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Abstract. We examine several versions of the one-more-discrete-log
and one-more-Diffie-Hellman problems. In attempting to evaluate their
intractability, we find conflicting evidence of the relative hardness of the
different problems. Much of this evidence comes from natural families
of groups associated with curves of genus 2, 3, 4, 5, and 6. This leads to
questions about how to interpret reductionist security arguments that
rely on these non-standard problems.

1. Introduction

In [25] we raised the issue of the use of non-standard versions of discrete
logarithm and Diffie-Hellman problems in order to give reductionist security
proofs or in order to give such proofs without random oracles. In this paper
we look more closely at the “one-more” versions of these problems. Our
purpose is to show their subtlety and give evidence that versions that at
first glance seem to be equally hard might in the real world turn out to have
vastly different levels of difficulty. This evidence comes from certain natural
families of groups — the jacobians of curves of small genus.

We shall distinguish between several different formulations, which we ar-
gue are not likely to be equivalent to one another. The exact statement of
a “hard” problem makes a big difference, although sometimes researchers
tend to lump different variants together. For example, in the context of the
RSA e-th root problem, Joux, Naccache, and Thomé [22] attributed their
one-more version of the problem to Bellare et al [4], although in reality the
problem defined in [4] (which in the context of discrete logs we label 1MDLP
and 1MDHP below) is quite different from the version in [22] (the analo-
gous problems for discrete log and Diffie-Hellman are labeled DTDLP and
DTDHP below).

In §2 we state eight variants of the problems and briefly discuss what
inequalities are known for their levels of difficulty. In §3 we describe some
protocols whose security is related to these problems. In some cases the
one-more-Diffie-Hellman problems are equivalent to the adversary’s task in
attacking the protocol, but we know of no protocol for which this is true of
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the one-more-discrete-log problems. In §4 we give an overview of algorithms
for discrete-log type problems on the jacobian of a low-genus curve. We
show that state-of-the-art algorithms for such groups suggest that several of
the problems in §2 are incomparable to one another. In §5 we draw some
conclusions.

2. Discrete Log and Diffie-Hellman Problems

2.1. The problems. Let G be a group of prime order n, whose group op-
eration will be written multiplicatively (although in the case of the jacobian
groups we shall be considering later it is traditional to write it additively).
Group elements are described by binary strings of length O(log n), and hence
log n is the complexity parameter. Let g be a generator, i.e., a non-identity
element. In four of the eight problems we consider we also need a “challenge
oracle,” which, when queried by the solver, gives a random group element
for which the solver must find either the discrete log or else the solution
to one-sided Diffie-Hellman. This oracle models the situation where the
solver is allowed to decide at any point how many group elements the input
contains.

(1) The Discrete Logarithm Problem (DLP). Given Y ∈ G, find an
integer y mod n such that Y = gy.

(2) The Diffie-Hellman Problem (DHP). Given X,Y ∈ G, find Z ∈ G
such that z ≡ xy (mod n), where X = gx, Y = gy, and Z = gz .

(3) The One-More Discrete Log Problem (1MDLP) as first formulated
in [4] and [6]. The solver is supplied with a challenge oracle that
produces a random group element Yi when queried and a discrete
log oracle. After t queries to the challenge oracle (where t is chosen
by the solver) and at most t − 1 queries to the discrete log oracle,
the solver must find the discrete logs of all t elements Yi.

(4) The (“static” or “one-sided”) One-More Diffie-Hellman Problem
(1MDHP) as first formulated by Boldyreva [8] (her version was
slightly different, see Remark 1 below). The solver is given an el-
ement X ∈ G, an oracle that can solve the DHP for the given X
and arbitrary Y ∈ G, and a challenge oracle that produces random
group elements Yi. After t queries to the challenge oracle (where t is
chosen by the solver) and at most t − 1 queries to the DHP oracle,
the solver must find the solutions Zi of all DHP instances with input
X,Yi, i = 1, . . . , t.

(5) The “Delayed Target” One-More Discrete Log Problem in the sense
of Joux-Naccache-Thomé (DTDLP). The solver is supplied with a
discrete log oracle and must find the discrete log of a random group
element Y that is given to the solver only after all the queries have
been made.
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(6) The “Delayed Target” One-More Diffie-Hellman Problem as defined
by Freeman [18] (DTDHP). The solver is given X ∈ G and a one-
sided Diffie-Hellman oracle, and must solve the DHP with input
X,Y , where Y is a random group element that is given to the solver
only after all the queries have been made.

(7) The DLP1 problem (by analogy with the RSA1 problem in [24]).
The solver is supplied with a challenge oracle that produces random
group elements Yi and an oracle that will give the discrete logs of
any of the Yi. (The number of discrete log queries must be strictly
less than the number of challenge queries.) The solver must find the
discrete log of one of the Yi that was not queried.

(8) The DHP1 problem (see [19]). The solver is given X ∈ G, a challenge
oracle that produces random group elements Yi, and an oracle that
will solve the DHP with input X,Yi for any of the Yi. (The number
of DHP queries must be strictly less than the number of challenge
queries.) The solver must solve the DHP with input X,Yi for one of
the Yi that was not queried.

2.2. Relative difficulty. Because seven of these problems are related to
the security of cryptographic protocols and all of them are useful in gaining
insight into security reductions, we should try to understand their relative
difficulty (see Figure 1). First, a DLP algorithm trivially solves any of the re-
maining seven problems. Similarly, a DHP algorithm will immediately solve
1MDHP, DTDHP, or DHP1. It is also easy to see that 1MDLP efficiently
reduces to DLP1, and 1MDHP efficiently reduces to DHP1.

1MDHP

1MDLP

DTDHP

DTDLP

DHP1 DHP

DLPDLP1

Figure 1. Relative difficulty of discrete log and Diffie-
Hellman problems. A ← B means that there is an efficient
reduction from A to B. The dashed arrows from DLP1 to
DLP and from DHP1 to DHP denote non-tight reductions.
The dashed arrow from DHP to DLP means that a reduction
is known under certain conditions on the problem instances.

In addition, in the 1990’s work by den Boer, Maurer, Wolf, Boneh, Lipton
and others (see [29] for a survey) developed strong evidence for the equiv-
alence of the Diffie–Hellman and Discrete Log Problems in all prime-order
groups.



4 NEAL KOBLITZ AND ALFRED MENEZES

Informally speaking, it seems clear that DLP1 is equivalent to DLP and
DHP1 is equivalent to DHP, even though, so far as we know, there are no
tight reductions from DLP to DLP1 or from DHP to DHP1. The argument
is the same as the one we gave in [24] in the closely analogous case of the RSA
problem and the problem that we called RSA1. Let’s consider, for example,
DLP1. The discrete log queries will give us a randomly distributed set of
pairs (Yi, yi) that is indistinguishable from the set that an attacker could
generate for herself starting with random yi and setting Yi = gyi . Thus,
the queries can’t help, and we can assume a passive attacker. In that case
there is a simple reduction from DLP to the problem of finding one out
of t discrete logs: given an input Y to DLP, one creates an input to the
latter problem by setting Yi = griY for random ri, and we see that the two
problems are equivalent.

Beyond this, however, it is not easy to prove (or even make convincing
informal arguments for) inequalities between the levels of difficulty of these
eight problems. For example, in practice DTDLP seems to be easier than
1MDLP, because in the former problem only a single discrete log must be
found. Moreover, the feature of 1MDLP that potentially could make it
easier than DTDLP in some cases — namely, that the solver in 1MDLP can
make discrete log queries after knowing some or all of the group elements Yi

for which she must find the discrete logs, whereas in DTDLP the target is
revealed only after she makes the queries — doesn’t seem to help in any of the
known algorithms. Thus, we might be tempted to write DTDLP ≤ 1MDLP,
although it seems unlikely that there is a tight reduction from DTDLP to
1MDLP, and we do not even know of an informal argument in support of
this inequality.

Although DHP is trivially easier than (or equivalent to) DLP, it is by no
means clear that the same is true of 1MDHP and 1MDLP or of DTDHP
and DTDLP. Although on the DLP side the solver’s task is harder, she has
a more powerful oracle (that is, a DLP oracle rather than a DHP oracle) to
help her out. Thus, it is not obvious in which direction the inequality should
go between the “one-more” versions of DLP and DHP. One of our purposes
in this paper is to give evidence that the two problems are incomparable. In
other words, there are natural families of groups in which 1MDHP is strictly
easier than 1MDLP in practice, and there are natural families of groups in
which the reverse is true; and the same holds for the comparison between
DTDHP and DTDLP. In fact, we can conclude that in the unlikely event
that someone constructs a tight reduction in either direction, that would
immediately give an improved real-world algorithm in certain groups.

3. Protocols Based on These Problems

3.1. Protocols equivalent to the problems. One of the earliest and
most elegant pairing-based protocols was the Boneh-Lynn-Shacham signa-
ture scheme [10]. If x is the private key and X = gx is the public key of
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the signer, and if H is the hash value of the message to be signed, then the
signature is simply S = Hx. The verification consists in checking that the
two pairing values (g, S) and (X,H) are equal. In [19] Galindo noticed that
the security of BLS signatures against chosen-message attack is precisely
equivalent to DHP1.

In [18] Freeman gave the following identification protocol based on BLS
signatures [10]. Suppose that the Prover wants to convince the Verifier that
she knows the discrete log x of X = gx. The Verifier randomly chooses y,
sets Y = gy, and sends Y as a challenge to the Prover, who must respond
with Z = Y x. The Verifier checks that Z = Xy.

The security of this scheme means that a Verifier who makes a bounded
number of challenges must not then be able to convince another verifier that
he possesses the discrete log x. It is easy to see that the adversary’s task
here is equivalent to DTDHP.

In [8] Boldyreva proposed the following blind signature scheme (also based
on BLS signatures [10]). Suppose that Alice wants a signer S to help her
sign a message m. She first hashes the message, chooses a random r, and
sends H(m)gr to S. The signer has public key X ∈ G and private key x, i.e,
X = gx. After receiving H(m)gr from Alice, S raises it to the x-th power
and sends that to Alice, who divides by Xr. The result is (H(m)gr)x/Xr =
H(m)x, which is Alice’s BLS signature for m.

The accepted definition of security of a blind signature scheme is that an
adversary that makes at most t − 1 queries to S (where t is chosen by the
adversary) cannot feasibly produce signatures for t messages of its choice.
Under the random oracle assumption it is easy to check that the adversary’s
task is equivalent to 1MDHP (more precisely, to the “chosen-target” version
described in Remark 1).

Remark 1. The definition of 1MDHP in [8] is slightly different from the
one in §2. Namely, the solver is required to give the solution to the one-sided
DHP only for a subset of the values produced by the challenge oracle that
is greater in number than the number of queries to the DHP oracle. (This
version models what happens in a chosen-message attack on a signature
scheme, with the challenge oracle corresponding to the hash function and
the DHP oracle modeling signature queries.) This “chosen-target” version is
closely analogous to a similar RSA e-th root problem that was studied in [4].
This version is clearly no harder than the version of 1MDHP in §2, which is
sometimes called the “known-target” version. Moreover, the chosen-target
problem can be shown to be equivalent to the known-target problem in the
following strong sense: An algorithm that solves the chosen-target version
in a given group G with fewer than b queries to the DHP oracle can be used
to solve the known-target version with fewer than b queries to the DHP
oracle. We sketch an outline of how this reduction works. Following the
idea in [4] (where the analogous equivalence was proved for the RSA e-th
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root problem), we suppose that we have such an algorithm for the chosen-
target version and want to use it to solve an instance of the known-target
version. In the latter problem we are given a group element X, a challenge
oracle, and a one-sided DHP oracle. We make b queries to the challenge
oracle to get Y1, . . . , Yb. Now we run the algorithm for the chosen-target
version of 1MDHP with input X. We answer its DHP queries (of which
there are at most t − 1 < b) with our DHP oracle, and we answer the i-th
challenge query by choosing random exponents aij , j = 1, . . . , b, and setting

(1) Y ′
i =

b
∏

j=1

Y
aij

j .

The algorithm eventually outputs Z ′
i = (Y ′

i )
x (where x is the discrete log

of X) for some subset of t of the Y ′
i . If t < b, then we randomly choose

b − t of the remaining Y ′
i and find the corresponding Z ′

i by querying our
DHP oracle. (Note that a total of fewer than b queries to this oracle have
been made.) Renumbering the Y ′

i , we may suppose that we have the DHP

solutions Z ′
1, . . . , Z

′
b for Y ′

1 , . . . , Y ′
b . From (1) it follows that Z ′

i =
∏b

j=1 Z
aij

j ,

where the Zj = Y x
j are the (not yet known) DHP solutions for the Yj. If the

b×b matrix {aij} is invertible modulo the group order n with inverse matrix
{a′ij}, then we can solve the known-target version of 1MDHP by computing

this inverse matrix and setting Zi =
∏b

j=1(Z
′
j)

a′

ij ; if it is not invertible, we
repeat with different random aij.

3.2. Protocols with reduction but not equivalence. There have been a
series of papers giving reductions from either the 1MDLP (see [5, 6, 7, 21])
or the 1MDHP (see [5, 3, 27]) to successful attacks on identification and
signature schemes of Schnorr and others [32]. There have also been a few
cases where the security of a pairing-based scheme has been shown to be
implied by hardness of the 1MDLP (see [2]). In all these papers, however,
what was shown was not that the purportedly hard one-more DLP/DHP
problem is equivalent to breaking the protocol, but rather that this problem
is no more difficult than the adversary’s task. In the case of 1MDLP it seems
hard even to imagine a protocol whose security is equivalent to the problem.

We now briefly describe the Schnorr identification scheme in order to
discuss why it is unlikely that the reduction of 1MDLP to breaking the
scheme can be reversed (i.e., it is unclear how to break the scheme if 1MDLP
is solved). Suppose that the Prover wants to prove to the Verifier that she
knows the discrete log x of her public key X. As before, we are working in
a group G of prime order n with fixed generator g, capital letters denote
group elements, and the corresponding small letters denote their discrete
logs, which are regarded as integers mod n.

The Prover chooses random y and sends Y = gy to the Verifier. He
chooses a random challenge c, which he sends to the Prover, who computes
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z = y+cx mod n, which she sends to the Verifier. He verifies that gz = Y Xc,
and accepts her identity.

In [6] Bellare and Palacio reduce 1MDLP to breaking this identification
scheme. On the other hand, it is unlikely that a reduction can be constructed
in the other direction. In order to do so one would have to show how to use
an attacker on Schnorr to answer the discrete log oracle queries in 1MDLP.
But an oracle that responds to a challenge c by giving the discrete log
z = y + cx of Y Xc cannot in any obvious way be used as an oracle that
gives the discrete log of an arbitrary Z. In order to determine a challenge c
that produces such a result, one would have to find c such that Xc = Z/Y ,
in other words, one would have to find the discrete log of Z/Y to the base
X; and presumably this is no easier than finding discrete logs to the base
g. Thus, it seems unlikely that the security of the Schnorr identification
scheme is provably equivalent to intractability of 1MDLP.

In [25] we commented on the daunting task of assessing the security assur-
ance provided by a reduction from a non-standard mathematical problem.
If the only way to obtain a “proof of security” (or obtain a proof without
random oracles) is to concoct an interactive math problem that people have
no desire to study, it seems to us that the resulting guarantee is not very
convincing.

From the standpoint of someone who’s thinking about studying a non-
standard problem such as the various interactive versions of the DLP, there
is a disincentive to do so if the reduction goes only one way, that is, if the
“hard” problem might be strictly easier than a successful attack on the pro-
tocol. The drawback is clear if we consider an analogous situation. Suppose
that a protocol is advertised with certain parameters and, after much effort,
someone breaks it. The cryptanalyst’s nightmare is that the proponents
of the cryptosystem will learn of this and quickly replace the old param-
eters with new ones in all their postings, thereby blunting the impact of
the analyst’s work. In like manner, suppose that a cryptanalyst works hard
to develop a faster-than-expected algorithm for a non-standard DLP-type
problem used in a security proof, and that this does not break the protocol,
but only calls into question the assurance given by one particular proof. The
danger (from the point of view of the analyst) is that the promoters of the
protocol will point out that their protocol has not been broken, and then
quickly give a new “proof of security” based on a slightly different problem
— in which case the researcher’s algorithm no longer has any relevance. If
the non-standard problem was of little interest except for its appearance
in the earlier “proof of security” (now superceded), then the cryptanalyst
might justifiably feel resentment about having wasted time developing an
attack on the problem. So if one wants to encourage intensive research on
an underlying “hard” problem, it’s best if the problem is equivalent to a
successful attack.

Bellare and Palacio [6] justify their use of a non-standard DLP problem
as follows:
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Although the assumption is relatively novel and strong, our
result reduces the security of the Schnorr identification
scheme to a question about the hardness of a number-
theoretic problem, thereby freeing a cryptanalyst from con-
sideration of attacks related to the identification problem
itself.

In other words, they have removed extraneous features from the protocol
and reduced the security issue to a clean, clearcut math problem.

We would find this point of view more persuasive if the security of the
Schnorr scheme had been shown to be equivalent to 1MDLP, and of course
this is not the case. In fact, in §4 we give evidence that in certain groups
1MDLP is probably strictly easier than breaking Schnorr.

Our view is that if a reductionist security argument is to be of much
value, it should satisfy at least one of two conditions: (1) the problem that
is shown to reduce to successful attacks on the scheme is of independent
interest; or (2) the problem, while somewhat contrived and unnatural, is at
least equivalent to security of the protocol, i.e., it is a faithful reflection of
the true level of difficulty of successful attacks on the scheme.

Remark 2. For an example of an interactive version of the Decision Diffie-
Hellman Problem that was used in a security reduction and soon after turned
out to be easy to solve, see [1] and [34]. However, Szydlo’s successful at-
tack in [34] on the non-standard problems in [1] did not imply that the
corresponding protocols were broken, but only that “the level of security
assurance provided by this scheme is an open question.”

Similarly, when Cheon [13] (using an algorithm first developed by Brown-
Gallant [12]) showed that the “m-Strong Diffie-Hellman Problem” in [9] was
easier than expected (i.e., his algorithm in certain cases was much faster
than the best available DHP algorithms), that did not give an attack on the
Boneh-Boyen scheme, because the reduction between the Strong DHP and
chosen-message attacks on the signature scheme goes in only one direction.

Remark 3. It seems difficult to design a protocol whose security against
active adversaries is equivalent to 1MDLP or DTDLP. The obstruction is
that the DLP does not have any obvious “trapdoor”, and so it is unclear
how to get a component of a protocol to behave as a DLP oracle. Many
years ago Maurer and Yacobi [30] used a trapdoor version of DLP to set
up an ID-based encryption system in which the trusted authority returned
the discrete log of Alice’s identification as her secret key. However, they
had to assume that the group order remained secret, and for this reason the
security of their system would disappear if an attacker were allowed to query
the trusted authority with any number of her choice (rather than with an
actual identification number verified by a supporting document). In fact, if
an attacker is allowed to query a DLP oracle (even a small number of times),
the group order will not remain secret. Namely, an attacker can set Xj = gj

for a few large values of j and get the discrete logs xj , after which she takes
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the g.c.d. of the xj − j to find the group order (which divides each of these
differences).

Recently, Teske [35] developed a more promising way — based on Weil
descent and isogenies of elliptic curves — to construct a trapdoor for the
discrete log problem. Unlike Maurer and Yacobi, she does not assume that
the group order is secret.

Open Problem 1. Design a protocol whose security against active attacks
is equivalent to either 1MDLP or DTDLP.

Remark 4. In [14] the authors propose an on-line/off-line threshold sig-
nature scheme whose security against chosen-message attack is related to
a problem that they call “one-more-r.” It is easy to see that this problem
as they describe it (Definition 9 of [14]) is equivalent to 1MDLP. How-
ever, a closer examination of their protocol reveals that the problem whose
intractability is necessary for its security is actually DLP1, not 1MDLP.
Thus, their protocol is a nice example of one whose security is dependent
upon hardness of DLP1, but it does not provide a solution to the above
open problem.

In this connection recall that DLP1 can be shown to be equivalent to DLP
by an informal argument and by a non-tight reduction, whereas 1MDLP is
probably an easier problem in some settings (see Table 1 below). Because
Definition 9 of [14] gave the incorrect impression that the protocol in [14] is
dependent upon hardness of 1MDLP, it appeared that it was still an open
problem to design a DLP-based on-line/off-line threshold signature scheme.
An unfortunate result of this misunderstanding was that the authors of [11]
expended considerable effort in order to fill this apparent gap — although
in reality no such gap existed.

4. DLP and DHP Algorithms

4.1. Index calculus. In index calculus algorithms to find discrete loga-
rithms what is most time-consuming is, first, the generation of relations by
finding elements that are smooth with respect to a factor base and, second,
the determination of the discrete logs of the elements of the factor base by
linear algebra. The factor base is chosen to have a size that optimizes the
algorithm, essentially by equating the running times of these two phases.

4.2. The DLP in F
∗
p. We first show that in the multiplicative group of a

prime field Fp the DTDLP is easier to solve than the DLP if one is using
naive (i.e., pre-number-field-sieve) index calculus. The general idea of using
the oracle in a “one-more” problem to speed up index calculus is due to
Joux, Naccache, and Thomé [22]; in fact, it was their paper that prompted
us to think that the jacobian groups of low-genus curves might allow us to
separate the difficulty levels of some of the eight problems in §2.

Following [31], we give a brief summary of the naive index-calculus algo-
rithm in F

∗
p and a rough estimate of its running time. Let g be a generator
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of F
∗
p, and let L(p) denote exp(

√
ln p ln ln p). The factor base consists of

the first m = L(p)c primes, where c will be chosen later. To generate rela-
tions, one chooses random j and hopes that the least nonnegative residue
of gj is pm-smooth (that is, has no prime factor > pm), where pm is the
m-th prime. The standard estimate for the number of j’s that will have to
be tried before one expects to find a pm-smooth value of gj is uu, where
u = ln p/ ln pm ≈ ln p/ ln m (since ln pm and ln m differ only by a term of
order ln ln p, and in this discussion we ignore all lower-order terms). We
have

uu = exp(u ln u) ≈ exp

(

ln p

ln m
(ln ln p− ln ln m)

)

≈ exp

(

ln p

c
√

ln p ln ln p
(ln ln p− ln

√

ln p)

)

=L(p)1/(2c).

For each value gj we can use Lenstra’s elliptic curve factorization algorithm
(see [28]) to quickly test it for pm-smoothness. Because the running time of
that factorization method is roughly L(q), where q is the prime factor that
is found by an iteration of the algorithm, it follows that this time will be of
a lower order of magnitude than L(p) and can be neglected. Thus, we may
suppose that it takes uu ≈ L(p)1/(2c) operations to find a relation.

The number of operations required to generate slightly more than m rela-

tions is then ≈ L(p)c+
1

2c , after which the sparse linear algebra stage requires

≈ m2 ≈ L(p)2c operations. Equating these two running times gives c = 1
2

√
2,

which also happens to be the value of c that minimizes the exponent c + 1
2c

in the running time for the first phase. Thus, this value c = 1
2

√
2 is optimal

for two reasons. The resulting time estimate for the whole algorithm is then

L(p)
√

2.

4.3. The DTDLP in F
∗
p. In this case we can find the discrete logs of the

elements of the factor base through oracle queries that each take unit time;
the total time in this phase is thus m ≈ L(p)c. We are then given an element
Y and must find its discrete logarithm y. To do this we need only find a
single relation expressing gjY for some j in terms of the factor base. The
total running time is then of order L(p)c +L(p)1/(2c), which is optimal when

c = 1
2

√
2. This means that the DTDLP can be solved in time L(p)

√
2/2 — in

other words, the number of operations needed to solve the DLP is roughly
the square of the number needed to solve the DTDLP.

Of course, it is the number field sieve, and not naive index-calculus, that
gives the best algorithm available for the DLP in F

∗
p. It would be useful to

make the comparison between the DTDLP and the DLP using the number
field sieve, just as Joux-Naccache-Thomé did for the RSA e-th root problem
in [22]. Most likely the result would be the same as in [22], namely, the
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exponent in the expression for the running time for the DTDLP would be
lower than that for the DLP by a factor of 3

√
2.

Open Problem 2. Compare the optimized number field sieve for the DLP
and the DTDLP in finite fields, and compare implementations with realistic
parameters, as was done in [22] for the RSA e-th root problem.

We have seen that in finite fields we are able to separate the DTDLP
from the DLP. However, we do not know of any way to get an index-calculus
algorithm for the 1MDLP in a finite field that is faster than for the DLP.
We leave this as an open problem.

Open Problem 3. Find an algorithm for the 1MDLP in some family of
finite fields that is faster than any available algorithm for the DLP in those
fields.

4.4. The DLP in a jacobian group. For the remainder of this section
the group G will be a subgroup of prime order n ≈ qg of the jacobian group
of a genus-g hyperelliptic curve over the field of q elements. Elements of G
can be uniquely represented as so-called “reduced divisors” (a, b), where a is
a monic polynomial of degree at most g and b is a polynomial of degree less
than deg(a) satisfying a certain equation. In the case g = 1 we can identify
monic linear polynomials with field elements a, and in this case a reduced
divisor (a, b) is simply a point on the elliptic curve in the usual sense. In
this paper g will be small, say 1 ≤ g ≤ 6.

We now give an overview of index-calculus algorithms to solve the Discrete
Log Problem (DLP) on G. We first choose a factor base FB consisting of a
subset of |FB| ≈ qα degree-one divisors (that is, divisors (a, b) for which a has
degree one). Here α ≤ 1 is chosen later so as to optimize the running time.
Let “Prob” denote the probability that a random element (a, b) ∈ G is FB-
smooth, that is, a splits over the ground field into a product of linear factors
from FB. (If a is such a product, then it is easy to write the divisor (a, b)
in terms of the factor base.) Up to a constant (that depends on g) one has

Prob ≈ qgα/n, and so the reciprocal of this probability is ≈ n1−α ≈ qg(1−α).
The relations-generation phase of index-calculus for the DLP requires us

to find approximately |FB| random elements of G that are FB-smooth, and
this takes time roughly

(2)
|FB|
Prob

≈ qg−α(g−1).

Once the relations are found, the other time-consuming part is the sparse
linear algebra phase that finds the discrete logs of the factor base. That
takes time roughly |FB|2 ≈ q2α. To optimize the running time, we equate
the running times |FB|2 and |FB|/Prob of the two major components and
solve for α, obtaining α = g/(g + 1) = 1 − 1

g+1 . This leads to a running

time of roughly q2−2/(g+1) for the entire DLP algorithm. (This algorithm
is due to Pierrick Gaudry [20] and to unpublished work of Robert Harley.)
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This is close to the fastest running time in the literature. However, for g ≥ 2
the state-of-the-art algorithm uses a “double large prime variant” [16] which

lowers the running time to q2−2/g. We shall use this as our estimate of the
time required to find discrete logs, except in the case g = 1, where there
are no known index-calculus methods that are as fast as Pollard-rho, which
takes time of order q1/2.

Remark 5. In [15] (see also [17]) Diem gives a DLP algorithm with running
time roughly q2−2/(g−1) for “sufficiently general” non-hyperelliptic curves of
genus g ≥ 3. In the present paper we are focusing on hyperelliptic curves,
where much more work has been done than for non-hyperelliptic curves. An
examination of the best available algorithms in the latter case would give a
similar comparison to that in Table 1 below. Indeed, for fixed genus g in the
non-hyperelliptic case all of the entries in the corresponding row of Table 1
would simply have to be multiplied by the factor

2− 2
g

2− 2
g−1

= 1 +
1

g(g − 2)
.

This means that the comparisons given below between the different problems
in §2 carry over to non-hyperelliptic curves as well.

In Table 1 the non-hyperelliptic case is included for genus g = 3, because
Benjamin Smith [33] developed a method using isogenies (that apparently
works only for g = 3) that for many hyperelliptic curves allows one to
transfer the DLP to a non-hyperelliptic curve. Thus, for g = 3 the algorithm
in [15] is the fastest one for a substantial set of hyperelliptic curves.

4.5. Index calculus for non-standard DLP on a jacobian group. We
next consider the DTDLP. In this case one finds the discrete logs of the
elements of FB through oracle queries that each take unit time, after which
one must find the discrete log of some element Y . By adding to Y random
known multiples of the generator one finds an FB-smooth element in time
1/Prob, after which one immediately gets the discrete log of Y . Thus, we
optimize by setting |FB| = 1/Prob, which is algebraically the same as what
we did in §4.1, i.e., once again α = 1 − 1

g+1 . But now — thanks to not

having to do linear algebra — the running time is much less than it was for
the DLP; it is of order qα = qg/(g+1) ≈ n1/(g+1).

Finally, we consider the 1MDLP. We now must find the discrete logs of
|FB|+1 elements Yi after making |FB| discrete log queries. The running time
is dominated by the time it takes to add random multiples of the generator
to each of the Yi until an FB-smooth element is found. This is roughly
|FB|/Prob ≈ qg−α(g−1) by (2), and this is optimal when α = 1. Thus, for

the 1MDLP the running time is of order q ≈ n1/g.

4.6. Brown–Gallant–Cheon for non-standard DHP on a jacobian

group. Leaving the realm of index-calculus algorithms, we also have need
of an algorithm due to Brown-Gallant [12] and Cheon [13] that, given a
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one-sided Diffie-Hellman oracle of the type in 1MDHP and DTDHP, finds
the discrete logarithm of X (and hence solves either of the two problems) in

time ≈ n1/3. It should be noted that this running time applies only in the
case when n− 1 has a factor u of order n1/3 (of which there is a significant
probability for random primes n) and when at least u queries are made.

4.7. Relative running times. The approximate running times of these
algorithms are summarized in Table 1, where we have chosen q and n ≈ qg

so that the DLP requires time ≈ 280 using the best available algorithms.

genus log2 q log2 n log2 n1/3 log2 n1/(g+1)

(1MDLP) (1MDHP or DTDHP) (DTDLP)

1 160 (80) 160 53 80

2 80 160 53 53

3 60 180 60 45

3 non-hyper 80 240 80 60

4 54 216 72 43

5 50 250 83 (80) 42

6 48 288 96 (80) 41

Table 1. Estimated running times of algorithms in jacobian
groups having 80 bits of DLP security.

Notes: (i) The running time estimates in Table 1 ignore multiplicative
constants. These constants do not appear to be large enough to affect the
general conclusions we draw from Table 1; nevertheless, extensive experi-
mentation is needed before these conclusions can be accepted with certainty.
(ii) For g = 1 the value of q is determined by setting q1/2 ≈ 280; for non-
hyperelliptic genus-3 curves we set q ≈ 280; and in all other cases we set
q2−2/g ≈ 280. (iii) The 80 in parentheses indicates that the DLP algorithm,
requiring time ≈ 280, would be faster than the one described above for
1MDLP, 1MDHP, or DTDHP whose running time is given in the column.

From the table we see that using state-of-the-art algorithms the difficulty
levels of the problems satisfy the following inequalities:

1MDLP > 1MDHP or DTDHP for g = 1, 2

1MDHP or DTDHP > 1MDLP for g = 4, 5, 6

DTDLP > 1MDHP or DTDHP for g = 1

1MDHP or DTDHP > DTDLP for g = 3, 4, 5, 6

1MDLP > DTDLP for g = 2, 3, 4, 5, 6.
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Remark 6. To the best of our knowledge, the DTDLP is the only DLP-
type problem known to be easier on genus-2 than on genus-1 curves using
current algorithms.

Remark 7. In Table 1 we’re assuming that the prime order n of the sub-
group G of the jacobian group is ≈ qg. However, in a DSA-type application
one chooses n just to be large enough so that generic DLP algorithms on G
require time at least 280; in other words, one chooses n ≈ 2160. If this is done
in genus g ≥ 3, then the prime n is≪ qg. In that case the running times for
1MDLP and DTDLP, which depend on q and g but not n, are unaffected,
whereas the log of the running time for 1MDHP and DTDHP, which depends
directly on n, is always log2 n1/3 ≈ 53. Thus, in the DSA setting we have
1MDLP > 1MDHP/DTDHP > DTDLP for genus-3 hyperelliptic curves,
and 1MDLP > DTDLP > 1MDHP/DTDHP in the non-hyperelliptic genus-
3 case. Furthermore, for g = 4, 5, 6 we see that 1MDLP is of comparable
difficulty to 1MDHP or DTDHP, whereas the latter two problems are harder
than DTDLP.

Remark 8. In order to separate the difficulty of DHP from that of the
Decision Diffie-Hellman Problem one needs to look at the so-called “gap
groups,” which are extremely rare among elliptic curve or jacobian groups.
Indeed, in recent years much effort has been devoted to constructing exam-
ples of such groups. In contrast, the groups we are using in order to show
the likely incomparability of some of the problems in §2 are vast families
with no restrictions on the ground field or on the coefficients of the defining
equations.

5. Conclusion

There are many issues that arise in interpreting reductionist “proofs” of
security of a protocol, some of which we discussed in [24, 25, 26]. Of all those
questions the most obvious one is: What is the true level of difficulty of the
underlying problem that the reduction connects to the adversary’s task?
Without at least a partial analysis of this question, the security reduction
tells us very little. Our results in this paper should be viewed as only a
small part of the work in this area that needs to be done.

It seems likely that DLP1 is equivalent in difficulty to DLP in practice,
but based on our examination of low-genus jacobian groups we believe that
both 1MDLP and DTDLP are strictly easier than DLP. Similarly, we con-
jecture that DHP1 is equivalent in difficulty to DHP, but that both 1MDHP
and DTDHP are easier than DHP. We further conjecture that IMDLP is
incomparable to 1MDHP, and that DTDLP is incomparable to DTDHP.

We also believe that security proofs that reduce these non-standard ver-
sions to successful attacks should be regarded as giving a weaker assurance
about security than a reduction of DLP or DHP itself, and that this is still
the case even when the latter reduction uses the random oracle assumption
and the reduction from the non-standard problem does not.
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small genus hyperelliptic index calculus, Mathematics of Computation, 76 (2007),
pp. 475-492.
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