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Abstrat

We study the role of help in Non-Interative Zero-Knowledge protools and its relation to

the standard interative model. In the lassial ase, we show that help and interation are

equivalent, answering an open question of Ben-Or and Gutfreund ([BG03℄). This implies a new

omplete problem for the lass SZK, the Image Intersetion Density. For this problem, we also

prove a polarization lemma whih is stronger than the previously known one.

In the quantum setting, we de�ne the notion of quantum help and show in a more diret way

that help and interation are again equivalent. Moreover, we de�ne quantum Non-Interative

Zero-Knowledge with lassial help and prove that it is equal to the lass of languages that have

lassial honest-Veri�er Zero Knowledge protools seure against quantum Veri�ers ([Wat06,

HKSZ07℄). Last, we provide new omplete problems for all these quantum lasses.

Similar results were independently disovered by Dragos Florin Cioan and Salil Vadhan.
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1 Introdution

In the setting of Zero-Knowledge, the Prover an prove to the Veri�er that the answer to an instane

of a problem, e.g. an NP problem with a witness w, is Yes without giving any other information. In

partiular, the person that reeives the proof does not learn anything about w or any other witness.

In order to reate this kind of proofs, the Prover and the Veri�er interat with eah other. The

ondition "without giving any other information" has been formalized in [GMR89, GMW91℄ and

this seurity ondition has been de�ned in the omputational and the information-theoreti setting.

We are interested in the information-theoreti setting and the lass SZK (Statistial Zero-

Knowledge) where an exponentially small amount of information is leaked. This lass has been

widely studied and many properties thereof are known (eg. [Oka96, Vad99℄). Some non-interative

models have also been de�ned where there is a single message from the Prover to the Veri�er. If

the Prover and Veri�er do not share anything in the beginning of the protool, then the resulting

lass is no larger than BPP . However, we an enhane the model, either by having the Prover

and Veri�er share a uniformly random string (the NISZK lass, see [DMP88℄, [GSV99℄) or some

limited trusted help (the NISZK|h lass).

The lass NISZK|h was introdued by Ben-or and Gutfreund [GB00℄. In this setting, the Prover
and Veri�er reeive in the beginning of the protool some help from a trusted third party, the Dealer.

The Dealer has polynomial power, hene the help is "limited", however he knows the input to the

problem. They showed that help does not add anything if we allow interation (SZK = SZK|h).
They also desribed a omplete problem for the lass NISZK|h, the Image Intersetion Density

(IID), and showed that NISZK ⊆ NISZK|h ⊆ SZK, in other words that help an always be

replaed by interation. They also laimed to prove the opposite inlusion, SZK ⊆ NISZK|h,
however they later retrated from this laim ([BG03℄).

In this paper, we start by proving that indeed help and interation are equivalent in Zero-

Knowledge proofs, i.e. SZK = NISZK|h (Setion 4). Our result an be thought of as showing

that the power of SZK lies only in the fat that there is a trusted aess to the input (from the

Veri�er or from the Dealer). It will hopefully provide some more insight into the relation between

the lasses NISZK and SZK, whih is a main open question in the area. Moreover, we show

that the IID problem remains omplete for a wider range of parameters. For the proof we use a

polarization lemma that is based on new bounds on the Statistial Di�erene problem (Appendix

A).

In 2002, Watrous de�ned a quantum analog of Zero-Knowledge proofs ([Wat02℄) and studied

the quantum lass QSZK. Sine then, there has been a series of works that deal with the power

and limitations of quantum Zero-Knowledge proofs ([Kob03, Wat06, Kob07℄) as well as attempts

to �nd lassial interative protools that remain zero-knowledge even against quantum adversaries

([Wat06, HKSZ07℄).

In the seond part of our paper, we start by studying the lass QNISZK that was de�ned by

Kobayashi in [Kob03℄. Using new results from [BT07℄, we give two omplete problems for this lass,

the Quantum Entropy Approximation (QEA) and the Quantum Statistial Closeness to Uniform

(QSCU). These omplete problems are the quantum equivalents of the omplete problems for

NISZK. However, due to the fat that quantum expanders are di�erent than lassial ones, the

proof is di�erent than in the lassial ase (Setion 5).

In addition, we study the role of help in quantum Zero-Knowledge protools. We de�ne the

notion of quantum help and show in a straightforward way that it is again the ase that help and

interation are equivalent. We also de�ne quantum Zero-Knowledge with lassial help, provide a
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omplete problem for the lass and dedue that the message of the Prover an also be lassial.

This allows us to prove that this lass is equivalent to the lass of languages that have lassial

interative protools that remain zero-knowledge even against quantum honest Veri�ers (Setion 6).

2 Preliminaries

We start by desribing some operations on probability distributions and proeed to provide de�ni-

tions for lassial and quantum Zero Knowledge lasses and their omplete problems.

2.1 Operations on Probability distributions

Let X : {0, 1}n → {0, 1}m be a polynomial size iruit. The distribution enoded by X is the

distribution indued on {0, 1}m by evaluating X on a uniformly random input from {0, 1}n. We

abuse notation and denote this distribution by X, in other words, X is both a iruit that enodes

a distribution and the distribution itself. Also, Pn is the set of probability distributions on {0, 1}n.
Denote by SD(X,Y ) the Statistial Di�erene between X and Y , SC(X,Y ) their Statistial

Closeness, Disj(X,Y ) the Disjointness of X aording to Y and mut-Disj the mutual Disjointness
between X and Y .

• SD(X,Y ) = 1
2

∑
i |xi − yi| = 1−

∑
i min(xi, yi)

• SC(X,Y ) = 1− SD(X,Y ) =
∑

i min(xi, yi)

• Disj(X,Y ) = 1
2n |{i ∈ {0, 1}n | ∀j ∈ {0, 1}n, X(i) 6= Y (j)}

• mut -Disj(X,Y ) = min(Disj(X,Y ),Disj(Y,X))

Note that Disj(X,Y ) ≤ SD(X,Y ) and that Disj(X,Y ) 6= Disj(Y,X) but mut-Disj(X,Y ) =mut-

Disj(Y,X).

Tensor Produt X ⊗ Y orresponds to the distribution (X,Y ). If X ∈ Pn and Y ∈ Pm then

X ⊗ Y ∈ Pn+m. We denote X⊗k
the distribution that results by tensoring X k times.

Prop 1 (Diret Produt Lemmas). Let X,Y any probability distributions. Then,

1. SD(X,Y ) = δ =⇒ 1− 2 exp−kδ2/2 ≤ SD(X⊗k, Y ⊗k) ≤ kδ

2. Disj(X,Y ) = δ =⇒ Disj(X⊗k, Y ⊗k) = 1− (1− δ)k

XORing Distributions We de�ne the XOR operator whih ats on a pair of distributions and

returns a pair of distributions. Let (A,B) = XOR(X0,X1). Then,

A : pick b ∈R {0, 1}, return a sample of Xb ⊗Xb

B : pick b ∈R {0, 1}, return a sample of Xb ⊗Xb̄

Prop 2 (XOR Lemmas). Let X,Y probability distributions and (A,B) = XOR(X,Y ). Then,

1. SD(X,Y ) = δ =⇒ SD(A,B) = δ2

2. mut-Disj(X,Y ) = δ =⇒ mut-Disj(A,B) = δ2
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Flat Distributions Let X a distribution with entropy H(X). Elements xi of X suh that

| log(xi)+H(X)| ≤ k are alled k-typial. We say that X is ∆-�at if for every t > 0 the probability

that an element hosen from X is t ·∆-typial is at least 1− 2−t2+1.

Prop 3 (Flattening Lemma). Let X : {0, 1}n → {0, 1}m a iruit that enodes a distribution. Then

X⊗k
is

√
k · n-�at.

2-Universal hashing funtions A family H of 2-Universal hashing funtions from A → B is

suh that for every two elements x, y ∈ A and a, b ∈ B Prh∈RH[ h(x) = a and h(y) = b] = 1
|B|2 .

Prop 4 (Leftover hash lemma). Let H a samplable family of 2-Universal hashing funtions from

A → B. Suppose X is a distribution on A suh that with probability at least 1 − δ over x seleted

from X, Pr[X = x] ≤ ǫ/|B|. Consider the following distribution

Z : hoose h←H and x← X. return (h, h(x))

Then, SD(Z, I) ≤ O(δ + ǫ1/3), where I is the Uniform distribution on H×B.

2.2 Classial Zero Knowledge

Zero Knowledge proofs are a speial ase of interative proofs. Here, we also want that the Veri�er

learns nothing from the interation other than the fat that x ∈ ΠY when it is the ase. The way

it is formalized is that for x ∈ ΠY , the Veri�er an simulate his view of the protool de�ned by all

the messages sent during the protool as well as the veri�er's private oins.

De�nition 1. Π ∈ SZK i� there exists an interative protool 〈P, V 〉 that solves Π suh that there

exists a funtion S omputable in polynomial time and a funtion µ ∈ negl(k)≪ 1/poly(k) that has
the following property :

∀x ∈ ΠY , SD
(
S(x, 1k), 〈P, V 〉V

)
≤ µ(k)

S is alled the simulator. We also have the following non-interative variants of SZK:

• NISZK : We suppose here that the Prover and the Veri�er additionally share a truly random

string r. We want the Veri�er to be able to simulate both the random string and the message mP

from the Prover on Yes instanes.

De�nition 2. Π ∈ NISZK i� with a truly random shared string r, there exists an non-interative

protool 〈P, V 〉 that solves Π suh that there exists a funtion S omputable in polynomial time and

a funtion µ ∈ negl(k)≪ 1/poly(k) that has the following property :

∀x ∈ ΠY , SD
(
S(x, 1k), (r,mP (r, x))

)
≤ µ(k)

• NISZK|h : We suppose here that the Prover and the Veri�er additionally share a string h that

is generated by a trusted third party (the dealer) using some oins unknown to the veri�er and the

prover. This string is alled the help and an depend on the input. We want the Veri�er to be able

to simulate both the help and the Prover's message on Yes instanes.

De�nition 3. Π ∈ NISZK|h i� there exists a non-interative protool 〈D,P, V 〉 that solves Π
where :
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• The prover and the veri�er share some help h whih is a random sample of D depending on

the input.

• There exists a funtion S omputable in polynomial time and a funtion µ ∈ negl(k) ≪
1/poly(k) that has the following property :

∀x ∈ ΠY , SD
(
S(x, 1k), (h,mP (h, x))

)
≤ µ(k)

2.3 Quantum Statistial Zero Knowledge

Quantum Statistial Zero Knowledge proofs are a speial ase of Quantum Interative Proofs. We

an think of a quantum interative protool 〈P, V 〉(x) as a iruit (V1(x), P1(x), . . . , Vk(x), Pk(x))
ating on V ⊗M ⊗ P. V are the Veri�er's private qubits, M are the message qubits and P are

the Prover's private qubits. Vi(x) (resp. Pi(x)) represents the ith ation of the Veri�er (resp. the

Prover) during the protool and ats on V ⊗M (resp. M⊗P). βi orresponds to the state that

appears after the ith ation of the protool.

In the Zero-Knowledge setting, we also want that the Veri�er learns nothing from the interation

other than the fat that x ∈ ΠY when it is the ase. The way it is formalized is that for x ∈ ΠY ,

the Veri�er an simulate his view of the protool. We are interested only in protools where the

Veri�er and the Prover use unitary operations.

Let 〈P, V 〉 a quantum protool and βj de�ned as before. The Veri�er's view of the protool is

his private qubits and the message qubits. view〈P,V 〉(j) = TrP(βj). We also want to separate the

Veri�er's view whether the last ation was made by the Veri�er or the Prover. We note ρ0 the input

state, ρi the Veri�er's view of the protool after Pi and ξi the Veri�er's view of the protool after

Vi.

We say that the Veri�er's view an be simulated if on an input x, there is a negligible funtion

µ suh that ∀j we an reate σj with quantum polynomial omputational power suh that

‖σj − viewV,P (j)‖ ≤ µ(|x|)

Note that for a state σ suh that ‖σ− ρi‖ ≤ µ(|x|) it is easy to see that σ′ = Vi+1σV †
i+1 is lose

to ξi+1 = Vi+1ρiV
†
i+1 in this sense that ‖σ′ − ξi+1‖ ≤ µ(|x|). Therefore we just need to simulate the

ρi's.

De�nition 4. A protool 〈P, V 〉 has the zero-knowledge property for Π if for eah input x ∈ ΠY ,

there is a negligible funtion µ suh that ∀j we an reate σj with quantum polynomial omputational

power suh that

‖σj − ρj‖ ≤ µ(|x|)

This formalizes the fat that on Yes instanes, the Veri�er does not learn anything from the

protool exept the fat that the input is a Yes instane.

De�nition 5. Π ∈ QSZK i� there exists a quantum protool 〈P, V 〉 that solves Π and that has the

zero-knowledge property for Π.

In the setting of Quantum Non-Interative Statistial Zero-Knowledge, �rst de�ned by Kobayashi

[Kob03℄, the Prover and Veri�er share a maximally entangled state

∑
i |i〉|i〉 and then the Prover

sends a single quantum message to the Veri�er.
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De�nition 6. Π ∈ QNISZK i�, when the Prover and Veri�er share the maximally entangled

state

∑
i |i〉|i〉, there exists a quantum non-interative protool 〈P, V 〉 that solves Π and that has the

zero-knowledge property for Π.

The notion of quantum help is more intriate and will be the subjet of Setion 6.

2.4 Complete problems for Zero-Knowledge lasses

The omplete problems for the Zero-Knowledge lasses are promise problems. A promise problem

Π is de�ned by two disjoint sets ΠY and ΠN . An instane X of Π is an element of ΠY ∪ ΠN . We

say that Π redues to Ω (Π 4 Ω) i� there exists a poly-time omputable funtion f suh that

X ∈ ΠY ⇒ f(X) ∈ ΩY and X ∈ ΠN ⇒ f(X) ∈ ΩN

If Π 4 Ω then Π is no-harder than Ω. We an de�ne the omplement problem Π as follows :

ΠY = ΠN and ΠN = ΠY . In what follows, X,Y are iruits enoding probability distributions.

SZK-omplete problems :

Statistial Di�erene (SD) Entropy Di�erene (ED)

(X,Y ) ∈ SDY ⇒ SD(X,Y ) ≥ 2/3 (X,Y ) ∈ EDY ⇒ H(X)−H(Y ) ≥ 1
(X,Y ) ∈ SDN ⇒ SD(X,Y ) ≤ 1/3 (X,Y ) ∈ EDN ⇒ H(Y )−H(X) ≥ 1

NISZK-omplete problems :

Entropy Approximation (EA

t
) Statistial Closeness to Uniform (SCU)

X ∈ EAt
Y ⇒ H(X) ≥ t + 1 X ∈ SCUY ⇒ SD(X, I) ≤ 1/n

X ∈ EAt
N ⇒ H(X) ≤ t− 1 X ∈ SCUN ⇒ SD(X, I) ≥ 1− 1/n

NISZK|h-omplete problem :

Image Intersetion Density (IID)

(X,Y ) ∈ IIDY ⇒ SD(X,Y ) ≤ 1/n2

(X,Y ) ∈ IIDN ⇒ Disj(X,Y ) ≥ 1− 1/n2

Let us also de�ne another problem related to IID whih is not omplete:

Mutual Image Intersetion Density (mut-IID)

(X,Y ) ∈ mut-IIDY ⇒ SD(X,Y ) ≤ 1/n2

(X,Y ) ∈ mut-IIDN ⇒ mut-Disj(X,Y ) ≥ 1− 1/n2

Note that we an hange the parameters to other parameters α and β. For example, SDα,β

orresponds to : (X,Y ) ∈ SDα,β
Y =⇒ SD(X,Y ) ≥ α and (X,Y ) ∈ SDα,β

N =⇒ SD(X,Y ) ≤ β
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Similarly, we an de�ne the quantum equivalent problems QSD, QED, QEAt
and QSCU .

In this ase, X,Y are the density matries that orrespond to the output qubits of the iruits,

SD(X,Y ) is the trae distane and the entropy is the von Neumann entropy.

3 A new polarization lemma for the IID problem

The Zero-Knowledge protools usually require from the promise problems some parameters that are

exponentially lose to 0 or 1. Polarizations are redutions from promise problems with worse param-

eters to promise problems that an be solved by the protool. For example, there is a polarization

for the SD problem whih transforms SDa,b
with a2 > b to SD1−2−k,2−k

for any k ∈ poly(n).

The best polarization that was known for IID was that IID1/n2,1−1/n2

redues to IID2−k ,1−2−k

and heneforth IID1/n2,1−1/n2

is omplete for NISZK|h ([BG03℄). We will show here that IIDa,b

is omplete for NISZK|h with b > 2a (a and b are onstants). We �rst improve an upper bound

on statistial di�erene and then use it to prove this new polarization lemma for the IID problem.

The proofs are presented in Appendix A.

To prove a polarization lemma on the SD problem, the following bounds were used :

Fat 1 ([Vad99℄). Let X,Y two probability distributions st. SD(X,Y ) = δ. Then

1− 2 exp−kδ2/2 ≤ SD(X⊗k, Y ⊗k) ≤ kδ

We an improve the upper bound on Statistial Di�erene to

SD(X⊗k, Y ⊗k) ≤ 1− (1− δ)k ≤ kδ

by using the following lemma (proof in Appendix A).

Lemma 1. Let X,Y,Z, T four probability distributions with SD(X,Y ) = δ1 and SD(Z, T ) = δ2.

Then,

SD(X ⊗ Z, Y ⊗ T ) ≤ 1− (1− δ1)(1− δ2) = δ1 + δ2 − δ1δ2

Using the new upper bound, we prove in Appendix A that

Theorem 1. IIDa,b
is NISZK|h omplete for any a, b with b > 2a (a, b onstants).

In the next setion ,we will use this polarization lemma to show that NISZK|h = SZK. This

will, in turn, imply that IIDa,b
is omplete for b2 > a using the polarization used for the SD

problem. Our initial polarization is still interesting beause it shows that problems like IID1/10,3/10

are in SZK, something whih was not known before.

4 Equivalene of help and interation in Statistial Zero-Knowledge

We show here that help and interation are equivalent in the Statistial Zero-Knowledge setting

Theorem 2. SZK = NISZK|h

Proof. We know that NISZK|h ⊆ SZK beause IID, the omplete problem of NISZK|h, trivially
redues to SD, the omplete problem of SZK. In what follows we also prove the opposite inlusion,

i.e. SZK ⊆ NISZK|h (Lemma 2).
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In [GB00℄, the authors laimed to have proven this theorem, but due to a �aw they retrated

it in [BG03℄. Their redution from the SZK-omplete problem ED to IID was in fat only a

redution to SD. Nevertheless, inspired by their method we show a redution from EA to IID.

In order to prove that help an replae interation we start by reduing the SZK-omplete

problem ED to several instanes of EA and EA. We know that EA ∈ NISZK|h (sine by de�nition
NISZK ⊆ NISZK|h) so it remains to show the following two things:

1. EA ∈ NISZKh : In order to this, we use similar tools to the ones in [Vad99℄ and espeially

the "Complementary use of messages" originally used in [Oka96℄.

2. NISZK|h has some boolean losure properties : this will allow us to redue ED to a single

instane of IID.

4.1 EA belongs to Non-Interative Statistial Zero-Knowledge with help

To show that EA ∈ NISZK|h, we redue the EA problem to the IID problem whih is omplete

for NISZK|h.

Let X an instane of EA
t
, i.e. an instane of EA with approximation parameter t. Let k =

poly(m), where m is the input size and de�ne X ′ = X⊗s
with s = 4km2

. Note that the input size

of X ′
is m′ = sm and H(X ′) = sH(X). We have

Claim 1. Let Z = X ′ ⊗ I, where I is the uniform distribution. We an reate Z ′
in polynomial

time suh that :

• X ∈ EA
t
Y ⇒ SD(Z,Z ′) ≤ 2−Ω(k)

• X ∈ EA
t
N ⇒ Disj(Z,Z ′) ≥ 1− 2−Ω(k)

Proof. Construt Z ′
as following:

Z ′
: hoose r ∈R {0, 1}m

′

, x = X ′(r), h ∈R Hm′+st,m′ , u ∈R {0, 1}st. return (x, (h, h(r, u))).

Note that Z ′
is of the form Z ′ = X ′ ⊗ A so we need to show that, when �xing x ∈ X ′

, we

have either SD(I,A) small (in the Yes instane) or Disj(I,A) large (in the No instane). From the

Flattening lemma (see Preliminaries) we have

Fat 2.

1. X ′
is ∆-�at with ∆ = 2

√
km2

. s was hosen suh that s = 2
√

k∆.

2. Let x← X ′
. Pr[x is

√
k∆-typial] ≥ 1− 2−Ω(k)

.

For x ∈ X ′
, let wt(x) = log |{r | X ′(r) = x}|. When x ∈ X ′

is �xed, the number of di�erent

possible inputs (r, u) that are hashed is 2wt(x)+st
. From the �attening lemmas, it is easy to see that

if H(X) ≤ t− 1 then wt(x) will be large with high probability whereas if H(X) ≥ t + 1 then wt(x)
will be small with high probability. In more detail,
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(i) H(X) ≤ t− 1.

For all x ∈ X ′
whih are

√
k∆-typial we have

∣∣∣log 1
2m′ |{r | X ′(r) = x}|+ H(X ′)

∣∣∣ ≤
√

k∆.

Hene,

wt(x) ≥ m′ − sH(X)−
√

k∆ ≥ m′ − st + s−
√

k∆ ≥ m′ − st +
√

k∆.

Therefore, the number of inputs (r, u) suh that X ′(r) = x and u ∈ {0, 1}st is greater than
2m′+

√
k∆ ≥ 2m′+k

. By the leftover hash lemma (see Preliminaries), SD((h, h(r, u)), I) ≤
O(2−Ω(k)). By Fat 2, the probability of a

√
k∆-typial x is larger than ≥ 1 − 2−Ω(k)

and

hene we an onlude that SD(Z,Z ′) ≤ 2−Ω(k)
.

(ii) H(X) ≥ t + 1.

For all x ∈ X ′
whih are

√
k∆-typial we have

wt(x) ≤ m′ − sH(X) +
√

k∆ ≤ m′ − st− s +
√

k∆ ≤ m′ − st−
√

k∆.

Therefore, the number of inputs (r, u) suh that X ′(r) = x and u ∈ {0, 1}st is smaller than

2m′−
√

k∆ ≤ 2m′−k
. Sine we hash at most 2m′−k

values into {0, 1}m′

, we get only a 2−k
fration

of the total support and hene Disj(I, h(r, u)) ≥ 1 − 2−Ω(k)
. By Fat 2, the probability of

a

√
k∆-typial x is larger than ≥ 1 − 2−Ω(k)

and hene we an onlude that Disj(Z,Z ′) ≥
1− 2−Ω(k)

.

From the distribution X, we have reated Z,Z ′
in polynomial time suh that :

• X ∈ EAY ⇒ (Z,Z ′) ∈ IIDY .

• X ∈ EAN ⇒ (Z,Z ′) ∈ IIDN .

So EA 4 IID and from the ompleteness of IID for NISZK|h, we have EA ∈ NISZK|h.

4.2 Closure properties for NISZK|h

Closure properties have been widely used in the study of Zero-Knowledge lasses (see [DDPY94℄ or

[SV98℄). Every promise problem Π ∈ NISZK|h redues to the IID promise problem and hene,

we just have to onentrate on this problem. Note that this problem is very similar to the SD
promise problem and hene we use similar tehniques to those used to show losure properties for

SZK from the SD problem. In our ase, we just need to show some limited losure properties that

will be enough to prove that ED ∈ NISZK|h.

De�nition 7. Let Π1, . . . ,Πk
some promise problems. We de�ne AND(Π1, . . . ,Πk) :

• (X1, . . . ,Xk) ∈ AND(Π1, . . . ,Πk)Y ⇒ ∀i ∈ {1, . . . , k} Xi ∈ Πi
Y

• (X1, . . . ,Xk) ∈ AND(Π1, . . . ,Πk)N ⇒ ∃i ∈ {1, . . . , k} Xi ∈ Πi
N

In the AND de�nition, we assume k to be of size polynomial in the input size, i.e. k ∈ poly(n).

De�nition 8. Let Π,Ω two promise problems. We de�ne OR(Π,Ω) :

8



• (X,Y ) ∈ OR(Π,Ω)Y ⇒ X ∈ ΠY or Y ∈ ΩY

• (X,Y ) ∈ OR(Π,Ω)N ⇒ X ∈ ΠN and Y ∈ ΩN

We will show that NISZK|h is losed under AND and OR whih is enough for our purposes.

Claim 2. NISZK|h is losed under AND.

Proof. Let Π1, . . . ,Πk
in NISZK|h and (A1, . . . , Ak) an instane of AND(Π1, . . . ,Πk). We redue

eah Πi
to the IID problem whih means that we transform eah Ai

into a pair of distributions

(Xi, Y i) suh that Ai ∈ Πi
Y ⇒ (Xi, Y i) ∈ IIDY and Ai ∈ Πi

N ⇒ (Xi, Y i) ∈ IIDN . Let X =
X1 ⊗ · · · ⊗Xk

and Y = Y 1 ⊗ · · · ⊗ Y k
. We �rst polarize eah pair (Xi, Y i) suh that (Xi, Y i) ∈

IID1/n2k,1−1/n2

(whih is possible sine k ∈ poly(n)). Then, we use the following fat from [Vad99℄

and [BG03℄:

Fat 3. • SD(X,Y ) ≤∑
i SD(Xi, Y i)

• Disj(X,Y ) ≥ maxi Disj(Xi, Y i)

From this fat, we an easily see that (A1, . . . , Ak) ∈ AND(Π1, . . . ,Πk)Y ⇒ (X,Y ) ∈ IIDY

and that (A1, . . . , Ak) ∈ AND(Π1, . . . ,Πk)N ⇒ (X,Y ) ∈ IIDN , whih onludes our proof.

Claim 3. NISZK|h is losed under OR.

Proof. Let Π,Ω ∈ NISZK|h. Let I an instane of Π and J an instane of Ω. We redue I to a pair

of distributions (X ′
0, Y

′
0) suh that I ∈ ΠY ⇒ (X ′

0, Y
′
0) ∈ IIDY and I ∈ ΠN ⇒ (X ′

0, Y
′
0) ∈ IIDN .

Similarly, we redue J to a pair of distributions (X ′
1, Y

′
1). By using fat 7 from Appendix A, we

reate (X0, Y0) and (X1, Y1) that are instanes of mut-IID1/n2, 1
2
(1−1/n2)

4 mut-IID1/20,1/3
(for

su�iently big n). Now, onsider the following two distributions

A : pik b ∈R {0, 1}, return a sample of Xb ⊗ Yb.

B : pik b ∈R {0, 1}, return a sample of Xb ⊗ Yb̄.

This is a generalization of the XOR transformation and was used in [Vad99℄ to show losure

properties for SZK. We now use the following fat

Fat 4. [Vad99℄ and [BG03℄

• SD(A,B) = SD(X0, Y0) ∗ SD(X1, Y1)

• mut-Disj(A,B) = mut-Disj(X0, Y0) ∗mut-Disj(X1, Y1)

From this, we an easily see that (X0, Y0) ∈ mut-IID
1/20,1/3
Y or (X1, Y1) ∈ mut-IID

1/20,1/3
Y ⇒

(A,B) ∈ IID
1/20,1/9
Y . Similarly, if (X0, Y0) ∈ mut-IID

1/20,1/3
N and (X1, Y1) ∈ mut-IID

1/20,1/3
N ⇒

(A,B) ∈ mut-IID
1/20,1/9
N . We have therefore redued OR(Π,Ω) to a single instane of mut-

IID1/20,1/9
. Sine mut-IID1/20,1/9 4 IID1/20,1/9

and by our new polarization lemma, IID1/20,1/9 ∈
NISZK|h we onlude that OR(Π,Ω) ∈ NISZK|h.
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4.3 Help an replae interation

We an now prove that help an replae interation and hene onlude the proof of Theorem 2.

Lemma 2. SZK ⊆ NISZK|h

Proof. We show that ED ∈ NISZKh, whih will allow us to onlude sine ED is omplete for

SZK. Let (X,Y ) an instane of ED.

Fat 5 ([Vad99℄). Let X ′ = X⊗3
and Y ′ = Y ⊗3

. Let n the output size of X ′
and Y ′

. It holds that :

(X,Y ) ∈ EDY ⇔ ∀t ∈ {1, . . . , n}
[
(X ′ ∈ EA

t
Y ) ∨ (Y ′ ∈ EAt

Y )
]

(X,Y ) ∈ EDN ⇔ ∃t ∈ {1, . . . , n}
[
(X ′ ∈ EA

t
N ) ∧ (Y ′ ∈ EAt

N )
]

This fat omes from the following observation: if (X,Y ) ∈ EDN then H(X ′) ≥ H(Y ′) + 3
and hene, there exists t ∈ [n] suh that H(X ′) ≥ t + 1 and H(Y ′) ≤ t− 1. On the other hand, if

H(Y ′) ≥ H(X ′) + 3 then ∀t, H(X ′) ≤ t− 1 or H(Y ′) ≥ t + 1.
We have already shown that EA and EA are in NISZK|h. Moreover, we have losure under

OR, and hene for all t there exists a promise problem Πt ∈ NISZK|h and an input At
suh that

(X ′, Y ′) ∈ OR(EA
t
, EAt)Y ⇒ At ∈ Πt

Y

(X ′, Y ′) ∈ OR(EA
t
, EAt)N ⇒ At ∈ Πt

N

Therefore,

(X,Y ) ∈ EDY ⇒ ∀t ∈ {1, . . . , n}At ∈ Πt
Y

(X,Y ) ∈ EDN ⇒ ∃t ∈ {1, . . . , n} At ∈ Πt
N

and from the losure under AND we onlude that ED ∈ NISZK|h.

This theorem has some interesting orollaries.

Corollary 1. NISZK|h has all the properties of SZK like losure under omplement or losure

under boolean formula.

It is interesting to �nd a non-interative lass that has all the properties of SZK. It means that

the power of SZK lies only in the fat that there is a trusted aess to the distributions (from the

Veri�er or from the Dealer).

Corollary 2. The IID problem is omplete for SZK.

We have here a new omplete problem for SZK. This problem is easier to manipulate and ould

be used to �nd other results about SZK.

5 Complete problems for QNISZK

In this setion we study omplete problems for the lass QNISZK. Note that Kobayashi showed

a omplete problem for the ase of Non-Interative Perfet Zero-Knowledge, however was unable to

extend his proof to the ase of Statistial Zero-Knowledge.
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We ontinue this line of work and give two omplete problems for QNISZK, the Quantum

Entropy Approximation and the Quantum Statistial Closeness to Uniform. These are the natural

generalizations of the NISZK-omplete problems EA,SCU . Ben-Aroya and Ta-Shma showed that

QEA redued to QSD. In fat, during their proof, they showed that QEA ∈ QSCUa,b
but these

parameters a, b were not good enough to show that QEA ∈ QNISZK. We will modify their proof

to show that QEA ∈ QNISZK and then onlude using similar tehniques than the ones used in

the lassial ase (see [GSV99℄ as well as the analysis of QNISZK done by Kobayashi [Kob03℄).

The proof will follow from the following three lemmas.

Lemma 3. QEA ∈ QNISZK.

Proof. We modify the proof of [BT07℄ to show that QEA ∈ QNISZK. Let X an instane of QEAt

with input size m and I the totally mixed state.

Claim 4 ([BT07℄). We an reate X ′
suh that

• X ∈ QEAY ⇒ SD(X ′, I) ≤ 5ǫ

• X ∈ QEAN ⇒ SD(X ′, I) ≥ 1
2qm

where q ≥ 2 log(1/ǫ) + log(qm) + O(1) and also q ≥
√

log(1/ǫ)
√

qn + 1.

We apply this laim with the following parameters : �x ǫ = 2−k
with k ∈ poly(n) and then

q ∈ poly(n) that satis�es the onstraints. Let X ′
be the resulting distribution. Now let r =

8k(qm)2 ∈ poly(n) and Y = X ′⊗r
. By using bounds on Statistial Di�erene, we have

• X ∈ QEAY ⇒ SD(X ′, I) ≤ 5rǫ ≤ 2−Ω(k)

• X ∈ QEAN ⇒ SD(X ′, I) ≥ 1− 2−k

Kobayashi showed in [Kob03℄ that QSCU2−k,1−2−k ∈ QNISZK and hene by our laim that

QEA 4 QSCU2−k,1−2−k

we onlude that QEA ∈ QNISZK.

Lemma 4. QSCU 4 QEA.

Proof. We use the following fat about the relation of trae distane and von Neumann entropy

Fat 6. Let X a quantum state of dimension n.

1. ‖X − I‖tr ≤ α⇒ S(X) ≥ n(1− α− 1/2n).

2. ‖X − I‖tr ≥ β ⇒ S(X) ≤ n− log( 1
1−β ).

Let X a quantum mixed state of dimension n ≥ 16. ‖X − I‖tr ≤ 1/n ⇒ S(X) ≥ n − 2.
‖X − I‖tr ≥ 1− 1/n ⇒ S(X) ≤ n − 4. When n ≤ 16, we an solve QSCU polynomially. We have

a redution from QSCU to QEA.

Lemma 5. Every problem in QNISZK redues to QSCU .

Proof. The proof of hardness for QNIPZK extends naturally to this problem. We will not repeat

the proof here. The interested reader an see [Kob03℄ for this proof.

11



It now follows immediately that

Theorem 3. QEA and QSCU are omplete for QNISZK.

Proof. QSCU is hard for QNISZK and QSCU 4 QEA so both problems are hard for QNISZK.

QEA ∈ QNISZK and QSCU 4 QEA so they are both in QNISZK.

6 Help in quantum Non-Interative Zero-Knowledge protools

In lassial Non-Interative Zero-Knowledge, the Prover and Veri�er start with a shared uniformly

random string, whih is independent of their input. Classial help was a natural generalization of

this and was de�ned as a shared string reated by a trusted third party with polynomial power (the

Dealer) who has aess to the input.

In quantum Non-Interative Zero-Knowledge, the Prover and Veri�er share a maximally entan-

gled state

∑
i |i〉|i〉, with the Prover having the �rst register and the Veri�er the seond. Note that

this state is pure and independent of the input x.

Help with unitaries We de�ne quantum help as a generalization of the maximally entangled

state. We suppose here that there is a trusted Dealer with quantum polynomial power that performs

a unitary Ux and reates a state hPV in the spae P ×V. The Prover gets hP = TrV(hPV ) and the

Veri�er gets hV = TrP(hPV ). Note that the state hPV is a pure state and depends on the input.

De�nition 9. We say that Π ∈ QNISZK|h if there is a non-interative protool 〈D,P, V 〉 that
solves Π with the Zero-Knowledge property, where the Veri�er and the Prover share a pure state

hPV reated by a Dealer D that has quantum polynomial power and aess to the input. They also

start with qubits initialized at |0〉. We denote by 〈D,P, V 〉 the entire protool.

Next, we prove that help and interation are equivalent in the quantum setting, but with a muh

easier proof than in the lassial ase.

Theorem 4. QNISZK|h = QSZK

Proof. We start by showing that QNISZK|h ⊆ QSZK. Let Π ∈ QNISZK|h and 〈D,P, V 〉 denote
the protool. Sine hPV is a pure state, we an reate another protool 〈P̃ , Ṽ 〉 where the Veri�er

takes the plae of the Dealer. Beause the Dealer is a unitary (and has no private qubits), this an

be done. The protool is the same so soundness and ompleteness are preserved. The �rst message

in 〈P̃ , Ṽ 〉 an be simulated beause the iruit of the Dealer is publi and omputable in quantum

polynomial time. The seond message in 〈P̃ , Ṽ 〉 an be simulated beause of the Zero-Knowledge

property of the protool 〈P, V 〉.
The inlusion QSZK ⊆ QNISZK|h is immediate, sine there exists a two message protool for

a QSZK-omplete problem (see [Wat02℄). The �rst message of the Veri�er an be simulated by the

Dealer's help.

Using non-unitaries The unitary restrition is natural when dealing with quantum Zero-Knowledge

lasses. However, unitary help does not allow the dealer to keep some information private. In fat,

we an imagine a stronger quantum help, where the Dealer an perform any quantum operation in
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order to reate the help. For example, he an reate a quantum state, keep part of it to himself and

share the rest of the state between the Prover and the Veri�er.

It is not hard to see, that in this way, the dealer an reate an even stronger type of lassial

help, namely where he an give seret orrelated messages to the Veri�er and the Prover. Sine we

know that NISZKSEC = AM (see [PS05℄) we an onlude that non-unitary help is very strong.

Note also that with non-unitaries we don't know if help and interation are equivalent. The ase

of Quantum Zero Knowledge protools with non-unitary players is indeed very interesting and we

refer the reader to [CK07℄ for more results.

6.1 Quantum Non-Interative Zero-Knowledge with lassial help

We now de�ne two "hybrid" lasses, where the Prover and Veri�er are quantum, however in the

beginning of the protool they only share lassial information. These lasses have very interesting

onnetions to the lass of languages that possess lassial zero-knowledge protools seure against

quantum adversaries, i.e. the lass studied by Watrous [Wat06℄ and Hallgren et al [HKSZ07℄. We

start by providing some appropriate de�nitions.

De�nition 10. We say that a iruit C is ǫ-probabilisti if

∀x, ∃!y, Pr(C(x) = y) ≥ 1− ǫ

This y will be alled the natural image of x and will be noted NatC(x)

We now de�ne q-samplable distributions as follows:

De�nition 11. A distribution D ∈ P is alled q-samplable if it an be represented by a 2−k
-

probabilisti iruit C (k ∈ poly(n)) with lassial input and output and suh that in order to

ompute C(x) for any x, we need a BQP mahine.

To deal with q-samplable distributions, we also extend the de�nition of Disjointness to proba-

bilisti iruits.

De�nition 12.

Disj(X,Y ) =
1

2n

∑

r∈{0,1}n

max
y

(Pr(Y (y) = X(r)))

Disj(X,Y ) must be understood as follows : "If I take a random x of X, and I'm given a y (poten-

tially the best), what is the probability that Y (y) = x ?"

Note that when the seond distribution (Y ) is desribed by a deterministi iruit then this

notion of disjointness is equivalent to the original one.

From this fat, we will show a simple relationship between Statistial Di�erene and Disjointness.

In the ase of deterministi distributions, we know that Disj(X,Y ) ≤ SD(X,Y ).

Lemma 6. Let (X,Y ) be 2 ǫ-probabilisti iruits. We have : Disj(X,Y ) ≤ SD(X,Y ) + 2ǫ.

Proof. Let (X,Y ) be 2 ǫ-probabilisti iruits. We de�ne Ỹ as following : Ỹ (r) = NatY (r). We

an easily see that SD(Ỹ , Y ) ≤ ǫ and that Disj(X,Y ) ≤ Disj(X, Ỹ ) + ǫ. From this, we onlude

that :

Disj(X,Y ) ≤ Disj(X, Ỹ ) + ǫ ≤ SD(X, Ỹ ) + ǫ ≤ SD(X,Y ) + 2ǫ
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Note that 2−n
-probabilisti iruits behave similarly (with exponentially small di�erene) to

deterministi iruits. This means that we an apply polarization lemmas and extend all the om-

pleteness theorems that were shown with lassial distributions to q-samplable distributions. We

an now study QNISZK|ch.

De�nition 13. We say that Π ∈ QNISZK|ch if there exists a non-interative protool 〈P, V 〉 that
solves Π with the Zero-Knowledge property where the Veri�er and the Prover start with some lassial

help h distributed over a distribution D prepared by a trusted Dealer with quantum polynomial power.

We want the dealer D and the simulation S to be q-samplable distributions. The prover and the

veri�er also start with |0〉 qubits. We denote 〈D,P, V 〉 the entire protool.

Let us de�ne the problem IIDq
: Let X,Y two q-samplable probability distributions whih are

desribes by 2−n
-probabilisti iruits

• (X,Y ) ∈ IIDq
Y ⇒ SD(X,Y ) ≤ 1/4

• (X,Y ) ∈ IIDq
N ⇒ Disj(X,Y ) ≥ 3/4

We prove that this problem is omplete for QNISZK|ch by the following two lemmas.

Lemma 7. IIDq ∈ QNISZK|ch.

Proof. Let (X,Y ) an instane of IIDq
. Using our polarization lemma, we onstrut (X ′, Y ′) suh

that (X,Y ) ∈ IIDq
Y ⇒ SD(X ′, Y ′) ≤ 2−k

and (X,Y ) ∈ IIDq
N ⇒ Disj(X ′, Y ′) ≥ 1− 2−k

for some

k ∈ poly(n). We use the same protool as for the lassial ase:

Protool in QNISZK|ch for the IIDq
problem

H : reate x′ ← X ′
and reveal it.

P : send r suh that Y ′(r) = x′
.

V : Verify that Y ′(r) = x′

This protool is the same as the one used in [BG03℄. Note that the ompleteness and soundness

orrespond exatly to the Disjointness of the two distributions and hene they follow from Lemma

6. Moreover, working on q-samplable distributions doesn't hange the Zero-Knowledge property

and hene it follows immedaitely from [BG03℄.

Lemma 8. Every problem in QNISZK|ch redues to IIDq

Proof. The proof of Ben-Or and Gutfreund that IID is hard for NISZK|h an be naturally extended
to the ase where the Veri�er and the Dealer are BQP mahines by taking into aount that the

distributions are now q-samplable.

Consider a promise problem Π ∈ QNISZK|ch. Let 〈D,P, V 〉 be a non-interative protool for

Π with ompleteness c(k), soundness s(k)and simulator deviation µ(k) with 1 − c(k), s(k), µ(k) ∈
negl(k). Let x an instane of Π. Consider now the two following distributions :

D0 : run the Dealer D on x.
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D1 : run the simulator k ∈ poly(n) times on x with the same oins to get k samples (h,mP ).
Note that these opies are the same with exponentially high probability beause the simulator is

2−O(k)
-probabilisti. Run the aepting proedure A on eah opy of (x, h,mP ). Output h if V

aepts the majority of the times and ⊥ otherwise.

• If x ∈ ΠY then the Veri�er will aept the majority of times with probability (1 − 2−O(k))
beause of ompleteness. In this ase, the distribution D1 is equal to the simulation of the

help, whih has statistial di�erene µ(k) from the real help. Sine the distribution D0 is the

distribution of the real help, we have SD(D0,D1) ≤ µ(k)+2−O(k) ≤ 1/4 and (D0,D1) ∈ IIDq
Y .

• Let x ∈ ΠN and B be the set of help strings, suh that h ∈ B ⇒ ∃ mP Pr[A(x, h,mP ) =
Y es] ≥ 1/3 where A is the verifying proedure of V . The probability that D0 produes a

sample h ∈ B (and therefore a sample in B ∪{⊥}) is ≤ 3s(k) due to the soundness ondition.
It also holds that the probability that D1 produes a sample in B∪{⊥} is ≥ 1−O(2−k). This
an seen as follows: the probability that D1 outputs h ∈ B is equal to the probability that the

Veri�er aepts the majority of times, when running A k times with h ∈ B, whih happens with

probability at most 2−O(k)
. We onlude that Disj(D0,D1) ≥ (1 − 2(O(k)))(1 − 3s(k)) ≥ 3/4

and (D0,D1) ∈ IIDq
N

Sine the Dealer and Simulator are q-samplable, the distributions D0 and D1 are also q-samplable.

and hene D1 is 2−O(k)
-probabilisti

From Lemma 7 and Lemma 8, we have

Theorem 5. IIDq
is omplete for QNISZK|ch.

Similarly, we an de�ne Quantum Non-Interative Zero-Knowledge where the Prover and the

Veri�er share a lassial random string. We denote this lass QNISZKr. Let us de�ne SCU q
as

the statistial loseness to uniform applied on a q-samplable distribution. By the same arguments

SCU q
is omplete for QNISZK|r.

Using these omplete problems, we have the following interesting orollary

Corollary 3. In QNISZK|r and QNISZK|ch, the Prover sends a lassial message.

Proof. This is true beause there is a protool for IIDq
and SCU q

where the Prover sends a lassial

message and these two problems are omplete.

Now denote by SZKq the lass SZK where the Veri�er and simulation use quantum polyno-

mial power. In other words, this is the lass of languages that have lassial protools whih are

Zero-Knowledge against quantum Veri�ers. Similarly, de�ne the lasses HV SZKq and NISZK|h,q

(where both the Veri�er and the Dealer use quantum power). The lass SZKq was studied by Wa-

trous ([Wat06℄) and Hallgren et al [HKSZ07℄. It remains open to show whether these three lasses

are equal to eah other, whih is true when the Veri�er is lassial.

Note that by orollary 3, we have that QNISZK|ch = NISZK|h,q. Using our analysis of

NISZK|h, we an show the following :

Theorem 6. NISZK|h,q = HV SZKq
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Proof. Similar to the ase of HV SZK, we an show that SDq
is omplete for HV SZKq (see also

[Vad99℄) where SDq
is the natural extension of SD applied to q-samplable distributions. From

setion 4, we know a redution from SD to IID. The same redution works from SDq
to IIDq

so HV SZKq ⊂ QNISZK|ch = NISZK|h,q. Beause IIDq
trivially redues to SDq

, we have

HV SZKq = NISZK|h,q.

7 Conlusion and further work

Our work settles the question of the role of help in Zero-Knowledge protools by showing that it

is equivalent to interation. In other words, we showed that the only thing that is important to

reate a statistial Zero-Knowledge proof is a trusted aess to the input (from the Dealer or from

the honest Veri�er). This will hopefully shed some light into the relation of Non-Interative and

Interative Zero-Knowledge, whih still remains open.

In the quantum setting, we gave the �rst formal de�nition of help for Zero-Knowledge protools.

We showed that quantum help is also equivalent to interation and that the ase of lassial help is

losely related to the lass of languages that have lassial zero-knowledge protools seure against

quantum Veri�ers. It would be interesting to see if quantum help ould also give some interesting

results onerning the lass SZKq, and espeially whether SZKq = HV SZKq.
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A Details of the polarization of IID

Proof. (Lemma 1) De�ne wS(X) =
∑

i∈S xi to be the weight of X ∈ Pn on the set S ⊆ {0, 1}n,
S(X,Y ) = {i ∈ {0, 1}n| xi ≤ yi} and S(X,Y ) the omplement. Fix X,Y,Z, T four probability

distributions with c1 = 1−δ1 = SC(X,Y ), c2 = 1−δ2 = SC(Z, T ) and c = 1−δ = SC(X⊗Z, Y ⊗T ).
Let A = S(X,Y ), A′ = S(Z, T ), A and A′

the omplementary sets, α1 = wA(X), β1 = wA(Y ),
α2 = wA′(Z) and β2 = wA′(T ). We have :

c1 =
∑

i

min(xi, yi) = wA(X) + wA′(Y ) = α1 + 1− β1 and c2 = α2 + 1− β2

We now show that c ≥ c1c2.

c =
∑

i,j

min(xizj , yitj)

=
∑

i∈A,j∈A′

min(xizj , yitj) +
∑

i∈A,j∈A′

min(xizj , yitj)

+
∑

i∈A,j∈A′

min(xizj , yitj) +
∑

i∈A,j∈A′

min(xizj , yitj)

≥
∑

i∈Aj∈A′

xizj +
∑

i∈Aj∈A′

xitj +
∑

i∈Aj∈A′

yizj +
∑

i∈Aj∈A′

yitj

≥ α1α2 + α1(1− β2) + α2(1− β1) + (1− β1)(1− β2)

≥ c1c2

By replaing the statistial loseness by the statistial di�erene, we get

δ ≤ 1− (1− δ1)(1 − δ2)

Proof. (Theorem 1) Let two onstants a, b′ suh that 1 > b′ > 2a > 0. First note that IIDa,b′
is

hard for NISZK|h by making a redution from IID1/n2,1−1/n2

and hene, we just need to redue

IIDa,b′
to IID1/n2,1−1/n2

. Let b = b′/2. We do this redution in three steps:

1. It holds that IIDa,b′ 4 mut-IIDa,b
. This point was proven in [BG03℄ and will not be proven

here again.

2. We show that mut-IIDa,b 4 mut-IIDφ−α,φ+α
with α > 0 and φ =

√
5−1
2 .

3. We show that mut-IIDφ−α,φ+α 4 IID1/n2,1−1/n2

.

As we said, the �rst redution was proven in [BG03℄. We will just remind here the onstrution.

Fat 7. Let (X0,X1) ∈ IIDa,b′
. Construt (A,B) as following :

A : pik r ∈R {0, 1} and b ∈R {0, 1}, return (Xb(r), b).
B : pik r ∈R {0, 1} and b ∈R {0, 1}, return (Xb(r), b)

We have : (X0,X1) ∈ IIDa,b′

Y ⇒ (A,B) ∈ mut-IIDa,b
Y and (X0,X1) ∈ IIDa,b′

N ⇒ (A,B) ∈
mut-IIDa,b

N
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We show the seond redution by the following lemma:

Lemma 9. Let a, b suh that b > a. There exists α > 0 suh that mut -IIDa,b 4 mut -IIDφ−α,φ+α
.

Proof. Let X,Y two distributions and a, b with b > a suh that SD(X,Y ) ≤ a or mut-Disj(X,Y ) ≥
b. We are going to onstrut a pair of distributions (A,B) with the property that either SD(A,B) ≤
φ− α or mut-Disj(A,B) ≥ φ + α. Let Γ and Γ′

suh that Γ,Γ′ /∈ Im(X) ∪ Im(Y ). We de�ne the

following distribution:

AΓ,u,X(x) = With probability u return X(x) else return Γ.

Similarly, we de�ne the distributions AΓ,u,Y (x), AΓ′,u,X(x). We have

• SD(X,Y ) ≤ a =⇒ SD(AΓ,u,X , AΓ,u,Y ) ≤ u2a + 2u(1− u) = f(u, a).

• mut-Disj(X,Y ) ≥ b =⇒ mut-Disj(AΓ,u,X , AΓ,u,Y ) ≥ u2b + 2u(1 − u) = f(u, b)

• SD(X,Y ) ≤ a =⇒ SD(AΓ,u,X , AΓ′,u,Y ) ≤ u2a + 2u(1 − u) + (1− u)2 = g(u, a)

• mut-Disj(X,Y ) ≥ b =⇒ mut-Disj(AΓ,u,X , AΓ′,u,Y ) ≥ u2b + 2u(1− u) + (1− u)2 = g(u, b)

Let δ = (a + b)/2. If δ = φ, then the distributions X,Y already have the desired property.

If δ > φ then from the fat that the funtion f is ontinuous, f(0, δ) = 0 and f(1, δ) = δ, we
onlude that there exists a onstant u0 ∈ [0, 1] suh that f(u0, δ) = φ. The pair of distributions

(AΓ,u0,X , AΓ,u0,Y ) has the desired property

• SD(X,Y ) ≤ a =⇒ SD(AΓ,u0,X , AΓ,u0,Y ) ≤ u2
0a + 2u0(1− u0) = φ− u2

0
b−a
2 .

• mut-Disj(X,Y ) ≥ b =⇒ mut-Disj(AΓ,u0,X , AΓ,u0,Y ) ≥ u2
0b + 2u0(1− u0) = φ + u2

0
b−a
2 .

Similarly, for the ase δ < φ we use the distributions (AΓ,u,X , AΓ′,u,Y ) and the funtion g.

In order to show our third redution, we need the following laim : Let X and Y two probability

distributions. Denote (U, V ) = XOR(X,Y ) and let T : Pn × Pn → P2n × P2n be the operator

T (X,Y ) = (U ⊗ U, V ⊗ V ).

Claim 5. Let (A,B) = T (X,Y )

SD(X,Y ) ≤ α⇒ SD(A,B) ≤ 1− (1− α2)2

mut -Disj(X,Y ) ≥ β ⇒ mut -Disj(A,B) ≥ 1− (1− β2)2

Proof. The proof follows from our new upper bound on SD, the Diret Produt Lemma and the

XOR Lemma.

SD(A,B) = SD(U ⊗ U, V ⊗ V ) ≤ 1− (1− SD(U, V ))2 = 1− (1− (SD(X,Y ))2)2

≤ 1− (1− α2)2

mut-Disj(A,B) = 1− (1−mut-Disj(U, V ))2 = 1− (1− (mut-Disj(X,Y ))2)2

≥ 1− (1− β2)2
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We now have:

Lemma 10. Let φ =
√

5−1
2 . For any α > 0 (onstant), mut-IIDφ−α,φ+α 4 IID1/n2,1−1/n2

.

Proof. Let f(x) = 1 − (1 − x2)2 and Ui+1 = f(Ui). The �xed point of f is φ =
√

5−1
2 . By a

straightforward study of f , we an see that if U0 ≤ φ− α then Uk ≤ 1/n2
and if U0 ≥ φ + α then

Uk ≥ 1− 1/n2
with k = poly(n).

Let (Ai, Bi) = T i(X,Y ). By the previous Claim, we know that SD(Ai, Bi) and mut -Disj(Ai, Bi)
behave like Ui. Then, for (A,B) = T k(X,Y ) we know that the size of the �nal distribution is

n · 2u = poly(n) and

SD(X,Y ) ≤ φ− α ⇒ SD(A,B) ≤ 1/n2

mut-Disj(X,Y ) ≥ φ + α ⇒ mut-Disj(A,B) ≥ 1− 1/n2

⇒ Disj(A,B) ≥ 1− 1/n2

This onludes the proof.

Putting these three redutions together we have that for 1 > b′ > 2a > 0:

IIDa,b′
4 mut -IIDa,b

4 mut -IIDφ−α,φ+α
4 IID1/n2,1−1/n2

We an therefore onlude that IIDa,b′
is omplete for NISZK|h when b′ > 2a.
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