
Irreducibility to the One-More Evaluation Problems:

More May Be Less

Daniel R. L. Brown∗

June 9, 2010

Abstract

For a random-self-reducible function, the evaluation problem is irreducible to the one-more
evaluation problem, in the following sense. An irreduction algorithm exists that, given a re-
duction algorithm from the evaluation to the one-more evaluation problem, solves a separator
problem: the evaluation problem itself. Another irreduction shows that if the computational
Diffie-Hellman problem is reduced to the gap Diffie-Hellman problem, then the decision Diffie-
Hellman problem is easy. Irreductions are primarily of theoretical interest, because they do
not actually prove inequivalence between problems. What these irreductions suggest, though,
is that one-more variants of the RSA and discrete logarithm problems may be easier than the
standard variants, and that the gap Diffie-Hellman problem may be easier than the standard
Diffie-Hellman problem.

1 Preliminaries

The evaluation problem for a function f : X → Y is to compute f(x) given x, where x is chosen
uniformly at random from X. The following are examples of cryptographically useful functions f
whose evaluation problem is deemed to be difficult, at least for an adversary. Evaluating this first
function is the RSA problem.

Definition 1. Let n be a large integer, whose factorization is secret. (More specifically, n = pq,
where p and q are sufficiently large random primes.) Let e be a fixed integer with gcd(e, φ(n)) = 1.
Let X = Y = (Z/n). Let f = RSA be the function f : X → X : x 7→ x1/e mod n. (The integers n
and e are public.)

The RSA problem has a trapdoor: an efficient algorithm to compute the function. This efficient
algorithm requires access to secret information, which is not available to the adversary. The eval-
uation problem is defined for the adversary who is only given public information. It is commonly
conjectured, though unproven, that the RSA problem is as hard as factoring integers.

Evaluating the next, second function is the discrete logarithm problem.

Definition 2. Let X = G be a group of prime order n, written with multiplicative notation. Let
Y = Z/n. Let g ∈ G be fixed. Let f = DL be the function such that f : X → Y : gx 7→ x.

∗Certicom Research

1

This function does not have a known trapdoor, unlike the RSA function. Therefore it may be
difficult for anybody to solve this problem, not just an adversary. The discrete logarithm problem
is conjectured to be hard for certain groups G, such as certain subgroups of multiplicative groups
of finite fields, and certain subgroups of elliptic curve groups over finite fields.

Evaluating the following, third function is the (computational) Diffie-Hellman problem.

Definition 3. Let X = G be a group of prime order n, written with multiplicative notation. Let
g ∈ G be fixed. Let f = DH be the function such that f : X × X → X : (ga, gb) 7→ gab, where
a, b ∈ Z/n.

This function, like the previous, has no known trapdoor. Various results indicate that its
hardness is closely related to the discrete logarithm problem. Unlike the first two problems, the
function is not injective. To be general enough to accommodate this problem, we formulate the
conjecturally hard problem as function evaluation problems, not as function inversion problems,
as is sometimes done (for example, see [1]).

The following is related to the strong (or static) Diffie-Hellman problem.

Definition 4. Let X = G be a group of prime order n, written with multiplicative notation. Let
s ∈ Z/n be a secret integer. Let f = SDH be the function such that f : X → X : x 7→ xs. (Public
information that may be used to attempt evaluate this function may include X and n and perhaps
(g, gs).)

This problem is a variant of the previous. Like the RSA problem, this problem has a trapdoor:
namely the secret s that permits efficient evaluation of the function. If this secret is not given to an
adversary, then it becomes a hard problem for the adversary to evaluate. If one can evaluate DH

then one can evaluate the SDH. The converse would be true if one had an algorithm that solves
SDH for any random choice of s. However, in this problem the choice of s is not defined to be
uniformly random over X, but rather only to have sufficient randomness to make it secret from
an adversary. (This is what may be called the static Diffie-Hellman problem.) This is a rather a
subtle distinction, which may be ignored, if desired. Once we formulate the one-more evaluation
problem for this function, we get a form of what is known as the strong Diffie-Hellman problem,
which has attracted greater interest since certain protocols require its difficulty and can be proved
secure assuming its difficulty.

Random-self-reducibility is a property known to hold for various function used in cryptology,
including those listed above. We need this property to establish our main results in this paper.

Definition 5. A function f : X → Y is random-self-reducible, if there is an efficiently sampleable
family of pairs of deterministic algorithms (ak : X → X, bk : Y → Y) such that

1. f = bk ◦ f ◦ ak, and

2. For random index k and fixed x ∈ X, the random variable ak(x) is indistinguishable from a
uniform random variable from X.

In other words, blinded evaluation is possible. If you wish to evaluate f on a value x using an
oracle for evaluating f , but do not wish to reveal any information about x to the oracle, then this
is possible. Functions (ak, bk) for the four problems above are fairly easy to find. More generally,
for any problem P , we can define it to be random-self-reducible if any instance can be transformed
into another random instance whose solution can be used to solve the original instance.

2

Cryptology, including both cryptanalysis and provable security, often makes use of reductions
between problems.

Definition 6. Let P and Q be problems. The notation P ⇒ Q means that there is an algorithm
R, called a reduction, that, given an oracle for an algorithm A that solves problem P , can solve
problem Q. As needed, we parameterize the reduction R by its computational cost, by the number
of times it queries its oracle for A, by the parameters of the problems P and Q, and by its probability
of success, especially as a function of the probability of success of its oracle A.

When P ⇒ Q, one says that problem Q reduces to problem P , and the algorithm R is a
reduction from Q to P (note that the “to” is opposite in direction to the arrow). In (conditional)
cryptanalysis, P might be a problem such as integer factorization, while Q might be the problem of
breaking a public-key encryption scheme. In provable security, the corresponding goal is to reverse
the P and Q. An alternative notation is P ≥ Q, which conveys the impression that P is at least
as hard as Q.

Bellare, Namprempre, Pointcheval and Semanko [1] first introduced the one-more evaluation
problems. Paillier and Vergnaud [7] also define one-more evaluation variant of the discrete logarithm
problem.

Definition 7. The one-more evaluation problem for a function f : X → Y is the problem of
evaluating f on t + 1 uniformly random given inputs x0, . . . , xt given an oracle that evaluates f on
t arbitrary chosen outputs y1, . . . , yt. If t is an input to the problem, then the problem is a closed
variant, t-OM-f . If t is selected by the problem solver, the problem is the open variant, ∗-OM-f .
When clear from context, the problem 0-OM-f may be denoted simply by f .

In this notation, m-OM-RSA is the problem called RSA-KTI[m] in [1]; ∗-OM-RSA is problem
called RSA-AKTI in [1]; and t-OM-DL is the problem called t-DL in [7]. Although the following
reduction between one-more evaluations may be obvious we include a proof for completeness.

Lemma 1. If f is any function, then t-OM-f ⇒ (t + 1)-OM-f .

Proof. The reduction R solves (t + 1)-OM-f by calling an oracle A for the problem t-OM-f and
then using its extra leftover f evaluation to evaluate the function f one more time than A can. In
detail:

1. Reduction R is given x0, . . . , xt+1 as its inputs to the (t + 1)-OM-f .

2. Reduction R invokes A that with inputs x0, . . . , xt.

3. Oracle A queries its f evaluation oracle with t inputs y1, . . . , yt.

4. Reduction R queries its f evaluation oracle with inputs y1, . . . , yt and returns the answers
back to A.

5. Algorithm A succeeds and returns f(x0), . . . , f(xt).

6. Reduction R has called its f evaluation oracle t times, but is permitted one more call, which
it makes with input xt+1.

Reduction R calls A exactly once. The computational cost of R is just bookkeeping. The success
probability of R is the same as that of A.

3

2 Irreductions

An irreduction is a reduction showing that finding another reduction is hard. There are several
known irreductions in cryptology (see below), but the actual term irreduction has not usually been
used. The formal definition is as follows.

Definition 8. Let P , Q, S be problems. Then P ;S Q means that there exists an algorithm M
that, given an oracle for a reduction R showing P ⇒ Q, can solve problem S. Algorithm M is said
to be an irreduction. Problem Q is said to be irreducible to problem P via the separator problem
S. If Q = S, then we say that the irreduction is optimal, and write P ;! Q.

An alternative notation for the irreduction P ;S Q is (P ⇒ Q) ⇒ S, where the parentheses
express the problem of finding the reduction P ⇒ Q.

Certain results may be expressed concisely with this notation.

• Bellare, Namprempre, Pointcheval and Semanko [1] proved that RSA ;∗-OM-RSA IF, where IF

is the integer factorization problem. This is not an optimal irreduction.

• Boneh and Venkatesan [2] proved that RSA ;Alg

IF
IF, where RSA is the low exponent RSA

problem and IF is integer factorization, and the superscript Alg indicates that irreduction
only applies to algebraic reductions. This would be an optimal irreduction, but for the fact
that it is limited to algebraic reductions. (If it were optimal, it would subsume the previous
irreduction.)

• Paillier and Vergnaud [7] proved Schnorr ;Alg
∗-OM-DL

DL, where Schnorr is problem of finding a
universal forgery under a key only attack on Schnorr signature scheme, and DL is the discrete
logarithm problem, and ∗-OM-DL the corresponding one-more evaluation problem. This is
not an optimal irreduction.

The following is the main result of this paper. An almost identical1 result was found indepen-
dently by Bresson, Monnerat and Vergnaud [3].

Theorem 1. If f is random self-reducible, then

(t + 1)-OM-f ;! t-OM-f. (1)

Proof. Irreduction M for (1) work, at a high level, as follows.

1. Irreduction M is given inputs x0, . . . , xt to the problem t-OM-f . It invokes an oracle for
reduction algorithm R with the same inputs.

2. The reduction algorithm R invokes an oracle for an algorithm A that solves (t + 1)-OM-f ,
with inputs y0, . . . , yt+1.

3. Reduction algorithm R can send inputs u1, . . . , ut to its oracle for evaluation by f . Irreduction
M forwards these inputs its oracle for evaluating f and returns the answers back to R.

1Minor differences include: they do not limit the problem to an evaluation problem; they limit the problem to be

one whose solution is easily verifiable; they also deal with the issue of “rewinding” reductions, such as used in the

“forking lemma”, whereas this is implicitly ignored here.

4

4. Irreduction M samples indices k0, k1, . . . , kt, and computes wi = aki
(xi). Then M asks, in

the role of A, the oracle for the reduction algorithm R to evaluate f(wi) for each i.

5. If R returns to A the answers qi = f(wi) for all i ∈ {0, . . . , t}, then M returns zi = bki
(qi) as

its evaluations of f(xi) for all i ∈ {0, . . . , t}. Although M will not be able to complete the
simulation of A by solving the task that A was given, this does not matter because M has
already accomplished its task.

6. If R does not return the evaluations qi, then M does not return the evaluations of f upon
the inputs y0, . . . , yt+1 to A.

7. If R evaluates f on all t + 1 of inputs, namely f(x0), . . . , f(xt), then M returns the same
answers as its solution.

If reduction R invokes its oracle A multiple times, then, in each invocation of A, irreduction
M simulates A as described above. The only computation that M needs is the selection of ki,
evaluation of the functions aki

and bki
, and general bookkeeping. Irreduction M only invokes its

oracle R exactly once. The probability of M succeeding is at least that of R.

O M R A(M)

x0,...,xt
−−−−−→

x0,...,xt
−−−−−→

y0,...,yt+1
−−−−−−→

u1,...,ut
←−−−−−

u1,...,xt
←−−−−−

vi = f(ui)
v1,...,vt
−−−−→

v1,...,vt
−−−−→

w1,...,wt+1
←−−−−−−− wi+1 = aki

(xi)
qi = f(wi)

q1,...,qt+1
−−−−−−→ z′′i = bki

(qi+1)
r0,...,rt+1
←−−−−−− ri ∈$ Y

z′0,...,z′t←−−−− z′i = f(xi)
z0,...,zt
←−−−− zi ∈ {z

′

i, z
′′

i }

Figure 1: Irreduction M for (t + 1)-OM-f ;! t-OM-f

If we allow R to return false answers to the queries of A, then we reply with random (false)
answers as the solution to A. For some choices of f , false answers are easily detectable. For other
choices of f , however, the problem of detecting whether evaluations of f are correct is also deemed
to be a difficult problem in its in own right. If this is the case, then we slightly modify the strategy
and the probability of success for M . Randomly select in advance whether the strategy of M is
to use one of the intermediate values that R provides to A, or the final answer that R gives to its
challenge. Suppose that the probability of success of R is ρ and the number of times that R invokes
its oracle for A is α. Suppose further that ρ1 is the probability that R is successful but it never
completes a session with an A-oracle in which it answers all the A queries correctly. Let ρ2 = ρ−ρ1,
which is the probability that R is successful but in at least one session with an A oracle, reduction
R answers all queries from A correctly. The probability of success of M is (ρ1 + ρ2/α)/2. We note
that in this case, the irreduction M can be considered to be loose.

5

This irreduction M implies an irreduction N for u-OM-f ;! t-OM-f , whenever u > t. To see
this, note that there is a reduction R for (t + 1)-OM-f ⇒ u-OM-f , which is obtained by iterating
the reductions from Lemma 1. Irreduction N imitates M , except that whenever M deals with
(t + 1)-OM-f , instead N deals with u-OM-f and converts this via reduction R to (t + 1)-OM-f .
In particular, we have t-OM-f ;! f for all t > 0. In words, the evaluation problem is optimally
irreducible to each of the one-more evaluation problems.

A similar result for the open variant of the one-more evaluation problems is the following.

Theorem 2. If f is random self-reducible, then

∗ -OM-f ;! t-OM-f. (2)

Proof. Irreduction M works as follows.

1. Irreduction M is given inputs x0, . . . , xt on which it is to evaluate the function f .

2. Irreduction M invokes oracle R that solves the t-OM-f using an oracle A for solving ∗-OM-f .
The input that M provides to R is its own point of x0, . . . , xt.

3. Reduction R has access to another oracle that will evaluate f on up to t elements of X. This
is because, R is trying to solve the t-OM-f . To answer these queries, irreduction M invokes
its own oracle for evaluating f , which it too can invoke up to t times.

4. When R invokes its oracle A for solving ∗-OM-f , the irreduction M provides a simulation of
A. When M simulates A, it chooses to make t′ = t + 1 invocations to its f -evaluation oracle
to evaluate f at t′ + 1 given inputs, which are selected by R, with values, say, z0, z1, . . . , zt+1.

5. To help it in its task, A is allowed access to an f -evaluation oracle that it may call t′ times,
where t′ is the value above. The queries that M , in its role as A, makes to R are for evaluations
of f at randomization of its challenges x0, . . . , xt. Say x′

i = aki
(xi) for ki chosen at random.

6. If R correctly evaluates y′i = f(x′

i), then M can solve its challenges correctly with yi = bki
(y′i).

It is not necessary for M to actually provide the answers to the problem that A is to solve,
because now M has everything it needs to solve its own problem.

7. Otherwise, R incorrectly evaluates f on its queries from A, then A is not obliged to solve
∗-OM-f , so M need not provide a correct answer to R.

8. In this case, R will solve its given challenge, which is also a solution of the challenge given to
M .

Irreduction M invokes R once. The cost of M is bookkeeping plus the cost of selecting and
evaluating the functions ak, bk.

If f is verifiable, then the probability of success of M is the same as that of R. If f is not easily
verifiable, then M employs a probabilistic strategy, and has probability of success of (ρ1 +ρ2/α)/2,
where ρ1 and ρ2 is the probability of success of R, when R is always dishonest and someimtes
honest, respectively, and α is the number of times that R invokes A.

6

Another type of irreduction is now given. In some cases, the problem of verifying evaluation
function f is deemed difficult and is called the decision problem for f , which we write as DE-f .
Formally, for a function f : X → Y , the decision problem is, given (x, y), determine whether
y = f(x). The given (x, y) are distributed with x chosen uniformly at random from X. The value
for y is chosen to be f(x) with probability 1

2 , and otherwise is chosen uniformly at random from Y .
When the decision problem is deemed hard, it is also possible to formulate a Gap problem

GE-f . This problem is to evaluate f given an oracle for the decision problem. In the case of the
Diffie-Hellman function f = DH, exponentiation by a secret exponent, then we have the Diffie-
Hellman problem 0-OM-f = CDH, the decision Diffie-Hellman problem DE-f = DDH and the gap
Diffie-Hellman problem GE-f = GDH. The GDH has attracted attention because it has proven
possible to reduce it to breaking the security of several cryptographic schemes.

Theorem 3. If f is random-self-reducible function, then GE-f ;DE-f 0-OM-f . In particular,
GDH ;DDH CDH

Proof. The irreduction M has the following procedure.

1. Irreduction M is asked to solve DE-f . Its input takes the form (x, y) and M must determine
whether y = f(x).

2. Irreduction M invokes its oracle reduction R that solves the 0-OM-f using an oracle for
solving GE-f . The input that M supplies to R is x.

3. Reduction R invokes its oracle A for solving GE-f , say with input z. In other words R asks
A to compute f(z).

4. Given that A is trying to solve GE-f , it is only required to succeed if R can provide a valid
oracle that solves the DE-f . Irreduction M , in the role of A, asks R to solve the DE-f with
input (ak(x), bk(y)). If R answers, then M returns this answer as its own solution to the
DE-f .

5. If R does not solve the decision problem for A, then M does not evaluate f(z) for R.

6. Now R has received its valid oracle A for solving GE-f , as simulated by M , so R, by hypothesis,
can solve 0-OM-f , which in this case, means that R can compute w = f(x).

7. Finally M verifies that w = y, and solves its given instance of DE-f accordingly.

Irreduction M calls R just once. The main cost of M is bookkeeping, and selection and evaluation
of the random-self-reduction functions ak and bk. If R invokes A multiple times, M employs the
same strategy.

In this case, the function f is presumed not to be easily verifiable, so that M employs a
probabilistic strategy. The probability of success of M is (ρ1 + ρ2/α)/2, where ρ1 and ρ2 is the
probability of success of R, when R is always dishonest and someimtes honest, respectively, and α
is the number of times that R invokes A.

7

3 Conclusion

An irreduction algorithm shows that one cannot reduce certain cryptographically useful evaluation
problems — such as the RSA problem, the discrete logarithm problem, or the Diffie-Hellman
problem — to their one-more evaluation variant. If one is to prove that one of these one-more
evaluation problem is as hard as the corresponding evaluation problem, then the proof technique
must use something beyond a direct reduction algorithm. These irreductions may be interpreted
as evidence that the one-more evaluation problem is easier than the single evaluation, although it
is not a proof of such a gap.

Another irreduction algorithm shows that one cannot reduce the Diffie-Hellman problem to the
Gap Diffie-Hellman problem, unless the Decision Diffie-Hellman problem is easy. This is evidence
for, but not a proof of, a gap between the standard and gap Diffie-Hellman problems. It should
noted, however, that this irreduction is loose.

4 Acknowledgments

I thank Alfred Menezes and Jean Monnerat for valuable comments.

References

[1] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion
problems and the security of chaum’s blind signature scheme. Journal of Cryptology, 16(3):182–
215, 2003.

[2] D. Boneh and R. Venkatesan. Breaking RSA may be easier than factoring. In K. Nyberg, editor,
Advances in Cryptology — EUROCRYPT ’98, number 1403 in LNCS, pages 59–71. IACR,
Springer, May 1998. http://crypto.stanford.edu/∼dabo/abstracts/no rsa red.html.

[3] E. Bresson, J. Monnerat, and D. Vergnaud. Separation results on the “one-more” computational
problems. In T. Malkin, editor, Topics in Cryptology — CT-RSA 2008, LNCS. IACR, Springer,
Apr. 2008. To appear.

[4] N. Koblitz and A. Menezes. Another look at non-standard discrete log and
Diffie-Hellman problems. CACR 2007-03, University of Waterloo, Nov. 2007.
http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-32.pdf.

[5] N. Koblitz and A. Menezes. Another look at “provable security”. Journal of Cryptology, 20:3–37,
2007.

[6] H. Lipmaa. On CCA1-security of Elgamal and Damg̊ard cryptosystems. ePrint 2008/234,
IACR, May 2008. http://eprint.iacr.org/.

[7] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent to discrete
log. In B. Roy, editor, Advances in Cryptology — ASIACRYPT 2005, number 3788 in LNCS,
pages 1–20. IACR, Springer, Dec. 2005.

8

http://crypto.stanford.edu/~dabo/abstracts/no_rsa_red.html
http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-32.pdf
http://eprint.iacr.org/

A Lack of a Contradiction

Theorem 2 may seem to contradict [1, Theorem 5.3], whose proof implies the following. If ∗-OM-f
can be solved efficient by algorithm A, then there exists an algorithm B and a t, at most a constant
factor times the computational cost of A, such that B solves t-OM-f . This may appear to be saying
that ∗-OM-f ⇒ t-OM-f , for some t, which combined with irreduction ∗-OM-f ;! t-OM-f above
suggests that t-OM-f can be solved. This conclusion is false. The logic is correct, but the premise
∗-OM-f ⇒ t-OM-f is not correct. However, [1, Theorem 5.3] is also correct, but it was erroneous
to write ∗-OM-f ⇒ t-OM-f , because the t on the right is fixed, whereas on the left the t is chosen
by the problem solver. Formally, this may resolve the apparent contradiction, but a more intuitive
explanation may help.

We look again at what is happening. In the irreduction above, we are given, say t-OM-f , and
then we run an algorithm for solving ∗-OM-f by choosing t′ = t + 1. The reduction in [1, Theorem
5.3] works by observing the choice of t′ made in an algorithm A for solving ∗-OM-f , and then it
solves t′-OM-f . Combining these results in an attempt to solve t-OM-f , we would be trying to
solve t-OM-f by trying to solve (t+1)-OM-f . If we iterated this, then t would go to infinity, which
does not give an efficient solution.

B On Optimality of Irreductions

One reason that, when Q = S, the irreduction P ;S Q deserves to be called optimal is the
following.

Lemma 2. If P ;S Q, then Q⇒ S.

Proof. We convert the metareduction M for P ;S Q into a reduction M ′ for Q ⇒ S. If A′ is an
algorithm that solves the problem Q, then it is also a reduction R for P ⇒ Q, that does not make
use of any oracle for solving P . By definition, M can use R to solve S, so M ′ uses to A′ to solve
S. Because R does not use an oracle for solving P , the irreduction M does not need to simulate
this oracle. Therefore, when M ′ imitates M exactly, it does not need to simulate an algorithm for
solving P , therefore fulfills the definition of a reduction Q⇒ S.

Returning to the point of this lemma, it states that the separator problem S can be no harder
than the problem being reduced. We now adopt an extremely heuristic notation. For problem P ,
let |P | denote its difficulty, as measured, for example, by the computational cost of solving P . An
irreduction P ;S Q, suggests that |Q| − |P | ≥ |S|, and if this were true, then certainly |Q| ≥ |S|.
Finally, if the irreduction is optimal, then this heuristic further suggests that |P | = 0. It should be
kept in mind that is purely heuristic, and that irreductions do not prove any difference in difficulty,
and especially that optimal irreductions do not proved that the problem P is easy.

Because the separator problem S will never be harder than the reduced problem Q in an
irreduction P ;S Q, the main task of the irreduction algorithm will be to simulate the oracle A
for solving P that the reduction R expects. Indeed, if M can simulate A easily, then R will solve
Q, and the irreduction will be optimal. In some proofs, R may not complete the task Q, because
M can only partially simulate A. However, partial simulation of A may suffice to evoke R, as it
participates in the game that A is trying to win, to provide information to M that it can use to

9

solve S. When the irreduction M uses such partial simulation of A it may be the case that S is an
easier problem than Q.

Another reason for the definition of optimal irreductions is the following.

Lemma 3. If P ;S Q and S ⇒ T , then P ;T Q.

Proof. Let M be the irreduction for P ;S Q and let R be the reduction for S ⇒ T . We seek to
construct an irreduction N for P ;T Q. By definition, N is given an instance of T to solve. We
invoke R with the same instance of T . Whenever R invokes its S-oracle, we invoke M , with the
same instance of S to solve. Whenever M invokes its (P ⇒ Q)-oracle available to it, we invoke the
(P ⇒ Q)-oracle available to N . Therefore, M will solve S, and therefore R will solve T , and N
has its desired solution.

C Intuitionistic Tautologies and Generalized Metareductions

Lemma 2 may be re-written as:

((P ⇒ Q)⇒ S)⇒ (Q⇒ S). (3)

Let T be the reduction that was described in the proof. To describe such things involving several
arrows and parentheses, we use the term metareduction. Metareductions are reductions, but we
use this term when we want to emphasize the fact that the reduction has another metareduction
on one or both sides. Irreductions are examples of metareductions. In previous work, irreductions
have been called metareductions. Here, metareductions refers to something even more general.

The metareduction (3) is a tautologous metareduction in the sense that it is works no matter
what the problems P , Q, and S are. The metareduction in Lemma 3 is also tautologous. If we view
(3) as an expression in boolean variables, it is always true, making it a formal boolean tautology. We
conjecture below that the converse is not true: not every boolean tautology gives rise a tautologous
metareduction.

The metareductions above only use the logical operator of implication. (That in Lemma 3 is
stated with a verbal conjunction operator, but can expressed using impliation operators only, for
example, as ((S ⇒ T) ⇒ ((P ⇒ Q) ⇒ S)) ⇒ ((P ⇒ Q) ⇒ T).) No negation operator is used.
Indeed, it is not clear what the negation of a problem should be. This subset of logic that we are
using is known as implicational propositional logic. A theorem of Peirce states that any tautology
in this logic can be deduced from the following three axioms:

α(P,Q) = (P ⇒ (Q⇒ P)) (4)

β(P,Q,R) = ((P ⇒ (Q⇒ R))⇒ ((P ⇒ Q)⇒ (P ⇒ R))) (5)

γ(P,Q) = (((P ⇒ Q)⇒ P)⇒ P) (6)

The first two are due to Lukasiewicz, while the third is known as Peirce’s law. By deduction above,
we mean that the variables above may be substituted by arbitrary expressions (tautologous or not),
to get larger tautologous expressions; and modus ponens may be used to get smaller expressions,
which means that if T and S = (T ⇒ U) are shown to be tautologies, then U is a tautology.

If we write U = T \ S, then we have a convenient notation for expressing deductions. If S and
T are tautologies and T is the predicate of the S, then T \ S is defined and is also a tautology.

10

The subset of tautologies that can be deduced from the first two axioms α and β are known
as intuitionistic. Peirce’s law is not intuitionistic. The Curry-Howard isomorphism between tau-
tologies and programs in the λ calculus, is only defined on intuitionistic tautologies. In Heyting
algebras, truth values can take on a larger set of values, and a value is an intuitionistic tautology if
and only if the proposition evaluates to the maximally true value no matter what truth values the
variables are assigned.

An example of an intuitionistic tautology is P ⇒ P , as the following deduction shows:

(P ⇒ P) = (α(P,Q) \ (α(P,Q⇒ P) \ β(P,Q⇒ P,P))) (7)

Although this deduction may not be very intuitive, it does demonstrate that P ⇒ P is intuitionistic.
Now returning to the tautologous metareductions, the modus ponens operation corresponds to

composition of the algorithms for solving a problem. If algorithm A solves problem T and algorithm
B solves problem S = T ⇒ U , then problem U may be solved by using B and invoking A whenever
B invokes its oracle for solving T .

So, if we can find metareductions for the Lukasiewicz axioms, then we can compose these metare-
ductions to find metareductions for any expression that corresponds to a intuitionistic tautology.
The metareduction for α(P,Q) is quite simple. Given a P -solver A, one gets a Q ⇒ P solver by
invoking A, and not making an oracle queries at for the Q solver. Let us call this metareduction
Mα(P,Q).

A metareduction M for β(P,Q,R) works as follows. Suppose that A is a metareduction for
P ⇒ (Q ⇒ R). Essentially, this means that A solves problem R using oracles for problems P
and Q. The first oracle for P is by definition. The second oracle, for Q, is from the intermediate
problem Q ⇒ R that A is trying to solve using a P -oracle. What M needs to do is to solve R
using oracles for P and for (P ⇒ Q). To do this, M call A to solve R. When A calls its P -oracle,
then M forwards this to its P -oracle. Then A calls its Q oracle, then M calls its (P ⇒ Q)-oracle.
This P ⇒ Q-oracle expects access to another oracle, a P -oracle. These queries are forwarded by M
to its own P -oracle. Accordingly, the P ⇒ Q oracle solves the given problem Q, which allows M
answer the Q-oracle query for A. Therefore M can answer all the queries of A, so A will eventually
solve problem R. Let us call this metareduction Mβ(P,Q,R).

As a simple example we apply this process to the trivial reduction P ⇒ P , which does have
a intuitionistic deduction: (7). To do this, we use the metareduction Mβ(P,Q ⇒ P,P) for some
problem Q. The problem that this metareduction solves requires an oracle to a problem which
the metareduction Mα(P,Q ⇒ P) solves. The resulting composition of metareductions requires
a further oracle to the problem which Mα(P,Q) solves. What we would like is that this rather
complex composition of metareduction reduces to the trivial reduction.

Now the metareduction Mβ(P,Q ⇒ P,P) ultimately tries to solve P , perhaps by using some
oracle queries. As we described Mβ , it invokes Mα(P,Q ⇒ P), and handles its oracle queries by
invoking its own oracles. The metareduction Mα(P,Q⇒ P) tries to solve P using a P -oracle, and
declines to use its available (Q⇒ P)-oracle. Therefore, the only oracle queries from Mα(P,Q⇒ P)
is to the P -oracle. Now the axiomatic metareduction Mβ(P,Q ⇒ P,P essentially has a P oracle,
and answers any P -oracle queries from Mα(P,Q ⇒ P) by invoking its P -oracle. The net result is
that the available P -oracle is to used to solve the problem P , so the resulting reduction P ⇒ P
is the trivial reduction that we would hope for. (If Mα(P,Q) metareduction ever gets called too,
then we note that it only solves P by invoking a P -oracle, so again nothing more complicated than
the trivial reduction will be obtained.)

11

We have shown that every intuitionistic tautology has a metareduction. Perhaps, though, some
non-intuitionistic tautologies have metareductions. A first example to consider is Peirce’s law. We
may re-write this law using our irreduction notation, in two different ways:

(P ;P Q)⇒ P (8)

(P ⇒ Q) ;! P (9)

When expressed in this way, neither seems very likely. For example, we found an irreduction
1-OM-DL ;! DL, which is optimal, and would therefore seem to be stronger than irreduction
1-OM-DL ;1-OM-DL DL. If Peirce’s law has a metareduction, then we could use this latter irreduc-
tion to solve 1-OM-DL. More generally, Peirce’s law suggest that Q is a problem strictly harder
than P , then P is an easy problem, which is a form of the law of the excluded middle, which does
seem to be a reasonble law for the hardness of problems.

This suggests the following conjecture.

Conjecture 1. An expression has a metareduction if and only if it is an intuitionistic tautology.

We already proved the if part, so only the only if part is conjectural. Failure to find a metare-
duction for Peirce’s law would seem very little basis for this conjecture. As additional support, we
suggest that there may be Heyting algebra here. In this case, truth values are the difficulty of the
problems, and easy corresponds to maximally true.

Some further tests and applications for this conjecture are as follows. Recall that we found a
metareduction for ((P ⇒ Q)⇒ S)⇒ (Q⇒ S). If this expression is not an intuitionistic tautology,
then the conjecture is wrong. A necessary2 condition for an intuitionistic tautology is for to be
[0, 1]-tautology. In [0, 1]-logic, variables may take on truth values for an real number in the interval
[0, 1]. In this logic, for truth values p and q, we define

p⇒ q =

{

1 if p ≤ q

q if p > q
(10)

A [0, 1]-tautology is any expression that evaluates to 1 for all truth value assignments of its variables.
It is a routine verification to see that ((P ⇒ Q) ⇒ S) ⇒ (Q ⇒ S) is [0, 1]-tautology. Peirce’s is
not a [0, 1]-tautology, which can be seen by assigning P = 1

2 and Q = 1
3 , which causes the law

to evaluate to 1
2 . It is routine to verify that the Lukawiewicz axioms and modus ponens hold in

[0, 1]-logic, so therefore every intuitionistic tautolgys is a [0, 1]-tautology.
As an application, we return to the question of whether our proof that GDH ;DDH CDH may

have been stronger than necessary. For example, it depended on certain problems being random-
self-reducible. To see this, we note that another way to express the Gap Diffie-Hellman problem is
as:

GDH = (DDH⇒ CDH), (11)

because the Gap Diffie-Hellman problem may be viewed as the problem of reducing the (computa-
tional) Diffie-Hellman problem to the Decision Diffie-Hellman problem. Suppose that we can find
a tautologous metareduction M that shows:

(Q⇒ P)⇒ (((P ⇒ Q)⇒ Q)⇒ P). (12)

2Is it also sufficient?

12

Then substituting Q = CDH and P = DDH, the right term of (12) is the irreduction GDH ;DDH

CDH, and the left term is CDH ⇒ DDH, which is obvious. If (12) is an intuitionistic tautology,
then it our proof was overly strong. However, if we can show that this is expression is not an
intuitionistic tautology, then our conjecture would imply that even a strategy of using (12) for
a proof would have to depend on some particular properties of the problems P and Q, such as
random-self-reducibility. It is not too hard to find [0, 1] truth value assignments for the varitables
P,Q,R that make (12) evaluate to less than 1. Therefore, (12) is not a [0, 1]-tautology and therefore
not an intuitionistic tautology.

D Singular and Robust Reductions, and Power Problems

Let P be a problem. Let P t be the problem of solving t independent instances of P . A reduction
for P ⇒ Q is singular if it only invokes its P -oracle once. In this case, we write P ⇒1 Q. We may
say that Q is singularly reducible to P . With these two notions, we may formulate the one-more
variant of any problem P :

t-OM-P = (P t ⇒1 P t+1) (13)

A reduction R for P ⇒ Q is robust if R succeeds even if the P -oracle given to it is not independent
of the instance of the problem Q that R has to solve. In this case, we write P ⇒$ Q. We may
say that Q is robustly reducible to P . For example, a reduction R for P ⇒$ P may be given a
P -oracle that fails for the instance of P that R is asked to solve, and therefore our trivial reduction
P ⇒ P that holds for all problems (by invoking its P -oracle with the same instance it is given) is
not robust. If a problem is random-self-reducible, as we have defined it, then P ⇒$ P . Because
the converse may not hold, we say that P is robustly-self-reducible if P ⇒$ P .

With these three notions, we formulate a conjecture that strengthens Theorem 1.

(P ⇒$ P)⇒
(((

P t+1 ⇒1 P t+2
)

⇒
(

P t ⇒1 P t+1
))

⇒
(

P t ⇒1 P t+1
))

(14)

By this, we mean that this metareduction (involving specialized reductions) should hold for any
problem P . If so, it is a tautologous metareduction, in line with our earlier strategy of determining
which metareductions are tautologous.

It remains to be seen whether this formulation provides any actual benefit. Even if a general
calculus of such specialized reductions may be formed to prove (14), it is unclear if such a calculus
would find any other applications in cryptology. If not, developping such a calculus may be more
trouble than its worth.

E Koblitz-Menezes Problems

Koblitz and Menezes [5] defined a variant of the RSA problem that they called RSA1. They did this
on the basis of work done by Coron towards the impossibility of a tight reduction for the security
of RSA-FDH. Our previous notations do not express the notion of a tight reduction, but we now
add this to our toolbox.

A reduction R for P ⇒ Q is lossless if its probability of success is at least the probability of
success of its P -oracle. In this case, we write P ⇒+ Q, and say that Q reduces losslessly to P . If
a reduction is not lossless, then we may say that it is lossy. (Loosely speaking, a reduction is tight
if it lossless and singular, which we write as P ⇒1,+ Q.)

13

Koblitz and Menezes [4] have generalized the problem RSA1 to others, such as DLP1. Given a
problem P , the Koblitz-Menezes variant t-KM-P of the problem is defined as follows. One is given
t+1 instances of the problem to solve. One is given an oracle that will solve any of these problems.
If one solves all of the problems, but invokes the problem-solving oracle at most t times, then one
has solved the t-KM-P . This problem is a restriction of t-OM-P in the sense that the P -oracle will
not solve arbitary instances of the problem P , but only those given to it. Because the problem
solver in t-KM-P is just given a weaker oracle, the problem is potentially harder than t-OM-P .
Indeed we have a fairly trivial reduction t-KM-P ⇒1,+ t-OM-P , because if A solves t-KM-P then
it solves t-OM-P .

Also obvious is the tight reduction P ⇒1,+ t-KM-P , because we can call P -orcale given in
t-KM-P to solve the first t− 1 instances of P , and then call the P -oracle in the reduction. What
really distinguishes the Koblitz-Menezes problem from the one-more problem is the following loose
reduction, that works for a certain class of problems.

t-KM-P ⇒ P (15)

The class of problems for which this reduction works is those that are existentially solvable, which
means that there is an efficient algorithm that find pairs of problem and correspoding solution
instances. Also, the problem instance produced will be indistinguishable from a uniformly3 chosen
problem instance.

The reduction R works as follows. It is given problem instance P0 to solve. Choose a random
integer i ∈ [1, t + 1] and set Pi = P0. For the remaining Pj for j 6= i, exploit the existentially
solvability of problem P to generate pairs of problem instances and solution instances (Pj , Sj).
Now when R invokes an oralce A for solving t-KM-P with instance (P1, . . . , Pt+1). By definition of
A, it does not query P for at least one of the problem instances, say Pk. With probability 1

t+1 , we
will have that k = i. In this case, R can answer all the P -oracle queries from A, and therefore A
will solve Pi = P0 as R requires.

Actually, this is essentially the reduction that Bellare and Rogaway used to prove the security
of RSA-DFH. Coron proved that the solving the RSA problem could not be tightly reduced to the
security RSA-FDH. As Koblitz and Menezes observed, Coron effectively proved that RSA cannot
be tightly reduced to RSA1. More generally, we may write this loosely as:

t-KM-P ;1,+ P. (16)

More formally, this can be expressed as irreduction:

(t-KM-P ⇒1,+ P)⇒ P (17)

To see how to get such an irreduction M , we invoke the tight reduction oracle R twice, with the
same instance of P to solve. We resort to a trick of fixing the random tape of R, which seems
reasonable. This causes both instance of R, say R1 and R2 to invoke its t-KM-P oracle with the
same problem instance, say (P1, . . . , Pt+1). Now, M asks R1 to solve all problems except P1 and
M asks R2 to solve all problem instances except P2. Together M can solutions for all problem
instance and can simulate the t-KM-P for both R1 and R2. Consequently R1 will solve P and M
is done. Again, this is the Coron’s approach.

3Or with whatever probability distribution the problem instances are defined to take.

14

Note that this metareduction M does not require P to be existentially solvable, unlike the
reduciton. Again, as part of a more general theory, it would be interesting to see to what axioms
one might formulate to deduce such things. To this end, we may express

t-KM-P = (P t ⇒∼ P t+1), (18)

with the notation ⇒∼ indicating the retstriction on the reduction that its oracle will only solve
problems that are related in a certain manner to the problem instance that the reduction must
solve. This type of reduction depends on the type of relation ∼. In the case of the Koblitz-Menezes
problem, the ∼ is that the instance P t must be a proper subset of the instance P t+1. Note that
P ⇒$ Q implies P ⇒∼ Q implies P ⇒ Q, no matter what the relation ∼.

F Lunchtime Reductions

Koblitz and Menezes [4] identified another way to vary a given problem, which is once again similar
to the one-more variant of a problem. They identified this as version of the “one-more” RSA
problem addressed by Joux, Naccache and Thomé. Koblitz and Menezes called this the delayed

target version of the one-more variant problem. However, this concept has also been used in defining
adversaries to public key encryption schemes.

Let R be a reduction P ⇒ Q. If the reduction invokes its P -oracle before seeing its instance of
the Q problem, and does not invoke its P -oracle after seeing its instance of the Q, it is a lunchtime

reduction. In this case, we write P ⇒< Q. The delayed target version of the one-more variant of
any problem P , may now be defined as

t-DT-P = (P t ⇒< P). (19)

Joux, Naccache and Thomé showed that if P is the RSA problem, then this variant could be easier
than P is conjectured to be. They did this by giving an algorithm for solving this problem that
is faster than the best known algorithm for solving P . This is the more practical way to compare
hardness of problems, which is often what an irreduction is said to suggest as possible. Here we
make the converse suggestion. For example, is there an irreduction

t-DT-P ;! P? (20)

G Public Key Encryption

The previous section brings to mind the various security properties of a public key encryption
scheme. In this section, we attempt to formalize these various notions in terms of the notations
introduced above.

We now presume that we have some public key encrytion scheme Φ. Let f be the function that
takes a valid ciphertext and returns in the corresponding plaintext. The evaluation problem for f
obviously needs to be hard for Φ to be secure. Here we give the adversary the public key. This is
the one of most basic security notions: one-wayness against chosen plaintext adversaries. We may
write the problem for the adversary as OW-CPA-Φ. In other words OW-CPA-Φ = f .

We can also conside a more advanced security property as the problem:

OW-CCA2-Φ = (f ⇒∼ f) (21)

15

where the relationship ∼ here is inequality. That is, we try to compute f using an f -oracle for any
other intput. It has been argued that this security definition is too stringent, because it disallows
something benign malleability. Therefore, we may define a potentially harder problem:

(f ⇒$ f) (22)

Hardness of this problem is a milder security goal, and arguably a reasonable substitute for
OW-CCA2 security. To model lunchtime chosen ciphertext attacks, we formulate the problem:

OW-CCA1-Φ = (f ⇒< f) (23)

What about semantic security, or indistinguishability? This is something over and above one-
wayness, and something that is usually considered a requirement for Φ. Earlier, for any evaluation
problem f , we formulate the decision version DE-f . This is part of the way to what we want, becuase
it presumes that if the adversary sees (x, y), where x is uniformly random, then the adversary cannot
tell if y = f(x). However, for indistinguishability, the adversary can choose a set C ⊂ Y with as
few as two elements, say {y0, y1}, and then constrain f(x), y ∈ C. This is the constrained decision
problem CDE-f , which may be formulated for any function. Thus we may state:

IND-CCA2-Φ = (f ⇒∼ CDE-f), (24)

where∼means that the f -oracle is restricted to not return an answer for any query x with f(x) ∈ C.
Again we posit that the milder security property of the problem (f ⇒$ CDE-f) being hard would
generally be an adequate substitute for the hardness of IND-CCA2-Φ

Although the formulations attempt to capture the security properties of Φ in terms of reductins
about variants of the evaluation problem f , they do not capture what is necessary about f for
it to be usable in a public key encryption scheme. We want somebody to be able to decrypt
ciphertexts, so the first essential property is that f must have a trapdoor, allowing some party
to evaluate f , or else nobody could decrypt anything. (It should also be note that the problem
must be an evaluation problem, if we want to have unique decryption.) On the other we want
anybody to be able to encrypt, so we need a further property. If we wish to use Φ only a key
encapsulation mechanism, as defined by Shoup, then it suffices f to existentially solvable, meaning
that anybody can find pairs (x, y) such that y = f(x), with the further property that y is has a
uniform distribution over y (or at least sufficient entropy to derive a data encapsulation key). In
the case of key encapsultion, it seems that the milder one-wayness form of security is sufficient,
and that full indistinguishability is unncessary. In particular, it seems that hardness of (f ⇒$ f)
may be sufficient. If we further want to Φ to support transport of existing keys or actual message
content, then we need anybody to find preimages of f : that is, given any y, there is an efficient
algorithm to find x such that f(x) = y. Furthermore, the distribution of such x must be such that
the hard problems defined above retain their hardness. We call this property invertibility. In this
case, we also a want the stronger security property of IND-CCA2-Φ.

A similar treatment may be made for a digital signature scheme, say Σ. Here we find that
the hard main problem (generating a signature on a given message) need not be restricted to a
function evaluation problem, since probabilistic signatures are considered acceptable. Nevertheless,
for simplicity, we assume that signatures are deterministic, so that the problem of generating a
signature on a given message is an evaluation problem, say for a function f . Before getting to
security properties, we first consider utility properties. As with Φ, the function f must have a

16

trapdoor. Unlike Φ, however, the decision problem DE − f must be easy, because verifying a
signature amounts to solving the decision problem.

We now formally define problems EX-f and UI-f , that we have already considered for Φ. The
problem UI-f , is the universal inversion problem for f : given any y, find x such that f(x) = y.
For utility of Φ, this problem must be easy, but for security of Σ, this problem must be hard. The
problem EX-f is to find (x, y) such that f(x) = y. This is a potentially easier problem than UI-f .
Therefore, it must be easy for the utility of Φ, and this was also noted earlier. For the security
of Σ, hardness of EX-f represents a stronger property than hardess of UI-f , but it too is usually
considered a required property.

We remark that there seems to be something almost duality between Φ and Σ; between utility
and security; between easy and hard; between the problems UI-f and DE-f ; and between EX-f

and CDE-f . The almostness is that easiness of CDE-f does not seem necessary for the utility of
signatures.

We also expect Σ to resist active attacks. For example, we expect the following problem to be
hard:

(f ⇒∼ EX-f), (25)

where ∼ indicates that the reduction is regarded to have failed if it output a solution (x, y) where
x was the input to its one of its f -oracle queries.

We see that for both Σ and Φ, the usual expectations include difficulty of the problem

(f ⇒$ f). (26)

Indeed, for both schenes, hardness of this problem is a weaker condition than full security. We now
take a moment to focus on this condition, because of its simplicity and commonality to both types
of schemes.

If one believes that f is hard to evaluate, one might want to infer that (26) is also hard, by find
a reduction of the form:

(f ⇒$ f)⇒ f (27)

But here we find an irreduction that shows this to be unlikely.

Theorem 4. There exists a metareduction for ((f ⇒$ f)⇒ f)⇒ f . That is, (f ⇒$ f) ;! f .

Proof. We write A for the desired metareduction, B for its oracle for reduction (27) and C for the
oracle that B has for the reduction f ⇒$ f , and finally D for oracle that C has for f . We first
note that if C were just a reduction, and not a robust reduction, then our task would be trivial.
We will see why this is in detail. A adopts two strategies A1 and A2.

Strategy A1 is for A to invoke B with its own input x. The strategy succeeds if B makes no C
queries. Otherwise it fails.

Strategy A2 is for A to invoke B with a random input z. When B makes a C query, say with
input y, then A simulates C. As C, it makes a D query with input of x. Because x and z are
independent, the fact that B can make its D oracle depend on the input y, does not affect the
action of the D oracle. Note that this simultation of C will be partial in the sense A will not
compute f(y) for B.

Now we note that if C is not robust, then A could just use its own input x when it makes its
D-query, and B would be obliged to answer it, and thus the A1 and A2 strategies could be merged.
But C is robust, so two distinct strategies are needed.

17

Let β1 be the probability that B is successful without making C queries. Then A1 is successful
with probability β1.

Let β2 be the probability that B is successful and that it does make some C queries. Note that
β1 +β2 is the total success rate for B. Let q be the number of queries that B makes C. We suppose
that C expects its oracle D to succeed with probability negligibly close to 1. Then A2 is successful
with probability at least β2/q. The factor 1/q is the probability that of the q C-oracle simulations
that A selects make the D(x) query, that this is also the first C-oracle from B expects its answer
C(y). Since B has no right to expect an answer from C until it provides an answer as D, then
in this case A has its answer D(x) = f(x). With probability 1 − 1/q, however, B may ask A to
evaluate some f(y) before A has its answer for f(x).

If A selects the two strategies with equal probability then its rate of success will be (β1 +
β2/q)/2.

This irreduction is loose, but it is optimal. It is interesting in that it says a rather basic but
active security property of both public key encryption and digital signatures cannot be proven, via
a direct reduction, to be as strong as the corresponding basic passive security property.

H On Notations for Reductions and Oracle Assisted Problems

Perhaps the main contribution of these appendices is a unified notation for reductions between
problems, and oracle assisted problems. The notations of P ≥ Q and P ⇒ Q have many precedent
for reductions. For oracle assisted problems, which have denoted by wrapping the reduction in
parentheses as (P ⇒ Q), there is an existing common notation, namely QP , such as recently used
by Lipmaa [6].

Here we have used parentheses to unify the notions and notations for reductions and oracle
assisted problems. This unification is orthogonal to the notation of ⇒ or ≥ or the exponentiation
(that is, superscripting) notation.

Assuming a unified notation and parenthesization, we can then compare the notations.

• The ≥ notation is intuitive because of transitivity. If P ≥ Q and Q ≥ R, then P ≥ R.
However, not only can this transitivity be proved, it can be proved via a reduction. Using
parentheses, one of writing this reduction is as

(Q ≥ R) ≥ ((P ≥ Q) ≥ (P ≥ R)) (28)

It is not customary, and thus arguably not intuitive, to compare inequalities to each and to
other problems, so we argue that ≥ is not the ideal notation for the calculus of metareduc-
tions. The form of transitivity above was deliberately written to look similar to the second
Lukawisiewicz axiom β(P,Q,R) given in (5). In the axiom, however, the initial predicate has
an extra P oracle, which makes it a potentially easier problem. In other words, this axiom
says something slightly stronger than transitivity. (This is a more nebulous reason not to use
the ≥ notation.

• The ⇒ notation’s motivation is from logic, specifically P ⇒ Q, means that if P can be
solved then Q can be solved. In formal logic, sometimes → is used instead, with ⇒ reserved
for higher level implications. However, in crypology, if not computer science more broadly,

18

the notation ⇒ seems to have precedent for reductions. Indeed, here we have conjectured
some informal relations between logic and the calculus of reductions. (See below for further
discussion.) But we argue that this is a strong tie, and the notation (P ⇒ Q), meaning
that a P oracle is available to solve Q is easier to become accustomed to than comparison of
inequalities.

• The superscript or exponent notation loses the connection to formal logic that has been
discussed in this paper. It is also more difficult to attach qualifiers to the oracle access, since it
does not actually use any symbol corresponding to the oracle access. Lipmaa [6] uses qualifiers
in the form QP [1] where the [1] indicates the number of common problems parameter that
P oracle must share with the Q problem. (Here, some parameters were typically implicitly
in common, while others could be related with the notations ⇒∼.) However, the superscript
has the following advantage, in that some of the rules of exponentiation also work nicely for
operation. Specifically, there is a commutativity of predicate law: if (RQ)P is easy then (RQ)P

so is. If we drop the parentheses, by introducing multiplicative notation at the superscript
level, then this statement becomes: if RQP then RPQ. If we interpret the multiplication
of problems to mean the problem solving both problems, then obviously PQ = QP , so
multiplcation is commutative, and the law that (RQ)P implies (RP)Q becomes intuitive,
re-using the intuition of exponentiation. Indeed, one may consider using the superscript
notation more generally in logic, even standard boolean logic. Superscript notation, because
it is nested, can be written without parentheses, since the parenthetic levels can be determined
by the elevation of problems. Let us examine the three axioms α, β, γ of boolean logic in this
notation.

α(P,Q) = ((PQ)P) = PQP (29)

β(P,Q,R) = ((RP)(Q
P))((R

Q)P)) = RPQP RQP

(30)

γ(P,Q) = (P (P (QP))) = PP QP

(31)

Remebering the superscripts are oracles, one can see how α and β are easy problems, because
the main problem to solve, the base problem in the exponent, appears in the exponent. Less
clear is the γ problem, which we believe to be difficult for some choices of P and Q. The
problem P has an oracle P in the exponent, but this P has a Q oracle. There is another P
oracle higher yet, but is unclear if that helps.

One can also introduce the following extra notations. Let 0 be the problem that is impossible
to solve, and the 1 be the problem that is immediate to solve. That is, all solutions to 0 are
defined to be wrong, and all solutions to 1 are defined to be correct. Obviously, 1P = 1 and
0P = 0 because an oracle for P has no effect on the problems 0 and 1, while P 1 = P , because
an oracle for 1 does nothing. We would also like to think that P 0 = 1, again in agreement, with
the usual notations, if an oracle for the impossible problem existed, which is an impossibility,
then from an impossibility anything can be derived. However, this should really be considered
as undefined. Note that if we revert back to boolean logic, then 0 corresponds to false, and 1
corresponds to true. With this view, we may think of other problems as values intermediate
between 0 and 1. Although the arithmetic of exponentiation carries over well, so far.

Returning back to the axioms and this notation, the fact that α is easy can be re-written

19

as PQP = 1. This expression does not hold in general in, say, real arithmetic, so it gives a
reason that the superscript is less than perfect, in terms of intuitivity.

The three basic notations above are qualitative. They ignore the cost of the reductions solving
the problems, the number of oracle queries, and the probability of success of the reductions and
oracles. These quantiative issues are very important in cryptology. Nevertheless they are not more
important than the qualitative issues. It is fairly customary, at least in provable security papers, to
define notations for cost of algorithms, usually with a variable t, and probabilities of success, usually
with a variable ǫ. If oracle queries are involved, then they are usually indicated with a variable q.
Then a definition of (t, ǫ, q)-security is given. The qualitative aspects are given in words, possibly
supplement with many symbols. The notational emphasis is on the quantative aspects. That said,
the qualitative aspects deserve as much notational emphasis.

So the qualtitive statement that a public-key encryption scheme, with decryption function
f , secure that is secure assuming the gap Diffie-Hellman problem (where g is the Diffie-Hellman
evaluation problem) may be written as,

(f ⇒∼ CDE-f)⇒ (DE-g ⇒ g). (32)

Any common parameters of the problems, such as the underlying group can be stated externally
to this notation. Then quantitative parameters, can be stated, either externally, or by attachment
to some of the arrows.

Obviously without quantifiers there exists reductions P ⇒ Q, namely the algorithm that solves
Q. A common view in cryptology is to regard problems to be easy if they can be solved with a
polynomial time algorithm. Then P ⇒ Q can be taken to mean that the reduction is polynomial
time. We do not wish to limit ourselves so strictly.

• If Q is believed to be exponential time, then a reduction P ⇒ Q, that is subexponential,
is noteworthy. Even an exponential reduction is noteworthy if faster than the best known
algorithms for solving Q. Therefore, an easy-hard paradigm, while useful in at the problem
and security level, is much less useful at the reduction level. Setting security levels cannot be
done using only the polynomial time criterion. Indeed, time is finite, and over finite intervals
any continuous function may be approximated uniformly by a polynomial.

• One may think that any strict easy-hard divide may force reductions into behaving as boolean
operations, because it artificially enfoces a law of the excluded middle. This would suggest
Peirce’s law holds at this level of detail, suggesting that Peirce’s law should always be poly-
nomial time, or even linear time. This does not appear to be true. If either problem P or Q
is easy, then Peirce’s law, in the form of a problem is easy, in the same sense of easy. But if
both problems are hard (e.g. non-polynomial time), then one cannot conclude that Peirce’s
law is easy a problem. Indeed, one cannot assume that P ⇒ Q, though in boolean logic, if P
and Q have the same truth value then P ⇒ Q is true, which we are tempted correpsonding
to easy. In other words, the complexity of the problem P ⇒ Q is not merely a function of
the complexities of the problems P and Q.

20

	Preliminaries
	Irreductions
	Conclusion
	Acknowledgments
	Lack of a Contradiction
	On Optimality of Irreductions
	Intuitionistic Tautologies and Generalized Metareductions
	Singular and Robust Reductions, and Power Problems
	Koblitz-Menezes Problems
	Lunchtime Reductions
	Public Key Encryption
	On Notations for Reductions and Oracle Assisted Problems

