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Abstract

Tweakable enciphering schemes are length preserving block cipher modes of operation that provide

a strong pseudo-random permutation. It has been suggested that these schemes can be used as the main

building blocks for achieving in-place disk encryption. In the past few years there has been an intense

research activity towards constructing secure and efficient tweakable enciphering schemes. But, actual

experimental performance data of these newly proposed schemes are yet to be reported. Accordingly, in

this paper we present optimized FPGA implementations of five tweakable enciphering schemes, namely,

HCH, HCTR, XCB, EME and TET, using a 128-bit AES core as the underlying block cipher. We report

performance timings of these modes when using both, pipelined and sequential AES structures. The

universal polynomial hash function included in the specification of HCH, HCHfp (a variant of HCH),

HCTR, XCB and TET, was implemented using a Karatsuba-Ofman multiplier as the main building block.

We provide detailed analyses of each of the schemes and their experimental performances achieved in

various scenarios. Our experiments show that a sequential AES core is not an attractive option for the

design of these modes as it leads to rather poor throughputs. In contrast, by using an encryption/decryption

pipelined AES core we get a throughput of 3.67 Gbps for HCTR and by using a encryption only pipeline

AES core we get a throughput of 5.71 Gbps for EME. The performance results reported in this paper

provide experimental evidence that hardware implementations of tweakable enciphering schemes can

actually match and even outperform the data rates achieved by state-of-the-technology disk controllers,

thus showing that they might be used for achieving provably secure in-place hard disk encryption. 1

The authors are with the Computer Science Department, Centro de Investigación y Estudios Avanzados del IPN, Av. Instituto

Politécnico Nacional No. 2508, México D.F 07360
1Some parts of the results reported here have been published in [20].
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I. INTRODUCTION

A block-cipher mode of operation is a specific way to use a block-cipher to enable it to encrypt arbitrary

long messages. In the literature, different kinds of modes of operations have been reported, each providing

several security services like confidentiality, authentication, etc. A Tweakable Enciphering Scheme (TES)

is a specific kind of mode of operation that is based on the notion of tweakable block ciphers introduced

in [18]. TES is a length preserving encryption scheme which can encrypt variable length messages.

The security that a TES provides is that of a strong pseudorandom permutation (SPRP), i.e., a TES is

considered secure if it is infeasible for any computationally bounded adversary to distinguish between

the TES and a random permutation. A TES takes as input a quantity called a tweak other than the

message and the key. The tweak is supposed to be a public quantity which enriches the variability of the

cipher-text produced.

A fully defined TES for arbitrary length messages using a block cipher was first presented in [12].

In [12] it was also stated that a possible application area for such encryption schemes could be low

level disk encryption, where the encryption/decryption algorithm resides on the disk controller which has

access to the disk sectors but has no knowledge of the disk’s high level partitions such as directories

files, etc. The disk controller encrypts a message before writing it to a specific sector and decrypts the

message after reading it from the sector. Additionally it was suggested in [12] that sector addresses can

be used as tweaks. Because of the specific nature of this application, a length preserving enciphering

scheme is required and under this scenario, a strong pseudorandom permutation can provide the highest

possible security.

In the last few years there have been numerous proposals for TES. These proposals fall in three basic

categories: Encrypt-Mask-Encrypt type, Hash-ECB-Hash type and Hash-Counter-Hash type. CMC [12],

EME [13], EME∗ [10] fall under the Encrypt-Mask-Encrypt group. PEP [4], TET [11], HEH [31] fall

under the Hash-ECB-Hash type and XCB [24], HCTR [34], HCH [5], ABL [26] fall under the Hash-

Counter-Hash type.

Although till date about ten different TES constructions have been proposed, no experimental data of

these schemes have been published yet. From the constructions one can easily conclude that the Encrypt-

Mask-Encrypt type schemes use approximately two block cipher calls per message block, while the two

other types require one block cipher call and two GF(2n) field multiplications per message block. Hence,

from the point of view of efficiency, it was argued in [5], [6], [25] that the first type is slower than the

latter two types, provided that one block-cipher call is more expensive than two field multiplications. This
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argument, however, can only be sustained if one assumes a software implementation of the mode, where

a block-cipher call has the same cost regardless of the data dependencies. It is noticed that this is not the

case for a hardware design, where block-cipher invocations can have different timing costs according to

the way that the cipher core is implemented (using either a sequential or a pipeline architecture) and the

data dependencies associated with the particular mode of operation algorithm under analysis. The same

arguments hold for the multipliers as one can have a fully parallel efficient multiplier which can multiply

two field elements in one clock-cycle.

A speculative performance comparison of the EME∗, XCB, HCH and TET modes of operation in

hardware is provided in [11]. This comparison assumes the same hardware implementation setting reported

in [2], where a fully-parallel GF(2n) field multiplier was implemented in one clock cycle at a hardware

cost in area of about three times the cost associated with one AES round function, and where the AES

core is implemented through the computation of ten such modules. However, this analysis might not

be quite accurate because, as we will see in the rest of this paper, one can implement a GF(2n) field

multiplier with an efficiency comparable to the one of an AES round function in terms of both, the

critical path and the cost in area.

Keeping in mind the specific application goal of low level disk encryption, a comparative study

of performance and cost of the various proposed schemes in hardware is very necessary. The recent

standardization activities for such modes by the IEEE working group on storage security [15] also demands

performance data for the many proposed schemes.

In this paper we present optimized hardware implementation of five TES. The modes we chose are

HCH, HCTR, XCB, EME and TET. Also we provide performance data for a variant of HCH, called

HCHfp, which is particularly useful for disk encryption. The rationale behind the choice of these specific

modes is discussed next.

The modes that we left out in this study are CMC, PEP, EME∗, ABL and HEH. CMC which uses two

layers of CBC type encryption cannot be pipelined. PEP and ABL are particularly inefficient compared to

their counterparts. EME∗ is a modification over EME so that it can be used for arbitrary length messages.

For the application of disk sector encryption this functionality is not required. HEH is a recently proposed

mode which improves the TET mode of operation. HEH is supposed to be more efficient than TET in

certain scenarios. In this work we do not provide performance data for HEH, but we provide some

discussions and speculations regarding its performance.

For all the implementations we use AES-128 as the underlying block-cipher. Whenever required we

use a fully parallel Karatsuba Ofman multiplier to compute the hash functions. We carefully analyze
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and present our design decisions and finally report hardware performance data of the five modes. Our

implementations show that in terms of area HCTR, HCH, TET and XCB require more area than EME.

HCTR performs the best in terms of speed followed by HCHfp, EME, TET, HCH and XCB.

II. NOTATIONS

An n-bit block cipher is a function E : K×{0, 1}n → {0, 1}n, where K 6= ∅ is the key space and for

any K ∈ K, E(K, .) is a permutation. We write EK( ) instead of E(K, .). We shall generally denote the

block-length by n and the number of blocks by m. By X||Y we shall mean the concatenation of two

binary strings X and Y and binn(|X|) will denote the n-bit binary representation of |X|, which denotes

the length of X . By padr(X) we shall mean concatenation r zeros to the end of X and dropr(X) will

denote the r ≤ |X| most significant bits of X .

We will treat n bit strings as polynomials of degree less than n with coefficients in GF (2), thus they

are elements of the field GF (2n). If X and Y are n bit strings then by X ⊕Y we shall mean a addition

in the field and by XY a multiplication in the field. The operation X ⊕ Y can be easily performed by

a bitwise xor of X and Y and XY can be realized as a multiplication of the polynomials X and Y

modulo a fixed polynomial P (x) of degree n irreducible over GF(2). By xX we would represent the

field multiplication of X by the polynomial x.

III. THE SCHEMES

In the subsequent subsections we discuss the constructions of the modes HCH, HCTR, XCB, EME

and TET. A pictorial high level description of the five modes are provided in Fig. 1.

A. HCH

As mentioned earlier HCH falls under the category of Hash-Counter-Hash constructions. HCH uses

an universal hash function of the form:

HR,Q(A1, . . . , Am) = Q⊕A1 ⊕A2R
m−1 ⊕A3R

m−2 · · · ⊕Am−1R
2 ⊕AmR (1)

Where A1, A2, . . . , Am, R, Q are n bit strings. In addition to the hash function HCH requires a counter

mode of operation. Given an n-bit string S, a sequence S1, . . . , Sm is defined, where each Si depends

on S. Given such a sequence and a key K the counter mode is defined as follows.

CtrK,S(A1, . . . , Am) = (A1 ⊕EK(S1), . . . , Am ⊕ EK(Sm)). (2)
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Fig. 1. High level block diagram of the schemes: (a) Encryption using HCH. Here R = EK(T ) and Q = EK(R⊕ binn(l)),

where l is the total length of the plain-text. (b) Encryption using HCTR. Here K is the key for the block cipher EK() and h is

the key for the universal hash function Hh(). (c) Encryption using XCB, here 3 block cipher keys and 2 hash keys are derived

using a single key K. (d) Encryption of 4 blocks of plaintext using EME. Here, L = xEK(0n), SP = PPP2⊕PPP3⊕PPP4,

M = MP ⊕MC and SC = CCC2 ⊕ CCC3 ⊕ CCC4. (e) Encryption of four blocks using TET.
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Fig. 2. Encryption and decryption using HCH. The tweak is T and the key is K. For 1 ≤ i ≤ m− 1, |Pi| = n and |Pm| = r

where r ≤ n.

Algorithm ET
K(P1, . . . , Pm)

1. R ← EK(T ); Q ← EK(R⊕ binn(l));

2. Mm ← padn−r(Pm);

3. M1 ← HR,Q(P1, . . . , Pm−1,Mm);

4. U1 ← EK(M1); I ← M1 ⊕ U1; S ← EK(I);

5. (C2, . . . , Cm−1, Dm)

← CtrK,S(P2, . . . , Pm−1,Mm);

6. Cm ← dropn−r(Dm); Um ← padn−r(Cm);

7. C1 ← HR,xQ(U1, C2, . . . , Cm−1, Um);

8. return (C1, . . . , Cm).

Algorithm DT
K(C1, . . . , Cm)

1. R ← EK(T ); Q ← EK(R⊕ binn(l));

2. Um ← padn−r(Cm);

3. U1 ← HR,xQ(C1, . . . , Cm−1, Um);

4. M1 ← E−1
K (U1); I ← M1 ⊕ U1; S ← EK(I);

5. (P2, . . . , Pm−1, Vm)

← CtrK,S(C2, . . . , Cm−1, Um);

6. Pm ← dropn−r(Vm); Mm ← padn−r(Pm);

7. P1 ← HR,Q(M1, P2, . . . , Pm−1, Mm);

8. return (P1, . . . , Pm).

Among various choices of the sequence Si, in [5] the authors propose the use of Si = S ⊕ binn(i). In

our implementations we also stick to this definition of the counter mode.

The complete encryption and decryption algorithm of HCH is given in Fig. 2. A schematic diagram

of encryption is given in Fig. 1(a).

HCH can encrypt arbitrary long messages greater than n bits. It uses a single key which is same as the

block-cipher key. It requires m+3 block cipher calls and 2m− 2 finite field multiplications to encrypt a

m block message. The key for the universal hash is R, which is derived by encrypting the tweak. Thus

R changes across encryption calls and this does not allow the use of pre-computations for computing

the hash. HCH requires two passes over the data.

In [6] a modification of HCH is also proposed which is called HCHfp. HCHfp uses a different hash

key which is not dependent on the tweak but is randomly chosen by the user. In HCHfp pre-computation

can be possible. Another modification of HCH reported in [6] is HCHfp. HCHfp can only be used in

those applications where the message length is fixed. This construction simplifies the general HCH mode

and requires one less block-cipher call, but it requires two separate keys for the hash and the block-

cipher. Thus, pre-computation for computing the hash is also possible in HCHfp. HCHfp is particularly

of interest for disk encryption applications as here the message length is fixed and same as the sector

length. The encryption-decryption algorithm using HCHfp is provided in Fig. 3.

All variants of HCH are provably secure and the authors guarantee that the advantage of any compu-
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Fig. 3. Encryption and decryption using HCHfp. The tweak is T and the key is (K, α), where K is the block cipher key and

α is the universal hash key. The number of blocks m is fixed.

Algorithm ET
K,α(P1, . . . , Pm)

1. R ← EK(T );

2. Mm ← padn−r(Pm);

3. M1 ← Hα,R(P1, . . . , Pm−1, Mm);

4. U1 ← EK(M1); I ← M1 ⊕ U1; S ← EK(I);

5. (C2, . . . , Cm−1, Dm)

← CtrK,S(P2, . . . , Pm−1,Mm);

6. Cm ← dropn−r(Dm); Um ← padn−r(Cm);

7. C1 ← Hα,xR(U1, C2, . . . , Cm−1, Um);

8. return (C1, . . . , Cm).

Algorithm DT
K,α(C1, . . . , Cm)

1. R ← EK(T );

2. Um ← padn−r(Cm);

3. U1 ← Hα,xR(C1, . . . , Cm−1, Um);

4. M1 ← E−1
K (U1); I ← M1 ⊕ U1; S ← EK(I);

5. (P2, . . . , Pm−1, Vm)

← CtrK,S(C2, . . . , Cm−1, Um);

6. Pm ← dropn−r(Vm); Mm ← padn−r(Pm);

7. P1 ← Hα,R(M1, P2, . . . , Pm−1,Mm);

8. return (P1, . . . , Pm).

tationally bounded chosen plaintext chosen ciphertext adversary in distinguishing HCH from a random

permutation can be at most O(σ2
n)/2n + δ where σn denotes the number of n bit plaintexts and/or

ciphertexts the adversary has access to, and δ denotes the advantage of an adversary to distinguish the

underlying block-cipher from a random permutation.

B. HCTR

The structure of HCTR is similar to that of HCH with some important differences. The hash used in

case of HCTR is defined as:

Hh(X) = X1h
m+1 ⊕X2h

m ⊕ . . .⊕ padn−|Xm|(Xm)h2 ⊕ binn(|X|)h (3)

Where h is the hash key and X = X1||X2|| . . . ||Xm||, where |Xi| = n bits (i = 1, 2, . . . m − 1) and

|Xm| ≤ n.

The counter mode used in HCTR is the same as in (2). The encryption and decryption operations using

HCTR are described in Fig. 4, and a high-level description is provided in Fig. 1(b).

HCTR can also encrypt arbitrary long messages. It requires m block cipher calls and 2m + 2 field

multiplications to encrypt an m block message. It requires two different keys and it is proved to be secure

with a security bound of O(σ3
n)/2n + δ. Thus it provides lesser security than HCH.
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Fig. 4. Encryption and decryption using HCTR. The tweak is T and K is the block-cipher key and h the hash key.

Algorithm ET
K,h(P1, . . . , Pm)

1. MM ← P1 ⊕Hh(P2|| . . . ||Pm||T );

2. CC ← EK(MM);

3. S ← MM ⊕ CC

4. (C2, . . . , Cm−1, Cm)

← CtrK,S(P2, . . . , Pm);

5. C1 ← CC ⊕Hh(C2||C3|| . . . ||Cm||T );

6. return (C1, . . . , Cm).

Algorithm DT
K,h(C1, . . . , Cm)

1. CC ← C1 ⊕Hh(C2||C3|| . . . ||Cm||T );

2. MM ← E−1
K (CC);

3. S ← MM ⊕ CC

4. (P2, . . . , Pm−1, Pm)

← CtrK,S(C2, . . . , Cm);

5. P1 ← MM ⊕Hh(P2|| . . . ||Pm||T );

6. return (P1, . . . , Pm).

C. XCB

XCB is another mode which belongs to the hash-counter-hash family of constructions. XCB uses

a hash hhh(h,X, T ) which takes as inputs an n-bit hash key h along with two strings X and T . Let

X = X1|| . . . ||Xm and T = T1|| . . . ||Tm′ where |Xi| = n for i = 1, 2, . . .m, and |Ti| = n for

i = 1, 2, . . .m′. The last block for both X and T can be incomplete. hhhh(X,T ) is defined as

hhhh(X,T ) = (X1h
m+m′+1 + X2h

m+m′
+ . . . pad(Xm)hm′+2) +

(T1h
m′+1 + T2h

m′
+ . . . pad(T ′m)h2) + (`(X)||`(T ))h. (4)

Where `(X) and `(T ) represent the n/2 bit binary representation of |X| and |T |, respectively. The

counter mode of XCB is defined as in (2), but they define Si = incri(S), where incr(S) increments the

last 32 bits of S modulo 232. The encryption and decryption using XCB is shown in Fig. 5. A highlevel

description is provided in Fig. 1(c).

The variant of XCB that we present in Fig. 5, has no security proof. The authors suggested some minor

modifications of the original proposal in [25] and provided a security proof for it. In terms of efficiency

it seems that the two variants are not much different.

The variant of XCB that we implemented requires 2m + 4 multiplications and m + 6 block-cipher

calls for a single block tweak. The algorithm can work with arbitrary long messages less than 239 bits.

The modified version of XCB is shown to be secure with a quadratic security bound.
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Fig. 5. Encryption and decryption using XCB. The tweak is T and K is the key from which two different hash keys and 3

different block-cipher keys are derived.

Algorithm ET
K(P1, . . . , Pm)

1. K0 ← 0n;

2. K1 ← 0n−1||1;

3. K2 ← 0n−2||10;

4. K3 ← 0n−2||11;

5. K4 ← 0n−3||100;

6. A ← EK0(P1);

7. H1 ← A⊕ hK1(P2|| . . . ||Pm, T );

8. (C2, . . . , Cm−1, Cm)

← CtrK2,H1(P2, . . . , Pm);

9. H2 ← H1 ⊕ hK3(C2||C3|| . . . ||Cm, T );

10. C1 ← E−1
K4

(H2);

11. return (C1, . . . , Cm);

Algorithm ET
K(P1, . . . , Pm)

1. K0 ← 0n;

2. K1 ← 0n−1||1;

3. K2 ← 0n−2||10;

4. K3 ← 0n−2||11;

5. K4 ← 0n−3||100;

6. H2 ← EK4(C1);

7. H1 ← H2 ⊕ hK3(C2|| . . . ||Cm, T );

8. (P2, . . . , Pm)

← CtrK2,H1(C2, . . . , Cm);

9. A ← H1 ⊕ hK1(P2||P3|| . . . ||Pm, T );

10. P1 ← E−1
K0

(A);

11. return (P1, . . . , Pm);

D. EME

Now we will discuss a disk encryption mode called ECB-Mask-ECB (EME) [13]. As the name suggests,

the mode consists of two electronic code-book layers with a masking layer in between.

The structure of EME is quite different from HCH and HCTR. EME falls under the category of

Encrypt-mask-Encrypt constructions. It does not use any hash function, but instead uses two layers of

encryption. The encryption and decryption algorithms are given in Fig. 6. A pictorial description of EME

is given in Fig. 1(d).

EME requires 2m + 2 block cipher calls for encrypting an m block message. It requires no multipli-

cation. EME uses a single key same as the block-cipher key. EME has some message length restrictions.

If the block length of the underlying block cipher is n then the message length should always be a

multiple of n. Moreover, EME cannot encrypt more than n blocks of messages. This means that if an

AES-128 is used as the underlying block-cipher then EME cannot encrypt more than 2048 bytes (2 KB)

of data. This message length restriction was removed in a construction called EME∗ which requires more

block-cipher calls than EME. But for the purpose of disk encryption EME is sufficient, as generally disk

sectors lengths are less than 2KB and their lengths are multiples of 128 bits. EME has a security bound
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Fig. 6. Encryption and Decryption using EME.

Algorithm EME.EncryptTK(P )

1. Partition P into P1, P2, . . . , Pm

2. L ← xEK(0n)

3. for i ← 1 to m do

4. PPi ← xi−1L⊕ Pi

5. PPPi ← EK(PPi)

6. end for

7. SP ← PPP2 ⊕ PPP3 ⊕ . . . PPPm

8. MP ← PPP1 ⊕ SP ⊕ T

9. MC ← EK(MP )

10. M ← MP ⊕MC

11. for i ← 2 to m do

12. CCCi ← PPPi ⊕ xi−1M

13. end for

14. SC ← CCC2 ⊕ CCC3 ⊕ . . . CCCm

15. CCC1 ← MC ⊕ SC ⊕ T

16. for i ← 1 to m do

17. CCi ← EK(CCCi)

18. Ci ← xi−1L⊕ CCi

19. end for

20. return C1, C2, . . . , Cm

Algorithm EME.DecryptTK(C)

1. Partition C into C1, C2, . . . , Cm

2. L ← xEK(0n)

3. for i ← 1 to m do

4. CCi ← xi−1L⊕ Ci

5. CCCi ← E−1
K (CCi)

6. end for

7. SC ← CCC2 ⊕ CCC3 ⊕ . . . CCCm

8. MC ← CCC1 ⊕ SC ⊕ T

9. MP ← E−1
K (MC)

10. M ← MP ⊕MC

11. for i ← 2 to m do

12. PPPi ← CCCi ⊕ xi−1M

13. end for

14. SP ← PPP2 ⊕ PPP3 ⊕ . . . PPPm

15. PPP1 ← MP ⊕ SP ⊕ T

16. for i ← 1 to m do

17. PPi ← EK(PPPi)

18. Pi ← xi−1L⊕ PPi

19. end for

20. return P1, P2, . . . , Pm

of O(σ2)/2n + δ.

E. TET

TET uses two layers of block-wise invertible universal hash functions with an ECB layer of encryption

in-between them. To compute the hash function, TET requires a hash key τ which requires certain

properties. To ensure invertibility of the hash function, τ must be such that for a m block message

σ =
∑m

i=1 τm 6= 0. For this to be true one requires different hash keys for different message lengths. The

authors propose a way to generate the hash key τ for different messages using a key. The encryption

algorithm also requires the value of σ−1. This makes TET rather complicated for applications which

requires encryption of variable length messages. As our target application will use only fixed length
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Fig. 7. Encryption and Decryption using TET.

Algorithm TET.EncryptTK1,K2,τ,σ(P )

1. Partition P into P = P1, ..., Pm

2. L ← |P |;
3. X ← EK1(L);

4. β ← EK1(T ⊕ xX);

5. SP → 0n; SC ← 0n;

6. for i ← 1 to m

7. SP ← (SP ⊕ Pi)τ ;

8. end for

9. SP ← SPσ−1

10. for i ← 1 to m

11. PPi ← Pi ⊕ SP ;

12. PPPi ← PPi ⊕ αi−1β;

13. CCCi ← EK2(PPPi);

14. CCi ← CCCi ⊕ xi−1β

15. SC ← (SC ⊕ CCi)τ

16. end for

17. SC ← SCσ−1;

18. for i ← 1 to m

19. Ci ← CCi ⊕ SC ;

20. Return C1, ..., Cm;

Algorithm TET.DecryptTK1,K2,τ,σ(C)

1. Partition C into C = C1, . . . , Cm

2. L ← |C|;
3. X ← EK1(L);

4. β ← EK1(T ⊕ xX);

5. SP → 0n; SC ← 0n;

6. for i ← 1 to m

7. SC ← (SC ⊕ Ci)τ ;

8. end for

10. for i ← 1 to m

11. CCi ← Ci ⊕ SP ;

12. CCCi ← CCi ⊕ αi−1β;

13. PPPi ← E−1
K2

(PPPi);

14. PPi ← PPPi ⊕ xi−1β

15. SP ← (SP ⊕ PPi)τ

16. end for

18. for i ← 1 to m

19. Pi ← PPi ⊕ SP ;

20. return P1, ..., Pm;

messages, we present the TET algorithm only for fixed lengths which are multiples of the block length

of the block-cipher. Also we assume a fixed value of τ and pre-computed values of σ−1. The algorithm

for TET is shown in Figure 7. A high level description is provided in Fig 1(e). Note, that the encryption

and decryption operations in TET are quite different. Compared with TET decryption operation, the

encryption operation requires two extra multiplications by σ−1.

Some of the characteristics of the five modes of operations discussed above are summarized in Table

I.
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TABLE I

SUMMARY OF THE CHARACTERISTICS OF THE FIVE TES DESCRIBED. THE FIGURES ARE CONSIDERING A FIXED LENGTH m

BLOCK MESSAGE.

Mode BC Calls Field Mult. no. of keys

HCH m + 3 2(m− 1) 1

HCHfp m + 2 2(m− 1) 2

HCTR m 2(m + 1) 2

XCB m+6 2(m + 1) 1

EME 2(m + 1) 0 1

TET m + 2 2m + 2 3

IV. DESIGN DECISIONS

For implementing all five schemes we chose the underlying block cipher as AES-128. As it was

mentioned in the Introduction, the designs that we present here are directed towards the application of

disk sector encryption. In this specific application the messages are all of fixed length and we consider

them to be multiples of 128 bits. In particular, our designs are optimized for applications where the sector

length is fixed to 512 bytes. As the sector address is considered to be the tweak, thus the tweak length

itself is considered to be fixed and equal to one block length of the block cipher.

The speed of a low level disk encryption algorithm must meet the current possible data rates of disk

controllers. With emerging technologies like serial ATA and Native Command Queuing (NCQ) the modern

day disks can provide data rates around 3Giga-bits per second[32]. Thus, the design objective should be

to achieve an encryption/decryption speed which matches this data rate.

The modes HCH, HCTR, XCB and TET use two basic building blocks, namely, a polynomial universal

hash and the block-cipher. EME requires only a block-cipher. Since AES-128 was our selection for the

underlying block-cipher, proper design decisions for the AES structure must meet the desired speed. Out

of many possible designs reported in the literature [19], [9], [3], [14], [8] we decided to design the AES

core so that a 10-stage pipeline architecture could be used to implement the different functionalities of

the counter mode, the electronic code book (ECB) mode and the encryption of one single block that we

will call in the rest of this paper single mode.

This decision was taken based on the fact that the structure of the AES algorithm admits to a natural

ten-stage pipeline design, where after 11 clock cycles one can get an encrypted block in each subsequent

clock-cycle. It is worth mentioning that in the literature, several efficient designs with up to 70 pipeline
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stages have been reported [16], but such designs would increase the latency, i.e., the total delay before

a single block of cipher-text can be produced. As the message lengths in the target application are

specifically small (in particular the most used sector size is of 512 bytes), such pipeline designs are not

suitable for our target application.

The main building block needed in the polynomial hash included in the specification of the HCH,

HCTR, XCB and TET modes, is an efficient multiplier in the field GF (2128). Out of many possible

choices we selected a fully parallel Karatsuba-Ofman multiplier which can multiply two 128-bit strings

in a single clock-cycle at a sub-quadratic computational cost [30]. This time efficient multiplier occupies

about 1.4 times the hardware resources required by one single AES round.2. Because of this, the total

hardware area of EME (which does not require multipliers) is significantly lesser than that required by the

other modes that we study. A more compact multiplier selection would yield significantly lower speeds

which violates the design objective of optimizing for speed.

It is noted that the specifications of HCTR, XCB, TET and HCHfp algorithms imply that one multipli-

cand is always fixed, thus allowing the usage of pre-computed look up tables that can significantly speed

up the multiplication operation. Techniques to speed up multiplication by look-up tables are discussed in

[33], [23], [27], [2] for the software platform scenario. These techniques can be somehow be extended to

hardware implementations also. However, there is a tradeoff in the amount of speed that can be obtained

by means of pre-computation and the amount of data that needs to be stored in tables. Significantly

higher speeds can be obtained if one stores large tables. This speedup thus comes with an additional cost

of area and also the potentially devastating penalty of secure storage. Moreover, if pre-computation is

used in a hardware design then the key needs to be hardwired in the circuit which can lead to numerous

difficulties in key setup phases and result in lack of flexibility for changing keys. Because of the above

considerations, we chose not to store key related tables for our implementations. Thus the use of an

efficient but large multiplier is justified in the scenario under analysis. 3 Regarding storage of key related

materials we make an exception to this in case of TET. TET requires computation of a inverse, which

is a particularly expensive arithmetic operation. In case of TET we store the hash key τ along with the

pre-computed value of σ−1, this storage helps us to get rid of a field inversion circuit but does not help

us to speed up multiplications.

We implemented the schemes on a FPGA device which operates at lower frequencies than true VLSI

2For specific experimental details see Table II.
3The same design decision was taken in [23].
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Fig. 8. The Horner’s Rule

Algorithm HORNh(X1, . . . , Xm)

Y ← 0n ;

for i = 1 to m,

Y ← (Y ⊕Xi)h;

end for

return Y

circuits. Thus the throughput that we obtain probably can be much improved if we use the same design

strategies on a CMOS VLSI technology. Our target device was a XILINX Virtex 4, xc4v1x100-12FF1148.

V. THE DESIGN OVERVIEWS

In this Section we give a careful analysis of the modes’ data dependencies and we explain how the

parallelism present in the algorithms can be exploited. In the analysis which follows we assume the

message to be of 512 bytes (32 AES blocks). Furthermore, we assume a single AES core designed with

a 10 stage pipeline and a fully parallel single clock cycle multiplier. We also calculate the key schedules

for AES on the fly, this computation can be parallelized with the AES rounds. The polynomial universal

hash functions are computed using the Horner’s rule shown in the algorithm of Fig. 8:

A. HCH mode of Operation

Referring to the Algorithm of Fig. 2 the algorithm starts with the computation of the parameter R in

Step 1. For computing R the AES pipeline cannot be utilized and must be accomplished in simple mode,

implying that 11 clock cycles will be required for computing R. At the same time, the AES round keys

can be computed by executing concurrently the AES key schedule algorithm. The hash function of Step

3 can be written as

HR,Q(P1, P2, . . . P32) = P1 ⊕Q⊕ Z

where Z = HORNR(P2, . . . P32). So, Z and Q can be computed in parallel. For computing Z, 31

multiplications are required and computation of Q takes 11 clock cycles. So the computation of the hash

in step 2 takes 31 clock cycles. Then, the computation of Step 4 requires two simple mode encryption

which implies 22 more clock cycles. So we need to wait 64 clock cycles before the counter mode starts.
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The counter mode in step 5 requires 31 blockcipher calls which can be pipelined. So computation of

step 5 requires a total of 30 + 11 = 41 clock cycles. The first cipher block C2 is produced 11 clock

cycles after the counter starts. The second hash function computation of Step 7 can start as soon as C2

is available in the clock cycle 75. Hence the computation of the hash function can be completed at the

same time that the last cipher block (Cm) of Step 5 is produced. Figure 9(a) depicts above analysis. It

can be seen that a valid output will be ready after the cycle 75 and a whole disk sector will be ready in

the cycle 106. In case of HCHfp the computation of Q is not required, and it uses a hash key which is

different from R. Thus R and the hash function can be computed in parallel, which gives rise to a savings

of 11 clock cycles. So HCHfp will produce a valid output in 64 clocks and it will take 95 clock-cycles

to encrypt the 32 block message (see Figure 9(b)).

B. HCTR Mode of Operation

Referring to the Algorithm of Fig. 4, the computation of the hash function of Step 1 requires 33 clock

cycles. At the same time, the design can derive the AES round keys by executing concurrently the AES

key schedule algorithm. Then, the computation of the parameter CC in Step 2, must be accomplished

in simple AES mode, implying that 11 clock cycles will be required for completing that calculation. As

in HCH mode, the m − 1 block cipher calls included in Step 4 are performed in counter mode, which

once again can be computed in parallel via the pipeline architecture. Hence, the computation of all the

Ci for i = 2, . . . , m = 32, can be computed in (32− 1) + 11 = 42 clock cycles. At the same time, the

second hash function computation of Step 7 can start as soon as C2 is available in the clock cycle 56.

Hence the computation of the hash function can be completed at the same time that the last block cipher

(Cm) of Step 5 is produced. Figure 9(c) depicts the timing analysis just given. It can be seen that a valid

output will be ready after the cycle 55 and a whole disk sector will be ready in the cycle 88.

C. XCB Mode of operation

The computation of XCB starts with the derivation of the five keys. Derivation of each key requires

a block-cipher call. These five block-cipher calls can be parallelized thus requiring 15 clock cycles. The

computation of the first hash requires 33 clock cycles and in the mean time the computation of the two key

schedules and A can be completed. The computation of the first hash which require 33 clock cycles can

thus be completed within clock-cycle 49. Then the counter mode starts, which requires 41 clock cycles

to complete. The second hash can start at clock cycle 59 and thus it is completed in clock-cycle 93. For

computing the last block, an AES decryption call is required with a different key. Hence, completing
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the key schedule and the decryption requires another 21 clock cycles, and a reset operation is necessary

before computing the new key schedule. This thus gives rise to a requirement of 115 clock cycles to

encrypt the whole sector. But the first cipher block would be ready in case of XCB after clock cycle 59.

D. EME mode of Operation

Referring to the Algorithm of Fig. 6, the computation of the parameter L in Step 2, must be ac-

complished in a sequential fashion, implying that 11 clock cycles will be required for completing that

calculation. Thereafter, the 32 block cipher calls included in Steps 3-6 can be accomplished using the

benefits of the parallelism associated to the pipeline approach. So, the computation of all the PPPi for

i = 1, 2, . . . , m = 32, can be computed in (32− 1) + 11 = 42 clock cycles. On the contrary, the cipher

call in Step 9 for obtaining MC must be performed in a sequential fashion, which implies 11 extra clock

cycles. The second layer of encryption can also be performed in 42 clock cycles and the operations xiM

and xiL in steps 12 and 18 can be parallelized with the block-cipher calls. So to complete encryption of

32 blocks EME should require 11+42+11+42 = 106 clock cycles. And the first block of valid output

would be produced after 75 clock cycles. Some pre-computations may save some of the EME costs. For

example, L in Step 2 is a quantity only dependent on the key K, thus, L can be pre-computed yielding

the saving of 11 clock cycles. But this will require storage of key materials. Figure 9 (e) shows the EME

operations that are suitable for being computed in parallel.

E. TET mode of Operation

Referring to the algorithm of Fig. 7, the computation of the parameter β requires two AES calls in

the simple mode, which can be accomplished in 22 clock cycles. The computation of SP can be done

in parallel. Computation of SP will require 32 multiplications which can be completed in 33 clock

cycles. In encryption it requires an extra multiplication with σ−1, Thus the computation of SP would be

complete in 34 clock cycles. In the mean-time the key schedule for the second block-cipher key can also

be completed. The computation of PPi and PPPi can be parallelized and they can be computed in 33

clock cycles. As soon as PPP1 is available (which would be available at clock cycle 35), computation

of CCCi can start. Computation of CCCi, i = 1, . . . , 32 will take a total of 32 block cipher calls which

can be completed in 42 (32 + 10) clock cycles. Thus, after clock-cycle 78 all CCCi s would be ready.

The computation of the final cipher texts Ci-s would take another 32 clock cycles. Thus, the whole

disk would be ready after 110 clock cycles. And the first cipher block would be ready after 79 clock
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Fig. 9. Timing diagrams

cycles. Note that in this analysis we do not consider computation of the inverse, which may give rise to

a significant increase in the number of the required clock cycles.

The analysis that we just outlined is summarized in Figure 10, where the throughput predictions for all

the five TES modes considered in this work are included. As an example, if we can design an architecture

for HCHfp running at a clock frequency of 100 MHz, then, the algorithm analysis will predict a throughput

of 4.27 Gbps, whereas the same clock frequency will render just 3.69 Gbps for TET.
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The above analysis of the algorithms that we presented is independent of any implementation strategy.

It seems that the number of clock cycles required for each of the algorithms cannot be further reduced

if the design decisions taken by us are followed (10 stage AES pipeline and 1 clock cycle multiplier).

Pre-computation in the multiplier or other multiplication strategies can bring down the cost of computing

the hash function in HCHfp, HCTR and TET.

VI. IMPLEMENTATION ASPECTS

In practice, the timing performance of a generic hardware design will be determined by its associated

critical path. As for the area utilization of a given design, some of the factors that have impact in

hardware resource utilization include: the number of temporary variables involved in the design (which

implies extra registers) and the number of possible inputs that the main building blocks may have (which

translates in extra multiplexer blocks).

In order to give a rough estimation of the critical path associated to each one of the modes, we

show in Table II the performance of the architectures’ main building blocks, namely, a key gener-

ation/encryption/decryption AES round, an encryption-only AES round, and a 128-bit fully-parallel
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TABLE II

PERFORMANCE OF AN ENCRYPTION/DECRYPTION AES ROUND AND A 128-BIT FULLY-PARALLEL KARATSUBA-OFMAN

MULTIPLIER

Design Slices B-RAM Critical Path(nS)

Full AES round 1215 8 10.998

Encryption-only AES round 298 8 6.71

multiplier 3223 - 9.85

Karatsuba-Ofman multiplier. 4

Considering the utilization of B-RAMs and slices, the size of one full AES round in our design is about

30% smaller than that of the Karatsuba-Ofman multiplier. However, the critical path delay associated to

an encryption/decryption AES round, is longer than that of the multiplier block by about 10%.

TABLE III

HARDWARE RESOURCES UTILIZED BY THE FIVE TES

Modo Mux Extra Mul Registers Mux Mux

inAES B-RAM xtime 128 bits 2× 128 3× 128

HCTR 3× 128 - - 3 2 1

HCHfp 4× 128 - 1 5 5 -

HCH 5× 128 - 1 6 5 -

EME 4× 128 2 3 5 5 -

TET 3× 128 2 3 2 4 -

XCB 4× 128 - - 8 6 2

Table III shows the hardware resource usage by each of the five TES modes of operation. Besides

an obvious impact in the area complexity of the modes, the resources occupied by each TES tend to

increase its critical path. In the rest of this Section, we briefly analyze the resource utilization and timing

potential performance of the five TES modes under analysis.

4The experimental results shown in Table II correspond to a place &route simulations using Modelsim XE III 6.0d and Xilinx

ISE 8.3 and a Xilinx Virtex4 XC4VLX100-12FF1148 FPGA as a target device.
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A. HCH and HCHfp

For HCH and HCHfp the critical path will be also lower bounded by the minimum critical path between

the AES core and the hash function. Considering the values given in Table II the maximum throughputs

that we can expect for these two modes when using the full and the encryption-only AES cores is 3.8

Gbps and 4.24 Gbps, respectively. However, we should expect that HCH and HCHfp timing performances

will be appreciably lower than those bounds, because these modes requires six and five extra registers

for temporary variables, respectively. Moreover as shown in Table III, the possible inputs for the AES

core and the hash function is more than that of HCTR, which will force us to use multiplexer blocks

with more inputs.

B. HCTR

As shown in Table III, HCTR requires three extra 128-bit registers in order to allocate temporary

computation values and also the possible inputs for the AES core and the hash function is three. This

feature makes HCTR both, a fast an economical TES mode. The critical path of HCTR will be lower

bounded by the one associated to either the hash function or the AES core, whichever is larger. Therefore,

and according to the critical paths reported in Table II, we can expect that an implementation of HCTR

will have a critical path of at least 10.998ηS when using the full AES core and 9.85 ηS when using the

encryption-only AES round. In terms of throughput, this translates to a maximum of 4.185 Gbps and

4.672 Gbps, respectively.

C. XCB

Out of the five modes analyzed, XCB is both, the most expensive in terms of hardware resource

utilization, and the slowest. XCB’s latency however, is relatively low but the total time required is quite

high. Among other factors, XCB’s total time is high because in its final step the calculation of E−1
K

cannot start till a key schedule computation of C1 has finished. In total, 21 clock cycles are consumed

in that final step. As shown in Table III, storage of XCB temporary variables requires eight extra 128-bit

registers and one 128-bit four-to-one multiplexer. Thus, the maximum throughput that one can expect

for XCB when using the full and the encryption-only AES cores should be significantly lower than 3.21

Gbps and 3.59 Gbps, respectively.

D. EME

In the case of EME, its most notorious building block is the AES core. However, other smaller

components that have some impact in the EME performance are the xtime multiplication algorithm
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along with the chain additions characteristic of this mode. 5 Since the xtime operation can be performed

efficiently in hardware, the critical path of EME is mainly given by that of the AES core utilized. Hence,

we can expect that an implementation of EME will have a critical path of at least 10.998ηS when using

the full AES core and 6.71 ηS when using the encryption-only AES round. In terms of throughput, this

translates to a maximum of 3.48 Gbps and 5.71 Gbps, respectively. Regarding area utilization, EME is

consistently the most economical TES mode. However, the computation of EME requires to store all

the PPPi values for i = 2, . . . , m. This issue was solved by utilizing two extra FPGA block RAMs as

reported in Table III.

E. TET

Once again, the critical path of TET will be lower bounded by the minimum critical path between the

AES core and the hash function. According to Table II, the maximum throughput that we can expect for

TET when using the full and the encryption-only AES cores is 3.36 Gbps and 3.75 Gbps, respectively.

As reported in Table III, the computation of TET requires the allocation of two extra FPGA block RAMs.

Moreover, two 128-bit registers and four 128-bit two-to-one multiplexers blocks are required. For HEH

[31] which is an improvement over TET, the same resources would be required. But HEH does not

require computation of the inverse, which is a good advantage over TET.
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VII. ARCHITECTURE OF HCH

As a representative design example we shall discuss the architecture of HCH in details. The architectures

for the other modes are quite similar and we do not discuss them here.

A. HCH Implementation

Fig. 11 shows the general architecture of the HCH mode of operation. It can be seen that AES must

be implemented both, in counter and in simple mode. Moreover a hash function is also required as one

of the main building blocks. Design details of both, the AES core and the hash function can be found

in the Appendix.

The architecture operation is synchronized through a control unit that performs the adequate sequence

of operations in order to obtain a valid output.

The HCH control unit architecture is shown in Fig. 12. It controls the AES block by means of four 1-bit

signals, namely: cAES that initializes the round counter, the c/d signal that selects between encryption or

decryption mode, the msms signal that indicates whether one single block must be processed or rather,

multiple blocks by means of the counter mode. Finally, readyAES indicates whenever the architecture

has just computed a valid output. The AES dataflow is carried out through the usage of three 128-bit

busses, namely, inAES that receives the blocks to be encrypted, outAES that sends the encrypted blocks

5For the EME mode specifics see the algorithm in Fig.6 and its schematic architecture in Fig.1(d).
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Fig. 13. HCH State Machine Diagram

and S that receives the initialization parameter for the counter mode. The communication with the hash

function block is done using two signals: cH for initializing the accumulator register and the counter of

blocks already processed and readyH that indicates that the hash function computation is ready. The data

input/output is carried by the inH and outH busses, respectively. The parameters R and Q are calculated

in the control unit and send through the busses to the hash function.

The HCH control unit implements a finite state automaton that executes the HCH sequence of op-

erations. It defines the following eight states: RESET, AES1, AES2, HASH1, AES3, AES4, ECOUNTER

and HASH2. In each state, an appropriate control word is generated in order to perform the required

operations. The correct algorithm execution requires storing the R, Q, S, I, U1 and M1 values. Thus, six

extra 128-bit registers are needed. In particular the hash function input inH can come from the system

input or from the output of the AES counter mode. Therefore, a multiplexer is needed for addressing the

correct input, where the multiplexer signals are handled by the state machine’s control word. We compute

the xQ signal by means of an xtimes operation in the finite field GF(2128), which was implemented as

described in for example [28], [7].

The sequence of operations described in Algorithm 2 is performed through the execution of the state

machine diagram shown in Figure 13. The state transition among states is controlled by two signals,

namely, readyAES, which indicates that the current output in the bus outAES is valid and; readyH that

indicates that the computation of the hash function has just been completed.

In RESET the AES key schedule process starts and the value in T is assigned to inAES. Then, the

control is transferred to AES1. In AES1, the value R = Ek(T ) is computed concurrently with the key

generation process and when the signal readyAES becomes active the value in outAES is transferred to

the register regR, the round counter is re-initialized, the value R ⊕ len is computed and the control is
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transferred to the state AES2. In AES2 the value Q = Ek(R⊕ len) is computed and at the same time the

computation of the hash value M1 starts. When the signal readyAES becomes active the round counter

is re-initialized, the value in Q is transferred to the register regQ, xQ is computed and the automaton

switches to state HASH1. In state HASH1 the computation of the hash value M1 is completed, and when

the signal readyH is active the hash result is stored in the register M1 and the automaton transitions to

AES3. In the state AES3 the value U1 = Ek(M1) is computed, and when the signal readyAES becomes

ready, the value I = M1 ⊕U1 is computed and stored in RegI and the control is transferred to the state

AES4. In AES4, the value S = Ek(I) is computed and when the signal readyAES is ready that value is

stored in RegS and then we arrive to the state ECOUNTER. In the state ECOUNTER the AES multiple

block encryption in counter mode starts, when the signal readyAES is activated the hash function initiates

and the automaton switches to the state HASH2. When in state HASH2, the encryption of C2, . . . , Cm

in counter mode is performed in parallel with the computation of the hash function. Finally, when the

signal readyH is activated we have the hash result in C1.

En each one of the states mentioned above, a 14-bit control word cword that orchestrates all the

architecture modules is continuously updated. The organization of the control word is summarized in

Table IV.

The dataflow for encryption and decryption is essentially the same. The only modification is to

determine whether Q or xQ should be used in the two hash function calls. This decision is taken in our

architecture with the help of a multiplexer block whose output is the input hash signal Q (se Fig. 13).

In the first call to the hash function block, and when the state is HASH1 and the mode signal is off that

multiplexer selects Q, otherwise, it selects xQ. In the second hash function call, xQ is selected if the

automaton is in the state HASH2 and the mode signal is off, otherwise, it selects Q.

1) Fixed Length HCH: In the specific case of the disk encryption application, it is known in advance

that the plaintext messages will be of exactly 512 bytes. Taking advantage of this fact, we can optimize

the implementation of the HCH mode of operation even further as shown in the algorithm of Fig. 3. The

modification implies a total saving of 11 clock cycles as is shown in Fig. 9(b). The initial encryption of

R is omitted since this parameter is substituted by a second key, while Q is substituted by R α. This

modification also implies a saving in area resources as it will be seen in the next Section.

VIII. RESULTS

In this Section we present the experimental results obtained from our implementations. We measure the

performances of our designs based on the following criteria: total time required for encrypting 32 blocks
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TABLE IV

CONTROL WORD SPECIFICATION PERMUTATION.

Control Word bits Functionality

cword0 Synchronizes the input dataflow

cword1 Indicates whether the hash function input comes from the

system input or rather, from the output of the AES in counter mode

cword2 hash function reset

cword4 round counter reset

cword5 AES in simple or counter mode

cword6 AES counter mode ready for computing a new plaintext

cword7 Load signal for register R

cword8 Load signal for register Q

cword9 Load signal for register U1

cword10 Load signal for register M1

cword11 Load signal for register S

cword12 Determines if the AES will be working according to

the stipulated in the input signal or in encryption mode

cword13 Load signal for register I

of data; latency, i.e., the elapsed time needed to produce the first output block; the size of the circuit

in slices; the number of B-RAMs used and the throughput. The performance/area tradeoff is evaluated

using the Throughput per Area (TPA) metric, which is computed as,

TPA = [(slices + 128 ·BRAMS) · Total Time]−1 .

Where a higher TPA coefficient indicates higher design efficiency, i.e., a better performance/area tradeoff.

The rest of this Section is organized as follows. In Subsection §VIII-A we report the area and timing

performance obtained in the implementation of the main building blocks required for the implementation

of the TES modes. Then, Subsection §VIII-B reports the performance achieved by the five TES modes

analyzed in this paper. The comparison was carried out using a pipelined full AES core, a sequential AES

core and a pipelined encryption-only AES core. Finally, in Subsection §VIII-C, we give a speculative

comparison of our EME design against the best software implementation reported in the open literature

for the AES cipher.
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TABLE V

PERFORMANCE OF THE AES AND HASH IMPLEMENTATIONS

Method Slices B-RAM Frequency Clock Cycles Throughput TPA

(MHz) (Gbps)

Full-core AES-Sequential 1301 18 81.97 10 1.05 2273.7

Full-core AES-Pipeline 6368 85 83.88 1 10.74 4863.17

Encryption-Only AES-Pipeline 2468 85 149.00 1 19.07 11162.7

Hash function 4014 - 101.45 1 13.00 25274.0

A. Main Building Blocks

The two building blocks shown in Table II, were used for implementing a full AES core (i.e., an

encryption/decryption/key generation core) in sequential and pipeline architecture; an encryption-only

pipeline AES core and; a hash function for the HCH an the HCTR modes. Table V summarizes the

performance obtained in the implementation on those blocks. The sequential AES gives significantly

poor throughput and TPA, while the hash function has better throughput and TPA than the full AES-

pipeline but smaller throughput than the encryption-only AES core.

B. Performance Comparison of the six TES Modes

In Table VI the experimental results for the six modes of operation implemented with an underlying

full pipelined AES core are shown. Note that the number of clock-cycles reported in Table VI are one

more than those estimated in Section V, this is because in the true implementations one clock cycle

is lost due to the initial reset operation. The critical path of the designs shown in Table VI is mainly

determined by the AES core, which as it was shown in Table V, has a longer path the hash function

utilized in all five HCTR, HCH, HCHfp, TET and XCB modes.

From Table VI it is evident that EME is the most economical mode in terms of area resources, mainly

due to the fact that this mode does not utilizes a hash function. Hence, the critical path of EME is given

by the AES full core plus a chain of three layers of additions. Out of the five modes analyzed, XCB is

both, the most expensive in terms of hardware resource utilization, and the slowest. HCHfp and HCH

require more hardware resources than HCTR. TET performs about the same than HCHfp assuming that

the parameter σ−1 has been previously precomputed.

In terms of speed, the fastest mode is HCTR since it only utilizes one AES block cipher call in

sequential mode, whereas HCHfp requires a total of four such calls (although only three have conse-
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quences in terms of clock cycles since the other is masked with the computation of the hash function).

In this scenario, HCHfp is better than HCH, EME, TET and XCB in terms of speed. Finally, in terms of

efficiency, the highest TPA is achieved by HCTR followed by EME, HCHfp and HCH, distantly followed

by TET and XCB.

TABLE VI

HARDWARE COSTS OF THE HCTR, HCH, HCHFP, EME, TET AND XCB MODES WITH AN UNDERLYING FULL 10-STAGE

PIPELINED 128-BIT AES CORE: THE TIME AND CLOCK-CYCLES ARE THE TIME REQUIRED TO ENCRYPT ONE SECTOR= 32

BLOCKS

Mode Slices B-RAM Frequency Clock Cycles Time Latency Throughput TPA

(MHz) Cycles (µS) (µS) GBits/Sec

HCH 13622 80 65.939 107 1.623 26.06 2.524 25.82

HCHfp 12970 85 66.5 96 1.443 0.992 2.84 29.04

HCTR 12068 85 79.65 89 1.117 0.703 3.67 39.0

XCB 13418 85 54.021 116 2.147 1.110 1.91 19.168

EME 10120 87 67.835 107 1.577 1.120 2.60 29.82

TET 12072 87 60.505 111 1.834 1.305 2.23 23.494

In Table VII we show the six TES modes of operation when using a sequential implementation of

the AES core. In a sequential architecture, EME is the slowest mode in terms of latency due to the two

costly block cipher passes that requires eleven clock cycles per block. Hence, a significant increment in

the total number of clock cycles is observed for the EME mode. This situation does not occur in the other

four modes since they only need one encryption pass. The hash function computation is not affected in

this scenario due to the fact that we use a multiplier which is essentially a combinatorial circuit able to

produce a result in one clock cycle. HCHfp, HCH, TET and XCB perform behind in terms of speed,

area and TPA, in that order.

While performing a sector decryption, all five TES, HCTR, HCH, HCHfp, EME and TET only require

AES calls in forward mode, hence, we just need an encryption-only AES core for performing a sector

decryption in those modes. It was this observation what motivated us to investigate the performance

of those four modes when using an encryption-only AES underlying block cipher. The results of this

experiment are summarized in Table VIII. The fastest throughput and TPA is achieved by EME (the only

mode that does not use a Karatsuba-Ofman multiplier). In fact, in this case EME essentially achieves the

same maximum clock frequency than that of the encryption-only AES core (see Table V). After EME,

HCTR, HCHfp and HCH emerge as a distant second place. TET is even slower and more inefficient in
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TABLE VII

HARDWARE COSTS OF THE HCTR, HCH, HCHFP, EME, TET AND XCB MODES WITH AN UNDERLYING SEQUENTIAL

128-BIT AES CORE: THE TIMES REPORTED ARE FOR 32 BLOCKS

Mode Slices B-RAM Frequency Clock Cycles Time Throughput TPA

(MHz) (µS) (Gbits/sec)

HCH 8688 18 64.026 416 6.497 0.631 14.00

HCHfp 7903 18 64.587 405 6.270 0.653 15.62

HCTR 7006 18 77.737 388 4.991 0.82 21.53

XCB 8351 18 52.108 455 8.731 0.469 10.749

EME 5053 20 65.922 716 10.861 0.377 12.09

TET 7030 20 58.592 421 7.185 0.570 14.512

TABLE VIII

HARDWARE COSTS OF THE HCTR, HCH, HCHFP, EME AND TET MODES WITH AN UNDERLYING ENCRYPTION-ONLY

10-STAGE PIPELINED 128-BIT AES CORE: THE TIMES REPORTED ARE FOR 32 BLOCKS

Mode Slices B-RAM Frequency Clock Cycles Time Latency Throughput TPA

(MHz) Cycles (µS) (µS) GBits/Sec

HCHfp 7513 85 95.801 98 1.022 0.678 4.00 53.15

HCTR 6996 85 98.580 89 0.902 0.557 4.54 61.96

EME 4200 87 149.09 107 0.717 0.496 5.71 90.86

TET 7165 87 93.035 111 1.193 0.849 3.43 45.802

terms of the TPA coefficient.

C. Speculative Comparison against Software Solutions

According to Table I the implementation of the EME mode requires 2(m + 1) block cipher calls plus

some extra operations that in the rest of this discussion will be neglected. Notice that in our application,

we have assumed that the plaintext length is fixed to 32 128-bit blocks. Therefore, the computational

cost of an EME software implementation is lower bounded by 66 times the timing cost of one block

cipher call. Using those estimations we compare in Table IX the speedup that our EME reconfigurable

hardware implementation achieves compared with the best software implementations reported in the open

literature.

Using the bit-slice technique, the (arguably) fastest software AES encryption implementation published

till date was recently reported in [22]. That design requires about 147.2 clock cycles for encrypting one
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TABLE IX

A PERFORMANCE COMPARISON OF THE EME MODE OF OPERATION USING SEVERAL AES ENCRYPTION CORES

IMPLEMENTED IN SOFTWARE VS. OUR EME RECONFIGURABLE HARDWARE DESIGN.

Design Processor Cycles/Sector EME Latency fold Speedup

EME using AES in [22] Intel Core 2 Duo 9715.2 4.55µS 6.34

EME using AES in [21] AMD Athlon 64 11120 4.675µS 6.52

EME using AES in [17] AMD Athlon 64 13134 5.47µS 7.63

EME using AES in [1] AMD Athlon 64 14150.4 5.896µS 8.22

EME here FPGA Virtex IV 107 0.717µS 1

128-bit block when implemented in a Intel Core 2 Duo platform running at 2.135 GHz. Other competitive

software AES designs are also included in Table VIII [21], [17], [1]. As it is shown in Table IX the

reconfigurable hardware EME design presented here outperforms the best software solutions by a factor

of at least 6.34 fold speedup.

IX. DISCUSSIONS

As we stated in Section IV the design objective would be to match the data rates of modern day disk

controllers which are of the order of 3Gbits/sec. Table VII shows that using a sequential design it is

not possible to achieve such data rates though this strategy provides more compact designs. If we are

interested in encrypting hard disks of desktop or laptop computers the area constraint is not that high, but

speed would be the main concern. So, a pipelined AES will probably be the best choice for designing

disk encryption schemes.

From Table VI we see that while using a encryption/decryption pipeline AES core the most efficient

mode in terms of speed is HCTR followed by HCHfp, EME, HCH, TET and XCB. The full functionality

of HCH is not needed for disk encryption schemes as for this application messages would be of fixed

length. Thus we can conclude that HCTR and HCHfp are the best modes to use for this application.

But, the security guarantee that HCTR provides is quite weak as it has a cubic security bound. If we

assume that a hard disk of 256 Giga Bytes is encrypted using HCTR and an adversary has access to this

ciphertexts then (s)he has access to 234 128 bit blocks of ciphertext. Then probability with which the

adversary can distinguish HCTR from a random permutation is about 1
226 + δ(= (234)3

2128 + δ). In the same

situation the distinguishing probabilities for HCH, HCHfp and EME would be around 1
260 +δ. This means

that using HCTR is not secure to even encrypt a full hard-disk with the same key. The throughput of
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HCHfp is slightly better than EME, but as stated in [11] EME has pending patent claims. Nevertheless,

according to [6] HCHfp has no such patent claims.

From table VIII we see that the encryption operation of all the modes considered here except XCB can

be significantly improved if a encryption only AES core is implemented. So in certain scenarios it may

be possible to have two different circuits for encryption and decryption where the encryption operation

would be considerably faster. For disk encryption scenario, it is probable that a sector would be written

once and would be read many times. So it is better to have a faster decryption circuit, as the decryption

operation is probable to be performed more frequently. As the TES are all length preserving encryption

schemes which are permutations, so one can easily replace the encryption operation with the decryption

operation and vice-versa without any effect on the security guarantees provided by the modes. This subtle

change can improve the total throughput of a disk-encryption considerably. If an encryption only AES

core is used then EME gives the best throughput and other modes are far behind it.

X. CONCLUSION

Hard disk encryption for desktop and laptop computers is an application which is gaining much

importance in the current days. It has been argued that TES proposals would be the candidates of choice

for such applications. Proper security model for this application is already available, and there are many

constructions which are provably secure under that security model. As the nature of the application

dictates that the encryption/decryption algorithm should reside on the disk controller and the algorithm

does not require to have knowledge of the high level partitions of the disk, a hardware implementation of

the algorithms would be most preferred. From our study we have shown that a hardware implementation

would be cost efficient and would be faster than software solutions (this is confirmed by the data provided

in Table IX).

Though a rigorous security analysis for the different proposed TES has been done and all schemes have

been claimed to be “efficient” based on grounds of speculative algorithm analysis, no study regarding their

performances with compulsory data are yet available for various scenarios. In this paper we presented

optimized hardware implementation of five TES. Our choice of the schemes covers all reported “efficient”

schemes. To our knowledge this is the first work to report real performance data of any TES on hardware.

We analyze the potential for parallelism for each of the chosen modes and argue regarding their hardware

costs and performances. We also provide experimental data regarding hardware resources and throughput.

Our study confirms for the first time that many proposed modes can be efficiently used for the in-place

disk encryption application.
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[20] C. Mancillas-López, D. Chakraborty, and F. Rodrı́guez-Henrı́quez. Efficient implementations of some tweakable enciphering

schemes in reconfigurable hardware. In INDOCRYPT, volume 4859 of Lecture Notes in Computer Science, pages 414–424.

Springer, 2007.

[21] M. Matsui. How far can we go on the x64 processors? In Robshaw [29], pages 341–358.

[22] M. Matsui and J. Nakajima. On the power of bitslice implementation on intel core2 processor. In P. Paillier and

I. Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 121–134. Springer, 2007.

[23] D. McGrew and J. Viega. The galois/counter mode of operation (GCM), submission to nist modes of operation process,

January 2004. Available at: http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-spec.pdf.

[24] D. A. McGrew and S. R. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint Archive, Report

2004/278, 2004. http://eprint.iacr.org/.

[25] D. A. McGrew and S. R. Fluhrer. The security of the extended codebook (XCB) mode of operation. Cryptology ePrint

Archive, Report 2007/298, 2007. http://eprint.iacr.org/.

[26] D. A. McGrew and J. Viega. Arbitrary block length mode, 2004. http://grouper.ieee.org/groups/1619/email/pdf00005.pdf.

[27] D. A. McGrew and J. Viega. The security and performance of the galois/counter mode (GCM) of operation. In INDOCRYPT,

pages 343–355, 2004.

[28] Phillip Rogaway, Mihir Bellare and John Black. OCB: A block-cipher mode of operation for efficient authenticated

encryption. In ACM Transactions on Information and System Security (TISSEC), volume 6, pages 365–403, 2003.

[29] M. J. B. Robshaw, editor. Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-17,

2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science. Springer, 2006.
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Fig. 14. AES Pipeline Architecture

We designed two AES implementations, one sequential architecture that yields a valid output after 11

clock cycles and another based on a 10-stage pipeline structure able to encrypt a block cipher per cycle

after eleven cycles of latency. Both implementations utilized double port memories for computing the

AES Byte Substitution (BS) transformation.

The sequential strategy uses only one round that contains the four AES steps along with a multiplexer

block that eliminates the MixColumn step in the tenth round as is shown in Fig. 14. The control circuit

consists of one 4-bit ascending/descending order counter for encryption/decryption, respectively. The

counter output points to the correct address where the keys are stored and it controls the multiplexor

M1 that feedbacks the round or it allows that a new input data comes in, and the multiplexor M2 that

controls the omission of the MC transformation in the tenth AES round. For decryption we followed the

procedure described in [7]. It is worth mentioning that the key schedule process is accomplished after

10 clock cycles. Each round key so generated is stored in a 128x32 RAM memory.

In the AES pipeline implementation the 10 AES rounds are unrolled, while the key generation is

computed sequentially and each one of the round keys is stored in a register directly connected to the

corresponding round as is shown in Fig. 14. Because of synchronization purposes, each AES round is

isolated from the preceding one by a latch circuit. This implementation does not use a control unit, since

this is added with the help of outside circuitry whenever the AES core will be used in simple or counter

mode. Starting from cycle eleven, valid outputs will be produced every clock cycle.

As it was already explained, the encryption of multiple blocks in both, HCTR and HCH is accomplished

using AES in counter mode. Additionally, HCTR and HCH modes also require the encryption of several
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Fig. 16. Structure of the Karatsuba-Ofman Multiplier

1-block long plaintexts, which can be performed by simply using the AES core in single mode. For most

applications, the implementation of two separated AES cores is prohibited, therefore we propose in this

work to use a single AES core that can be programmed for implementing both functionalities, namely,

the counter mode or the single mode computation as shown in Fig. 15. The readyAES signal in Fig. 15

indicates that a valid output has just been produced.

The Multiplier Design

Our strategy for multiplication is based on the Karatsuba-Ofman multiplier as it was presented in [30].

The Karatsuba-Ofman multiplier enjoys a superb sub-quadratic complexity of O(nlog23) bit operations

for multiplying two n-bit polynomials as we will briefly explain next.

Let the field GF (2128) be constructed using the irreducible polynomial P (x) = x128 +x7 +x2 +x+1

of degree n = 27. Let A, B be two elements in GF (2128). Both elements can be represented in the
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polynomial basis as,
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Then, using last two equations, the polynomial product is given as

C = x128AHBH + (AHBL + ALBH)x64 + ALBL. (5)

Karatsuba-Ofman algorithm is based on the idea that the product of last equation can be equivalently

written as
C = x128AHBH + ALBL+

(AHBH + ALBL + (AH + AL)(BL + BH))x64

= x128CH + CL.

(6)

It is easy to see that equation (6) can be used to compute the product at a cost of four polynomial

additions and three polynomial multiplications. In contrast, when using equation (5), one needs to

compute four polynomial multiplications and three polynomial additions. Karatsuba-Ofman algorithm

can be applied recursively to the three polynomial multiplications in (6). Hence, we can postpone the

computations of the polynomial products AHBH , ALBL and (AH + AL)(BL + BH), and instead we

can split again each one of these three factors into three polynomial products. By applying this strategy

recursively, in each iteration each degree polynomial multiplication is transformed into three polynomial

multiplications with their degrees reduced to about half of its previous value.
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Figure 16 shows the typical tree structure of a GF(2128) Karatsuba-Ofman multiplier. The polynomial

multiplier shown in Fig. 16 returns a 256-bit polynomial which we need to reduce back to 128 bit using

the generating polynomial, P (x) = x128 + x7 + x2 + x + 1.

The field multiplier is the main building block for implementing the Horner’s rule Algorithm described

in Fig 8. The corresponding hardware architecture is shown in Fig. 17. The implementation of both hash

functions are based on this module.


