−i

1CA lP ′(Q̃)3
m−1

2 ,

with Q̃ = ψ
“h

3−
m−1

2

i
Q
”

=
“
ρ− x3

Q − (ν + 1)b,−λy3
Qσ
”

.



4 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Expanding everything, we obtain the following expressions,
again with m′ = m−1

2 :

g[3i]P ′(Q̃)3
m−1−i

=

− λy3i

P ′y
3−i

Q σ −
“
x3i

P ′ + x3−i

Q − νb− ρ
”2

, and

lP ′(Q̃)3
m−1

2
= y3−m′

Q σ + λy3m′

P ′

„
x3m′

P ′ + x3−m′

Q − νb− ρ
«

.

This naturally gives another iterative method to compute
ηT (P,Q), presented in Algorithm 2. Here, the cubings over F36m

are traded for cube roots (noted R) over F3m , which can be
efficiently computed by means of a specific operator (see III-E
for further details).

Algorithm 2 Simplified algorithm for computing the ηT pairing,
with cube roots.
Input: P,Q ∈ E(F3m)[`].
Output: ηT (P,Q) ∈ F∗36m .

1. xP ← xP − νb; (1A)
2. yP ← −µbyP ;

3. t← xP + xQ; u← yP yQ; (1M, 1A)
4. R← −t2 − λuσ − tρ− ρ2; (1M)

5. xP ← x3
P ; yP ← y3

P ; (2C)
6. xQ ← 3

√
xQ; yQ ← 3

√
yQ; (2R)

7. t← xP + xQ; u← yP yQ; (1M, 1A)
8. S ← −t2 − λuσ − tρ− ρ2; (1M)
9. R← R · S; (6M, 21A)

10. for i← 2 to m−1
2 do

11. xP ← x3
P ; yP ← y3

P ; (2C)
12. xQ ← 3

√
xQ; yQ ← 3

√
yQ; (2R)

13. t← xP + xQ; u← yP yQ; (1M, 1A)
14. S ← −t2 − λuσ − tρ− ρ2; (1M)
15. R← R · S; (12M, 59A)
16. end for

17. S ← λyP t+ yQσ − λyP ρ; (1M)
18. R← R · S; (12M, 51A)

19. return R;

3) Tabulating the Cube Roots: Even if cube roots can be
computed with only a slight hardware overhead, it is sometimes
advisable to restrict the hardware complexity of the arithmetic
unit in order to achieve higher clock frequencies. The previous
algorithm can easily be adapted to cube-root-free coprocessors by
simply noticing that, as xQ and yQ ∈ F3m , x3−i

Q = x3m−i

Q and
y3−i

Q = y3m−i

Q .
Therefore, computing the m− 1 successive cubings of xQ and

yQ, it is possible to tabulate the pre-computed values of x3−i

Q and
y3−i

Q which will be looked-up on lines 6 and 12 of Algorithm 2
instead of computing the actual cube roots.

The m − 1 cube roots of Algorithm 2 are hence traded for
2m−2 cubings, at the expense of extra registers required to store
the tabulated values as m− 1 elements of F3m .

This idea, originally suggested by Barreto et al. [18], was for
instance applied by Ronan et al. in [23] in the case m ≡ 1

(mod 12), although they curiously do not compute the actual ηT
pairing, but the value

ηT

“
P, [3−m]Q

”3
m−1

2

= ηT (P,Q)3
−m+1

2 .

C. Reversed-Loop Approaches

In [18], Barreto et al. suggest reversing the loop to compute
the ηT pairing. To that purpose, they introduce a new index j =

3
m−1

2 − i for the loop. Taking Q̃ = ψ(Q), we find

fT ′,P ′(Q̃) = lP ′(Q̃)

0B@m−1
2Y
j=0

g»
3

m−1
2 −j

–
P ′

(Q̃)3
j

1CA .

1) Reversed-Loop Algorithm: Directly injecting the expression
of
h
3

m−1
2 −j

i
P ′ =

“
x3−2j−1

P ′ − (ν + 1− j)b,−λ(−1)jy3−2j−1

P ′

”
into the formulas, we obtain

lP ′(Q̃) = yQσ + λyP ′
`
xP ′ + xQ − νb− ρ

´
, and

g»
3

m−1
2 −j

–
P ′

(Q̃)3
j

=

−λy3−j

P ′ y
3j

Q σ −
“
x3−j

P ′ + x3j

Q − νb− ρ
”2

.

Following this expression, a third iterative scheme for com-
puting the ηT pairing can be directly devised, as detailed in
Algorithm 3. In the case m ≡ 1 (mod 12), this is the exact same
algorithm as described by Barreto et al. in [18].

Algorithm 3 Reversed-loop algorithm for computing the ηT
pairing, with cube roots.
Input: P,Q ∈ E(F3m)[`].
Output: ηT (P,Q) ∈ F∗36m .

1. xP ← xP − νb; (1A)
2. yP ← −µbyP ;

3. t← xP + xQ; (1A)
4. R← (λyP t+ yQσ − λyP ρ) · (−t2 − λyP yQσ − tρ− ρ2);

(6M, 1C, 6A)

5. for j ← 1 to m−1
2 do

6. xP ← 3
√
xP ; yP ← 3

√
yP ; (2R)

7. xQ ← x3
Q; yQ ← y3

Q; (2C)
8. t← xP + xQ; u← yP yQ; (1M, 1A)
9. S ← −t2 − λuσ − tρ− ρ2; (1M)

10. R← R · S; (12M, 59A)
11. end for

12. return R;

It is to be noted that given the expression of its operands,
the multiplication on line 4 is computed by means of only 6

multiplications, 1 cubing and 6 additions over F3m , as described
in Appendix VI-D.

As for Algorithm 2, Algorithm 3 also requires the computation
of cube roots. A similar technique of pre-computation and tabu-
lation of the cube roots thanks to successive cubings of xP and
yP can be also be used, although we will not detail it here.

2) Eliminating the Cube Roots: The apparent duality between
Algorithms 2 and 3 can be exploited to find another cube-
free algorithm, still based on the reversed loop but similar to
Algorithm 1.

For that purpose, we once again compute the reduced ηT
pairing of P and Q as

ηT (P,Q)M =

0@ηT “P, h3−m−1
2

i
Q
”3

m−1
2

1AM .



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 5

Noting Q̃ = ψ
“h

3−
m−1

2

i
Q
”

, the reversed loop becomes

fT ′,P ′(Q̃)3
m−1

2

= lP ′(Q̃)3
m−1

2

0B@m−1
2Y
j=0

g»
3

m−1
2 −j

–
P ′

(Q̃)3
m−1

2 +j

1CA
= lP ′(Q̃)3

m−1
2

0B@m−1
2Y
j=0

hj,P ′(Q̃)3
m−1

2 −j

1CA
=

 
. . .

„“
lP ′(Q̃) · h0,P ′(Q̃)

”3
h1,P ′(Q̃)

«3

. . .

!3

hm−1
2 ,P ′(Q̃),

with the rational function hj,P ′(Q̃) defined as

hj,P ′(Q̃) = g»
3

m−1
2 −j

–
P ′

(Q̃)3
2j

.

We then compute the explicit expressions of lP (Q̃) and
hj,P ′(Q̃):

lP ′(Q̃) = −λy3
Qσ + λyP ′

“
xP ′ + x3

Q + b− ρ
”

, and
hj,P ′(Q̃) =

(−1)jyP ′y
32j+1

Q σ −
“
xP ′ + x32j+1

Q + (1− j)b− ρ
”2

.

Algorithm 4 is a direct implementation of the previous com-
putation of ηT (P,Q). Similarly to Algorithm 1, it uses cubings
over F36m in order to avoid the cube roots of Algorithm 3. In
the case m ≡ 1 (mod 12), this algorithm corresponds to the ηT
pairing computation described by Beuchat et al. in [25].

Algorithm 4 Cube-root-free reversed-loop algorithm for comput-
ing the ηT pairing.
Input: P,Q ∈ E(F3m)[`].
Output: ηT (P,Q) ∈ F∗36m .

1. xP ← xP + b; (1A)
2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q; (2C)
4. t← xP + xQ; (1A)
5. R← (λyP t− λyQσ − λyP ρ) · (−t2 + yP yQσ − tρ− ρ2);

(6M, 1C, 6A)

6. for j ← 1 to m−1
2 do

7. R← R3; (6C, 6A)
8. xQ ← x9

Q − b; yQ ← −y9
Q; (4C, 1A)

9. t← xP + xQ; u← yP yQ; (1M, 1A)
10. S ← −t2 + uσ − tρ− ρ2; (1M)
11. R← R · S; (12M, 59A)
12. end for

13. return R;

D. Loop Unrolling

Granger et al. [28] proposed a loop unrolling technique for the
Duursma-Lee algorithm. They exploit the sparsity of gV in order
to reduce the number of multiplications over F3m , exactly in the
same way as we reduced the first two iterations of Algorithms 1
and 2.

By noting that hj,P ′(Q̃)3 is also as sparse as hj,P ′(Q̃) (see
Appendix V-B for details), we can apply the same approach to
Algorithm 4.

In two successive iterations 2j′ − 1 and 2j′ of the loop, for
1 ≤ j′ ≤ bm−1

4 c, we compute the new value of R as

R ←
“
R3 · h2j′−1,P ′(Q̃)

”3
· h2j′,P ′(Q̃)

= R9 · h2j′−1,P ′(Q̃)3 · h2j′,P ′(Q̃).

The values of h2j′−1,P ′(Q̃) and h2j′,P ′(Q̃), computed at
iterations 2j′ − 1 and 2j′ respectively, are both of the form
−t2 + uσ − tρ − ρ2. Therefore, given t and u, the computation
of h2j′−1,P ′(Q̃)3 requires only 1 multiplication, 2 cubings and
3 additions over F3m , as per Appendix V-B. Similarly, the
product of h2j′−1,P ′(Q̃)3 and h2j′,P ′(Q̃) can be computed by
means of only 6 multiplications and 21 additions, as explained in
Appendix VI-C. Finally, multiplying this product by R9 requires
a full F36m multiplication, which can be performed with 15

multiplications and 67 additions over F3m (see Appendix VI-A).
Hence, the cost of such a double iteration would be of 25

multiplications (neglecting the other operations), whereas two
iterations of the original loop from Algorithm 4 cost 2× 14 = 28

multiplications.
Following this, we can unroll the main loop of Algorithm 4

in order to save multiplications by computing two iterations at a
time. The resulting scheme is shown in Algorithm 5, for the case
where m−1

2 is even. If m−1
2 is actually odd, one just has to restrict

the loop on j′ from 1 to m−3
4 , and compute the last product by

an extra iteration of the original loop, for the additional cost of
14 multiplications, 10 cubings and 68 additions over F3m .

Algorithm 5 Unrolled loop for the computation of the ηT pairing
when m−1

2 is even.
Input: P,Q ∈ E(F3m)[`].
Output: ηT (P,Q) ∈ F∗36m .

1. xP ← xP + b; (1A)
2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q; (2C)
4. t← xP + xQ; (1A)
5. R← (λyP t− λyQσ − λyP ρ) · (−t2 + yP yQσ − tρ− ρ2);

(6M, 1C, 6A)

6. for j′ ← 1 to m−1
4 do

7. R← R9; (12C, 12A)
8. xQ ← x9

Q − b; yQ ← y9
Q; (4C, 1A)

9. t← xP + xQ; u← yP yQ; (1M, 1A)
10. S ← (−t2 − uσ − tρ− ρ2)3; (1M, 2C, 3A)

11. xQ ← x9
Q − b; yQ ← y9

Q; (4C, 1A)
12. t← xP + xQ; u← yP yQ; (1M, 1A)
13. S′ ← −t2 + uσ − tρ− ρ2; (1M)
14. S ← S · S′; (6M, 21A)
15. R← R · S; (15M, 67A)
16. end for

17. return R;

It is to be noted that one could also straightforwardly apply
a similar loop unrolling technique to Algorithm 1. However, we
will not detail this point any further, for it is rigourously identical
to the previous case.

E. Final Exponentiation
As already stated in Section II-A, the ηT pairing has to be

reduced in order to be uniquely defined, and not only up to



6 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

`th powers. This reduction is achieved by means of a final
exponentiation, in which ηT (P,Q) is raised to the M th power,
with

M =
“
33m − 1

” `
3m + 1

´ “
3m + 1− µb3

m+1
2

”
.

For this particular exponentiation, we use the scheme presented
by Shirase et al. in [29].

Taking U = ηT (P,Q) ∈ F∗36m , we first compute U33m−1.
Writing U as U0 + U1σ, where U0 and U1 ∈ F∗33m , and seeing
that

U33m

= U0 − U1σ, and

U−1 =
U0 − U1σ

U2
0 + U2

1

,

we obtain the following expression for U33m−1:

U33m−1 =
(U2

0 − U2
1 ) + U0U1σ

U2
0 + U2

1

.

This computation is directly implemented in Algorithm 6, where
the multiplication (line 3), the squarings (lines 1 and 2), and
the inversion (line 5) over F33m are performed following the
algorithms presented in Appendices II, III and IV respectively.

Algorithm 6 Computation of U33m−1 in F∗36m .

Input: U = u0 + u1σ + u2ρ+ u3σρ+ u4ρ
2 + u5σρ

2 ∈ F∗36m .
Output: V = U33m−1 ∈ T2(F33m).

1. m0 ← (u0 + u2ρ+ u4ρ
2)2; (5M, 7A)

2. m1 ← (u1 + u3ρ+ u5ρ
2)2; (5M, 7A)

3. m2 ← (u0 + u2ρ+ u4ρ
2) · (u1 + u3ρ+ u5ρ

2); (6M, 12A)
4. a0 ← m0 −m1; a1 ← m0 +m1; (6A)
5. i← a−1

1 ; (12M, 11A, 1I)
6. V0 ← a0 · i; (6M, 12A)
7. V1 ← m2 · i; (6M, 12A)
8. return V0 + V1σ;

One can then remark that

(U2
0 − U2

1 )2 + (U0U1)
2

(U2
0 + U2

1 )2
= 1,

meaning that U33m−1 is in fact an element of T2(F33m), where
T2(F33m) = {X0 + X1σ ∈ F∗36m : X2

0 + X2
1 = 1} is the torus

as introduced by Granger et al. for the case of the Tate pairing
in [28].

This is a crucial point here, since arithmetic on the torus
T2(F33m) is much simpler than arithmetic on F∗36m . Thus, given
U ∈ T2(F33m), Algorithm 7 computes U3m+1 in only 9 multi-
plications and 18 or 19 (depending on the value of m modulo 6)
additions over F3m .

Finally, Algorithm 8 implements the complete final exponenti-
ation. Given U ∈ F∗36m as input, it first computes U33m−1 thanks
to Algorithm 6, then calls Algorithm 7 to obtain U (33m−1)(3m+1).
Then W = U (33m−1)(3m+1)3(m+1)/2

is computed by successive
cubings over F36m , while V = U (33m−1)(3m+1)(3m+1) is ob-
tained by a second call to Algorithm 7. The value to be computed
is then

UM =


V ·W−1 when µb = 1, or
V ·W when µb = −1,

hence the computation of W ′ = W−µb on line 8. When µb = −1,
this is just a dummy operation, but it is an actual inversion when

Algorithm 7 Computation of U3m+1 in the torus T2(F33m).

Input: U = u0 +u1σ+u2ρ+u3σρ+u4ρ
2 +u5σρ

2 ∈ T2(F33m).
Output: V = U3m+1 ∈ T2(F33m).

1. a0 ← u0 + u1; a1 ← u2 + u3; a2 ← u4 − u5; (3A)
2. m0 ← u0 · u4; m1 ← u1 · u5; m2 ← u2 · u4; (3M)
3. m3 ← u3 · u5; m4 ← a0 · a2; m5 ← u1 · u2; (3M)
4. m6 ← u0 · u3; m7 ← a0 · a1; m8 ← a1 · a2; (3M)
5. a3 ← m5 +m6 −m7; a4 ← −m2 −m3; (3A)
6. a5 ← −m2 +m3; a6 ← −m0 +m1 +m4; (3A)
7. if m ≡ 1 (mod 6) then
8. v0 ← 1 +m0 +m1 + ba4; (3A)
9. v1 ← bm5 − bm6 + a6; (2A)

10. v2 ← −a3 + a4; (1A)
11. v3 ← m8 + a5 − ba6; (2A)
12. v4 ← −ba3 − ba4; (1A)
13. v5 ← bm8 + ba5; (1A)
14. else if m ≡ 5 (mod 6) then
15. v0 ← 1 +m0 +m1 − ba4; (3A)
16. v1 ← −bm5 + bm6 + a6; (2A)
17. v2 ← a3;
18. v3 ← m8 + a5 + ba6; (2A)
19. v4 ← −ba3 − ba4; (1A)
20. v5 ← −bm8 − ba5; (1A)
21. end if
22. return v0 + v1σ + v2ρ+ v3σρ+ v4ρ

2 + v5σρ
2;

µb = 1. However, as W ∈ T2(F33m), writing W = W0 + W1σ,
we have

W−1 =
W0 −W1σ

W 2
0 +W 2

1

= W0 −W1σ.

Inversion over T2(F33m) is therefore completely free, as it suffices
to propagate the sign corrections in the final product V · W ′,
implemented as a full multiplication over F∗36m .

Algorithm 8 Final exponentiation of the reduced ηT pairing [29].

Input: U = u0 + u1σ + u2ρ+ u3σρ+ u4ρ
2 + u5σρ

2 ∈ F∗36m .
Output: UM ∈ T2(F33m) ⊂ F∗36m , with the exponent M =

(33m − 1)(3m + 1)(3m + 1− µb3
m+1

2 ).
1. V ← U33m−1; (40M, 67A, 1I)
2. V ← V 3m+1; (9M, 18 or 19A)
3. W ← V ;
4. for i← 1 to m+1

2 do
5. W ←W 3; (6C, 6A)
6. end for
7. V ← V 3m+1; (9M, 18 or 19A)
8. W ′ ←W−µb;
9. return V ·W ′; (15M, 67A)

F. Overall Cost Evaluations and Comparisons

The costs of all the previously detailed algorithms are sum-
marized in Table I, in terms of additions (or subtractions),
multiplications, cubings, cube roots and inversions over F3m .

From this table, we can see that the additional cost for cube-
root-free algorithms is approximately 4m extra cubings and 7m/2

extra additions, when compared to the equivalent algorithms with
cube roots. The choice of a type of algorithm instead of the other



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 7

TABLE I
COST OF THE PRESENTED ALGORITHMS FOR COMPUTING THE ηT PAIRING AND THE FINAL EXPONENTIATION,

IN TERMS OF OPERATIONS OVER THE UNDERLYING FIELD F3m .

Additions Multiplications Cubings Cube roots Inversions

Direct loop
No cube root (Algorithm 1) 67m−1

2 + 11 7m+ 2 5m− 7 0 0

With cube roots (Algorithm 2) 30m− 15 7m+ 2 m− 1 m− 1 0

Reversed loop
With cube roots (Algorithm 3) 30m− 22 7m− 1 m m− 1 0

No cube root (Algorithm 4) 67m−1
2 + 8 7m− 1 5m− 2 0 0

Unrolled loop m−1
2 is even 107m−1

4 + 8 25m−1
4 + 6 11m−1

2 + 3 0 0

(Algorithm 5) m−1
2 is odd 107m−3

4 + 76 25m−3
4 + 20 11m−1

2 + 2 0 0

Final exp. m ≡ 1 (mod 6) 3m+ 175 73 3m+ 3 0 1

(Algorithm 8) m ≡ 5 (mod 6) 3m+ 173 73 3m+ 3 0 1

will therefore depend on the practicality of the computation of
cube roots in the given finite field F3m (see the discussion in
Section III-E).

This table also shows a slight superiority of reversed-loop
algorithms versus direct-loop approaches. This is the reason why
we chose to apply the loop unrolling technique to Algorithm 4.

The advantage of such a loop unrolling becomes also clearer
when looking at Table I. From Algorithm 4 to Algorithm 5, we
trade approximately 27m/4 additions and 3m/4 multiplications
for m/2 cubings over F3m .

The costs of these algorithms for m = 97, on which we focus
more closely in this paper, is given in Table II. As detailed in
Section III-B, we can compute the inversion over F397 according
to Fermat’s little theorem in 9 multiplications and 96 cubings,
which allows us to express these costs in terms of additions,
multiplications, cubings and cube roots only. The total number
of operations for the complete computation of the reduced ηT
pairing, using Algorithm 5 for the ηT pairing and Algorithm 8
for the final exponentiation, is also given.

TABLE II
COST EVALUATIONS OF THE REDUCED ηT PAIRING FOR m = 97.

INVERSION OVER F397 IS CARRIED OUT ACCORDING TO FERMAT’S

LITTLE THEOREM IN 9 MULTIPLICATIONS AND 96 CUBINGS.

A M C R

Direct loop (Algorithm 1) 3227 681 478 0
(Algorithm 2) 2895 681 96 96

Reversed loop (Algorithm 3) 2888 678 97 96
(Algorithm 4) 3224 678 483 0

Unrolled loop (Algorithm 5) 2576 606 531 0
Final exp. (Algorithm 8) 466 82 390 0

Total (Algorithms 5 and 8) 3042 688 921 0

III. A COPROCESSOR FOR ARITHMETIC OVER F3m

The ηT pairing calculation in characteristic 3 requires ad-
dition, multiplication, cubing, inversion, and sometimes cube
root extraction over F3m . We propose here a unified arithmetic
operator which implements the required operations, and describe
a hardware accelerator for pairing-based cryptography.

In the following, elements of the field extension F3m will be
represented using a polynomial basis. Given a degree-m irre-

ducible polynomial f(x) ∈ F3[x], we have F3m ∼= F3[x]/(f(x)).
Each element of F3m will then be represented as a polynomial
p(x) of degree (m− 1) and coefficients in F3:

p(x) = pm−1x
m−1 + . . .+ p1x+ p0.

Several researchers reported implementations of the Tate and
ηT pairings on a supersingular curve defined on the field F397 .
Therefore, we discuss the implementation of Algorithm 5 for the
field F3[x]/(x

97 + x12 + 2) and the curve y2 = x3 − x + 1 (i.e.
b = 1) on our coprocessor.

It is nonetheless important to note that the architectures and
algorithms presented here can be easily adapted to different
parameters. For instance a different irreducible polynomial f(x),
a different field extension degree m, or even a different char-
acteristic p (cubing and cube root extraction, being respectively
Frobenius and inverse Frobenius maps in characteristic 3, then
replaced by raising to the pth power and pth root extraction).

A. Multiplication over F3m

Three families of algorithms allow one to compute d0(x) ·
d1(x) mod f(x) (see for instance [30]–[32] for an account of
modular multiplication). In parallel-serial schemes, a single co-
efficient of the multiplier d0(x) is processed at each step. This
leads to small operators performing a multiplication in m clock
cycles. Parallel multipliers compute a degree-(2m−2) polynomial
and carry out a final modular reduction. They achieve a higher
throughput at the price of a larger circuit area. By processing D
coefficients of an operand at each clock cycle, array multipliers,
introduced by Song and Parhi in [33], offer a good trade-off
between computation time and circuit area and are at the heart
of several pairing coprocessors (see for instance [19], [20], [22],
[23], [25], [34]).

Depending on the order in which coefficients of d0(x) are
processed, array multipliers can be implemented according to
two schemes: most-significant element (MSE) first and least-
significant element (LSE) first. Algorithm 9 summarizes the MSE-
first scheme proposed by Shu, Kwon & Gaj [22]. Figure 1a
illustrates the architecture of this operator for D = 3. It mainly
consists of three Partial Product Generators (PPGs), three modulo
f(x) reduction units, a multioperand adder, and registers to store
operands and intermediate results. Five bits allow for the control
of the multiplier. If the irreducible polynomial over F3m is a



8 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

c2

c4
×x2

PPGPPG PPG

c5

c1

Generator
Product
Partial

Addition over F3m

(b) (c)(a)

d(x)

c(x)

Select

Load

Cubing

±

Register

1 0

Shift register
d0(x) Load

Shiftd03i+2

Load

Clear
p(x)

d03i d03i+1

R0R1

d1(x)

Load

c0

c1

c2

c3

c4

c3

c2

c1

c0

± ±

s(x)

d1(x) d0(x)

×2

1 0

0 1

0

Load Load

mod f(x) mod f(x)

Load

mod f(x)

×x

R0

×x3

R1

c1

c0

c3

Fig. 1. Arithmetic operators over F3m . (a) Multiplication (D = 3 coefficients of d0(x) are processed at each clock cycle) [22]. (b) Cubing. (c)
Addition/subtraction of two operands and accumulation. Boxes with rounded corners involve only wiring. The ci’s denote control bits.

trinomial or a pentanomial, modulo f(x) operations are easy to
implement. Consider for instance f(x) = x97 + x12 + 2 and
let u(x) = x · d1(x) be a degree-97 polynomial. It suffices to
remove u97 · f(x) = u97x

97 + u97x
12 + 2u97 from u(x) to get

u(x) mod f(x). This involves only two multiplications and two
subtractions over F3, namely u12 − 1 · u97 and u0 − 2 · u97.

Elements of F3 are often represented as 2-bit unsigned integers.
Let d0i = 2d0Hi + d0Li and d1j = 2d1Hj + d1Lj . Multiplication
over F3 = {0, 1, 2} is then defined as follows:

d0i · d1j = 2
“

d0Hi d1Lj ∨ d0Li d1Hj
”

+
“

d0Li d1Lj ∨ d0Hi d1Hj
”

,

and can be implemented by means of two 4-input Look-Up Tables
(LUTs). Since d0i multiplies all coefficients of d1, the fanout of
our array multiplier is equal to 2m.

However, a careful encoding of the elements of F3 can reduce
the fanout of the operator [35]. Since 2 ≡ −1 (mod 3), we take
advantage of the borrow-save system [36] in order to represent the
elements of F3 = {0, 1,−1}: d0i is encoded by a positive bit d0+

i
and a negative bit d0−i such that d0i = d0+

i −d0−i . Multiplication
over F3 is now defined by:

d0i · d1j =
“
(1− d1−j )d1+

j d0+
i ∨ d1−j (1− d1+

j )(1− d0+
i )
”
−“

(1− d1−j )d1+
j d0−i ∨ d1−j (1− d1+

j )(1− d0−i )
”

,

and requires two 3-input LUTs: the first one depends on d0+
i , and

the second one on d0−i . Thus, the fanout of the array multiplier is
now equal to m. Since it is performed component-wise, addition
over F3m is also a rather straightforward operation. If elements of
F3 are represented by two bits, addition modulo 3 is for instance
carried out by means of two 4-input LUTs.

B. Inversion over F3m

The final exponentiation of the ηT pairing involves a single
inversion over F3m . Instead of designing a specific operator

Algorithm 9 Multiplication over F3m [22].
Input: A degree-m monic polynomial f(x) = xm +

fm−1x
m−1 + . . . + f1x + f0 and two degree-(m − 1) poly-

nomials d0(x) and d1(x). A parameter D which defines the
number of coefficients of d0(x) processed at each clock cycle.
The algorithm requires a degree-(m−1) polynomial a(x) for
intermediate computations.

Output: p(x) = d0(x)d1(x) mod f(x)

1. p(x)← 0;
2. for i← dm/De − 1 downto 0 do

3. a(x)←
D−1X
j=0

“
d0Di+j · d1(x) · xj

”
mod f(x);

4. p(x)← a(x) + (p(x) · xD mod f(x));
5. end for
6. return p(x);

based on the Extended Euclidean Algorithm (EEA), we suggest
to keep the circuit area as small as possible by performing
this inversion according to Fermat’s little theorem and Itoh and
Tsujii’s work [37] (Algorithm 10). Since this scheme requires
only multiplications and cubings over F3m , we do not have to
include dedicated hardware for inversion in our coprocessor.

Starting with an element d of F3m , d 6= 0, we first raise it to
the power of the base-3 repunit (3m−1 − 1)/2 to obtain r. This
particular powering can be achieved using only m − 2 cubings
over F3m and a few multiplications over F3m as detailed below.
By cubing r and then multiplying the result by d, we successively
obtain

u = d(3
m−3)/2, and

v = d(3
m−1)/2.



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 9

A final product gives us the result

u · v = d(3
m−3)/2 · d(3

m−1)/2 = d3
m−2 = d−1.

Since v 6= 0 and v2 = d3
m−1 = 1, v ∈ F3 and this

operation could be performed in a single clock cycle at the
price of a modification of our MSE-first multiplier: adding an
extra control bit and a multiplexer allows one to select the
value of the coefficient d03i between its normal value (the D

most significant coefficients of the multiplier) and the D least
significant coefficients of the multiplier. Indeed, as v ∈ F3, its
coefficients vi are zero for all i 6= 0. Therefore, we only need v0
to compute the final multiplication u ·v = u ·v0. As our multiplier
operates in a most-significant-coefficient-first fashion, instead of
performing the full multiplication over F3m , this multiplexer
would allow us to bypass the whole shift register mechanism and
compute the product u · v in a single iteration of the multiplier.
Since we consider m = 97 for our implementation, this trick
would allow us to save only dm/De − 1 = d97/3e − 1 = 32

clock cycles at the price of a longer critical path and a larger
control word. Thus, we do not include this modification in our
coprocessor.

Algorithm 10 Inversion over F3m .
Input: A positive integer m, and d ∈ F3m , d 6= 0.
Output: d−1 ∈ F3m .

1. r ← d(3
m−1−1)/2; (See Algorithm 11)

2. u← r3; (1C)
3. v ← u · d; (1M)
4. return u · v; (1M)

As already shown in [38] and [39], addition chains can prove to
be perfectly suited to raise elements of F3m to particular powers,
such as the radix-3 repunit (3m−1−1)/2 required by our inversion
algorithm. In the following, we will restrict ourselves to Brauer-
type addition chains3, whose definition follows.

A Brauer-type addition chain C of length l is a sequence of l
integers S = (j1, . . . , jl) such that 0 ≤ ji < i for all 1 ≤ i ≤ l.
We can then construct another sequence (n0, . . . , nl) satisfying

n0 = 1, and
ni = ni−1 + nji , for all 1 ≤ i ≤ l.

C is said to compute nl, the last element of the sequence. From
[40], we also have the following additional property, for all 1 ≤
l′ ≤ l:

l′X
i=1

nji = nl′ − 1.

Moreover, we can see that we have, for n ≤ n′

d(3
n+n′−1)/2 = d(3

n−1)/2 ·
„
d(3

n′−1)/2
«3n

.

Consequently, given a Brauer-type addition chain C of length l

for m − 1, we can compute the required d(3
m−1−1)/2 as shown

in Algorithm 11. This algorithm simply ensures that, for each
iteration i, we have zi = d(3

ni−1)/2, where (n0, . . . , nl) is the
integer sequence associated with the addition chain C, verifying
nl = m−1. It requires l multiplications and nj1+· · ·+njl = m−2

cubings over F3m .

3Brauer-type addition chains are proved to be optimal for all numbers up
to and including 12508 [40], which is more than enough for our needs.

Algorithm 11 Computation of d(3
m−1−1)/2 over F3m .

Output: A positive integer m, d ∈ F3m , d 6= 0, a Brauer-type
addition chain S = (j1, . . . , jl) for m − 1, and the integer
sequence (n0, . . . , nl) associated with C.

Input: d(3
m−1−1)/2 ∈ F3m .

1. z0 ← d;
2. for i← 1 to l do
3. zi ← zji · z

3
nji

i−1 ; (1M, njiC)
4. end for
5. return zl;

Therefore, our inversion scheme requires a total of l + 2

multiplications and m − 1 cubings over F3m . For m = 97, an
addition chain of length l = 7 allows us to compute d(3

96−1)/2,
and the overall cost of inversion is equal to 9 multiplications and
96 cubings over F397 .

C. Cubing over F3m

Cubing over F3m consists in reducing the following expression
modulo f(x):

c(x) = d(x)3 mod f(x) =

m−1X
i=0

dix
3i mod f(x).

This general expression can be seen as a sum of D′ elements
of F3m . The coefficients of those polynomials can be directly
matched to the coefficients of the operand, possibly multiplied
by 2. Thus, cubing requires a multioperand adder and some extra
wiring for the permutation of the coefficients. Multiplication by 2

consists in swapping the positive and negative bits of an element
of F3. For instance, if f(x) = x97 +x12 +2, we have to compute
a sum of D′ = 3 operands:

ν0(x) = d32x
96 + 2d60x

95 + d88x
94 + . . .+

d1x
3 + d33x

2 + 2d61x+ d0,

ν1(x) = d64x
95 + d92x

94 + . . .+ d90x
3 + d65x+ d89,

ν2(x) = d96x
94 + . . .+ d94x

3 + d93,

where νi(x) ∈ F397 , 0 ≤ i ≤ 2, and

c(x) = d(x)3 = ν0(x) + ν1(x) + ν2(x).

Recall that our inversion algorithm involves successive cubings.
Since storing intermediate results in memory would be too time
consuming, our cubing unit should include a feedback mechanism
to efficiently implement Algorithm 11. Furthermore, cubing over
F36m requires the computation of −u3

5, where u5 ∈ F3m (see
Appendix V-A for details). These considerations suggest the
design of the operator depicted by Figure 1b.

If we have a closer look at the scheduling of the reduced ηT
pairing algorithm, we note that there is no parallelism between
multiplications and cubings over F3m . If the array multiplier
processes D ≥ D′ coefficients at each clock cycle, we could take
advantage of its multioperand adder to perform cubing. Figure 2
describes how to modify the multiplier when D = D′ = 3:
• The feedback loop responsible for the accumulation of

partial products must be deactivated while cubing. An array
of m AND gates performs this task and allows one to
carry out the initialization step of the modular multiplication
(instruction p(x)← 0 in Algorithm 9).



10 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

0 0

R1

1

PPG PPGPPG

mod f(x)

0 1

×x2

mod f(x)

c0

c1
c3

c2

c4

c6

ν2(x)ν1(x) ×xν0(x)

d03i d03i+1 d03i+2

Shift register Load

Shift

Load

d1(x) d0(x)

c5

p(x)

R2

×x3

0

mod f(x)

1

R0

1

Fig. 2. Operator for multiplication and cubing over F3[x]/(x97 +x12 +2).
Boxes with rounded corners involve only wiring. The ci’s denote control bits.
Grayed boxes outline the modifications of the array multiplier of Figure 1a.

• Multiplexers select the input of the multioperand adders
between modulo f(x) reduced partial products and the
νi(x)’s.

• The shift register of the multiplier and the PPGs allow for
the control of cubing operations. If we store a control word
in register R0 such that d03i = d03i+1 = d03i+2 = −1, the
operator returns −d1(x)3. If d03i = d03i+1 = d03i+2 = 1,
we obtain d1(x)3.

D. Addition over F3m

The reduced ηT pairing algorithms discussed in this paper
involve additions, subtractions, and accumulations over F3m . Fig-
ure 1c describes an operator implementing these functionalities.
Again, a closer look at the reduced ηT pairing algorithms as
well as at the algorithms for arithmetic over F33m and F36m

indicates that there is almost no parallelism between additions
and multiplications over F3m . We suggest to further modify our
array multiplier to include addition, subtraction, and accumulation
(Figure 3):
• An additional register is needed to store the second operand

of an addition. Again, the shift register stores a control word
to control additions. Assume for instance that we have to
compute −d2(x) + d1(x). We respectively load d2(x) and
d1(x) in registers R2 and R1 and define a control word stored
in R0 so that d03i = 1, d03i+1 = 2, and d03i+2 = 0. We
will thus compute (d1(x)+2 ·d2(x)+0 ·d1(x)) mod f(x) =

(d1(x) − d2(x)) mod f(x). Since the reduced ηT pairing
algorithm involves successive additions and cubings, each
control word loaded in the shift register manages a sequence
of operations. Note that

– while performing a multiplication or a cubing, registers
R1 and R2 must store the same value;

– d03i+2 is always equal to zero in the case of addition.

• A multiplexer in the accumulation loop allows one to select
between the content of register R3 (accumulation) or the con-
tent of R3 shifted and reduced modulo f(x) (multiplication).

• An additional multiplexer is required to select the second
input of the multioperand adder: d2(x) (addition), (d2(x) ·
d03i+1 · x) mod f(x) (multiplication), or ν1(x) (cubing).

0 1

0

0 10

ν1(x)

PPG PPG

1

×x3

PPG

R3

10

×x2

mod f(x)

c1

mod f(x)

c0 c2

c5

c4

1

c6

c9

c8

c7

c3
Load

0

R1

ν2(x)ν0(x)

d03i d03i+1 d03i+2

Shift register Load

Shift

p(x)

d1(x) d2(x) d0(x)

Load

c10

mod f(x)

R0R2

0 1

×x

1

Fig. 3. Operator for addition, multiplication, and cubing over F3[x]/(x97 +
x12 + 2). Boxes with rounded corners involve only wiring. The ci’s denote
control bits. Grayed boxes outline the modifications of the operator of
Figure 2.

E. Cube Root over F3m

Some of the ηT pairing algorithms in characteristic 3 described
in Section II involve cube roots over F3m . This function is com-
puted exactly in the same way as cubing: first, the normal form of
3
p
d(x) mod f(x) is obtained by solving the m-dimensional linear

system given by the equation
“

3
p
d(x)

”3
mod f(x) = d(x). The

result is then expressed as a sum of polynomials, each one being a
permutation of the coefficients of the operand d(x) multiplied by
a constant. The number of polynomials we have to add depends
on f(x). Barreto gives a list of irreducible polynomials leading
to efficient cube root operators in [41].



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 11

F. Architecture of the Coprocessor

Figure 4 describes the architecture of our ηT pairing coproces-
sor. It consists of a single processing element (unified operator
for addition, multiplication, and cubing), registers implemented
by means of a dual-port RAM (6 Virtex-II Pro SelectRAM+
blocks or 13 Cyclone II M4K memory blocks), and a control unit
which consists of a Finite State Machine (FSM) and an instruction
memory (ROM). Each instruction consists of four fields: an 11-bit
word which specifies the functionality of the processing element,
address and write enable signal for port B of the dual-port RAM,
address for port A of the dual-port RAM, and a 6-bit control
word which manages jump instructions and indicates how many
times an instruction must be repeated. This approach makes it
possible for instance to execute the consecutive steps appearing
in the multiplication over F3m with a single instruction.

The architecture described by Figure 4 was captured in the
VHDL language and prototyped on several Altera and Xilinx
FPGAs. We selected the following parameters: m = 97, b = 1,
and f(x) = x97 + x12 + 2. Both synthesis and place-and-route
steps were performed with Quartus II 7.1 Web Edition and ISE
WebPACK 9.2i. The implementation on this coprocessor of the
reduced ηT pairing (using Algorithm 5 for the ηT pairing and
Algorithm 8 for the final exponentiation) takes 900 instructions
which are executed in 27800 clock cycles. Table III summarizes
the area (in slices on Xilinx FPGAs and Logic Elements (LEs)
on the Altera device) and the calculation time.

It is worth noticing that an operator for inversion over F397

based on the EEA occupies 3422 LEs on a Cyclone-II device [42],
and 2210 slices on a Virtex-II FPGA [43]. The implementation of
the algorithm based on Itoh and Tsujii’s work requires 394 clock
cycles on our coprocessor for m = 97. The EEA needs 2m =

194 clock cycles to return the inverse. Therefore, introducing
specific hardware for inversion would double the circuit area
while reducing the calculation time by less than 1%.

We also described a naive coprocessor embedding the multi-
plier, the cubing unit, and the adder depicted in Figure 1. The
outputs of the these operators are connected to the register file
by means of a 3-input multiplexer controlled by 2 additional bits.
Place-and-route results indicate that such a coprocessor (without
control unit) occupies 2199 slices on a Spartan-3 FPGA, and 3345

LEs on a Cyclone-II device. Furthermore, we need 17 bits to
control this ALU. Thus, our unified operator reduces both the
area of the coprocessor and the width of the control words.

In order to guarantee the security of pairing-based cryptosys-
tems in a near future, larger extension degrees will probably have
to be considered, thus raising the question of designing such
a unified operator for other extension fields. For this purpose,
we wrote a C++ program which automatically generates a
synthesizable VHDL description of a unified operator according
to the characteristic and the irreducible polynomial f(x).

IV. COMPARISONS

Grabher and Page designed a coprocessor dealing with arith-
metic over F3m , which is controlled by a general purpose pro-
cessor [19]. The ALU embeds an adder, a subtracter, a multiplier
(with D = 4), a cubing unit, and a cube root operator based on the
method highlighted by Barreto [41]. This architecture occupies
4481 slices and allows one to perform the Duursma-Lee algorithm
and its final exponentiation in 432.3µs. The main advantage is

that the control can be compiled using a re-targeted GCC tool-
chain and other algorithms should easily be implemented on
this architecture. Our approach leads however to a much simpler
control unit and allows us to divide the number of slices by 2.4.

Another implementation of the Duursma-Lee algorithm was
proposed by Kerins et al. in [20]. It features a parallel mul-
tiplier over F36m based on Karatsuba-Ofman’s scheme. Since
the final exponentiation requires a general multiplication over
F36m , the authors can not take advantage of the optimizations
described in this paper and in [21] for the pairing calculation.
Therefore, the hardware architecture consists of 18 multipliers
and 6 cubing circuits over F397 , along with, quoting [20], “a
suitable amount of simpler F3m arithmetic circuits for performing
addition, subtraction, and negation”. Since the authors claim that
roughly 100% of available resources are required to implement
their pairing accelerator, the cost can be estimated to 55616

slices [22]. The approach proposed in this paper reduces the area
and the computation time by 30 and 4.4 respectively. Note that
a multiplier over F36m based on the fast Fourier transform [44]
would save three multipliers over F3m . Since all multiplications
over F3m are performed in parallel, this approach would only
slightly reduce the circuit area without decreasing the calculation
time.

Beuchat et al. described a fast architecture for the computation
of the ηT pairing [25]. The authors introduced a novel multiplica-
tion algorithm over F36m which takes advantage of the constant
coefficients of S. Thus, this design must be supplemented with a
coprocessor for final exponentiation and the full pairing acceler-
ator requires around 18000 LEs on a Cyclone II FPGA [26]. The
computation of the pairing and the final exponentiation require
4849 and 4082 clock cycles respectively. Since both steps are
pipelined, we can consider that a new result is returned after 4849

clock cycles if we perform a sufficient amount of consecutive
full ηT pairings. In order to compare our accelerator against this
architecture, we implemented it on an Altera Cyclone II 5 FPGA
with Quartus II 7.1 Web Edition. Our design occupies 3216 LEs
and the maximal clock frequency of 152 MHz allows one to
compute a pairing in 183µs. The architecture proposed in this
paper is therefore 6 times slower, but 5.6 times smaller.

In order to study the trade-off between circuit area and calcula-
tion time of the ηT pairing, Ronan et al. wrote a C program which
automatically generates a VHDL description of a coprocessor and
its control unit according to the number of multipliers over F3m to
be included and the parameter D [23]. An architecture embedding
five multipliers processing D = 4 coefficients at each clock cycle
computes for instance a full pairing in 187µs. Though slightly
faster, this design requires five times the amount of slices of
our pairing accelerator. Our approach offers a better compromise
between area and calculation time.

To our best knowledge, the fastest ηT pairing processor de-
scribed in the open literature was designed by Jiang [24]. Unfortu-
nately, Jiang does not give any detail about his architecture. Since
a pairing is computed in 1627 clock cycles and that multiplication
over F3m is based on an LSE array multiplier processing D = 7

coefficients at each clock cycle, we can however guess that
the design includes a hardwired multiplier over F36m . Though
6.5 faster than the coprocessor based on our unified arithmetic
operator, the design by Jiang requires 40 times more slices.



12 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Wen

Addr
Data

Processing

element

c31

0

p(x)

194 bits11 bits

194 bits

Q

c30

Q

10 bits

c29 c28 c27 c26

32 bits

7 bits

198 bits
P, Q

Select

Addr

Wen

ROM Addr

Q

W
enControl

ηT (P,Q)M

d1(x)
d0(x)

c5c6 c4c7 c3c8 c2c9 c1c10 c0c18 c17c19 c16c20 c15c21 c14c22 c13c23 c12c24 c11

7 bits

Start

Control

d2(x)

Address Address

Port APort B Processing element

Done

Finite State
Machine

c25

RAM

P
or

t
B

P
or

t
A

1 10 0

1
9
8

b
it

s

1
9
4

b
it

s

Data
Addr

Wen

Fig. 4. Architecture of the coprocessor for arithmetic over F3m .

TABLE III
AREA AND CALCULATION TIME OF A F397 REDUCED ηT PAIRING COPROCESSOR.

Virtex-II Pro 4 Virtex-4 LX 15 Spartan-3 200 Cyclone-II 5
Area 1833 slices 1851 slices 1857 slices 3216 LEs

Clock cycles 27800 cycles
Clock frequency 145 MHz 203 MHz 100 MHz 152 MHz
Calculation time 192 µs 137 µs 278 µs 183 µs

TABLE IV
FPGA-BASED ACCELERATORS OVER F397 IN THE LITERATURE. THE PARAMETER D REFERS TO THE NUMBER OF COEFFICIENTS PROCESSED AT EACH

CLOCK CYCLE BY A MULTIPLIER.

Grabher and Kerins Beuchat
Page [19] et al. [20] et al. [25], [26]

Algorithm Modified Tate pairing Modified Tate pairing Reduced ηT pairing
FPGA Virtex-II Pro 4 Virtex-II Pro 125 Cyclone II 35

Multiplier(s) 1 (D = 4) 18 (D = 4) 9 (D = 3)
Area 4481 slices 55616 slices ∼ 18000 LEs

Clock cycles 59946 12866 4849

Clock frequency 150 MHz 15 MHz 149 MHz
Calculation time 432.3µs Estimated to 850µs 33µs

Ronan et al. [23] Jiang [24]
Algorithm Reduced ηT pairing Reduced ηT pairing Reduced ηT pairing

FPGA Virtex-II Pro 100 Virtex-II Pro 100 Virtex-4 LX200
Multiplier(s) 5 (D = 4) 8 (D = 4) (D = 7)

Area 10540 slices 15401 slices 74105 slices
Clock cycles 15853 15529 1627

Clock frequency 84.8 MHz 84.8 MHz 77.7 MHz
Calculation time 187µs 183µs 20.9µs



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 13

V. CONCLUSION

We discussed several algorithms to compute the ηT pairing
and its final exponentiation in characteristic three. We proposed a
compact implementation of the reduced ηT pairing in characteris-
tic three over F3[x]/(x

97 +x12 +2). Our architecture is based on
a unified arithmetic operator which leads to the smallest circuit
proposed in the open literature while demonstrating competitive
performances.

Future works should include studies of the ηT pairing in
characteristic 2, where the wired multipliers embedded in most
of the current FPGAs should allow for cheaper and faster array-
and even fully parallel multipliers over F2m . Such more efficient
architectures would then allow us to investigate the ηT pairing
over hyperelliptic curves.

The study of the Ate pairing [45] would also be of interest, for
it presents a large speedup when compared to the Tate pairing
and also supports non-supersingular curves.

ACKNOWLEDGMENT

The authors would like to thank Francisco Rodrı́guez-
Henrı́quez and Guerric Meurice de Dormale for their valuable
comments and Guillaume Hanrot for his fine explanations of some
algorithmical and theoretical issues about pairings. This work
was supported by the New Energy and Industrial Technology
Development Organization (NEDO), Japan.

REFERENCES

[1] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology – ASIACRYPT 2001, ser. Lecture
Notes in Computer Science, C. Boyd, Ed., no. 2248. Springer, 2001,
pp. 514–532.

[2] A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic
curves logarithms to logarithms in a finite field,” IEEE Transactions
on Information Theory, vol. 39, no. 5, pp. 1639–1646, Sept. 1993.

[3] G. Frey and H.-G. Rück, “A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves,” Mathematics of
Computation, vol. 62, no. 206, pp. 865–874, Apr. 1994.

[4] S. Mitsunari, R. Sakai, and M. Kasahara, “A new traitor tracing,” IEICE
Trans. Fundamentals, vol. E85-A, no. 2, pp. 481–484, Feb 2002.

[5] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on
pairing,” in 2000 Symposium on Cryptography and Information Security
(SCIS2000), Okinawa, Japan, Jan. 2000, pp. 26–28.

[6] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” in Al-
gorithmic Number Theory – ANTS IV, ser. Lecture Notes in Computer
Science, W. Bosma, Ed., no. 1838. Springer, 2000, pp. 385–394.

[7] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based cryptographic proto-
cols: A survey,” 2004, cryptology ePrint Archive, Report 2004/64.

[8] R. Granger, D. Page, and N. P. Smart, “High security pairing-based
cryptography revisited,” in Algorithmic Number Theory – ANTS VII, ser.
Lecture Notes in Computer Science, F. Hess, S. Pauli, and M. Pohst,
Eds., no. 4076. Springer, 2006, pp. 480–494.

[9] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security
levels,” in Cryptography and Coding, ser. Lecture Notes in Computer
Science, N. P. Smart, Ed., no. 3796. Springer, 2005, pp. 13–36.

[10] J. H. Silverman, The Arithmetic of Elliptic Curves, ser. Graduate Texts
in Mathematics. Springer-Verlag, 1986, no. 106.

[11] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
algorithms for pairing-based cryptosystems,” in Advances in Cryptology
– CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung,
Ed., no. 2442. Springer, 2002, pp. 354–368.

[12] E. R. Verheul, “Evidence that XTR is more secure than supersingular
elliptic curve cryptosystems,” Journal of Cryptology, vol. 17, no. 4, pp.
277–296, 2004.

[13] V. S. Miller, “Short programs for functions on curves,” 1986, available
at http://crypto.stanford.edu/miller.

[14] ——, “The Weil pairing, and its efficient calculation,” Journal of
Cryptology, vol. 17, no. 4, pp. 235–261, 2004.

[15] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate
pairing,” in Algorithmic Number Theory – ANTS V, ser. Lecture Notes
in Computer Science, C. Fieker and D. Kohel, Eds., no. 2369. Springer,
2002, pp. 324–337.

[16] I. Duursma and H. S. Lee, “Tate pairing implementation for hyperelliptic
curves y2 = xp − x + d,” in Advances in Cryptology – ASIACRYPT
2003, ser. Lecture Notes in Computer Science, C. S. Laih, Ed., no. 2894.
Springer, 2003, pp. 111–123.

[17] S. Kwon, “Efficient Tate pairing computation for elliptic curves over
binary fields,” in Information Security and Privacy – ACISP 2005, ser.
Lecture Notes in Computer Science, C. Boyd and J. M. González Nieto,
Eds., vol. 3574. Springer, 2005, pp. 134–145.

[18] P. S. L. M. Barreto, S. D. Galbraith, C. Ó hÉigeartaigh, and M. Scott,
“Efficient pairing computation on supersingular Abelian varieties,” in
Designs, Codes and Cryptography. Springer Netherlands, Mar. 2007,
vol. 42(3), pp. 239–271.

[19] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in
characteristic three,” in Cryptographic Hardware and Embedded Systems
– CHES 2005, ser. Lecture Notes in Computer Science, J. R. Rao and
B. Sunar, Eds., no. 3659. Springer, 2005, pp. 398–411.

[20] T. Kerins, W. P. Marnane, E. M. Popovici, and P. Barreto, “Efficient
hardware for the Tate pairing calculation in characteristic three,” in
Cryptographic Hardware and Embedded Systems – CHES 2005, ser.
Lecture Notes in Computer Science, J. R. Rao and B. Sunar, Eds., no.
3659. Springer, 2005, pp. 412–426.

[21] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, “Parallel hardware
architectures for the cryptographic Tate pairing,” in Proceedings of
the Third International Conference on Information Technology: New
Generations (ITNG’06). IEEE Computer Society, 2006.

[22] C. Shu, S. Kwon, and K. Gaj, “FPGA accelerated Tate pairing based
cryptosystem over binary fields,” in Proceedings of the IEEE Inter-
national Conference on Field Programmable Technology (FPT 2006).
IEEE, 2006, pp. 173–180.

[23] R. Ronan, C. Murphy, T. Kerins, C. Ó hÉigeartaigh, and P. S. L. M.
Barreto, “A flexible processor for the characteristic 3 ηT pairing,” Int.
J. High Performance Systems Architecture, vol. 1, no. 2, pp. 79–88,
2007.

[24] J. Jiang, “Bilinear pairing (Eta T Pairing) IP core,” City University of
Hong Kong – Department of Computer Science, Tech. Rep., May 2007.

[25] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “An algorithm
for the ηT pairing calculation in characteristic three and its hardware
implementation,” in Proceedings of the 18th IEEE Symposium on Com-
puter Arithmetic, P. Kornerup and J.-M. Muller, Eds. IEEE Computer
Society, 2007, pp. 97–104.

[26] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto,
“A coprocessor for the final exponentiation of the ηT pairing in
characteristic three,” in Proceedings of Waifi 2007, ser. Lecture Notes in
Computer Science, C. Carlet and B. Sunar, Eds., no. 4547. Springer,
2007, pp. 25–39.

[27] J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto, “Arithmetic
operators for pairing-based cryptography,” in Cryptographic Hardware
and Embedded Systems – CHES 2007, ser. Lecture Notes in Computer
Science, P. Paillier and I. Verbauwhede, Eds., no. 4727. Springer, 2007,
pp. 239–255.

[28] R. Granger, D. Page, and M. Stam, “On small characteristic algebraic
tori in pairing-based cryptography,” LMS Journal of Computation and
Mathematics, vol. 9, pp. 64–85, Mar. 2006.

[29] M. Shirase, T. Takagi, and E. Okamoto, “Some efficient algorithms for
the final exponentiation of ηT pairing,” in 3rd International Information
Security Practice and Experience Conference, (ISPEC’07), ser. Lecture
Notes in Computer Science, E. Dawson and D. S. Wong, Eds., no. 4464.
Hong Kong, China: Springer-Verlag, May 2007, pp. 254–268.

[30] J.-L. Beuchat, T. Miyoshi, J.-M. Muller, and E. Okamoto, “Horner’s rule-
based multiplication over GF(p) and GF(pn): A survey,” International
Journal of Electronics, 2008, to appear.

[31] S. E. Erdem, T. Yamk, and Ç. K. Koç, “Polynomial basis multiplication
over GF(2m),” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp.
33–55, Sept. 2006.

[32] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, and J. Pelzl, “Efficient
hardware implementation of finite fields with applications to cryptog-
raphy,” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp. 75–118,
Sept. 2006.

[33] L. Song and K. K. Parhi, “Low energy digit-serial/parallel finite field
multipliers,” Journal of VLSI Signal Processing, vol. 19, no. 2, pp. 149–
166, July 1998.

[34] R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, T. Kerins, and
W. Marnane, “An embedded processor for a pairing-based cryptosys-



14 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

tem,” in Proceedings of the Third International Conference on Informa-
tion Technology: New Generations (ITNG’06). IEEE Computer Society,
2006.

[35] G. Meurice de Dormale, personal communication.
[36] J.-C. Bajard, J. Duprat, S. Kla, and J.-M. Muller, “Some operators

for on-line radix-2 computations,” Journal of Parallel and Distributed
Computing, vol. 22, pp. 336–345, 1994.

[37] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Information and Computation,
vol. 78, pp. 171–177, 1988.

[38] J. von zur Gathen and M. Nöcker, “Computing special powers in finite
fields,” Mathematics of Computation, vol. 73, no. 247, pp. 1499–1523,
2003.

[39] F. Rodrı́guez-Henrı́quez, G. Morales-Luna, N. A. Saqib, and N. Cruz-
Cortés, “A parallel version of the Itoh-Tsujii multiplicative inversion
algorithm,” in Reconfigurable Computing: Architectures, Tools and Ap-
plications – Proceedings of ARC 2007, ser. Lecture Notes in Computer
Science, P. C. Diniz, E. Marques, K. Bertels, M. M. Fernandes, and
J. M. P. Cardoso, Eds., no. 4419. Springer, 2007, pp. 226–237.

[40] D. E. Knuth, The Art of Computer Programming, 3rd ed. Addision-
Wesley, 1998, vol. 2, Seminumerical Algorithms.

[41] P. S. L. M. Barreto, “A note on efficient computation of cube roots in
characteristic 3,” 2004, cryptology ePrint Archive, Report 2004/305.

[42] A. Vithanage, “Personal communication.”
[43] T. Kerins, E. Popovici, and W. Marnane, “Algorithms and architectures

for use in FPGA implementations of identity based encryption schemes,”
in Field-Programmable Logic and Applications, ser. Lecture Notes in
Computer Science, J. Becker, M. Platzner, and S. Vernalde, Eds., no.
3203. Springer, 2004, pp. 74–83.

[44] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit formulas for
efficient multiplication in F36m ,” in Selected Areas in Cryptography –
SAC 2007, ser. Lecture Notes in Computer Science, C. Adams, A. Miri,
and M. Wiener, Eds., no. 4876. Springer, 2007, pp. 173–183.

[45] F. Hess, N. Smart, and F. Vercauteren, “The Eta pairing revisited,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4595–4602,
Oct. 2006.

APPENDICES

We describe here how to implement the arithmetic operations
over F32m , F33m , and F36m involved in the ηT pairing calculation.
In order to compute the number of operations over F3m , we
assume that the ALU is able to compute u · v, ±u± v and ±u3,
where u and v ∈ F3m .

APPENDIX I
MULTIPLICATION OVER F32m

Let U = u0 + u1σ and V = v0 + v1σ, where u0, u1, v0, and
v1 ∈ F3m . The product UV is carried out according to Karatsuba-
Ofman’s algorithm:

U · V = (u0v0 − u1v1) + ((u0 + u1)(v0 + v1)− u0v0 − u1v1)σ.

It requires 3 multiplications and 5 additions over F3m .

APPENDIX II
MULTIPLICATION OVER F33m

Assume that U = u0 + u1ρ+ u2ρ
2 and V = v0 + v1ρ+ v2ρ

2,
where ui, vi ∈ F3m , 0 ≤ i ≤ 2. The product W = U · V is then
given by

w0 = b(bu1 + u2)(v1 + bv2) + u0v0 − u1v1 − u2v2,

w1 = (u0 + u1)(v0 + v1) + (bu1 + u2)(v1 + bv2)

−u0v0 − (b+ 1)u1v1, and

w2 = (u0 + u2)(v0 + v2)− u0v0 + u1v1.

Multiplication over F33m involves 6 multiplications and 12 addi-
tions overs F3m (Algorithm 12).

Algorithm 12 Multiplication over F33m .

Input: U = u0 + u1ρ+ u2ρ
2 and V = v0 + v1ρ+ v2ρ

2 ∈ F33m .
Output: W = U · V ∈ F33m .

1. a0 ← u0 + u1; a1 ← u0 + u2; a2 ← bu1 + u2; (3A)
2. a3 ← v0 + v1; a4 ← v0 + v2; a5 ← v1 + bv2; (3A)
3. m0 ← u0 · v0; m1 ← u1 · v1; m2 ← u2 · v2; (3M)
4. m3 ← a0 · a3; m4 ← a1 · a4; m5 ← a2 · a5; (3M)
5. a6 ← m0 −m1; (1A)
6. w0 ← a6 −m2 + bm5 (2A)
7. if b = 1 then
8. w1 ← −a6 +m3 +m5; (2A)
9. else

10. w1 ← −m0 +m3 +m5; (2A)
11. end if
12. w2 ← −a6 +m4; (1A)
13. return w0 + w1ρ+ w2ρ

2;

APPENDIX III
SQUARING OVER F33m

Let U = u0 + u1ρ+ u2ρ
2 ∈ F33m , with ui ∈ F3m , 0 ≤ i ≤ 2.

V = U2 is given by

v0 = u2
0 − bu1u2,

v1 = bu2
2 − u0u1 − u1u2, and

v2 = (u0 + u1) · (u0 + u1 + u2)− u2
0 + u0u1 + u1u2.

Thus, squaring over F33m requires 5 multiplications and 7 addi-
tions over F3m (Algorithm 13).

Algorithm 13 Squaring over F33m .

Input: U = u0 + u1ρ+ u2ρ
2 ∈ F33m .

Output: V = U2 ∈ F33m .
1. a0 ← u0 + u1; a1 ← a0 + u2; (2A)
2. m0 ← u2

0; m1 ← u0 · u1; m2 ← u1 · u2; (3M)
3. m3 ← u2

2; m4 ← a2
1; (2M)

4. a2 ← m1 +m2; (1A)
5. v0 ← m0 − bm2; (1A)
6. v1 ← bm3 − a2; (1A)
7. v2 ← m4 + a2 −m0; (2A)
8. return v0 + v1ρ+ v2ρ

2;

APPENDIX IV
INVERSION OVER F33m

Let V = v0 + v1ρ+ v2ρ
2 ∈ F33m be the multiplicative inverse

of U = u0 +u1ρ+u2ρ
2 ∈ F33m , U 6= 0, where the ui, vi ∈ F3m ,

0 ≤ i ≤ 2. Since U · V = 1, we obtain8><>:
u0v0 + bu2v1 + bu1v2 = 1,
u1v0 + (u0 + u2)v1 + (u1 + bu2)v2 = 0,
u2v0 + u1v1 + (u0 + u2)v2 = 0.

The solution of this system of equations is then given by24v0v1
v2

35 = w−1

24u2
0 − (u2

1 − u2
2)− u2(u0 + bu1)

bu2
2 − u0u1

u2
1 − u2

2 − u0u2

35 ,

where w = u2
0(u0 − u2) + u2

1(−u0 + bu1) + u2
2(−(−u0 +

bu1) + u2) ∈ F3m . This operation involves 12 multiplications,



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 15

11 additions (or subtractions), and a single inversion over F3m

(Algorithm 14).

Algorithm 14 Inversion over F33m .

Input: U = u0 + u1ρ+ u2ρ
2 ∈ F33m , U 6= 0.

Output: V = U−1 ∈ F33m .
1. a0 ← u0 + bu1; a1 ← u0 − u2; (2A)
2. a2 ← −u0 + u1; a3 ← −a2 + u2; (2A)
3. m0 ← u2

0; m1 ← u2
1; m2 ← u2

2; (3M)
4. m3 ← u0 · u1; m4 ← u0 · u2; m5 ← u2 · a0; (3M)
5. m6 ← m0 · a1; m7 ← m1 · a2; m8 ← m2 · a3; (3M)
6. w ← m6 +m7 +m8; (2A)
7. i← w−1; (1I)
8. a4 ← m1 −m2; a5 ← −a4 +m0 −m5; (3A)
9. a6 ← bm2 −m3; a7 ← a4 −m4; (2A)

10. v0 ← i · a5; v1 ← i · a6; v2 ← i · a7; (3M)
11. return v0 + v1ρ+ v2ρ

2;

APPENDIX V
CUBING OVER F36m

A. General Algorithm

Let U = u0 + u1σ + u2ρ + u3σρ + u4ρ
2 + u5σρ

2 ∈ F36m .
U3 ∈ F36m is defined as follows:

U3 = u3
0 + u3

1σ
3 + u3

2ρ
3 + u3

3(σρ)
3 + u3

4

“
ρ2
”3

+ u3
5

“
σρ2

”3
.

Since8<:ρ
3 = ρ+ b,“
ρ2
”3

= ρ2 − bρ+ 1,

8>><>>:
σ3 = −σ,
(σρ)3 = −σρ− bσ,“
σρ2

”3
= −σρ2 + bσρ− σ,

we obtain the following coefficients for V = U3:

v0 = u3
0 + bu3

2 + u3
4, v1 = −u3

1 − bu3
3 − u3

5,

v2 = u3
2 − bu3

4, v3 = −u3
3 + bu3

5,

v4 = u3
4, v5 = −u3

5.

As our unified operator computes −u3
5 in one clock cycle,

cubing over F36m requires 6 cubings and 6 additions over F3m .

B. Computation of (−t2 + uσ − tρ− ρ2)3

Let U = −t2+uσ−tρ−ρ2. According to the previous formula
for cubing over F36m , we have

V = U3 = v0 + v1σ + v2ρ− ρ2,

where
v0 = −t6 − bt3 − 1,

v1 = −u3, and

v2 = −t3 + b.

Therefore, U3 is as sparse as U and this specific cubing involves
a single multiplication, 2 cubings, and 3 additions over F3m

(Algorithm 15).
This operation is usually followed by a multiplication which

is optimized to take advantage of v4 = −1 (see for instance
Appendix VI-C). Thus, our coprocessor does not explicitely
compute v4 ← −1.

Algorithm 15 Computation of (−t2 + uσ − tρ− ρ2)3.
Input: t and u ∈ F3m .
Output: V = (−t2 + uσ − tρ− ρ2)3 ∈ F36m .

1. c0 ← t3; c1 ← −u3; (2C)
2. m0 ← c20; (1M)
3. v0 ← −m0 − bc0 − 1; (2A)
4. v1 ← c1;
5. v2 ← b− c0; (1A)
6. return v0 + v1σ + v2ρ− ρ2;

APPENDIX VI
MULTIPLICATION OVER F36m

A. General Algorithm

Elements of F36m can be represented as degree-2 polynomials
over F32m . Gorla et al. introduced an evaluation-interpolation
scheme to perform multiplication over F36m by means of five
multiplications over F32m [44]. Then, Karatsuba-Ofman’s algo-
rithm allows one to compute each multiplication over F32m by
means of three multiplications over F3m (see Appendix I). Thus,
the scheme proposed by Gorla et al. to multiply two elements of
F36m involves 15 multiplications over F3m (Algorithm 16).

B. Multiplication by a Sparse Operand

The last multiplication over F36m of the ηT pairing algorithms
discussed in Section II-B is cheaper: it consists in computing
the product (u0 + u1σ+ u2ρ) · (v0 + v1σ+ v2ρ+ v3σρ+ v4ρ

2 +

v5σρ
2) and requires 12 multiplications and 51 additions over F3m

(Algorithm 17).
The first multiplication of the ηT pairing algorithms based on

the reversed-loop approach (Section II-C) also benefits from this
optimization. Since

(u0 + u1σ+ u2ρ− ρ2) · V = (u0 + u1σ+ u2ρ) · V − ρ2 · V , (1)

it suffices to subtract ρ2V from the element of F36m returned by
Algorithm 17. Recall that ρ3 = ρ+ b and note that Algorithm 17
requires two intermediate variables r1 = v0+v4 and r2 = v1+v5.
We then have

−ρ2 · V = −v2b− bv3σ − (v2 + bv4)ρ

−(v3 + bv5)σρ− (v0 + v4)ρ
2 − (v1 + v5)σρ

2

= −v2b− bv3σ − (v2 + bv4)ρ

−(v3 + bv5)σρ− r1ρ2 − r2σρ2.

Therefore, subtracting ρ2·V involves 8 additions over F3m and the
total cost of Equation (1) is 12 multiplications and 59 additions
over F3m .

C. Computation of (u0 +u1σ+u2ρ−ρ2) · (v0 + v1σ+ v2ρ−ρ2)
The multiplication of U = u0 + u1σ + u2ρ − ρ2 by V =

v0 + v1σ + v2ρ− ρ2, where both U and V are in F36m , requires
6 multiplications and 21 additions over F3m (Algorithm 18).

D. Computation of (λyP t−λyQσ−λyP ρ) ·(−t2 +yP yQσ− tρ−
ρ2)

We consider here the first multiplication over F36m of the ηT
pairing calculation based on the reversed-loop approach, as in
Algorithms 4 and 5. The same multiplication is also found in



16 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Algorithms 3, only with −λyQ instead of yQ (which has no
impact on the algorithm presented here).

Noting

W = w0 + w1σ + w2ρ+ w3σρ+ w4ρ
2 + w5σρ

2

= (λyP t− λyQσ − λyP ρ) · (−t2 + yP yQσ − tρ− ρ2),

we easily check that

w0 = −λyP t3 + λyP y
2
Q + bλyP ,

w1 = λy2
P yQt+ λyQt

2,

w2 = λyP ,

w3 = λyQt− λy2
P yQ,

w4 = 0, and

w5 = λyQ.

These equations involve a single cubing, 6 additions, and 6

multiplications over F3m .

Algorithm 16 Multiplication over F36m [44].

Input: U , V ∈ F36m with U = u0 +u1σ+u2ρ+u3σρ+u4ρ
2 +

u5σρ
2 and V = v0 + v1σ + v2ρ+ v3σρ+ v4ρ

2 + v5σρ
2.

Output: W = U · V . The algorithm requires 15 multiplications
and 67 additions over F3m .

1. r0 ← u0 + u4; a0 ← r0 + u2; a12 ← r0 − u2; (3A)
2. r0 ← v0 + v4; a3 ← r0 + v2; a15 ← r0 − v2; (3A)
3. r0 ← u0 − u4; a6 ← r0 − u3; a18 ← r0 + u3; (3A)
4. r0 ← v0 − v4; a9 ← r0 − v3; a21 ← r0 + v3; (3A)
5. r0 ← u1 + u5; a1 ← r0 + u3; a13 ← r0 − u3; (3A)
6. r0 ← v1 + v5; a4 ← r0 + v3; a16 ← r0 − v3; (3A)
7. r0 ← u1 − u5; a7 ← r0 + u2; a19 ← r0 − u2; (3A)
8. r0 ← v1 − v5; a10 ← r0 + v2; a22 ← r0 − v2; (3A)
9. a2 ← a0 + a1; a5 ← a3 + a4; a8 ← a6 + a7; (3A)

10. a11 ← a9 + a10; a14 ← a12 + a13; a17 ← a15 + a16; (3A)
11. a20 ← a18 + a19; a23 ← a21 + a22; (2A)
12. a24 ← u4 + u5; a25 ← v4 + v5; (2A)
13. m0 ← a0 · a3; m1 ← a2 · a5; m2 ← a1 · a4; (3M)
14. m3 ← a6 · a9; m4 ← a8 · a11; m5 ← a7 · a10; (3M)
15. m6 ← a12 · a15; m7 ← a14 · a17; m8 ← a13 · a16; (3M)
16. m9 ← a18 · a21; m10 ← a20 · a23; m11 ← a19 · a22; (3M)
17. m12 ← u4 · v4; m13 ← a24 · a25; m14 ← u5 · v5; (3M)
18. if b = 1 then
19. t0 ← m0 +m4 +m12; t1 ← m2 +m10 +m14; (4A)
20. t2 ← m6 +m12; t3 ← −m8 −m14; (2A)
21. t4 ← m7 +m13; t5 ← t3 +m2; (2A)
22. t6 ← t2 −m0; t7 ← t3 −m2 +m5 +m11; (4A)
23. t8 ← t2 +m0 −m3 −m9; (3A)
24. w0 ← −t0 + t1 −m3 +m11; (3A)
25. w1 ← t0 + t1 −m1 +m5 +m9 −m13; (5A)
26. w2 ← t5 + t6; (1A)
27. w3 ← t5 − t6 + t4 −m1; (3A)
28. w4 ← t7 + t8; (1A)
29. w5 ← t7 − t8 + t4 +m1 −m4 −m10; (5A)
30. else
31. t0 ← m4 +m8 +m14; t1 ← m6 +m12; (3A)
32. t2 ← t1 +m10; t3 ← m2 +m14; (2A)
33. t4 ← t3 −m8; t5 ← −m0 +m6 −m12; (3A)
34. t6 ← −t3 +m5 −m8 +m11; (3A)
35. t7 ← t1 +m0 −m3 −m9; t8 ← m1 +m13; (4A)
36. w0 ← t0 − t2 +m5 −m9; (3A)
37. w1 ← t0 + t2 +m3 −m7 +m11 −m13; (5A)
38. w2 ← t4 + t5; (1A)
39. w3 ← t4 − t5 − t8 +m7; (3A)
40. w4 ← t6 + t7; (1A)
41. w5 ← t6 − t7 + t8 −m4 +m7 −m10; (5A)
42. end if
43. return w0 + w1σ + w2ρ+ w3σρ+ w4ρ

2 + w5σρ
2;



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 17

Algorithm 17 Computation of (u0 + u1σ + u2ρ) · (v0 + v1σ +

v2ρ+ v3σρ+ v4ρ
2 + v5σρ

2).
Input: U , V ∈ F36m with U = u0 + u1σ + u2ρ and V = v0 +

v1σ + v2ρ+ v3σρ+ v4ρ
2 + v5σρ

2.
Output: W = U · V . The algorithm requires 12 multiplications

and 51 additions over F3m .
1. a0 ← u0 + u2; a10 ← u0 − u2; (2A)
2. r1 ← v0 + v4; a2 ← r1 + v2; a12 ← r1 − v2; (3A)
3. r0 ← v0 − v4; a7 ← r0 − v3; a17 ← r0 + v3; (3A)
4. r2 ← v1 + v5; a3 ← r2 + v3; a13 ← r2 − v3; (3A)
5. a5 ← u1 + u2; a15 ← u1 − u2; (2A)
6. r0 ← v1 − v5; a8 ← r0 + v2; a18 ← r0 − v2; (3A)
7. a1 ← a0 + u1; a4 ← a2 + a3; a6 ← u0 + a5; (3A)
8. a9 ← a7 + a8; a11 ← a10 + u1; a14 ← a12 + a13; (3A)
9. a16 ← u0 + a15; a19 ← a17 + a18; (2A)

10. m0 ← a0 · a2; m1 ← a1 · a4; m2 ← u1 · a3; (3M)
11. m3 ← u0 · a7; m4 ← a6 · a9; m5 ← a5 · a8; (3M)
12. m6 ← a10 · a12; m7 ← a11 · a14; m8 ← u1 · a13; (3M)
13. m9 ← u0 · a17; m10 ← a16 · a19; m11 ← a15 · a18; (3M)
14. if b = 1 then
15. t0 ← m0 +m4; t1 ← m2 +m10; (2A)
16. t2 ← −m8 +m2; t3 ← m6 −m0; (2A)
17. t4 ← −m8 −m2 +m5 +m11; (3A)
18. t5 ← m6 +m0 −m3 −m9; (3A)
19. w0 ← −t0 + t1 −m3 +m11; (3A)
20. w1 ← t0 + t1 −m1 +m5 +m9; (4A)
21. w2 ← t2 + t3; (1A)
22. w3 ← t2 − t3 +m7 −m1; (3A)
23. w4 ← t4 + t5; (1A)
24. w5 ← t4 − t5 +m7 +m1 −m4 −m10; (5A)
25. else
26. t0 ← m4 +m8; t1 ← m6 +m10; (2A)
27. t2 ← m2 −m8; t3 ← −m0 +m6; (2A)
28. t4 ← −m2 +m5 −m8 +m11; (3A)
29. t5 ← m6 +m0 −m3 −m9; (3A)
30. w0 ← t0 − t1 +m5 −m9; (3A)
31. w1 ← t0 + t1 +m3 −m7 +m11; (4A)
32. w2 ← t2 + t3; (1A)
33. w3 ← t2 − t3 −m1 +m7; (3A)
34. w4 ← t4 + t5; (1A)
35. w5 ← t4 − t5 +m1 −m4 +m7 −m10; (5A)
36. end if
37. return w0 + w1σ + w2ρ+ w3σρ+ w4ρ

2 + w5σρ
2;

Algorithm 18 Computation of (u0+u1σ+u2ρ−ρ2) ·(v0+v1σ+

v2ρ− ρ2).
Input: U = (u0+u1σ+u2ρ−ρ2) and V = v0+v1σ+v2ρ−ρ2 ∈

F36m .
Output: W = U · V ∈ F36m .

1. a0 ← u0 + u1; a1 ← u0 + u2; a2 ← u1 + u2; (3A)
2. a3 ← v0 + v1; a4 ← v0 + v2; a5 ← v1 + v2; (3A)
3. a6 ← u2 + v2; (1A)
4. m1 ← u0 · v0; m2 ← u1 · v1; m3 ← u2 · v2; (3M)
5. m4 ← a0 · a3; m5 ← a1 · a4; m6 ← a2 · a5; (3M)
6. w0 ← m1 −m2 − ba6; (2A)
7. w1 ← m4 −m1 −m2; (2A)
8. w2 ← m5 −m1 −m3 − a6 + b; (4A)
9. w3 ← m6 −m2 −m3; (2A)

10. w4 ← 1 +m3 − u0 − v0; (3A)
11. w5 ← −u1 − v1; (1A)
12. return w0 + w1σ + w2ρ+ w3σρ+ w4ρ

2 + w5σρ
2;

Algorithm 19 First multiplication of the reversed-loop ηT pairing
calculation.
Input: U = λyP t−λyQσ−λyP ρ and V = −t2+yP yQσ−tρ−ρ2.
Output: W = U · V ∈ F36m .

1. m0 ← yQ · t; m1 ← yP · yQ; m2 ← yP ·m1; (3M)
2. a0 ← λm0 + λm2; (1A)
3. c0 ← t3; (1C)
4. m3 ← a0 · t; m4 ← yP · c0; m5 ← yQ ·m1; (3M)
5. w0 ← −λm4 + λm5 + bλyP ; (2A)
6. w1 ← m3;
7. w2 ← λyP ; (1A)
8. w3 ← λm0 − λm2; (1A)
9. w5 ← λyQ; (1A)

10. return w0 + w1σ + w2ρ+ w3σρ+ w5σρ
2;


