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Abstract. Algebraic attacks are relatively new and interesting subject in cryptanalysis.  The algebraic 
attacks where introduced in [1], where several possible attack’s scenarios where given.  The big 
attention was paid to deterministic scenarios of those.  In this paper, probabilistic scenarios are studied.  
Conception of conditional correlation and partial higher order nonlinearity of Boolean function where 
introduced (briefly definition of conditional correlation: 

( , | ) : Pr( | ) Pr( | )C g f f a g f f a g f f a= = = = − ≠ = ) . It was shown, that the both types of scenarios 
can be seen as a one unified attack – higher order correlation attack, which uses conditional correlation. 
The clear criteria of vulnerability of Boolean function to both types of scenarios was given.  
Accordingly, the notion of the algebraic immunity was extended.  
 There are very vulnerable functions to probabilistic scenario.  Calculations show that if a function 
with a very low partial higher order nonlinearity was used in the cipher like SFINKS [8], the simple 
attack would require only about  422  operations and 32Kb  of keystream.  The question about relation 
between partial higher order nonlinearity and algebraic immunity remains open yet. 
Keywords: cipher, algebraic attack, Boolean function, algebraic immunity, conditional correlation, 
partial higher order nonlinearity. 

 
 
Introduction 

 
Algebraic attacks are an attractive field for investigation.  They were introduced in [1] where they were 
applied to the LFSRs based stream ciphers.  During a few years, a number of papers were written 
which investigated, extended and improved algebraic attacks. These attacks were more or less 
efficiently applied to LFSRs based stream ciphers with memory, with several outputs, for E0 
(Bluetooth) cipher, and for the block ciphers [1,2,9-16]. Paper [1] gives us in general, two types of 
attack’s scenario: deterministic and probabilistic ones.  But efforts [1,2,9-16], listed above, dealt with 
deterministic type only. And it really gives significant results. 
 On the other hand, there is another type of cryptanalytic attack – higher order correlation 
attack [2]. This attack rightly gives us equations, which are true only with some probability. 
Interesting, that paper [1], where algebraic attacks were introduced, is a logical extension of paper [2]. 
 In this paper, the probabilistic scenarios of algebraic attacks are studied.  We show that both 
(deterministic and probabilistic) scenarios can be shown as one unified attack – higher order 
correlation attack, which uses conditional correlation instead of the usual.  And deterministic scenarios 
are the special case where approximation precision is equal to one.  Certain steps in investigation of 
this attack (probabilistic algebraic attack) were made.  We give clear criteria of vulnerability of 
Boolean function, show the existence of the very vulnerable functions, and give an example of such 
attack and estimation of its complexity. 
 The paper structure: The first chapter gives briefly the main idea of the article. The second 
chapter gives main results about probabilistic and deterministic scenarios unification. The third chapter 
gives proofs of correctness and benefits of conditional correlation. The fourth chapter introduces and 
does the same thing about higher order nonlinearity. The fifth chapter shows the existence of very 
vulnerable functions. The sixth chapter gives a simple probabilistic attack example and estimation of 
its complexity, if we use a very vulnerable function in a cipher like SFINKS. Finally, in the seventh 
chapter, concluding remarks are made and some important open questions are addressed.  
 
1 The Main Idea, Briefly 
 
The main idea of algebraic attack is to lower degree of the system of multivariate equations, which 
describes the functioning of the cipher and where unknowns are the bits of the key.  Each equation is a 
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function from the certain linear combination of the key bits. The degree is lowered by multiplying each 
equation on the well chosen another function. For  example, ( ) ( ) ( ) ( )f x a f x g x ag x= ⇒ = . We 
propose to look at this idea in the following way: ( ) ( )f x a h x a= ⇒ = . Where ( )h x  has a low degree.  
Obviously, that ( )h x  is the same as ( )f x  at the subset of arguments, where ( )f x a= . So conditional 
correlation between ( )h x  and ( )f x  is equal to ( , | ) 1C g f f a= = . The functions ( )h x , such that 

( , | ) 1C h f f a ε= ≥ −  - it are those functions, which obtained when probabilistic algebraic attack 
scenarios from [1] are used. Accordingly, the notion of partial r -th order nonlinearity is introduced, it 
is a (doubled) Hamming distance from ( )f x  to subset of functions with degree no greater than r , but 
the distance is calculated only at the subset of arguments, where ( )f x a= .  For sure, it gives a much 
stronger version of the usual higher order correlation attack. 
 
2 Conditional Correlation 
 
In this section we introduce conditional correlation of Boolean functions and approximations in the 
terms of this correlation.  We show that Boolean function annihilators are a particular case of such 
approximations. Also in terms of this correlation, may be for the first time, the probabilistic algebraic 
attack from [1] is explored.  
 
Definition 1. Let nB  be the set of all Boolean functions : (2) (2)nf GF GF→ , 0n ≥ . Let 
1 { (2) | ( ) 1}n

f x GF f x= ∈ =  and 0 { (2) | ( ) 0}n
f x GF f x= ∈ =  are the subsets of arguments, where 

function ( )f x  is equal to one or zero respectively. 
  
Definition 2. Let us denote | |f  the number of arguments, where ( )f x  is not equal to 0  (weight) of 
Boolean function nf B∈ . | |: |1 |ff = . Also let us use the notion of partial weight on the subset of 

arguments X , | | : |1 |, (2)n
X ff X X GF= ∩ ⊂ . 

 
Definition 3. Let , nf g B∈  be a Boolean functions. Correlation between f  and g  is a difference of 

probabilities of their equality and inequality | 1| | |( , ) : Pr( ) Pr( )
2 2n n

f g f gC f g f g f g + + +
= = − ≠ = −  

 
Definition 4. Annihilator of Boolean function nf B∈  is any function nh B∈ , which holds 0f h⋅ ≡ . 
Let ( ) : { | 0}nAn f h B f h= ∈ ⋅ ≡  be the set of all annihilators of f . 
 
The function h  is an annihilator of f  then and only then, when 1 0f h⊂  [16]. 
 
Definition 5. Algebraic immunity ( )AI f  of function nf B∈  is defined as a lowest degree of all 
annihilators of f  or 1f + . ( ) : min{deg( ) | ( ) ( 1)}AI f h h An f An f= ∈ ∪ +  

Where f  is represented in algebraic normal form (ANF) - as a multivariate polynomial over 
(2)GF . 

In general than to more low algebraic immunity of function, that it is more vulnerable to the 
algebraic attacks. 

 
Let us introduce conditional correlation of Boolean functions: 
 
Definition 6. Let , nf g B∈  be a Boolean functions, (2)a GF∈ . We will define conditional correlation 

between f  and g  under condition f a=  as follows: 
( , | ) : Pr( | ) Pr( | ) Pr( | ) Pr( | )

| | | || | | |
| | | | | |

f fg a g ag f g f

f f f

C g f f a g f f a g f f a g a f a g a f a
a aa a a a

a a a

= = = = − ≠ = = = = − ≠ = =
−∩ ∩

= − =
  (1) 
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Where 1 (2)a a GF= + ∈ , and if f  is balanced then 1| | 2n
fa −= . If fa = Ο/ , then 

( , | ) : 1, nC g f f a g B= = ∀ ∈  by definition. 
 

In fact, there are two correlations – one on the subset 0 (2)n
f GF⊂  where f  is equal to zero, 

and one on the subset 1 (2)n
f GF⊂  where f  is equal to one. Sometimes we will write them as 

0 ( , )C g f  та 1( , )C g f .  For example, an equality 0 ( , ) 1C g f =  means that functions f  and g  are the 
same on the subset where f  is zero (to be more precise both functions are zeros on this subset), or in 
other words an implication 0 0f g= ⇒ =  takes place. 

 
Lema 1. Let , nf h B∈  and f  is balanced, (2)a GF∈ , ( , ) 1aC h f ε= − . The number of mismatching 
points of h  and f  on the subset where ( )f x a=  is equal to 2| | 2

f

n
ah f ε −+ = . 

Proof: 

2
1

2

( , ) Pr( | ) Pr( | ) 1 2Pr( | )
| | | |

1 2 1 2 1 2 | | 1
| | 2

| | 2

f f

f

f

a

a a n
an

f

n
a

C h f h f f a h f f a h f f a
h f h f

h f
a

h f

ε

ε

− +
−

−

= = = − ≠ = = − ≠ = =

+ +
= − = − = − + = − ⇒

⇒ + =

 

Let us have two Boolean functions , nf g B∈ , (2)a GF∈  and the correlation between them 
under condition f a=  is equal to ( , ) 1aC g f ε= − . We can say that the function g  is an 
approximation of f  in the terms of conditional correlation aC  with precision 1 ε− . Approximation 
with precision 1 we will name precise. 
 
Definition 7. Let , (2)nf B a GF∈ ∈ .We denote by ( , ) : { | ( , | ) 1 }a nR f g B C g f f aε ε= ∈ = ≥ −  the set 
of all approximations of function f  in the terms of aC  with precision not less than 1 ε− . Also we 
denote 0 1( , ) : ( , ) ( , )R f R f R fε ε ε= ∪ . 
 
Let ,n nG B h B⊂ ∈ , we denote : { | }G g g h g G+ = + ∈ . 

 
Proposition 1. Let nf B∈ . There is a simple bijection between sets of annihilators 

( ), ( 1) nAn f An f B+ ⊂  and sets of precise approximations 1 0( ,0), ( ,0) nR f R f B⊂  of f  in terms of 
conditional correlation. To be more precise 1( ) ( ,0) 1An f R f= + , 0( 1) ( ,0)An f R f+ = . 
Proof: 
1. 1( ) ( ,0) 1An f R f= +  

1 1

( ) [ 0] [ : ( ) 1 ( ) 0]
[ : ( ) 1 ( ) 1 1] [Pr( 1 1| 1) 1]

[ ( 1, | 1) 1] [ 1 ( ,0)] ( ,0) 1

h An f f h x f x h x
x f x h x h f

C h f f h R f h R f

∈ ⇔ ⋅ ≡ ⇔ ∀ = ⇒ = ⇔
∀ = ⇒ + = ⇔ + = = = ⇔

+ = = ⇔ + ∈ ⇔ ∈ +
 

2. 0( 1) ( ,0)An f R f+ =  - in a similar way. 
Corollary 1 ( 1) ( ,0)aAn f a R f a+ + = +  
Corollary 2 min{deg( ) | ( 1)} min{deg( ) | ( ,0)}ah h An f a h h R f∈ + + = ∈  
 
So the algebraic immunity can be represented by the precise approximations: 

1 0

( ) min(deg( ) | ( ) ( 1)}
min(deg( ) | ( ,0) ( ,0)} min(deg( ) | ( ,0)}

AI f h h An f An f
h h R f R f h h R f

= ∈ ∪ + =
= ∈ ∪ = ∈

   (2) 

Now the main idea of lowering degree can be seen more clearly. Let h  be a low degree 
function and ( ,0)ah R f∈  fore some (2)a GF∈ . Then: 

( ,0) [ ( , ) 1] [Pr( | ) 1] [ ]a ah R f C h f h a f a f a h a∈ ⇔ = ⇔ = = = ⇔ = ⇒ =   (3) 
The equation ( )f x a=  is substituted by ( )h x a= , where ( ,0)ah R f∈ . 
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The similar thing we can see with annihilators also: 
0 [ 1 0]f h f h⋅ ≡ ⇔ = ⇒ = , ( 1) 0 [ 0 0]f h f h+ ≡ ⇔ = ⇒ =    (4) 

But our description allows compelling generalization for case of the not precise approximation – when 
( , )ah R f ε∈ , and 0ε >  - is a small but non-zero number. Then the following will be true: 

( , ) [ ( , ) 1 ] [Pr( | ) Pr( | ) 1 ]
[2Pr( | ) 1 1 ] [Pr( | ) 1 / 2]

[ ,Pr 1 / 2]

a ah R f C h f h a f a h a f a
h a f a h a f a

f a h a

ε ε ε
ε ε

ε

∈ ⇔ ≥ − ⇔ = = − ≠ = ≥ − ⇔

= = − ≥ − ⇔ = = ≥ − ⇔
= ⇒ = ≥ −

 (5) 

It turns out to be a description of probabilistic scenario(s) S4 of algebraic attack with theoretical 
possibility pointed out by Courtois in [1]. 

Let us remember this scenario generally. We need to lower the degree of equation ( )f x a= . It 
is multiplied by function g . Then, we obtain equation  [ ( ) ( ) ( )] [ ( ) 0]f x g x ag x t x= ⇔ =  (which has 
already lower degree) is approximated with high precision by equation ( ) 0h x =  which has yet lower 
degree. The aim is to find ( )h x . Although equations of type ( ) 0h x =  will only be true with some 
probability we have a chance for solution due to of their essentially low degree. 

It is known [6] that the function t  is an annihilator of 1f a+ + . (really 
[ ( ) ( ) ( )] [( ) 0] [ ( ) 0]f x g x ag x f a g t x= ⇔ + = ⇔ = , but ( 1)( ) 0f a f a g+ + + ≡ , so ( )f a g+  is an 
annihilator of ( 1)f a+ + ). By virtue of the fact that ( 1) ( ,0)aAn f a a R f+ + + = , 
( 1)f a a t a+ + + ≡ +  is a precise approximation of f  in terms of aC , or in other words 

( , | ) 1C t a f f a+ = = . For simplicity, we substitute functions t a+  and h a+  by t  and h  (in fact it 
means that ( )t x a=  is approximated by ( )h x a= ). Correlation between t  and h  remains unchanged. 
Now we can formulate  
 
Proposition 2. Let  

1. , , nf h t B∈  and  f  is balanced 
2. ( , | ) 1C t f f a= =  
3. ( , ) 1C h t ε= −  
Then: ( ,2 )ah R f ε∈  
To be more precise 1 2 ( , ) 1aC h fε− ≤ ≤  and when 1ε ≤  the both equalities are can be reached. 
 

Proof: 
From condition 3, it arises that 1

00 | | 2
f

nh t ε −≤ + ≤  and 1
10 | | 2

f

nh t ε −≤ + ≤ . 

(really 1| |( , ) 1 2 ( ) 1 2 1 | | 2
2

n
n

h tC h t P h t h tε ε −+
= − ≠ = − = − ⇒ + = , but 0 1| | | | | |

f f
h t h t h t+ = + + + ). If 

f  is balanced and 1ε ≤  then 0| |
f

h t+  and 1| |
f

h t+ separately can be in the range form 0  to 12nε −  

inclusively. 
The conditional correlation between h  and f  can be expressed as follows: 

 
2

( , ) Pr( | ) Pr( | ) 1 2Pr( | )
| | | |

1 2 1
| | 2

f f

a

a a

n
f

C h f h f f a h f f a h f f a
h f h f

a −

= = = − ≠ = = − ≠ = =
+ +

= − = −
 

From condition 2: 2 2

| | | |
( , ) 1 1

2 2
f fa a

a n n

h f h t
C h f − −

+ +
= − = −  

Taking into account the inequality 10 | | 2
f

n
ah t ε −≤ + ≤  we have 

2

| |
1 2 1 ( , ) 1

2
fa

an

h t
C h fε −

+
− ≤ − = ≤  

So, the scenario S4 is reducing to finding low-degree approximations in terms of conditional 
correlation. 

 For describing the lowest degree among the functions ( ,2 )ah R f ε∈ , we can extend 
the notion of algebraic immunity: 
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1 0( , ) min{deg( ) | ( ,2 ) ( ,2 )} min{deg( ) | ( ,2 )}AI f h h R f R f h h R fε ε ε ε= ∈ ∪ = ∈   (6) 
This extension is correct: 

0 1( ,0) min{deg( ) | ( ,0)} min{deg( ) | ( ,0) ( ,0)}
min{deg( ) | ( 1) ( )} ( )

AI f h h R f h h R f R f
h h An f An f AI f

= ∈ = ∈ ∪ =
= ∈ + ∪ =

 

( , )AI f ε  is a minimal equation’s degree, which can be obtained from ( ) 0f x =  or ( ) 1f x =  and will 
be true with probability not less than 1 ε− . When ε  grows, ( , )AI f ε  steps down 

Corollary: we proved that the approximation in terms of conditional correlation describes both 
deterministic and probabilistic algebraic attack’s scenarios simultaneously. 
 
3 Approximations in Terms of Usual and Conditional Correlation 

 
The important cryptographic property of Boolean functions is presence (or absence) of sufficiently 
close low degree approximations. Such approximations, in particular, use in the high order correlation 
attacks [2]. Associated with development of algebraic attacks some more works have evolved, where 
such approximations are investigated, for example [3], [4], [5].  

It turns out that approximations in terms of conditional correlation in many cases can be used 
for cryptanalysis in the same way as usual approximations. They always are also not less precise (for 
the most part are more precise) than usual. So use of approximation in terms of conditional correlation 
instead of usual can improve many earlier results. 

Really, let the Boolean function f  is approximated by some function (of low degree or with 
any other property we need) g  and ( , ) 1C g f ε= − . From this, it follows that Pr( ) / 2g f ε≠ = , it 
means that replacement of f  by g  in any expression will reduce to an expression that is wrong with 
probability no greater than / 2ε . From these considerations are searched such approximations, that 
have the properties we need (for example a low degree) and as possible small value of ε . But often it 
makes replacement not in arbitrary expression, on frequent occasions it changes only ( )f x a=  for 

( )g x a=  for some known (2)a GF∈ . In this separate case we are interested in the probability 
Pr( | )g f f a≠ =  instead of the general Pr( )g f≠ . Here is a case when replacement of f  by g  at 
Pr( ) / 2g f ε≠ =  can give expression which will be wrong with probability, that is slightly smaller 
than / 2ε . 

As 1 ( , )Pr( | )
2

aC g fg f f a −
≠ = =  we come to approximation in terms of conditional correlation. 

Remark 
It is noteworthy, that 

( , ) 1 [Pr( | ) 1 / 2] [ , Pr 1 / 2]aC g f g a f a f a g aε ε ε= − ⇒ = = = − ⇒ = ⇒ = = − . The probability that 
equation ( )g x a=  is wrong equals to / 2ε , namely is the same as in general case by replacement of f  
by h  in some expression, when ( , ) 1C h f ε= − . It means that conditional correlation gives the same 
opportunities to writing equations as usual (except of specificity strictly speaking of replacement 
f a g a= ⇒ = ). So we can see, that it is entered correctly, thus it makes sense to compare it with 

usual correlation. 
 
Proposition 3. Let , nf g B∈ , where f  is balanced, then 

0 1( , ) ( , )( , )
2

C g f C g fC g f +
=  

Proof 
1 1

0 12 2( ( , ) ( , )) (2Pr( | 0) 1 2Pr( | 1) 1)
Pr( | 0) Pr( | 1) 1

Pr( , 0) / Pr( 0) Pr( , 1) / Pr( 1) 1
(Pr( , 0) Pr( , 1)) /(1/ 2) 1 2Pr( ) 1 ( , )

C g f C g f g f f g f f
g f f g f f

g f f f g f f f
g f f g f f g f C h f

+ = = = − + = = − =

= = = + = = − =
= = = = + = = = − =

= = = + = = − = = − =

 

 
Corollary 0 1 0 1min[ ( , ), ( , )] ( , ) max[ ( , ), ( , )]C g f C g f C g f C g f C g f≤ ≤  
The simple example 
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Let 1 2 1 2( ) ( , )f x f x x x x= = + , 1 2 1 2( ) ( , ) 1g x g x x x x= = + , it is not difficult to see, that 

0 1( , ) 1/ 2, ( , ) 0, ( , ) 1C g f C g f C g f= = =  

The corollary shows that one of approximations in terms of 0C  or 1C  is always not less than it 
terms of usual correlation C . It gives reason for importance of functions properties research relative to 
these correlations. We attempt with this purpose in following section to generalize concept of higher 
order nonlinearity of the Boolean functions through using the entered correlations. 
 
4  Partial Higher Order Nonlinearity 
  
The higher order nonlinearity profile is important cryptographic property of Boolean functions [7]. 
Because of appearance of algebraic attacks there were works on the estimation of lower bound on the 
r -th order nonlinearity of function with given algebraic immunity [3], [4], [5].  In this section, the 
concept of the partial r -th order nonlinearity is introduced, thereby the r -th order nonlinearity is 
enhanced. 

Let's review the exact definition of this characteristic: 
 
Definition 8.  The r -th order nonlinearity of  a Boolean function nf B∈  is the minimum Hamming 
distance from f  to a class of functions with degree not more than r . 
 

deg( )
( ) : min | |r h r

nl f f h
≤

= +      (7) 

 
It is clear, that the more r , then less is nonlinearity, and, if deg( )r f=  then ( ) 0rnl f = . If function 
has small nonlinearity for some small value r , then it has close approximation (in terms of usual 
correlation) by some function of a degree not above r . This is a cryptographic weakness. 

Let's try to enter concept of nonlinearity which uses conditional correlation advantages. Do 
this we shall prove before simple lemma. 

 
Lemma 2. Let , nf h B∈  be Boolean functions, ( , ) 1C h f ε= − . Then Hamming distance between h  and 
f  is equal to 1| | 2nh f ε −+ =  

 
Proof: 

1 1

( , ) Pr( ) Pr( ) 1 2Pr( )
| |1 2 1 2 | | 1 | | 2

2
n n

n

C h f h f h f h f
h f h f h fε ε− + −

= = − ≠ = − ≠ =
+

= − = − + = − ⇒ + =
 

Now the r -th order nonlinearity can be easily expressed in terms of correlation: 
1

deg( ) deg( )

1 1

deg( ) deg( )

( ) min | | min (1 ( , ))2

2 min (1 ( , )) 2 (1 max ( , ))

n
r h r h r

n n

h r h r

nl f h f C h f

C h f C h f

−

≤ ≤

− −

≤ ≤

= + = − =

= − = −
   (8) 

Analogously to (8) we will enter concept of partially r -order nonlinearity 
 
Definition 9. The partial r -th order nonlinearity of a Boolean function nf B∈  we name the quantity  
 

1
, deg( )

( ) : 2 (1 max ( , ))n
a r ah r

nlp f C h f−

≤
= −  , (2)a GF∈                (9) 

0, 1,( ) : min[ ( ), ( )]r r rnlp f nlp f nlp f=      (10) 
 
With regard to lemma 1 for every balanced f  we have: 
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1 1
, 2deg( ) deg( )

1
2deg( ) deg( )

| |
( ) 2 (1 max ( , )) 2 (1 max (1 ))

2
| |

2 ( min ) 2 min | |
2

f

f

f

an n
a r a nh r h r

an
anh r h r

h f
nlp f C h f

h f
h f

− −
−≤ ≤

−
−≤ ≤

+
= − = − − =

+
= = +

    (11) 

 
The formula (11) is similar to usual nonlinearity definition (7), but weight is considered not on all 
arguments just where f  is equal only to zero (one). Also value of weight should be multiplied by 2 (it 
is clear since cardinal number of arguments has decreased twice, so mismatching on each argument 
becomes twice weighty). 

Let's show, that partial nonlinearity gives the same opportunities for writing of the equations, 
as usual. That is, if ,( ) ( )r a rnl f nlp g=  for the some (2)a GF∈ , so it is possible to replace both f and 
g  by the equations (best approximations) of degree, that is not above r  and after this replacement the 
obtained equations will be true with the same probability. Actually it simply follows from (8) and (9). 
Really, definition of usual nonlinearity differs from partial nonlinearity only in using conditional 
correlation instead of usual in (9). Corresponding property of conditional correlation is already shown 
in section (3). In that section there were considered also replacement restrictions for conditional 
correlation. 
 It could be shown, that comparison of partial and usual nonlinearity is correct, in another way. 
Really, directly from definition of nonlinearity (7) follows, that probability of an error at the closest 

approximation (of a degree not above r) of function f  is equal to deg( )
min | | ( )

2 2
h r r

n n

f h nl f≤
+

= . The same 

probability at the closest approximation on subset of arguments fa  is equal to 

deg( ) deg( ) ,
1

min | | 2 min | | ( )
2 2 2

f fa ah r h r a r
n n n

f h f h nlp f≤ ≤
−

+ +
= = . Now then it’s reasonable to compare ( )rnl f  and 

,a fnlp . This will be true only for balanced f . 
 
Proposition 4. Let nf B∈  is balanced. Then for any 0r ≥  

( ) ( )r rnlp f nl f≤  
Proof: 
Follows from (8), (9) and (10) and from the fact, that 0 1( , ) max[ ( , ), ( , )]ng B C g f C g f C g f∀ ∈ ≤ . 
Really,  

1 1
0, 1, 0 1deg( ) deg( )

1 1
0 1 0 1deg( ) deg( ) deg( ) deg( )

( ) : min[ ( ), ( )] min[2 (1 max ( , )),2 (1 max ( , ))]

2 min[(1 max ( , )),(1 max ( , ))] 2 (1 max[ max ( , ), max ( , )]

n n
r r r h r h r

n n

h r h r h r h r

nlp f nlp f nlp f C h f C h f

C h f C h f C h f C h f

− −

≤ ≤

− −

≤ ≤ ≤ ≤

= = − − =

= − − = − =

= 1 1
0 1deg( ) deg( )

2 (1 max max[ ( , ), ( , )]) 2 (1 max ( , )) ( )n n
rh r h r

C h f C h f C h f nl f− −

≤ ≤
− ≤ − =

 

Let’s gather some properties of partial nonlinearity in the table as a matter of convenience. 

Table 1  

Relation of Higher Order Nonlinearity, Partial Higher Order Nonlinearity, Algebraic Immunity 
and Degree for Balanced Boolean Function f  of n  arguments 

 
The notes to the Table 1: 

1. Nonlinearity and partial nonlinearity decrease with increasing r  (in the line of the right).  

r  0 1 2 ... 2( ) nd AI f= ≤   
 

1d +  ... deg( )k f=
 

1k +  ... n
 

( )rnl f
 

0 ( )nl f  1( )nl f  2 ( )nl f  ... ( )dnl f  1( )dnl f+  ... ( ) 0knl f =
 

0 ... 0

Comparison = = ≤ ≤ ≤ ≤ ≤ = = = = 

( )rnlp f
 

0 ( )nlp f  1 ( )nlp f
 

2 ( )nlp f  ... ( ) 0dnlp f =  0 0 0 0 0 0
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2. Definition of partial nonlinearity and formula (2) imply, that ( )d AI f=  is the smallest 
number, where ( ) 0dnlp f =  

3. The fact that 1 1( ) ( )nl f nlp f=  for balanced f  is not proved here (the statement 4 gives only 
that 1 1( ) ( )nl f nlp f≥ ). 

 

Thus partial higher order nonlinearity gives us the essential advantages over usual. The example of 
function with small partial and the sufficiently large usual second order nonlinearity will be given in 
the next section. 
 
5 The Example of Vulnerable Function 
 
Let us construct the function for illustration of concepts from previous chapters. We can imagine that 
this function is used as filtering function in some LFSR based stream cipher. Our design criteria are: 
not a very vulnerable against deterministic algebraic attack, not a very vulnerable against higher order 
correlation attack and a very vulnerable against probabilistic algebraic attack. The only additional 
criterion is balancing. (to go in advance ( )f x  will have the six arguments, ( ) 3AI f = , 2 ( ) 12nl f = , 

2 ( ) 2nlp f = ).  
Point out directly a subclass of functions with very low partial second order nonlinearity: 

1 2 1 2 1 2( ) ... ( )( 1)nf x x x x x x g x x x= + + +     (12) 
 
Proposition 5. Let nf B∈  have a form 1 2 1 2 1 2( ) ... ( )( 1)nf x x x x x x g x x x= + + + , where ng B∈  - such 
function that makes f  balanced. Then 

0 2

1( , ) 1
2nC h f −= − , where 1 2( )h x x x=  

Proof (uses Bayesian formula): 
0

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

3 4

( , ) 1 2Pr( | 0)
Pr( 1, 0)1 2

Pr( 0)
Pr( 0 | 1) Pr( 1)1 2

Pr( 0)
Pr( ... ( )( 1) 0 | 1) Pr( 1)1 2

1/ 2
1 4Pr( ... ( )( 1) 0 | 1) (1/ 4)

1 Pr(1 ...

n

n

n

C h f h f f
h f

f
f h h

f
x x x x x g x x x x x x x

x x x x x g x x x x x
x x x

= − ≠ = =

= =
− =

=
= = ⋅ =

− =
=

+ + + = = ⋅ =
− =

− + + + = = ⋅ =

− + + 1 2

3 4 1 2

3 4 2

( )(1 1) 0 | 1)
1 Pr(1 ... 0 | 1)

11 Pr( ... 1) 1
2

n

n n

g x x x
x x x x x

x x x −

+ = = =

− + = = =

− = = −

 

Corollary: 2 ( ) 2nlp f ≤  

(really 1 1
2 0,2 0 2deg( ) 2

1( ) ( ) 2 (1 max ( , )) 2 2
2

n n
nh

nlp f nlp f C h f− −
−≤

≤ = − ≤ ⋅ = ) 

Remark There is only the one point where ( ) 0f x =  and ( ) 1h x = , 1 2( , ,..., ) (1,1,...,1)nx x x x= = . 
All that remains to be done – is to single out a function from this subclass with needed 

properties. We did not do this theoretically but by computer program for 6n = . 
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Table 2  

Relation of Higher Order Nonlinearity, Partial Higher Order Nonlinearity, Algebraic Immunity 
and Degree for Some Balanced Boolean Function f  of 6  Arguments 

 

Where  1 2 3 4 5 6

0011001101111001
0101001110010001

( ) ( , , , , , )
0101100100110001
0001111100111010

f x f x x x x x x

 
 
 = =
 
 
 

 

 In fact, there are many more functions with so low partial second order nonlinearity 
( 2 ( ) 2nlp f = ) than in subclass (12). 
 
6 The Simple Probabilistic Attack Description and Calculation 
 
Let us describe the simple probabilistic algebraic attack and make estimation of it complexity if the 
filtering function with partial nonlinearity 0,2 ( ) 2nlp f =  is used. Let us have a LFSR of length n  bits 
and the filtering function f  uses k  of them. Simplified functioning of our cipher can be written as 
follows:  

0

1
2

2

( )
( )

( )
.....................

( )N
N

f Px b
f PLx b

f PL x b

f PL x b

=
 =
 =


 =

      (13) 

Where ib  - (know) keystream bits, 1 2( , ,..., )nx x x x=  - unknown bits of the key, L  - linear operator 
which describes LFSR functioning, P  - projection operator which takes k  arguments from n , f - our 
filtering function. 
We will attack this system in such a manner. As  0,2 ( ) 2nlp f =  then there is such function kh B∈ , 

deg( ) 2h = , that 0 2

1( , ) 1
2kC h f −= − . Let us choose from system (13) t  equations which have a right 

part 0
ri

b = . Do a replacement: ( ) 0 ( ) 0r ri if PL h PL= ⇒ = . As a result we have a new system: 

( )r

r

i
ih PL x b= , 1,...,r t=     (14) 

System (14) – is a system of quadratic multivariate equations and each of them can be wrong with 

probability 1

1
2k− . If there where no wrong equations it would enough about 

2( 1)
2

n +  true equations for 

solution by simple linearization method. We can estimate the number of wrong equations among 
2( 1)

2
n +  as 

2

1

( 1) 1
2 2k

nD −

+
= ⋅ .  

It turns out this number can be quite small, even smaller than one.  
 Let us calculate D  for the cipher SFINKS (if it had filtering function with so small partial 
second order nonlinearity). According to specification [8] SFINKS has LFSR with length 256n =  bits, 

r  0 1 2 3 ( )AI f=  4 5 deg( )f=  6 
( )rnl f  32 18 12 6 2 0 0 
( )rnlp f  32 18 2 0 0 0 0 
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and its filtering function uses 17k =  of them. So among 
2( 1)

2
n +  equations 

2 2

1 16

( 1) 1 257 1 1
2 2 2 2 2k

nD −

+
= ⋅ = ⋅ ≈  will be wrong on average. The computational complexity of 

solution of such system will not be greater than complexity in the case when all equations are 
guaranteed true. 

So the complexity of solution is roughly equal to 2

2 5.6
log 7( 1)( )

2 7
n nC +

= ≈  operations.  If 256n =  it 

makes 422C =  operations with only about 
2( 1) 32

2
nN Kb+

= ≈  of keystream. The best known attack 

on SFINKS (with its real filtering function) is algebraic attack and requires about 712  operations and 
492  bits of keystream [9]. 

Hence, if the filtering function has very small partial higher (at least second) order 
nonlinearity, then efficient (in sense of computational complexity and amount of data) probabilistic 
algebraic attack is possible. 
 
7 Remarks and Open Questions  
 
Remark 1 

We have proved in proposition 2 from chapter two that scenario S4 of algebraic attack from 
[1] is reduced to approximation of filtering/combining function by low-degree approximations in terms 
of conditional correlation. We can see that such description in terms of approximation, in contrast to 
S4, is not redundant. Really, according to S4 equation ( )f x a=  can be multiplied by a lot of different 
functions g , but then resulting equations of type 0fg ag+ =  may be approximated all by the same 
equation 0h = . So there are different ways to obtain the same result. This fact can be considered as 
redundancy of S4. In our description we are interested directly by h .   
Remark 2 

Let f  be a balanced function and h  - such function that ( , ) 0aC h f > . We replace ( )f x a=  
by ( )h x a=  and try to solve it by reason of Pr( ) 1/ 2h a= >  due to positive conditional correlation 
between h  and f . But it’s not always possible in view that h  can be a non-balanced function, and we 
can have even the situation when Pr( ) 1/ 2h a= > . Fox example, let 1 2( )h x x x=  and 0 ( , ) 1/ 2C h f = . 
Then we have Pr( 0 | 0) 3/ 4h f= = = . But equations of type ( ) 0h x =  (which will be true with 
probability 0.75 ) give us no information by reason of Pr( 0) 3/ 4h = =  just because ( )h x  is not 
balanced.  So the correlation ( , )aC h f  should be big enough to “outweigh” of non-equiprobability of 
h . The question about amount of information which can we get from equation ( )h x a=  with non-
balanced h  needs further research.  The vulnerable functions from chapter 5 are obviously not a 
subject of this problem so far as ( 0) 3/ 4P h = =  and 0 ( , ) 1C h f →  quickly while number of arguments 
n →∞ . 
Remark 3 

When we searched for vulnerable function, (for chapter 5) we observed an interesting fact: if 
partial second order nonlinearity of the function nf B∈  is equal to 2 ( ) 2nlp f =  then its algebraic 
immunity ( ) 3AI f ≤  (at least we couldn’t find function with ( ) 4AI f =  for 8n = ). Of course, it 
should exist the relation between algebraic immunity and the minimal possible partial higher order 
nonlinearity. At least similar relation for usual higher order nonlinearity was established (for example 
in [3], [4]). Maybe the high algebraic immunity will be a sufficient condition to prevent efficient 
probabilistic algebraic attack.  This question is still open. 

But for the functions with very low second order nonlinearity, probabilistic algebraic attack is 
more efficient than deterministic, in spite of low algebraic immunity.  An example is an attack from 
section 6. 
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