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Abstract

We construct a short group signature which is proven secure without random oracles. By making certain
reasonable assumptions and applying the technique of non-interactive proof system, we prove that our scheme
is full anonymity and full traceability. Compared with other related works, such as BW06 [9], BW07 [10],
ours is more practical due to the short size of both public key and group signature.
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1 Introduction

Group signature is a useful cryptographical tool, which is widely discussed in the literature and also has
many potential applications, such as network meeting, online business, and software trading. The similar
requirement of these applications is to allow a member to sign a message on behalf of the group, and still
remain anonymous within the group. Group signature schemes meet this requirement by providing anonymity
and traceability at the same time, that is, a group signature can be related with its signer’s identity only by
a party who possesses an open authority. In such environment, there exists a group manager to distribute
certificates, open authority and other group settings. If one group member generates a group signature, anyone
can only verify the signature by using group public parameters. When some dissention happens, an opener
finds out the real signer’s identity. In this way, group members could protect their privacy.

In 1991, Chaum and van Heyst [13] firstly proposed group signature. Then, many papers on this subject
proposed various of approaches to give a secure and practical group signature scheme. There exist a lot of
practical schemes secure in the random oracle model [2, 7, 19, 20, 21]. However, Canetti, Goldreich and Halevi
[11, 12, 14] have shown that security in the random oracle model does not imply the security in the real world
in that a signature scheme can be secure in the random oracle model and yet be broken without violating any
particular intractability assumption, and without breaking the underlying hash functions.

Therefore, to design a secure group signature scheme in the standard model becomes an open and interesting
research problem. Bellare et. al. introduced security definitions for group signatures and proposed a scheme
based on trapdoor permutation in [6]. Furthermore, Bellare et. [8] strengthened the security model to include
dynamic enrollment of members. After that, Groth [15] also gave a group signature scheme based on bilinear
groups which is proven CCA secure in the standard model under the decisional-linear assumption. Their scheme
was constructed in the BSZ-model [8], but still the size of group signature is enormous.

∗Corresponding Author.

1



Ateniese, Camenisch, Hohenberger and de Medeiros [1] designed a practical group signature with high
efficiency which is also secure in the standard model. The drawback of their scheme was that if the user’s
private key is exposed, it can be used to trace the identity of the user’s past signatures. Unfortunately, this is
not according with BSZ-models, and needs to be prevented.

Boyen and Waters [9] suggested group signature schemes that are secure in a restricted version of the BMW-
model [6], where the anonymity of the members relies on the adversary can not make any query on the tracing
of group signature. The size of both public parameter and group signature are both logarithm of identity
and message. Afterwards, they [10] proposed a group signature scheme the signature of which is of constant
size (only 6 group elements). However, the size of public parameter is still logarithm of identity. Groth also
presented a group signature scheme [16] based on non-interactive witness indistinguishable proof of knowledge
and other existing tools, which enhances the security notion of BW [9, 10]. We will compare our scheme with
theirs in Section 7, specifically.

Our Contribution
We propose a new group signature scheme secure in the standard model. We use short signature [3] and

non-interactive proof system [17] as the foundation to construct ours. Then we prove our scheme is secure in
a restricted BMW-model. Furthermore, the sizes of both public parameter and group signature are reduced
to two constants, and are shorter than that of both schemes in [10, 16]. To the best of our knowledge, our
group signature is the shortest one secure in the standard model. Besides, the overall computational cost of
our scheme is low. Therefore, our scheme is more practical compared with the others.

Roadmap
The rest of this paper is arranged as follows. In next section, we provide the preliminaries of our scheme

including bilinear groups of composite order and complexity assumptions. In Section 3, we describe the formal
models of group signature scheme. Then we propose the two-level signature and group signature schemes in
Section 4 & 5, respectively. We give the details of security proofs in Section 6. Finally, we draw comparisons
between ours and other related works in Section 7 and summarize our paper in Section 8.

2 Preliminaries

2.1 Bilinear Groups of Composite Order

Recently, a lot of cryptographical schemes are based on bilinear groups of composite order. We briefly
review some notions about it from other related works [5, 18, 17, 9, 10].

Consider two finite cyclic groups G and GT having the same order n, where n = pq, p, q are large primes
and p 6= q. It is clear that the respective group operation is efficiently computable. Assume that there exists an
efficiently computable mapping e : G×G → GT , called a bilinear map or pairing, with the following properties.

• Bilinear: For any g, h ∈ G, and a, b ∈ Zn, we have e(ga, hb) = e(g, h)ab, where the product in the exponent
is defined modulo n.

• Non-degenerate: ∃ g ∈ G such that e(g, g) has order n in GT . In other words, e(g, g) is a generator of
GT , whereas g generates G.

• Computable: There is an efficient algorithm to compute e(g, h) for all g, h ∈ G.

2.2 Complexity Assumptions

Before describing our new group signature, we firstly introduce the complexity assumptions from other
related works [5, 18, 17] and then propose new ones.
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Subgroup Decision Problem. The subgroup decision problem in G of composite order n = pq is defined as
follows: given a tuple (n,G,GT , e) and an element h selected at random either from G or from Gq as input,
output 1 if h ∈ Gq; else output 0.

Definition 1 We say that the subgroup decision assumption holds for generator GBGN if any non-uniform
polynomial time adversary A we have

Pr[(p, q,G,GT , e, g) ← GBGN (1k);n = pq; r ← Z∗
n;h = gr : A(n,G,GT , e, g, h) = 1]

= Pr[(p, q,G,GT , e, g) ← GBGN (1k);n = pq; r ← Z∗
n;h = gpr : A(n,G,GT , e, g, h) = 1]

l-Strong Diffie-Hellman Problem. [3] The l-SDH problem in G is defined as follows: given a (l + 1)-tuple
(g, gx, g(x2), ..., g(xl)) as input, output a pair (c, g

1
x+c ) where c ∈ Z∗

p . An algorithm A has advantage ε in solving
l-SDH in G if

Pr[A(g, gx, g(x2), ..., g(xl)) = (c, g
1

x+c )] ≥ ε

Definition 2 We say that the (l, t, ε)-SDH assumption holds in G if no t-time algorithm has advantage at least
ε in solving the l-SDH problem in G.

Now, we give some new assumptions and observe the relationship between them.
l-One More Strong Diffie-Hellman Problem. (l-OMSDH) The l-one more strong Diffie-Hellman problem
in the prime-order bilinear group G is defined as follows: on input two generators g, gx ∈ G, and l distinct
tuples (ci, g

1
x+ci ), where ci ∈ Zn, i ∈ {1, 2, ..., l}, outputs another tuple (c, g

1
x+c ) distinct of all the others. An

algorithm A has advantage ε in solving l-OMSDH in G if

Pr[A(g, gx, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) = (c, g
1

x+c )] ≥ ε,

where c 6= ci, for i = 1, 2, ..., l

Definition 3 We say that the (l, t, ε)-OMSDH assumption holds in G if no t-time algorithm has advantage at
least ε in solving the l-OMSDH problem in G.

l-Modified One More Strong Diffie-Hellman Problem. (l-MOMSDH) The l-modified one more strong
Diffie-Hellman problem in the prime-order bilinear group G is defined as follows: on input three genera-
tors g, gx, u ∈ G, and l distinct tuples (ci, g

1
x+ci ), where ci ∈ Zn, i ∈ {1, 2, ..., l}, outputs another tuple

(gc, g
1

x+c , u
1

c+m ,m) where c /∈ {c1, ..., ci} and m ∈R Z. An algorithm A has advantage ε in solving l-SDH
in G if

Pr[A(g, gx, u, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) = (gc, g
1

x+c , u
1

c+m ,m)] ≥ ε,

where c 6= ci, for i = 1, 2, ..., l

Definition 4 We say that the (l, t, ε)-MOMSDH assumption holds in G if no t-time algorithm has advantage
at least ε in solving the l-MOMSDH problem in G.

It is easy to see that for any l ≥ 1, hardness of the l-SDH problem implies hardness of the l-OMSDH problem
in the same group. Meanwhile, hardness of the l-MOMSDH problem implies hardness of the l-OMSDH problem
in the same group. We claim all of these problems are hard to solve. To be more convincing, the discussion of
these problems is in the Appendix B and the proof of them will appear in the full paper.
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3 Formal Models of Group Signatures

In this section, we introduce some basic models and security issues which have been defined in the papers
[9, 10]. A group signature scheme consists of the following algorithms: Setup, Join, Sign, Verify and Trace.

1. Setup: Taking as input the system security parameter λ, this algorithm outputs group’s public parameter
PP for verifying signatures, a master key MK for enrolling group members, and a tracing key TK for
identifying signers.

2. Join: Taking as input the master key MK and an identity id, and outputs a unique identifier sid and a
private signing key Kid which is to be given to the user. That is: Kid ← Join(PP, MK, id).

3. Sign: Taking as input a user’s private key Kid and a message M , and outputs a group signature σ. That
is σ ← Sign(PP,Kid,M).

4. Verify: Taking as input a message M , a signature σ, and the group’s public parameter PP, and outputs
valid or invalid. That is ”Valid” or ”Invalid” ← Verify(PP, σ,M).

5. Trace: Taking as input a group signature σ, and a tracing key TK, and outputs an identity sid or ⊥. That
is sid or ⊥ ← Trace(PP, σ, TK)

Consistency. We require that the following equations hold.

Verify(PP, Sign(PP,Kid,M),M) = Valid

Trace(PP, Sign(PP,Kid,M), TK) = sid

Security.
Bellare, Micciancio, and Warinschi [6] presented the fundamental properties of group signatures, which are

considered to be restrictions in the following designs. The most two important properties are:
Full Anonymity which requires that no PPT adversary is able to find the identity of a group signature.

The game could be described as follows: the adversary A could firstly query some private keys and some valid
signatures from the simulator B, then A outputs id1, id2,m and sends them to B. B randomly choose b ∈ {0, 1}
and generate σb corresponding with (idb,m). If A has negligible advantage to guess the correct b, our group
signature scheme is full anonymity (CPA). We notice that if we give the trace oracle to the adversary, the full
anonymity is enhanced, which is similar with the CCA-secure notion. In this paper, we follow [10] and use
non-interactive proof system to design a simple group signature in the CPA-full anonymity notion.

Full Traceability which requires that no forged signatures, even if there exists a coalition of users. The
game could be described as follows: the adversary A is given group public parameters PP and the tracing key
TK. Then A could query some private keys and some valid signatures from the simulator B. The validity of
signature and identity tracing could be checked by A. At some point, A outputs a forged group signature σ∗

with its tracing identity id∗ and message m∗. The restrictions are that the private key of id∗ and (id∗,m∗)
should not be queried before. If A has only negligible advantage to forge a valid signature, our group signature
scheme is full traceability.

We refer the reader to [6] for more details of these and related notion.
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4 Hierarchical Signatures

We build a hierarchical signature scheme based on the short signature proposed by BB04 [3]. To implement
a group signature scheme, we construct a short two-level hierarchical signature with existential unforgeability
against chosen message attacks based on l-MOMSDH assumption. The first level can be seen as a certificate
that signed by the group manager, while the second level is a short signature on message m.

4.1 Two-level Signature Scheme

Let λ be the security parameter. Suppose the user’s identity id and the message M are chosen from {0, 1}λ.
We build a group G with order n = pq and record g, u as two generators of Gp, where Gp is a subgroup of G
with order p. There exists a bilinear map e from G × G to GT .

Setup(1λ): It firstly generates the master key MK = z ∈ Zp and calculates the public parameter PP =
{g, Z = gz, u} ∈ G3

p. Moreover, it generates the public collision-resistant hash function H : {0, 1}λ → Zp.
Extract(PP,MK, id): To create a private key for an user, it chooses a secret value sid ∈ Zp and return:

Kid = (K1,K2) = (sid, g
1

z+sid ) ∈ Zp × Gp

Note that the value z + sid must lie in Z∗
p

Sign(PP,Kid,M): To sign a message M ∈ {0, 1}λ, the algorithm generates and outputs:

σ = (σ1, σ2, σ3) = (gsid , g
1

z+sid , u
1

sid+H(M) )

Note that the probability of sid + H(M) ≡ 0 (mod p) is negligible.
Verify(PP,M, σ): To verify whether the signature σ is valid for a message M , the algorithm checks:

e(Zσ1, σ2)
?= e(g, g)

e(gH(M)σ1, σ3)
?= e(g, u)

If the above two equations hold, the verifier outputs valid; else outputs invalid.
Notice that this signature scheme doesn’t reveal the user’s identity, the private key generator could record

the mapping from id to sid. However, the signatures signed by one user can be easily linked with invariant values
σ1, σ2. We modified two-level hierarchical signature scheme to group signature which achieves unlinkability and
anonymity by using non-interactive proof system mentioned in G07 [16].

4.2 Existential Unforgeability

The two-level signature scheme proposed above is existential unforgeable against chosen message attacks.
We review the short group signature in BB04, and prove the security issues based on the hardness of q-SDH
and l-MOMSDH problems.

Theorem 1 Our two-level signature scheme is (t, qe, qs, ε)-secure against existential forgery under a chosen
message attack provided that (t′, q, εqSDH)-SDH assumption and (t′′, l, εMOMSDH)-MOMSDH assumption hold
in Gp, where

ε ≤ 2qsεqSDH + 2εMOMSDH and t ≈ max(t′, t′′), q ≥ qs + 1 and l ≥ qe + qs

Proof. See Appendix A.

5



5 Proposed Group Signature

We now present the group signature scheme in details.

5.1 Schemes

The group signature scheme is described as the following algorithms. Figure 1. presents the scheme executed
by three parties: group manager, user and verifier.

Setup(1λ): The input is a security parameter 1λ. Suppose the maximum group members 2k and the signing
message in {0, 1}m, where k = O(λ),m = O(λ). It firstly chooses n = pq where p, q are random primes of bit
size dlog2pe, dlog2qe = Θ(λ) > k. We builds a cyclic bilinear group G and its subgroup Gp and Gq of respective
order p and q. Denote g, u a generator of G and h a generator of Gq. Next, The algorithm picks a random
exponents z ∈ Z∗

n, and defines Z = gz ∈ G. Additionally, a public collision-resistant hash function H is from
{0, 1}m to Zn.

The public parameters consist,

PP = (g, h, Z, u) ∈ G × Gq × G × G

The master key MK and the tracing key TK are

MK = z ∈ Z∗
n, TK = q ∈ Z

Join(PP, MK, id): The input is a user’s identity id. The algorithm assigns a secret unique value sid ∈ Zn for
tracing purpose. Then the secret key is constructed as:

Kid = (K1,K2) = (sid, g
1

z+sid )

The user may verify that the key is well formed by checking

e(ZgK1 ,K2)
?= e(g, g)

Sign(PP, id,Kid,M): To sign a message M ∈ {0, 1}m, a user parses Kid = (K1,K2) and computes a
two-level signature:

ρ = (ρ1, ρ2, ρ3) = (gK1 ,K2, u
1

K1+H(M) )

Notice that, ρ does not satisfy the anonymity and unlinkability to anyone, since ρ1, ρ2 are unchangeable for
each signature. So, by adopting the same approaches from BW07 [10] and G07 [16], we let the signer choose
t1, t2, t3 ∈ Zn and compute:

σ1 = ρ1 · ht1 , σ2 = ρ2 · ht2 , σ3 = ρ3 · ht3

Additionally, it computes a proof:

π1 = ρt1
2 (Zρ1)t2ht1t2 , π2 = ρt1

3 (gH(M)ρ1)t3ht1t3

The output signature is:

σ = (σ1, σ2, σ3, π1, π2) ∈ G5

Verify(PP, M , σ): To check the validity of signature σ, the verifier calculates:

T1 = e(σ1Z, σ2) · e(g, g)−1, T2 = e(σ1g
H(M), σ3)e(g, u)−1
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Then verifies:

T1
?= e(π1, h), T2

?= e(π2, h)

If the above equations hold, the verifier outputs valid; else outputs invalid.
Trace(PP, TK, σ): Let σ be a valid signature, the opener parses it and finds the element σ1. Then, to trace

the identity of signer, it calculates σq
1 and tests:

(σ1)q = (gsid · ht1)q ?= (gsid)q

Since all the (gsid)q can be pre-calculated firstly and recorded in a list by opener, the time to find the
identity id is linearly dependent on the number of initial users.

Group Manage User(id) V erifier

generate secret
value K1 = sid

K2 = g
1

z+sid

K1,K2−−−−→ Verifies

e(ZgK1 ,K2)
?= e(g, g)

random chooses t1, t2, t3 ∈ Z∗
q

σ1 = gK1 · ht1 Verifies
σ2 = K2 · ht2 T1 = e(σ1Z, σ2) · e(g, g)−1

σ3 = u
1

K1+H(M) · ht3 T2 = e(σ1g
H(M), σ3) · e(g, u)−1

π1 = Kt1
2 (ZgK1)t2ht1t2 T1

?= e(π1, h)

π2 = u
t1

K1+H(M) gt3(K1+H(M))ht1t3 T2
?= e(π2, h)

σ1,σ2,σ3,π1,π2−−−−−−−−−→ if all pass, the signature is valid

Figure 1: Short Group Signature Scheme

6 Security Analysis

We now analyze the security of our group signature scheme.

6.1 Full Anonymity

Since our scheme adopts the same approach from BW06 [9] and BW07 [10], we only prove the security
of our group signature scheme in the anonymity game against chosen plaintext attacks. The proof sketch
borrows from G07 [16]. That is, if h is chosen from G, we achieve perfect hiding property. Meanwhile, if h is
chosen from Gq, we achieve perfect biding property. However, the adversary A can not distinguish these two
different environment, since subgroup decision problem is unsolvable in polynomial time. Therefore, we give
the following theorem.

Theorem 2 Suppose no t-time adversary can solve the subgroup decision problem with advantage at least ε.
Then for every t′-time adversary A to break the full anonymity, we have that AdvA < 2εsub, where t ≈ t′.
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To prove the above theorem, the two lemmas are necessary.

Lemma 1 For all t′-time adversaries A, the probability to distinguish the true environment and the simulated
environment is negligible. That is AdvA − AdvA,S < 2εsub

Proof. Suppose there is a simulator B trying to solve subgroup problem. Upon receiving a tuple (e,G,GT , n, h),
he wants to find out whether h ∈ Gq or not. Firstly, he setups the group signature scheme by choosing the pub-
lic parameters exactly as in the group signature scheme. Then B publishes them to the adversary A. Whether
h is chosen from Gq or not, B can always answer all queries, since it knows the master key. If h ∈R Gq, then
the simulated environment is identical to the actual one.

At some point, the adversary A chooses a message M and two identities id and id′. The constraints are
the secret keys of id and id′, and (M, id), (M, id′) should not be queried before. Then, B outputs the challenge
signature with (M, id∗), where id∗ ∈ {id, id′}. After that, A outputs its guess. If it is correct, B outputs 1; else
outputs 0. Denote by AdvB the advantage of the simulator B in the subgroup decision game. Assume that

Pr[h ∈ G] = Pr[h ∈ Gq] =
1
2

we obtain that,
AdvA − AdvA,S = Pr[b = 1|h ∈ Gq] − Pr[b = 1|h ∈ G]

= 2Pr[b = 1, h ∈ Gq] − 2Pr[b = 1, h ∈ G]
= 2AdvB
< 2εsub

Thus, under our subgroup decision assumption in Section 2.2, the probability to distinguish the actual
environment and the simulated one is negligible. ¥

Lemma 2 For any adversary A, we have AdvA,S = 0

Proof. The proof sketch is similar to that of BW07 [10] and G07 [16]. We prove that when h is chosen
uniformly from G at random, instead of Gq, the adversary A can not sense the identity from the challenge
signature. Although the tracing value sid may have been used to answer previous signing queries on (id,M)
and (id′,M), the challenge signature is statistically independent of the real identity.

To proceed, we write the challenge ciphertext is σ = (σ1, σ2, σ3, π1, π2).
Since the signature σ1, σ2, σ3 is blinded with random number t1, t2, t3 ∈ G, respectively, they reveal nothing

about the identity. Then, we give two signatures: σ with (id,M) and σ′ with (id′,M) and analyze two tuples
π = (π1, π2), π′ = (π′

1, π
′
2).

If σ1 = σ′
1, σ2 = σ′

2, and σ3 = σ′
3, we show that π and π′ do not reveal the identity either.

gsidht1 = gsid′ht′1

g
1

z+sid ht2 = g
1

z+sid′ ht′2

u
1

sid+H(M) ht3 = u
1

sid′+H(M) ht′3

Suppose h = gη, h = uξ, ε = z+sid
z+sid′

, τ = sid+H(M)
sid′+H(M) , we obtain that

t′1 = t1 + sid−sid′
η

t′2 = t2 + 1
η ( 1

z+sid
− 1

z+sid′
) = t2 + 1−ε

η(z+sid)

t′3 = t3 + 1
ξ ( 1

sid+H(M) −
1

sid′+H(M)) = t3 + 1−τ
ξ(sid+H(M))
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Now, we need to show that π1, π2 do not reveal any information about the user’s identity. From the
adversary’s point of view, we see that π1, π2, π

′
1, π

′
2 satisfy,

π′
1 = g

t′1
z+sid′ g(z+sid′ )t

′
2ht′1t′2

loggπ
′
1 =

t1+
sid−sid′

η

z+sid′
+ (z + sid′)(t2 + 1−ε

η(z+sid)) + η(t1 + sid−sid′
η )(t2 + 1−ε

η(z+sid))

= t1
z+sid′

+ sid−sid′
η(z+sid′ )

+ zt2 + sid′t2 + (1−ε)(z+sid′ )
η(z+sid) + ηt1t2 + sidt2 − sid′t2+

t1(1−ε)
z+sid

+ (1−ε)(sid−sid′ )
η(z+sid)

= t1
z+sid

+ (z + sid)t2 + ηt1t2

π′
1 = g

t1
z+sid

+(z+sid)t2+ηt1t2

= g
t1

z+sid g(z+sid)t2ht1t2

= π1

π′
2 = u

t′1
sid′+H(M) g(sid′+H(M))t′3ht′1t′3

loggπ
′
2 = (

t1+
sid−sid′

η

sid′+H(M) ) · η
ξ + (sid′ + H(M))(t3 + 1−τ

ξ(sid+H(M)))

+η(t1 + sid−sid′
η )(t3 + 1−τ

ξ(sid+H(M)))

= t1
sid′+H(M) ·

η
ξ + sid−sid′

ξ(sid′+H(M)) + H(M)t3 + sid′t3 + (1−τ)(sid′+H(M))
ξ(sid+H(M))

+ηt1t3 + sidt3 − sid′t3 + t1(1−τ)
sid+H(M) ·

η
ξ + (1−τ)(sid−sid′ )

ξ(sid+H(M))

= t1
sid+H(M) ·

η
ξ + (sid + H(M))t3 + ηt1t3

π′
2 = g

t1
sid+H(M)

· η
ξ
+(sid+H(M))t3+ηt1t3

= u
t1

sid+H(M) g(sid+H(M))t3ht1t3

= π2

Therefore, π1, π2 is identical to π′
1, π

′
2. The challenge signature σ does not reveal the identity id, though

the simulator uses sid to generate it. Hence, we claim that the adversary A in the anonymity game under the
simulated environment has negligible advantage to guess the correct identity. ¥

6.2 Full Traceability

We prove that our group signature is existential unforgeability based on the security of two-level signature
scheme proposed in Section 4.1.

Theorem 3 If there exists a (t, ε) adversary for the full traceability game against the group signature scheme,
then there exists a (t′, ε) chosen message existential unforgeability adversary against the two-level signature
scheme, where t ≈ t′.

Proof. We note that our group signature scheme is an extension form of our two-level signature scheme
by adding some random number on the signing and verifying equations. Intuitively, we prove that our group
signature is secure against chosen message attack by using two-level signature’s unforgeability.

Suppose there exists a simulator B, who interacts with the adversary A and wants to break two-level
signature scheme. Then, B executes the following algorithms and plays a game with A.

In Setup algorithm, B runs two-level signature Setup, generates public parameters and publishes them.
Furthermore, B deliveries TK = q to A, and A is entitled the authority to tracing authority.

A queries a secret key on id to B. To answer this request, B queries the key extraction oracle of two-level
signature scheme and obtains the user’s secret key Kid. Then B sends Kid to A.

A queries a signature on (id,M) to B. B directly queries the signing oracle of two-level signature scheme
and obtains σ = (σ?

1, σ
?
2, σ

?
3) corresponding with (id,M). Then, B randomly choose t1, t2, t3, and generates the
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group signature,

σ = (σ?
1 · ht1 , σ?

2 · ht2 , σ?
3 · ht3 , (σ?

2)
t1(Zσ?

1)
t2ht1t2 , (σ?

3)
t1(gH(M)σ?

1)
t3ht1t3) (1)

We could see that this is a valid group signature. After receiving the responding signature. A could check its
validity by using PP and trace its identity by using TK = q. These verification equations are correct.

At some point, A outputs its forgery signature σ∗ = (σ∗
1, σ

∗
2, σ

∗
3, π

∗
1, π

∗
2) with (id∗,M∗). According to the

game’s constraints, id∗ should be excluded from key extraction queries and (id∗,M∗) should not be queried
from signing oracle before.

Then, B generates λ which satisfies λ ≡ 1 (mod p) and λ ≡ 0 (mod q). Then, from π∗
1, π

∗
2 and the verification

equations, we obtain:

e(σ∗
1Z, σ∗

2) · e(g, g)−1 = e(π∗
1, h)

e(σ∗
1g

H(M∗), σ∗
3)e(g, g)−1 = e(π∗

2, h)

And we use λ to obtain:

e(σ∗
1
λZ, σ∗

2
λ) = e(g, g)

e(σ∗
1
λgH(M∗), σ∗

3
λ) = e(g, g)

Since (σ∗
1
λ, σ∗

2
λ, σ∗

3
λ) pass the verification equations of two-level signature scheme in Section 4.1, they are a

forged two-level signature, which means B successfully breaks the unforgeability of two-level signature scheme.
Thus, Theorem 3 has been proved.

¥
By combining with Theorem 2 and Theorem 3, we prove our scheme to have full anonymity and full

traceability in the standard model.

7 Comparison

In this section, we compare our group signature with others. Boyen and Waters [9] proposed a nice group
signature based on the Waters’s identity-based signature [22]. However, the hierachical identity-based signature
in that scheme leads logarithmic size of both group public key and group signature. Then, Boyen and Waters
[10] improved the signature to be constant size. Furthermore, we propose a new group signature to achieve
constant size of both public key and signature. We could see the details in table 1. (M ∈ {0, 1}m, id ∈ {0, 1}k):

Table 1: Comparisons on size in Group Signatures
BW06 [9] BW07 [10] Our Scheme

Public Key (k + m + 3)|G| (m + 4)|G| 3|G| + |Gq|
+|Gq| + |GT | +|Gq| + |GT |

Master Key |G| |G| + |Zn| |Zn|
User Key 3|G| 3|G| |G| + |Zn|
Signature (2k + 3)|G| 6|G| 5|G|

More than that, we continue to compare the computational cost on every participant in these group signature
schemes. In Table 2, we note that TExp,TPair,TMul to represent the time for one modular exponentiation,
one bilinear pairing computation, and one group multiplication, respectively. Certainly, our approach reduces
the computational cost and enhances the whole efficiency.
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Table 2: Comparisons on computational cost in Group Signatures
BW06 [9] BW07 [10] Our Scheme

Join 3TExp + (k + 2)TMul 3TExp TExp

Sign (2k+5)TExp+(3k+m+6)TMul 12TExp + (m + 10)TMul 11TExp + 8TMul

Verify (2k + 3)TPair + (2k + m +
4)TMul

6TPair + 3TExp + (m +
5)TMul

6TPair + 3TExp + 4TMul

Open kTExp TExp TExp

Exhaustively
Search

No Yes Yes

Recently, Groth [16] proposed a group signature scheme with full anonymity (CCA) in the standard model.
His scheme adopts the existing tools, including certisignature scheme, strong one-time signature scheme, non-
interactive proofs system for bilinear groups, selective-tag weakly CCA-secure encryption, but it increases the
size and computational cost. The total size of a group signature is 50 group elements in G. In case full
anonymity (CPA) is sufficient, the signature is reduced to 30 group elements. Thus, taking efficiency into
consideration, our scheme is better.

8 Conclusion

In this paper, we proposed a practical group signature scheme, which has shorter sizes of both public key
and signature than that of the other existing schemes. Since we adopted the approach of short signature
proposed by BB04 [3] and non-interactive proof system [17], we proved the security of ours without random
oracles, including full anonymity and full traceability. Furthermore, our scheme reduces the computational cost
on both user and verifier sides. In the future work, we should improve ours on the full anonymity security in
the CCA notion without random oracles and develop other practical group signature schemes based on weaker
assumptions.
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Appendix A

Proof of Theorem 1.
Assume A is a forger that (t, qe, qs, ε)-breaks the two-level signature scheme. We construct an algorithm B that
breaks one of the assumptions mentioned above.

The inputs of B are two instances of the (qs + 1)-SDH problem and (qe + qs)-MOMSDH problem which

include (g, gα, ..., gαqs+1
) and (g, u, gx, sj , g

1
x+sj ) for j = 1, 2, ..., qe + qs.

Before any oracle queries, B randomly sets sb = 0 or sb = 1 by coin tossing. A outputs a list of distinct
qs − 1 messages m1, ...,mqs−1.

• Setup:

– If sb = 0, B tries to solve (qs + 1)-SDH problem. B randomly chooses a secret key z, k ∈ Zp. By

adopting the same simulating approach from [3], B can generate ḡ, ḡα, ḡ
1

α+z , ḡ
1

α+m1 , ..., ḡ
1

α+mqs . The
public parameter is PP = (ḡ, Z = ḡz, ū = ḡk).

– If sb = 1, B tries to solve (qe + qs)-MOMSDH problem. The public parameter is PP = (g, Z = gx, u)

• Extract oracle:

– sb = 0: B randomly selects a target ID?. To answer a key extraction query on ID,

∗ if ID = ID?, B aborts;
∗ if ID 6= ID?, B randomly selects sID ∈ Zp and records (ID, sID) into a list L0. Then, it outputs

(sID, ḡ
1

z+sID ).

– sb = 1: To answer a key extraction query on ID, B randomly chooses and outputs a tuple (sj , g
1

x+sj )
from the instance of (qe + qs)-MOMSDH problem. Then he records (ID, sj) into a list L1.

• Sign oracle:

– sb = 0: To answer a sign query on ID,mi, where i ∈ {1, 2, ..., qs − 1},

∗ if ID = ID?, B outputs (ḡα, ḡ
1

z+α , ḡ
k

α+mi , (ḡα)k).
∗ if ID 6= ID?, B looks up (ID, sID) from L0, if not exists, B generates a distinct value sID ∈ Zp

and adds (ID, sID) into list L0. Then, it outputs the signature (ḡsID , ḡ
1

z+sID , ḡ
1

sID+mi , ḡksID).

– sb = 1: To answer a sign query on (ID,m), B looks up (ID, sj) from L1, if not exists, B chooses
a distinct value sj from the instance and adds (ID, sj) into list L1. Then, it outputs the signature

(gsj , g
1

x+sj , u
1

sj+m ).

At some point, let σ∗ = (σ∗
1, σ

∗
2, σ

∗
3) with (ID∗,M∗) be a forgery produced by A. ID∗ should not be queried

to the key extraction oracle and (ID∗,M∗) should not be queried to the sign oracle. Then, we distinguish
between two cases which are ID∗ have been queried with other messages m except M∗ to the sign oracle or
not.

Now, we separately analyze the cases:
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• Case 1: A(A1) has already queried some two-level signatures on target ID∗. If sb = 0,

The forgery should satisfies the verification equations:

e(Zσ∗
1, σ

∗
2) = e(ḡ, ḡ) and e(ḡH(M)σ∗

1, σ
∗
3) = e(ḡ, ū)

We write s∗ = logḡσ
∗
1 and obtain σ∗

2 = ḡ
1

z+s∗ , σ∗
3 = ḡ

1
s∗+H(M) .

If ID∗ = ID?, (H(M∗), σ∗
3) is B’s solution of (qs + 1)-SDH problem. We note that the probability of

Pr[ID∗ = ID?] = 1/qs

Thus, we conclude:

Pr[solving P(qs+1)−SDH |A1 = succ] =
1
qs

Pr[P(qs+1)−SDH ] ≥ Pr[P(qs+1)−SDH ,A1 = succ]

= Pr[A1 = succ]Pr[P(qs+1)−SDH |A1 = succ] =
1
qs

Pr[A1 = succ]

AdvA1 ≤ qsε(qs+1)−SDH

• Case 2: A(A2) has not queried any signature related with target ID∗. If sb = 1,

The forgery should satisfies the verification equations:

e(Zσ∗
1, σ

∗
2) = e(g, g) and e(gH(M)σ∗

1, σ
∗
3) = e(g, u)

We write s∗ = loggσ
∗
1 and obtain σ∗

2 = g
1

z+s∗ , σ∗
3 = u

1
s∗+H(M) .

By given the inputs of (qs +qe)-MOMSDH problem, B could easily respond on all of A’s queries correctly.
We consider the worst case is that A has queried for qe distinct IDs and qs signatures with other IDs.
Thus, the forgery (σ∗

1, σ
∗
2, σ

∗
3,H(M∗)) is B’s solution to the (qs + qe)-MOMSDH problem.

Therefore, we conclude:
AdvA2 ≤ εMOMSDH

Now, the simulator S runs either case with the same probability 1
2 , denoted as S1,S2. The adversary A can

not distinguish either simulator from his view since both simulations are perfect.Therefore, we obtain:

ε = AdvA ≤ Pr[A1 = succ|S1] + Pr[A2 = succ|S2]

= Pr[A1=succ,S1]

Pr[S1]
+ Pr[A2=succ,S2]

Pr[S1]

= 2Pr[A1 = succ, S1] + 2Pr[A2 = succ, S2]
≤ 2qsεOMSDH + 2εMOMSDH

¥
Similar with the paper [3], we could easily modify our two-level signature scheme to the one existential

unforgeable against adaptive chosen message attack. The sizes of private key and signature in the enhanced
scheme are 2|Gp| + 2|Zp| and 5|Gp| + |Zp|, respectively. They increases a little but still be two constants.
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Appendix B

To provide more confidence in the l-MOMSDH assumption, we give an argument on it and will finish the
complete proof in the full paper.

Review the previous paper [23], it presents a Knowledge Exponent Assumption in a bilinear group.

Assumption 1 (KEA). For every non-uniform poly-time algorithm A there exists a non-uniform poly-time
algorithm XA, the extractor, such that

P [pub ← BGG, x ← Zq, (A, Â; a) ← (A||XA)(pub, gx) : Â = Ax ∧ A 6= ga] ≤ negl

Recall that (A, Â; a) ← (A||XA)(pub, gx) means that A and XA are executed on the same input (pub, gx) and
the same random tape, and A outputs (A, Â) whereas XA outputs a.

Similarly, we define knowledge exponent inversion assumption in a bilinear group with composite order.

Assumption 2 (KEIA). For every non-uniform poly-time algorithm A there exists a non-uniform poly-time
algorithm XA, the extractor, such that

P [pub ← BGG, x ← Zq, (A, Â; a) ← (A||XA)(pub, gx) : e(A, Â) = e(g, gx) ∧ A 6= ga] ≤ negl

Recall that (A, Â; a) ← (A||XA)(pub, gx) means that A and XA are executed on the same input (pub, gx) and
the same random tape, and A outputs (A, Â) whereas XA outputs a.

Now, under the knowledge exponent inversion assumption, we prove that l-MOMSDH assumption is equal
with l-OMSDH assumption. First, we prove that given l-MOMSDH oracle, l-OMSDH problem is solved under
KEIA.

Given the input from l-OMSDH problem:

(g, gx, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl )

Then we randomly chooses u ∈ G, and inputs (g, gx, u, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) into l-MOMSDH
oracle. Now, we have the outputs from this oracle:

(gc, g
1

x+c , u
1

c+m ,m), where c 6= {c1, ..., cl}

Note that

e(gcgm, u
1

c+m ) = e(g, u)

Since the inputs has no information related with element u, by using KEIA we have an extractor which
outputs a = c + m. Thus, (a − m, g

1
x+c ) is a solution to the l-OMSDH problem.

On the other side, we could easily see that given l-OMSDH oracle, l-MOMSDH problem is solved. Here,
we give a simple analysis to our new assumption and would finish it in the full paper.
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