
Proposal of a new efficient public key system for

encryption and digital signatures

Gerold Grünauer
Email: geroldgruenauer@web.de

10/01/2007

Abstract

In this paper a new efficient public key cryptosystem usable for both
encryption and digital signatures is presented. Due to its simple structure this

public key cipher can be implemented easily in every software or hardware
device, making the cryptosystem available for circumstances where the

implementation of an alternative like RSA, El Gamal / Diffie - Hellmann, etc.
is too complicated. Furthermore the construction on the closest and shortest

vector problem using a new homomorph ”almost” linear one-way function gives
not only strong evidence of the ciphers security, but may be also the base for a
new class of cryptographic primitives based on lattice problems. Therefore this
cipher and its construction is a good alternative to cryptosystems based on the

integer factoriziation problem or the discrete logarithm.

1 Introduction

In the last decades a lot of public key cryptosystems have been proposed, but
nevertheless only a few cryptosystems (namely RSA, El Gamal / Diffie-Hellman,
DSA, ...) are used in practise. However, these cryptosystems are very hard to
implement (especially for unskilled new programmers or in smart cards or com-
parable environments). Furthermore all those public key systems are based on
number theoretical problems like the integer factorization problem or the dis-
crete logarithm. Should any number theoretical problem be solved the security
of these ciphers is in danger.

In order to cicumvent these drawbacks a lot of people have been searching
for faster and sometimes easier implementable alternative cryptographic algo-
rithms. Worth to mention here are for example the cryptosystems based on
the knapsack problem (see [1] for the history of knapsack type cryptosystems).
These public key encryption algorithms would have been faster than any system
involving number theoretical constructions. However, all known ciphers of that
type have either been broken and / or are completely impractical because of too
large keys / ciphertext.

1

Other proposed public key systems are based on problems which are hardly
known and researched by the cryptographic community. The FAPKC (Finite
Automata Public Key Cryptosystem, see [2]) is an example for such a cipher.
This promising system (as stated by [4] in Ch. 19.10) has been completely
broken after 10 years. The multivariate polynomial equation problem was also
used as a base for new public key algorithms but is now successively researched
and can be solved quite well by now (see [3] for example).

However, despite of all those failures above, a new class of promising public
key algorithms arises from the well researched lattice problems. In 1996 M. Ajtai
and C. Dwork presented a new probabilistic public key encryption algorithm([5])
for which they could proof that breaking a random instance of the cryptosystem
is as hard as solving the worst-case of the ciphers base problem, the unique
shortest vector problem. A lot of other systems followed like the GGH system
(see [6]), or a construction of O. Regev (see [7]). The NTRU system (see [8] for
a complete reference of papers concerning NTRU) finally was the breakthrough
for lattice based cryptosystems. This cryptosystem is not only very fast but
has (the first time for a lattice based encryption algorithm) also an acceptable
keysize (growing only linear with the security parameter t). Nevertheless, not
only the NTRU system but all lattice based cryptographic constructions lack of
a secure digital signature algorithm.

In this paper, this gap is closed, by presenting a new secure complete effi-
cient cryptosystem featuring both digital signature generation and public key
encryption. The new cryptosystem has for the security parameter n a keysize
of O(n) and for encryption, decryption, signature generation and verification
a running time of O(n2). Furthermore a new cryptographical ”almost” linear
homomorphic one-way function is presented, which can be used to build other
primitives like hash functions, etc.

2 Background

2.1 Lattices and cyclic lattices

Let B = {b1, ..., bn} be a set of n linearly independent vectors. This set B,
called basis, generates the lattice L(B) = {

∑n
i=0 xi

~bi | xi ∈ Z}, therefore all
linear combinations of the vectors in B. The basis of a lattice is not unique.
The p norm is defined by the formula: ‖x‖p = p

√∑n
i=0 xi

p.
A cyclic basis consists of cyclically shifted versions of a base vector b (with

components b1, ..., bn), for example:

B =

b1

b2

...
bn

 ,

bn

b1

...
bn−1

 ,

bn−1

bn

...
bn−2

 , ...,

b2

b3

...
b1

2

Such a cyclic basis can be constructed by polynomial multiplication:

B = {b(x)xi mod xn − 1 | 0 ≤ i < n}

The lattice is now generated by ordinary polynomial multiplication in GF (pn),
where n denotes the dimension of the lattice:

L = {b(x)v(x)mod xn − 1 | v(x) ∈ GF (pn)}

Every vector b(x) generates a cyclic basis (if the polynomyial xn−1 is irreducible
in GF (pn)). Hence polynomial multiplication of b(x) with another arbitrary
polynomial / vector can be seen as a basis transformation or as the selection of
a specific lattice vector.

2.2 Lattice problems

From lattices as defined above, a lot of NP-hard problems arise. The security
of the new cryptosystem is based on the actual hardness of these problems:

• Shortest vector problem (SVP): given a basis B of the lattice L(B), find
~v ∈ L(B) such that ‖~v‖p is minimal.

• Closest vector problem (CVP): given a basis B of the lattice L(B) and
a lattice vector ~w, find another lattice vector ~v such that ‖~w − ~v‖p is
minimized or ~v is closest to ~w.

It has been shown that it is computationally not harder to solve the shortest
vector problem than the closest vector problem ([9]). Furthermore it is known
that approximating the closest vector problem concerning the Lp-Norm to a
better factor than p

√
log(n) is NP-hard (see [10], [11]).

However, NP-hardness is no proof for a problems actual hardness. For ex-
ample most knapsack-type cryptosystems can be generally effective attacked
by lattice reduction techniques, although the subset sum problem is NP-hard.
Even hard high density subset sum instances (like the one produced by the Chor-
Rivest cryptosystem) can be directly solved. On the other hand, problems for
which NP-hardness could not have been proven up to date, cannot be solved
in practise (like the integer factorization problem for example). Therefore the
”hardness” of the problems used by the new cryptosystems are measured in this
paper by the average running time of the best known solving algorithm and by
the average reduction factor (i.e. how ”close” is the approximated vector to the
actual solution).

3 The new cryptosystem

First the new ”almost” linear homomorphic one-way function is described, af-
terwards the new signature scheme and the public key encryption is defined. An
example with artificial small parameters can be found at the very end of this
section.

3

3.1 ”Almost” linear homomorphic one-way function

A homomorphism is a function that preserves the original group structure:

f(a + b) = f(a) + f(b)

Exponentiation for example is a homomorphism:

xa+b = xaxb

Moreover exponentiation in suitable discrete subgroups is also an one-way func-
tion and therefore an appropriate base for cryptsystems (like El Gamal, Diffie-
Hellman, ...).

Linear functions (without constant term) are always homomorphisms in any
dimension, but not one-way functions. In this paper I disclose a new type of
”almost” linear homomorphism, i.e. a linear function which introduces a small
error for every addition or subtraction (mutliplication can be viewed as a series
of additions and therefore a much bigger error is introduced). This new function
combines all positive properties and constructions shown in the cryptosystem
described by Ajtai and Dwork ([5], A public key cryptosystem with worst-case /
average-case equivalence) and in an algorithm for ”Public key distribution using
approximately linear functions” by R.C. Merkle ([12]).
Let f(x, g) = Round((x∗g Mod p)∗ q

p) Mod q be a similiar approximately linear
function as defined in [12]. Then the following facts are valid:

• f(a + b, g) = (f(a, g) + f(b, g)± [0; 0.5]) Mod q

• f(a ∗ b, g) = (f(a, g) ∗ b± [0; 0.5] ∗ b) Mod q

[0; 0.5] means, that you have to add a random error from the intervall [0; 0.5].
Given a hard, random instance of the subset sum problem a = {a1, a2, ..., an}
the private key of a key exchange system would be a random number g Mod p.
The public key is then defined as b = {b1 = f(a1, g), ..., bn = f(an, g)}. A shared
approximate key is then computed by Bob as

s = ~x · aMod p

and
Key ≈ ~x · b Mod q

, where ~x denotes a binary vector. Alice can then compute her shared key from
s and her private key g:

Key ≈ f(s, g) ≈ f(~x · a, g) ≈ ~x · {f(a1, g), ..., f(an, g)}

If an attacker now tries to find a non binary vector ~c such that

s = ~c · aMod p

4

he can also compute
Key ≈ ~c · b Mod q

but gets a much bigger error (probable an error much bigger than q) and there-
fore no information about Key. 1 Therefore the introduced error makes the
”almost” linear function to be one-way. The error introduced by this function
is proportional to ‖~x‖1.

It has been shown by R. Merkle ([12]) that, given p, q and some yi = f(xi, g),
it is NP-complete to find g. Glenn Durfee, however, concludes - although he
didn’t break the specified scheme - in an addendum of [12] that ”...the scheme
[and hence the above defined homomorphic one-way function] is insecure for
practical key sizes, and uncompetitive with existing methods for (even only
potentially) secure key sizes.”
As a result, a better homomorphic one-way function for practical cryptography
has to be found.
In [5] Ajtai and Dwork defined a similiar function for probabilistic encryption:

Let ~xi, ~y and ~g be n-dimensional real vectors, such that:

f(~xi, ~g) = (~xi · ~g) Mod 1 ≈ 0

f(~y,~g) = (~y · ~g) Mod 1 ≈ 0.5

A random point ~p of the lattice spanned by { ~x1, ..., ~xn} is used to encrypt a 0
bit, a point from the lattice { ~x1, ..., ~xn}+~y (i.e. ~y is alway added to the choosen
lattice point) is used to encrypt a 1 bit. These random points are chosen by
multiplication of the base with a small vector (hence, the error introduced by
the function f is small). Alice can, with her private key ~g, reveal the encrypted
bit by computing s = f(~p,~g) ≈ {0; 0.5}

These two attempts of homomorphic functions can be combined to a more gen-
eral construction:

f(~x,~g) = (~x · ~g Mod p) ∗ q

p
Mod q ≈ r ∗ q

p
Mod q

for some integer r. Given a basis B for a random lattice of GF (pn), a new
key exchange system can be now established2: Choose a random vector ~g of
GF (pn) and compute the new vector ~y = f(B,~g), i.e. yi = f(~bi, ~g) that is, the
i-th component of ~y is the new one-way function of the i-th basis vector ~bi of
B. Now Bob chooses a random lattice vector ~x and computes the associated
shared key k. Alice can do the same by computing k = f(~x,~g).
This function, nevertheless, is not more efficient than the above described cryp-
tosystems. By combining this one-way functions with cyclic lattices, however,

1It is pretty easy to find a relative big ~c. It is , however, very hard to find the original
binary vector, because you would have to solve the subset sum problem.

2As the observing reader might have seen by now, this version of the encryption algorithm
is complete yet and can be hence broken easily and is only listed here to demonstrate the
principles, see 3.2 for additional infos and improvements

5

it is possible to drastically enhance the effiency of the new function:

x and g are now no longer seen as vectors but as polynomials of GF (pn).
The new (and final) ”almost” linear homomorphic one-way function is given by:

y = f(x, g) = Truncate(x ∗ g Mod xn − 1)

where y = Truncate(x) (x ∈ GF (pn), y ∈ GF (qn)) truncates every coefficient
xi of x by the following formula: yi = (xi ∗ q

p) Mod q.
This function can be seen as a complete basis transformation and therefore a
public key for the above described key-system can be generated with only one
polynomial multiplication and truncation. Furthermore by applying the new
function f(x, g) on a randomly selected lattice point/polynomial, n - shared
keys are computed in paralell.

Using this new function, both a signature scheme and an encryption scheme
are constructed in the next section. The security of this new function will be
analysed in section 4.

3.2 The new signature scheme

The new signature scheme uses as it’s base the same zero knowledge proof used
by discrete logarithm signature schemes (as described in [4], Chapter: 20.4):

Let α be a generator of a discrete subgroup of order q and y = αx (with x
the private key). Then a new signature is computed by:

s1 = αr (r is a random integer), s2 = Hash(s1‖m) ∗ x + r Mod q.
The signature is verificated by checking: s1y

Hash(s1‖m) = αs2 .

As the observing reader may have noticed in the above section 3.1, it is hard
to compute exactly the same g, such that y = f(x, g), but it is easy to ”up-
sample” the truncated polynomial y (filling the deleted and missing information
with random data) and compute: g′ = y′ ∗ x−1 Mod xn − 1. It is clear that
y = f(x, g′).
Therefore the public key for the new scheme is computed by applying the
one-way function f(x, g) to two different polynomials x1 and x2. Now the
above strategy to find an alternative private key no longer works, because if
you choose g′ such that y1 = f(x1, g

′), the second equation won’t be satisfied:
y2 6= f(x2, g

′)3 . A polynomial g′ that satisfies both equation can be only found
by solving the lattice problem related with the one-way function f (more about
that topic can be find in the section 4).
The new signature scheme can be now defined:

3You would have to choose as filling data exactly this data, which has been deleted by the
truncation process.

6

Key Generation 4

1. Choose two random and public polynomials x1, x2 from GF (pn).
2. Choose a random secret polynomial g from GF (pn).
3. Compute the public key: P = {y1 = f(x1, g); y2 = f(x2, g)}

The public key consists of: x1, x2, P = {y1, y2}
The private key consists of: x1, x2, g

Signature generation
1. Choose a random secret polynomial r from GF (pn).
2. Compute: R = {r1 = f(x1, r); r2 = f(x2, r)}
3. Choose a polynomial e1 with ‖e1‖1 = t and e2 such that ‖e2‖1 = 2t 5

These polynomials must be dependent on Hash(R‖m).
4. Compute: s = (e1 ∗ g + e2 ∗ r) Mod xn − 1
5. Check the new signature with the algorithm below.

Go to step 1, if failure.
The signature for m consists of: R, s

Signature verification
1. Recompute e1 and e2 with the step 3 of signature generation.
2. Compute: U = {u1 = f(x1, s); u2 = f(x2, s)}
3. Compute: V = {vi = ((e1∗yi+e2∗ri) Mod xn−1) ∈ GF (qn)‖i ∈ {1; 2}}
4. Compute: ∆ = U − V = {∆i = (ui − vi) ∈ GF (qn)‖i ∈ {1; 2}}
5. Represent the coefficients of ∆ as integers (e.g. 250 Mod 256 = -6).
6. Check the error coefficients of the error polynomial ∆:

If |∆i, j | > σ1, reject the signature (0 ≤ j < n).
7. Check the complete error polynomial:

Check the distribution of the error coefficients with respect to the
gaussian normal distribution (See remarks below).

8. Accept the signature.

Remarks
The quantity q should be approximately the squareroot of p (q ≈ √

p). p should
be a primenumber and gcd(p, q) shall be 1 (e.g. p = 65521, q = 256). The
lattice dimension n must be choosen, such that xn−1 has no low weight factors
(i.e. ‖Factor‖1 ≥ p), hence n must be a prime too (e.g. n = 1021, n = 2039).
The verification constants σ1 and the weight factor t must be choosen with care,
because they determine the signature schemes security against forging attacks
with approximated secret keys g′6 and against a direct lattice approximation
attack against s7. These constants are determined by taking the variance of a

4The public key generation procedure given here is also be used for the encryption scheme.
5The weight of the second polynomial must be greater, because now the signature error is

dominated by a randomly choosen error
6This attack tries to recover or approximate the secret key
7this attack tries to generate a valid signature without any knowledge about the secret key,

read more in section 4

7

single coefficient error value V arSingleError =
∑q−1

i=0 (i q
p − 0.5)2 ∗ 1

q ≈
1
12 :

σ1 =
√

(‖e1‖1 + ‖e2‖1) ∗ V arSingleError ∗ c =

√
3t

12
∗ c

The larger t gets, the more information you can host in the zero knowledge
proofs decision polynomials e1 and e2 (only the information in e1 is important for
birthday attacks), but on the other hand the easier it becomes to approximate
a single signature s 8. An appropriate choice for t may be 20 ≤ t ≤ 30. The
constant c should be 4.

The decision polynomials e1 and e2 shall consists of -1, 0 or 1 for each
coefficient.

In step 7, the error polynomials shall be checked against the gaussian normal
distribution9: Count the values greater σ, 1.5σ, 2σ, ... and compare these values
with the expected values. The tolerance for these values shall be choosen such
that for example every second computed signature is rejected (these values can
be choosen for a particular implementation by generating 1000 random signa-
tures and observing the specified values).

The suggested parameters are:
n = 1021, p = 65521, q = 256, t = 16, c = 3.5
n = 2039, p = 65521, q = 256, t = 16, c = 3.5
No known attacks exists today that can practically attack any of these two

specified parameter sizes. The key size is 2000 Byte, the signature size 4000
Byte or 4000 Byte (for the second parameter set) and 8000 Byte.

The security of the scheme against attacks, where the attacker has known
signatures at his hand, are discussed in section 4.

3.3 The new encryption scheme

The new encryption scheme is based on the key-exchanging algorithm of El
Gamal /Diffie Hellman. In a nutshell we choose a random lattice point out of
the two cyclic lattices x1 and x2 and compute the corresponding approximated
key point. The message - transformed into a polynomial of GF (qn) by suitable
error correction methods - is then added to the approximated key point. The
legitimate recipient can compute, using his private polynomial g, the another
approximated key and subtract it from the message. The errors introduced here
can be decoded using the error correction scheme. The error tolerance must be
choosen such that an approximated private key cannot decrypt a message in
practise.

Key Generation 10

8You would first compute the signature until step 4, then you would solve the lattice
problem to find a suitable s, see more about that in 4

9See the appendix for a concrete method
10The public key generation procedure given here is also be used for the signature scheme.

8

1. Choose two random and public polynomials x1, x2 from GF (pn).
2. Choose a random secret polynomial g from GF (pn).
3. Compute the public key: P = {y1 = f(x1, g); y2 = f(x2, g)}

The public key consists of: x1, x2, P = {y1, y2}
The private key consists of: x1, x2, g

Encryption
1. Choose two random polynomials e1 and e2 with ‖ei‖1 ≤ t

and each coefficient either -1, 0 or 1.
2. Compute: c1 = (e1 ∗ x1 + e2 ∗ x2) Mod xn − 1 ∈ GF (pn)

c2
′ = (e1 ∗ y1 + e2 ∗ y2) Mod xn − 1 ∈ GF (qn)

3. Represent the message M using suitable error correction methods as
a polynomial m in GF (qn) (see Remarks).

4. Compute: c2 = c2
′ + m ∈ GF (qn)

The encrypted message consists of: c1 and c2

Decryption
1. Compute: c2

′ = f(c1, g)
2. Compute: m = c2 − c2

′ ∈ GF (qn)
3. Correct all errors and recompute the Message M.

Remarks
As with the signature scheme, the parameter t must be choosen carefully. In

the encryption scheme the normal deviation is computed as σ =
√

2t
12 because

the two ”decision polynomials” e1 and e2 are weighted equally. A possible pa-
rameter choice might be:

n = 1021, p = 65521, q = 256, t = 681
n = 2039, p = 65521, q = 256, t = 1359
i.e. you choose e1 and e2 completely at random with each coefficient be

either -1, 0 or 1.

As noted above, a suitable error correction scheme must be used to correct
errors introduced by the ”almost” linear function f . First of all the message M
(with error correction data) is transformed into a polynomial by taking the data
(for n = 1021, p = 65521, q = 256, t = 681) as a polynomial of GF (3n) and
transforming each coefficient to GF (256) by computing: m′

i = mi∗ 256
3 Mod 256.

This transformation can be reversed by using the same truncation function as
used by the one-way function f. Now it must be observed, that the truncation
operation will revert this, as long as the absolute error introduced is not bigger
than 256

3 /4 = 2σ. Hence every coefficient is for the above first parameter choice
transformed correctly with a probability of approximately 95.45% (because, it
is transformed correctly if the error is smaller than two times the standard de-
viation of this error). A bit probability math shows you that one error would
occur with P (1) = 36.2%, two errors with P (2) = 12.9%, ..., P (8) = 3.33 ∗ 10−1

(i.e. all 3 million blocks the errors cannot be detected if the error detection

9

algorithm is constructed such that up to 8 errors can be detected). Moreover
an error adds or subtract always 1 to the coefficient (this fact can be used to
construct the checksum - see the appendix for such a method). Considering
todays lattice reduction and other cryptanalytical techniques, the best choice is
to use an error correction scheme, that can detect or correct up to 3 errors.

As a result the the remaining errors must be corrected by an ordinary error
correction scheme (Reed - Muller codes cannot be used here, because the word
size is only 3 - in this case). A possibility would be, to split the message into
some blocks of k coefficients: k = 16 would imply that every second block is
corrupted. Now insert into each block an error detecting checksum and split up
the message such that only some of the blocks are required to reconstruct the
message. Another possibility would be to use a Golay - Code for each block,
... Choose a method, which doesn’t repeat a block (like the repetition code)
and choose a method which can correct as most as much errors as in practice
can appear. Otherwise the system is weakened against approximated key and
direct lattice attacks (but on the other hand is strengthened against ”Response
attacks”11). In appendix B a possible solution is presented.

3.4 Example

As I have myself often experienced, a simple example with artificially small
parameters is worth a thousand words. Hence here an example of the digital
signature algorithm and the encryption algorithm is included:

Parameters
The following parameters are used: n = 3, p = 100, q = 10

Key generation
1. x1 = 17x2 + 50x + 26, x2 = 19x2 + 14x + 4
2. g = 71x2 + 74x + 94

3. f(x1, g) = Tr(

 17 50 26
50 26 17
26 17 50

 ∗

 94
74
71

) = Tr(

 44
31
52

) =

 5
3
4

f(x2, g) = Tr(

 19 14 4
14 4 19
4 19 14

 ∗

 94
74
71

) = Tr(

 6
61
76

) =

 8
6
1

Hence the public key is given by: y1 = 4x2 + 3x + 5, y2 = x2 + 6x + 8, x1 and
x2. Now lets sign a message:

Signature generation (t = 1)
1 and 2. Because the computation of step 1 and 2 are actually the same as

the key generation procedure, let here r = g and r1 = y1 and r2 = y2.
Hence: r1 = 4x2 + 3x + 5, r2 = x2 + 6x + 8, r = 71x2 + 74x + 94

11These attacks tries to corrupt a choosen ciphertext in a way, such that your response -
decryption succeded/failed - can be used to deduce the key.

10

3. Suppose the message Hash(r1‖r2‖m) delivers the two polynomials:
e1 = x2, e2 = x2 − 1

4. s =

 71 74 94
74 94 71
94 71 74

∗

 0
0
1

+

 71 74 94
74 94 71
94 71 74

∗

 −1
0
1

 =

 54
68
17

5. See below.

The signature is now given by: s = 17x2 + 68x + 54, r1 and r2.

Signature verification
1. e1 = x2, e2 = x2 − 1

2. f(x1, s) = Tr(

 17 50 26
50 26 17
26 17 50

 ∗

 17
68
54

) = Tr(

 60
57
10

) =

 1
6
6

f(x2, s) = Tr(

 19 14 4
14 4 19
4 19 14

 ∗

 17
68
54

) = Tr(

 46
51
46

) =

 5
5
5

3. v1 =

 4 3 5
3 5 4
5 4 3

 ∗

 0
0
1

 +

 4 3 5
3 5 4
5 4 3

 ∗

 −1
0
1

 =

 1
5
6

v2 =

 1 6 8
6 8 1
8 1 6

 ∗

 0
0
1

 +

 1 6 8
6 8 1
8 1 6

 ∗

 −1
0
1

 =

 4
6
5

4. ∆1 =

 1
6
6

−

 1
5
6

 =

 0
1
0

∆2 =

 5
5
5

−

 4
6
5

 =

 1
−1
1

5. σ1 ≈

√
3∗1
12 ∗ 4 = σ ∗ 4 = 0.5 ∗ 4, due to the small

parameters p and q, however, σ ≈ 0.6.
No error coefficient is bigger the the treshold.

6. 4 coefficient are smaller than σ = 0.6, 2 are bigger as the
standard deviation: This is predicted by normal distribution.

7. The signature is accepted.

Next, the encryption and decryption procedure is shown:

Encryption
1. e1 = −x + 1, e2 = −x2 + 1

2.c1 =

 17 50 26
50 26 17
26 17 50

∗

 1
−1
0

+

 19 14 4
14 4 19
4 19 14

∗

 1
0
−1

 =

 99
19
82

c′2 =

 4 3 5
3 5 4
5 4 3

 ∗

 1
−1
0

 +

 1 6 8
6 8 1
8 1 6

 ∗

 1
0
−1

 =

 4
3
3

11

3. M = 012 Mod 3: m = 0 ∗ 10
3 x2 + 1 ∗ 10

3 x + 2 ∗ 10
3 = 0x2 + 3x + 7

4. c2 =

 4
3
3

 +

 0
3
7

 =

 4
6
0

The encrypted message consists of: c1 = 82x2 + 19x + 99 and c2 = 4x2 + 6x + 0

Decryption

1.c′2 = f(c1, s) = Tr(

 82 19 99
19 99 82
99 82 19

∗

 94
74
71

) = Tr(

 43
34
23

) =

 4
3
2

2. m =

 4
6
0

 +

 4
3
2

 =

 0
3
8

3. M = 0 ∗ 3

10x2 + 3 3
10x + 8 3

10 = 0x2 + 1x + 2 Mod 3

4 Cryptanalysis of the new cryptosystem

In this section the security of the new scheme shall be discussed. First of all,
these attacks (found by the author) could be used against the new scheme:

• Direct attack against the private key g: Try to approximate the
polynomial g by lattice reduction techniques or using brute force (or using
a technique to circumvent the one-way function f)

• Attack against a single signature without knowledge of other
signatures: Try to approximate a single value s2 (this is a bit easier as
approximating g due to the allowed error tolerance).

• Attack against the private key with knowledge of other signa-
ture: Try to deduce the private key using the error information given by
each signature.

• Attack against a single encrypted message: Try to find the polyno-
mials e1 and e2 and recover with that the message-key.

• Attack against the private key using a message response attack:
Use corrupted message and the others response (I could decrypt / not
decrypt) to deduce the private key.

Now each possible attack is introduced and it’s feasibility analysed. The follow-
ing list of attacks may not be complete. It gives, however, insight information
about how the suggested parameters were choosen and what has to be consid-
ered, when attempting to change these parameters. It must be further noted,
that there may be more efficient possibilities to implement the following attacks.

12

4.1 Basic security considerations

The first security consideration to be made here is: n (the dimension of the
cyclic lattice and polynomials) must be a prime number. Otherwise a trivial
factorization for every modulus exists and therefore the lattice problems arising
from the cryptosystem can be splitted into smaller ones.

Moreover, all polynomials that shall be choosen at random, must be choosen
with an appropriate method having either a good random source or a starting
seed of at least 128 bit. Otherwise a brute force attack could be possible.

Although brute force attacks exist, they are for the rest of this paper not con-
sidered a thread, because they are practically infeasible for dimension n > 20
for all parts of the scheme (signature generation, key generation, encryption).

4.2 Direct attack against the private key g

The public key is computed by applying the one-way function two times to x1

and x2 each. The first observation, that can be made is: All x′i = a∗xi Mod xn−
1 are equivalent (because f(a ∗ x, g) = Truncate(x ∗ a ∗ g Mod xn − 1) =
f(x, a ∗ g)). Hence a class of weak public parameters could exist (for example:
x1 = a ∗ (1), x2 = a ∗ (256xi) and p = 65521, the first polynomial gives away
the upper half, the second polynomial the lower half of each coefficient of g).
However, because x1 and x2 are choosen at random, it is very unlikely that
such a weak key is being choosen. The next observation is, that a key with - for
example 16000 bit - is mapped onto a public key with also 16000 bit. Therefore
it can be assumed, that for every public key some equivalent private keys exist
(for the example the other equivalent key would have been g′ = 38x2 +30x+44
- it maps onto the same public key and can be used normally for all operations).
A bit probability math on one-to-one mappings, however, shows that there are
in most cases at most two equivalent keys for a particular public key. Hence
the lattice problem is not simplified enough. The last observation made in this
paper about the public key is, that the private key is the optimal solution for
the closest vector problem.

The private key can be computed by solving the closest vector problem using

13

lattice reduction techniques on the following lattice:

x1,n−1 x1,n−2 · · · x1,0 x2,n−1 · · · x2,0 0
x1,n−2 x1,n−3 · · · x1,n−1 x2,n−2 · · · x2,n−1 0

...
...

. . .
...

...
. . .

...
...

x1,0 x1,n−1 · · · x1,1 x2,0 · · · x2,1 0
−p 0 · · · 0 0 · · · 0 0
0 −p · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · −p 0 · · · 0 0
0 0 · · · 0 −p · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · −p 0

y1,n−1 ∗ p
q y1,n−2 ∗ p

q · · · y1,0 ∗ p
q y2,n−1 ∗ p

q · · · y2,0 ∗ p
q c

This lattice has a dimension of 3n + 1 (e.g. for n = 1021 this would imply a
dimension of 3064). No algorithm for computing the exact or a sufficient ap-
proximated solution in acceptable time for such big lattices is known today.

If an exact solution cannot be computed in practise, perhaps an approxi-
mated private key g′ will suffice. Let’s assume it would be possible to approx-
imate g to a factor of 1.01 (i.e. ‖y′i|1 ≈ 1.01‖yi‖1). This would imply a new
single variable normal deviation of σ ≈ 2.4 and a new signatures coefficient
deviation of σSig ≈

√
3t ∗ 6. With such an big error signing messages would be

impossible (because more than 70% of all error coefficients excede the treshold
value). A similiar computation shows that decryption is infeasible because every
coefficient will get corrupted by the introduced error.

As a result, it can be said, that with todays technology it is infeasible to
approximate or compute the private key g in a way that the cryptosystem is
compromised. It must be, however, noticed, that not a random lattice, but
a cyclic modular lattice is used. It could be possible, that one day efficient
techniques for cyclic lattices and modular lattices are found. As a matter of
facts, this problem can be only approached by using appropriate keysizes (for
modern computers and microcontrollers are keysizes of n = 1021 or n = 2039
neither a computational nor storage problem).

4.3 Attack against a single signature without knowledge
of other signatures

An attacker can try to compute a single signature for a given document without
knowledge of approximated private keys or other signatures. To do so, he has to
find a signature s such that the signature verification algorithm is passed. That
first of all means, that no absolute error coefficient is allowed to be greater than
3.5σ = 8 for the suggested parameters.

14

Moreover, the signatures error polynomials are checked against the gaussian
distribution. Using the recommded algorithm to accomplish this (see the ap-
pendix), even a small absolute extra error of on the average 0.1 per coefficient
of the error polynomials ∆i, causes signature rejection on 999 out of 1000 tri-
als (for each trial you need a new polynomial s computed by lattice reduction
techniques using a new r).

To crack a single signature, compute the signature algorithm up to step 3.
(In step 4 s is computed). Now use the lattice given for breaking the private
key and replace the last line (y1 and y2) bei (vi = e1 ∗ yi + e2 ∗ ri) as computed
during signature verification. Now a signature s is computed the approximates
the vi vector. Although that’s a bit easier than cracking the private key g, it
seems to be infeasible with todays lattice reduction techniques.

4.4 Attack against the private key with knowledge of other
signatures

During signature verification the signatures error polynomial is checked. This
error polynomial is the main difference between the new lattice based signature
algorithm and a ”normal” discrete logarithm zero knowledge proof. The basis
signature algorithm doesn’t leak any useful information to a possible attacker12,
the error polynomial, however, does. Let’s have a closer look on the signatures
verification algorithm:

∆i = ui − vi = f(xi, s)− e1 ∗ yi − e2 ∗ ri =

= Trunc(xi ∗ (e1 ∗ g + e2 ∗ r))− e1 ∗ Trunc(xi ∗ g)− e2 ∗ Trunc(xi ∗ r)

∆i = e1 ∗ Error(yi, g) + e2 ∗ Error(ri, r)

Error(x, g) denotes here the reell polynomial given by:
Error(x, g) = (Upsample(yi) − xi ∗ g)/p ∗ q. Every coefficient of the poly-

nomial of Error(x, g) lies in the intervall [−0.5; 0.5]. The error is introduced by
the no longer existing, already truncated part of the public key and the random
values ri. This error is mainly dominated by the random values (because the
second zero knowledge proofs decision polynomial e2 is weighted double). In
each signature (when computed using the suggested parameters) only a maxi-
mum amount of 3 bits of information per error coefficient can be present. On
average the are only 2 bits of information.

The error information can be used to deduce the upper parts of the truncated
information of the public key 13 by solving the following closest vector problem:(

e1,1/q e1,2/q · · · e1,k/q 0
∆i,1 ∆i,2 · · · ∆i,k c

)
12As has been proven a lot of times before
13the part, that has been truncated and that can be used to upsample a polynomial yi and

compute g = y′i ∗ x−1

15

This notation means, that every row of that lattice contains actually all vectors
of the cyclic lattice of e1,j . The last line contains for every row a line of n
coefficients of ∆i,j and i is either 1 or 2. As the error polynomial of only one
public key part is sufficient to recompute the public key, the other part mustn’t
be used. It must be noted, that this attack is (even for a large number of given
signatures k) completely inefficient when using the suggested parameters. To
see this (for the suggested parameter size), consider the effect: A normal error
coefficient has a standard deviation σ = 2.24. Without the error introduced by
the private key (by using the above lattice you try to subtract the correct error
introduced by the private key), the standard deviation is reduced to σ = 1.83.
Hence the coefficients are now smaller by an average value of 0.29. This small
benefit isn’t even sufficient to change most of the coefficients (because these are
not reell numbers but integers). Moreover, the technique described above can
be used only to compute approximately the two upper bits of the truncated
information. Hence this method isn’t useful to compute the private key.

4.5 Attack against a single encrypted message

To encrypt a message, two polynomials e1 and e2 are choosen and a lattice
polynomial is computed. With these polynomials e1 and e2 the related message
key can be computed. The most obvious way to crack a single encrypted mes-
sage is to try to find these ”decision” polynomials e1 and e2 or approximated
version of these. Afterwards the message key can be computed and the message
be decrypted. However, approximated polynomials e1 and e2 introduce larger
errors and therefore are maybe not suitable to compute a message key. The ap-
proximated or exact polynomials can be computed by solving the closest vector
problem using a similiar lattice as has been used to recover the secret key g.
Using the suggested parameter sizes, it can be concluded, that for an approxi-
mation factor of 4 (i.e. ‖e′i‖1 ≈ 4‖ei‖1), it is infeasible to crack the messagekey,
because the standard deviation of one coefficients error rises to σ = 21, hence
approximately 80% of all message blocks (as defined in the section ”Encryption
algorithm”) get corrupted.

4.6 Attack against the private key using a message re-
sponse attack

During decryption an error is introduced by the one-way function. If this error
is too big to be corrected, decryption fails. This fact can be used by an attacker.
He chooses a ciphertext such that decryption only just works. This is done by
increasing the error (which he doesn’t know) by using succesively larger decision
polynomials e1 and e2 and watching the response 14 of the legitimate recipient.
He then gets information, what multiplier is needed to get an error. The author
knows of no practical way to use this information because the error correcting

14Dependent on the scenario, this can be a timing attack - as error correction takes more
time with more errors - or just a simple response like: ”It worked”, ”It didn’t work”

16

scheme can catch a lot of errors. Therefore you get only a lousy information
about the introduced error.

5 Summary

In this paper a new cryptosystem usable for both public key encryption and
digital signature generation was presented. Furthermore a first bit of crypt-
analysis is given. The new ”almost” linear homomorphic one-way function may
emerge to a new cryptographic primitive function, that can be used for other
applications like hash-functions, watermarking, biometric verification and hash-
functions or more general: errorprone15 security applications ... as well. The
new algorithm, however, needs further analysis, to become a new trusted, secure
alternative cryptographic algorithm.

Hence, every reader of this paper is encouraged, to send all his own ideas,
reviews, suggestions, cryptoanalytical results, ... to the author in order to im-
prove the cryptosystems. All reviews (positive or negative) sended to me, will
be published on my website and are used to jmprove the new cryptosystem. If
you are going to use this algorithm for any security critical process, wait at least
one year (started with at publication date). If you just want to implement a
working signature scheme for low security purposes (manipulation detection of
virus scanners or serial number verification of software products), this algorithm
is already secure enough to be used.

References

[1] Ming Kin Lai, Knapsack Cryptosystems: The Past and the Future, Uni-
versity of California, 2001

[2] Feng Bao, Yoshihide Igarashi, Break Finite Automata Public Key Cryp-
tosystems, 1995

[3] J. Ding, J. E. Gower, D. S. Schmidt, Zhuang Zi: A new algorithm for
solving multivariate polynomial equations over a finite field, University of
Cincinnati

[4] Bruce Schneier, Applied Cryptography, Second Edition: Protocols, Algo-
rithms, and Source Code in C, John Wiley and Sons, 1996

[5] M. Ajtai, C. Dwork, A public key cryptosystem with worst-case / average-
case equivalence, 1996

[6] O. Goldreich, S. Goldwasser, S. Halevi, Public-Key Cryptosystems from
Lattice Reduction Problems, 1997

15In a mathematical sense, i.e. error-prone inputs are provided

17

[7] O. Regev, Lattice-based Cryptography, Tel Aviv University

[8] www.ntru.com

[9] O. Goldreich, D. Micciancio, S. Safra, J.P. Seifert, Approximating shortest
lattice vectors is not harder than approximating closest vectors

[10] O. Regev, Improved inapproximability of lattice and coding problems with
preprocessing

[11] M. Alekhnovich, S. A. Khot, G. Kindler, N. K. Vishnoi, Hardness of Ap-
proximating the Closest Vector Problem with Pre-Processing

[12] R. C. Merkle, Public key distribution using approximately linear functions,
Xerox Corp.

A Gaussian distribution test for the error poly-
nomial ∆i

During signature verification the error polynomial has to be checked against the
expected gaussian distribution. Using the suggested parameter sets (t = 20, n
= 1021), this can be done as follows:

Input: An error polynomial ∆i with coefficients δj

Output: A boolean variable (true - accepted, false - rejected)
For j=0 to n-1

If Abs(δj) > 2 then c1++
If Abs(δj) > 3 then c2++
If Abs(δj) > 4 then c3++
If Abs(δj) > 5 then c4++

End For
If c1 > 280 then return false
If c2 > 127 then return false
If c3 > 47 then return false
If c4 > 15 then return false
return true

B Encoding the message for encryption

Because the decryption process is error-prone, the message must be encoded
using a suitable error correction scheme. Such a scheme is now presented:

1. Choose a random 128 bit key k.
2. Split the key into 7 13-digit base 3 numbers(e.g. 01220...)
3. Using a treshold sharing scheme, split each subkey, such that 3 out of 9

subkeys are sufficient to restore the original value
4. Multiply each subkey (now seen as polynomials Mod 3) with the CRC

18

polynomial given by 1002 (= x3 + 2).
5. Attach all subkey-shares to form the message polynomial: the position

determines the sharenumber.
6. Proceed with the encryption algorithm.

To decode this key, do the following:
1. By using the CRC polynomial, identify all corrupted polynomials.
2. Choose from the uncorrupted polynomials at random a set of shares,

sufficient to recover all parts of the 128 bit key.
3. If not succesful, go to step 2 and choose again.

19

