
Comparing Implementation Efficiency of

Ordinary and Squared Pairings

Christine Abegail Antonio1, Satoru 2 and Ken Nakamula3

Department of Mathematics, Tokyo Metropolitan University
Minami-Osawa, Hachioji-shi

Tokyo, Japan
1 abby@tnt.math.metro-u.ac.jp

2 satoru@tnt.math.metro-u.ac.jp
3 nakamula@tnt.math.metro-u.ac.jp

Abstract

In this paper, we will implement a standard probabilistic method of computing
bilinear pairings. We will compare its performance to a deterministic algorithm
introduced in [5] to compute the squared Tate/Weil pairings which are claimed
to be 20 percent faster than the standard method. All pairings will be evaluated
over pairing-friendly ordinary elliptic curves of embedding degrees 8 and 10 and
a supersingular curve of embedding degree 6. For these curves, we can make
the algorithm to compute both the ordinary Weil and Tate pairings determin-
istic and optimizations to improve the algorithms are applied. We will show
that the evaluation of squared Weil pairing is, indeed, faster than the ordinary
Weil pairing even with optimizations. However, evaluation of the squared Tate
pairing is not faster than the ordinary Tate pairing over the curves that we used
when optimizations are applied.

key words and phrases. bilinear pairings, squared Weil/Tate pairing, cryptog-
raphy, pairing-friendly curves

1 Introduction

Recently, increasing interest has been focused on the efficient computations of
bilinear pairings for cryptographic use. Two of the most researched type of
bilinear pairings are the Weil and the Tate pairings. The original polynomial
time algorithm to evaluate these pairings was due to Miller [13] for the case
of elliptic curves. Since the algorithm is probabilistic, a lot of researches are
based on improving his method, e.g., making it deterministic. The papers [10]
and [1] proposed a fast computation of the Tate pairing by improving Miller’s

1

algorithm. In [11], they suggested that bilinear pairing computation can be
improved by choosing suitable fields where the field arithmetic can be made
relatively faster.

Furthermore, the security of pairing based cryptosystems depends on (1)
finding curves whose order is divisible by a large prime such that generic attacks
on smooth group orders (Pohlig-Hellman attacks) can be resisted, and on (2)
the discrete logarithm in the field where the evaluation of Tate/Weil pairing lies
should be computationally infeasible. At the same time, such field should lie
in a ‘low’ degree field so that pairings are easily computable. Pairing-friendly
elliptic curves address these problems.

A randomly chosen elliptic curve tends to have a large embedding degree
which is not useful in pairing based cryptosystems. One type of curves that is
proven to be effective is supersingular curves. They are guaranteed to have small
embedding degree (k ≤ 6) and Menezes, Okamoto and Vanstone [12] showed a
complete classification for these curves. In [17] and [18], Tanaka, proposed a
method of constructing an ordinary (nonsupersingular) pairing-friendly elliptic
curves with embedding degree 8 by improving the technique proposed by Brezing
and Weng which can be found in [6]. In [7], Freeman provided a technique on
constructing ordinary pairing-friendly curves of prime order with embedding
degree 10.

A comparison of the performance of the Tate pairing over MNT curves [14]
and supersingular curves are discussed by D. Page et al. in [15]. In [4], they
proposed an efficient implementation of the Tate pairing over Barreto-Naehrig
curves. In this paper, using supersingular elliptic curves over a field of charac-
teristic 3 and the curves generated by Freeman and Tanaka, we will implement
the basic algorithm of Miller to compute bilinear pairings. We will compare
its performance to a deterministic algorithm to compute the squared Tate/Weil
pairing which was proposed in [5]. We will show that even by adding optimiza-
tions on the standard algorithm, the squared Weil pairing is much faster than
the Weil pairing. However, the Tate pairing is comparable to the squared Tate
pairing when optimizations are applied and details of this fact are discussed in
Section 2.2.

This paper is organized as follows. Section 2 gives the notations that we
will use in this paper, a brief mathematical background of bilinear pairings,
in particular, the Tate/Weil pairings and the squared Tate/Weil pairings and
the algorithms to compute them. We will also introduce some optimizations
to make the algorithms efficient. Section 3 will give details on pairing friendly
elliptic curves that we will use in our implementations. In Section 4 we will
give our numerical results. Section 5 gives the observations we draw from this
experiment.

Our Contribution

We will compare the computational efficiency of pairing evaluations on or-
dinary curves of embedding degrees 8 and 10 over large prime fields and on a
supersingular curve of embedding degree 6 over a field of characteristic 3. We

2

will focus on the optimizations that can be applied to the standard algorithm,
particularly on Miller’s loop and the use of distortion maps for the supersingular
case.

We will show a method on how the standard algorithms can also be made
deterministic under a natural setting, i.e., since we are implementing over curves
of embedding degree greater than 1, we can choose one of our points to come
from E(Fq) and the other point to come from E(Fqk) \ E(Fq). This assures us
that we will not get a trivial value in our pairing computations.

The parameters that we will use for the pairing-friendly curves will be pre-
sented. We chose ordinary curves of embedding degrees 8 and 10 because as of
the time this paper is being written, there are still no published works on the
comparison of the implementations of pairings on these embedding degrees. As
for our choice of supersingular curves, a lot of researches have shown that the
best choices for parameters are in characteristic three, e.g. [9] and [11].

Our main objective is to be able to compare the implementation efficiency
of squared pairings and ordinary pairings over curves of embedding degrees 8
and 10 and supersingular curves of embedding degree 6. However, with this
experiment, we were able to conclude based on our results, that the squared
Tate pairing is not necessarily faster than the ordinary Tate pairing with opti-
mizations.

2 Notations and Algorithms

Let E be an elliptic curve over a finite field Fq. A divisor D is defined as
D =

∑
P∈E mP (P), mP ∈ Z and mP = 0 for almost all points P . These

divisors form an additive group D(E). We say that a divisor D is principal if
there exists a rational function f such that mP gives the order of vanishing of f
at P . These principal divisors are of degree 0 and form a subgroup of the group
D0(E) of degree zero divisors. The support of a divisor D =

∑
P∈E nP (P),

denoted by supp(D), is the set of points P with nP 6= 0. See [8] for a detailed
discussion on divisors.

2.1 The Weil and the Tate Pairings

Let n=|E(Fq)| and r ∈ Z+ such that r is relatively prime to the characteristic
of the field Fq. We denote by k the embedding degree or the security multiplier,
i.e., the smallest positive integer such that r|qk − 1. A pairing is a function
which maps bilinearly, a pair of elliptic curve points P,Q to an element in the
finite multiplicative group Fqk

∗. Two of the most commonly used pairings are
the Weil and the Tate pairings.

We denote by E(Fqk)[r] the group of r-torsion points of an elliptic curve
and let µr = {x ∈ Fqk |xr = 1}, or the r-th roots of unity in Fqk . For a pair
of r-torsion points P,Q, we let fP and fQ be rational functions with divisors
(fP) = rDP and (fQ) = rDQ, where DP ∼ (P)− (P∞), DQ ∼ (Q)− (P∞) with

3

supp(DQ)∩ supp(DP)=∅ and P∞ denotes the point at infinity on E. The Weil
pairing is a map

er(∗, ∗) : E(Fqk)[r]× E(Fqk)[r] → µr.
(P,Q) 7→ fP (DQ)/fQ(DP)

On the other hand, let the support of DQ be disjoint from the support of
(fP). Choose an S ∈ E(Fq) such that S /∈ 〈P 〉 ∪ 〈P −Q〉 ∪ 〈−Q〉 and let
DQ′ = (Q + S)− (S). Then the Tate pairing is a map

< ∗, ∗ >r : E(Fqk)[r]× E(Fqk)/rE(Fqk) → Fqk
∗/Fqk

∗r

(P,Q) 7→ fP (DQ′)

The value of the Tate pairing is independent of the choice of S.
Note that Tate pairing is not unique because it evaluates as an element of

one of the cosets of Fqk
∗/Fqk

∗r. To produce a unique value, we raise the output
to the power (qk − 1)/r. This process is called the final exponentiation.

The Weil pairing requires two applications of Miller’s algorithm to produce a
bilinear map, whereas the Tate pairing requires only one application and a final
exponentiation. Since the Tate pairing is less expensive to implement, it is much
commonly used in practice. The disadvantage to these standard algorithms is
that it may fail for random choices of P and Q because it may happen that the
tangent line may pass through Q, or the vertical function may be evaluated to
be zero. In the next subsection, we will present an optimization where we can
make both algorithms deterministic.

2.2 Optimizations

The first known technique to compute both pairings was due to Miller [13]. In
this paper, we added a few optimizations in the basic Miller algorithm in our
programs and they are as follows. See [8] and [10] for efficient computation of
pairings.

1. To avoid division in Fqk , we can replace the rational function f in Miller’s
loop by f1/f2, where f1 and f2 correspond to the numerator and the denom-
inator of f , respectively. We can perform a single division at the end of the
loop.

2. Recall that we are evaluating pairings over Fqk . For embedding degree
k > 1, we can choose one of our points to come from E(Fq) and the other point
to come from E(Fqk) \ E(Fq). Under this natural setting, we are sure that we
will not get a trivial value in our pairing computations which will make our
algorithm deterministic.

3. For the case of the original Weil pairing, for k > 1 and r is prime,
we choose (fP) = r(P) − r(P∞) and (fQ) = r(Q) − r(P∞) and we choose 2
random points S, T and equate DP = (P + S) − (S), DQ = (Q + T) − (T).
To optimize, we choose P ∈ E(Fq), P 6= P∞ and Q ∈ E(Fqk) \ E(Fq). With
this choice, E(Fqk)[r] = 〈P,Q〉. So we choose R ∈ {aP − bQ|1 < a, b < r} and

4

take DQ = (Q + R) − (R). Then supp(fP)∩ supp(DQ)=∅ which is what we
want. Similarly, we choose DP = (P −R)− (−R) and we can easily check that
supp(fQ)∩ supp(DP)=∅. Therefore, we only need to choose a single point R so
that we will not get a trivial value in our computations.

4. For the case of the Tate pairing, if k > 1 and r is prime, then r does
not divide q − 1 so all elements of F∗q map to 1 when we raise it to (qk − 1)/r.
Therefore we can ignore all terms in the algorithm that evaluates at F∗q . For
example, to compute the Tate pairing in Algorithm IX.1 of [8], it is unnecessary
to choose a random point S in the standard algorithm since l, v and S are
defined over Fq. Therefore, there will be no need to compute for l(S) and v(S)
in Miller’s loop of the original algorithm because it maps to 1 after the final
exponentiation [8]. In fact, there is no need to choose a random point S at all.
This will make the program run faster.

5. The use of distortion maps for supersingular curves appear to speed up
pairing evaluations, therefore, in our experiment, we will compare its perfor-
mance with and without distortion maps. Details on the distortion map of the
curve that we will use in our implementations are discussed in Section 3.

In the algorithms, we will use the functions lA,B and vA+B . These are just
the lines computed when evaluating the elliptic curve point addition A+B = C.
The values for these functions are solved using the formulas

lA,B(Q) = (yQ − yA)− λ(xQ − xA)

and

vC(Q) = (xQ − xC)

where A=(xA, yA), C=(xC , yC), Q=(xQ, yQ), and λ is the slope of the line
through A and B. Note that we first need to compute A + B and from this, we
can obtain the slope of the line, λ, through A and B. Notice that to compute
lA,B(Q) we need 1 multiplication while no multiplication is needed to evaluate
vC(Q). Furthermore, let

r = (1, rd, ..., r0)2, d = blog2 rc − 1

be the binary expansion of r.
Below are the algorithms to compute the Weil and Tate pairings with opti-

mizations described as in 1-5 above.

5

Algorithm 1. Optimized Miller’s Algorithm for Computing Weil Pairing.
INPUT: P ∈ E(Fq)[r], P 6= P∞, Q ∈ E(Fqk)[r] \ E(Fq)[r].
OUTPUT: er(P,Q)
1: Generate a random point R ∈ {aP − bQ|1 < a, b < r}.
2: T ← P , S ← Q, f ← 1,g ← 1 .
3: for i← blog2(r)c − 1 down to 0 do
4: f = f2 · lT,T (Q + R) · v2T (R) · lS,S(−R) · v2S(P −R)
5: g = g2 · v2T (Q + R) · lT,T (R) · v2S(−R) · lS,S(P −R)
6: T = 2T , S = 2S
7: if ri = 1 then
8: f = f · lT,P (Q + R) · vT+P (R) · lS,Q(−R) · vS+Q(P −R)
9: g = g · vT+P (Q + R) · lT,P (R) · vS+Q(−R) · lS,Q(P −R)
10: T = T + P , S = S + Q
11: end if
12: end for
13: Return f/g.

Algorithm 2. Optimized Miller’s Algorithm for Computing Tate Pairing.
INPUT: P ∈ E(Fq)[r], P 6= P∞, Q ∈ E(Fqk) \ E(Fq).
OUTPUT: 〈P,Q〉(q

k−1)/r
r

1: T ← P , f ← 1.
2: for i← blog2(r)c − 1 down to 0 do
3: f = f2 · lT,T (Q)
4: T = 2T
5: g = g2 · vT (Q)
6: if ri = 1 then
7: f = f · lT,P (Q)

8: T = T + P
9: g = g · vT (Q)
10: end if
11: end for
12: w ← (f/g)(q

k−1)/r

13: Return w.

With these optimizations, we can reduce the number of operations in eval-
uating both the Weil and the Tate pairings. For the case of the Tate pairing,
applying these optimizations make the algorithm a lot more efficient and com-
parable to the performance of the squared Tate pairing which will be described
in Section 2.3 below.

2.3 The Squared Weil and Tate Pairings

In [5], Eisentrager, Lauter and Montgomery introduced a pairing technique
called the squared Weil and Tate pairings. These can be solved by deterministic

6

algorithms and they are significantly faster than the standard Tate and Weil
pairing algorithms. For a detailed discussion on these pairings, refer to [5].

Let r be a positive integer satisfying the same conditions of the Weil pairing.
In our implementations, similar to the optimizations that we did to the ordinary
pairings, we take P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r] \E(Fq)[r]. Then the squared
Weil pairing is defined as

er(P,Q)2 = (−1)r fP (Q) · fQ(−P)
fP (−Q) · fQ(P)

.

On the other hand, for P ∈ E(Fq)[r] and Q ∈ E(Fqk) \E(Fq), we define the
squared Tate pairing as

< P, Q >2·((qk−1)/r)
r =

fP (Q)
fP (−Q)

.

Given below are the deterministic algorithms to compute the squared Weil
and the squared Tate pairings. For details on the optimizations that can be
applied for both algorithms, refer to [5].

Algorithm 3. Algorithm for Computing Squared Weil Pairing.
INPUT: P ∈ E(Fq)[r], P 6= P∞, Q ∈ E(Fqk)[r] \ E(Fq)[r].
OUTPUT: er(P,Q)2

1: T ← P , S ← Q, f ← 1, g ← 1
2: for i← blog2(r)c − 1 down to 0 do
3: f = f2 · lT,T (Q)lS,S(−P)
4: g = g2 · lT,T (−Q)lS,S(P)
5: T = 2T , S = 2S
6: if ri = 1 then
7: f = f · lT,P (Q)lT,Q(−P)
8: g = g · lS,P (−Q)lS,Q(P)
9: T = T + P , S = S + Q
10: end if
11: end for
12: Return f/g

7

Algorithm 4. Algorithm for Computing Squared Tate Pairing.
INPUT: P ∈ E(Fq)[r], P 6= P∞, Q ∈ E(Fqk) \ E(Fq).

OUTPUT: < P, Q >
2·((qk−1)/r)
r

1: T ← P , f ← 1, g ← 1.
2: for i← blog2(r)c − 1 down to 0 do
3: f = f2 · lT,T (Q)
4: g = g2 · lT,T (−Q)
5: T = 2T
6: if ri = 1 then
7: f = f · lT,P (Q)
8: g = g · lT,P (−Q)
9: T = T + P
10: end if
11: end for
12: w ← (f/g)(q

k−1)/r

13: Return w.

Notice that the vertical lines vA+B which requires computation in any algo-
rithm of the Weil/Tate pairings do not appear in Algorithms 3 and 4 because
vA+B(Q) and vA+B(−Q) (or vA+B(P) and vA+B(−P))are equal and therefore,
can be cancelled out. Furthermore, the algorithms will terminate and output
the correct answer in polynomial time.

3 Pairing Friendly Elliptic Curves

The security of pairing-based cryptosystems depend on the infeasibility of the
Discrete Logarithm Problem (DLP) on the groups E(Fq) and Fqk

∗. In this
regard, we choose the parameters q and k such that DLP on these two groups
are hard to compute and |E(Fq)| has a large prime factor r. For example, a
pairing is considered secure against today’s best attacks when r ∼ 2160 and
k = 6 to 10 as in [7]. Elliptic curves with small k and a large r are called
‘pairing-friendly elliptic curves’ and they are classified into two groups, namely,
supersingular and ordinary.

Supersingular elliptic curves have embedding degree k= 1, 2, 3, 4 or 6 and
for k ≤ 3, they must be defined on fields of characteristic not equal to 2 or 3.
They also have distortion maps which make computations much faster and more
efficient. Many researches have shown that the best choices for parameters are
in characteristic three, e.g. [9] and [11], so for our experiment, we will use the
popular curve over the field F3163 , given by the equation

E : Y 2 = X3 −X + 1.

The order of the group is given by |E(F3163)| = 3163 + 3(163+1)/2 + 1 and the
large prime divisor r is 253 bits. We will use the following distortion map to
make computations more efficient.

8

(X, Y) 7−→ (α−X, iY),

where i ∈ F32 , i satisfies i2 = −1 and α ∈ F33 , α3 − α− 1=0 .

There are some disadvantages in using supersingular curves. With the advent
of supercomputers, they may not be secure enough to use in cryptosystems
since the embedding degrees are bounded and there are efficient algorithms for
computing the DLP in small characteristic fields. Furthermore, there are limited
number of parameter choices for the case of fields of characteristics 2 and 3.

In that case, we can turn our attention on another type of pairing-friendly
curves that we can use — ordinary elliptic curves. Many papers have been
published on the construction of this kind of curves and a survey on this was
written by Freeman, Scott and Teske [6].

In [17], Tanaka developed an algorithm to generate pairing-friendly elliptic
curves of embedding degree 8 over finite prime fields by improving the method
of Brezing and Weng (see [6] and [17] for further details). We chose this curve
because the author gave an explicit method and examples to generate pairing
friendly curves of embedding degree 8. The curve can be generated using the
following parameters.

t(x) = −8x2 − 108x2 − 54x− 8
r(x) = 82x4 + 108x3 + 54x2 + 12x + 1
q(x) = 379906x6 + 799008x5 + 705346x4 + 333614x3 + 88945x2

+12636x + 745
n(x) = q(x) + 1− t(x),

where t is the trace of Frobenius of the curve, r is the large prime which divides
the order of the group, q is the characteristic of the finite field and n is the
number of points of the elliptic curve E over Fq.

With x = 24000000000010394, (log2 x=54.4), we get an elliptic curve in [17]
with the following parameters which we will use in our programs. Note that the
large prime divisor r of the group order is 224 bits. It is easy to verify that this
curve is pairing-friendly once the parameters are given numerically as follows.

E : Y 2 ≡ X3 + aX (mod q) (a 6= 0)

t = −1133568000001472850432000637893917136092090964291460
r = 272056320000471307161600306182614014808404525177076771

93482845476817
q = 726011672004446604951703464791789328991217313776602768

81150532069758156754787842298703647640196322590069
n = 72601167200444660495170346479178932899121731377660278

014718532071231007186788480192620783732287286881530
a = 1/2

9

Freeman, in [7] proposed a way to generate a whole family of pairing-friendly
ordinary elliptic curves of embedding degree 10 with prime orders. This is
an addition to the work of Miyaji, Nakabayashi and Takano[14], who gave a
complete characterization of ordinary elliptic curves with embedding degrees 3, 4
and 6 of prime order and Barreto–Naehrig[2] who provided a method to produce
curves of prime order with embedding degree 12. We chose this particular curve
because this is the only good example for embedding degree 10.

We can generate a ‘pairing-friendly’ elliptic curve of embedding degree 10
with prime order by using the following parameters.

t(x) = 10x2 + 5x + 3
r(x) = 25x4 + 25x3 + 15x2 + 5x + 1
q(x) = 25x4 + 25x3 + 25x2 + 10x + 3

where the notations are the same as the ones we used for Tanaka’s curves, except
that r(x) = n(x). If the equation u2 − 15Dv2 = −20 has a solution with u ≡ 5
(mod 15), then (t, r, q) represents a family of curves of embedding degree 10.
For details on the construction and the algorithm he used, see [7].

For our experiment, we will use a 234-bit curve (published example [7])

E : Y 2 = X3 + AX + B

which was generated with D= 1227652867 with the following parameters.

r = 18211650803969472064493264347375950045934254696657090420726
230043203803

q = 1821165080396947206449326434737595004593425469665709042072
6230043203803

A = −3
B = 1574866809491340118477796447352285908690083127492294897332

0684995903275

4 Results

We implemented six algorithms, two of which are the standard Weil/Tate pair-
ing algorithms and the remaining four are the ones discussed above. Their
efficiency are measured over three pairing friendly elliptic curves, two of which
are ordinary and one is supersingular. We generated 10 pairs of points for each
curve as inputs in our programs. Our programs are written in MAGMA and
ran on an AMD Opteron, 2GHZ dual core machine with 4GB of memory. Be-
low are the tables for the average timings of the algorithms in seconds. Note
that the timings for the Tate/Squared Tate pairings do not include the final
exponentiation.

10

Timings for the Weil/squared Weil Pairings
Tanaka Freeman SS(w/o dist.) SS(w/dist.)

Weil Pairing 2.091 2.373 75.998 31.719
Weil Pairing (w/ opt.) 0.479 0.538 12.286 5.980
Squared Weil pairing 0.307 0.341 9.403 3.473

Timings for the Tate/squared Tate Pairings
Tanaka Freeman SS(w/o dist.) SS(w/dist.)

Tate Pairing 0.349 0.370 14.935 14.806
Tate Pairing (w/ opt.) 0.085 0.091 2.359 1.813
Squared Tate pairing 0.085 0.091 2.384 2.109

5 Observations

We have demonstrated the first comparison of the Weil/Tate pairings and squared
Weil/Tate pairings on supesingular curves over characteristic 3 field and ordi-
nary curves of embedding degrees 8 and 10. Based on the timings we gathered in
our implementations, we can see that pairing evaluation on supersingular curves
using distortion maps are much faster than the pairing evaluation without dis-
tortion maps. However, they appear to be much less efficient compared to the
ordinary curves we chose of embedding degrees 8 and 10. We believe that this
has to do with the choice of the extension fields where we evaluate the pairings.
The polynomial we used to generate the extension field Fqk for the ordinary
elliptic curves have less hamming weight than the supersingular case. This is a
problem with supersingular curves over characteristic 2 or 3 fields. There are
only a small number of fields to choose from and we need an element of luck in
our search for a suitable field [8].

We also observed that the squared Weil pairing is much efficient to compute
compared to the Weil pairing, even when optimizations are applied. On the
other hand, the efficiency of the squared Tate pairing is comparable to the Tate
pairing when optimizations are applied for the ordinary curves. However, for
the case of supersingular curves, the squared Tate pairing is not faster than
the optimized Tate pairing. The reason for this can be checked by comparing
the loop from line 2 to line 11 of both Algorithms 2 and 4 in our source code.
The squared Tate pairing requires one more multiplication compared to the
optimized Tate pairing which takes more time to compute.

We would like to point out that this experiment does not consider security
implementations other than the bit size of the order of the r-torsion subgroup,
the finite field Fq and the extension field Fqk . We are basing our conclusions on
the computational efficiency of the pairings, the pairing-friendly curves that we
used and the underlying field to which we evaluate the pairings.

11

References

[1] P. Barreto, H. Kim, B. Lynn, M. Scott. Efficient Algorithms for Pairing Based
Cryptosystems. Advances in Cryptology - Crypto 2002, pp. 354-3-68, LNCS vol.
2442, Springer-Verlag, 2002.

[2] P. Barreto, M. Naehrig, Pairing-Friendly Elliptic Curves of Prime Order, in: SAC
2005, ed. B. Preneel, S. Tavares, LNCS vol. 3897, pp. 319–331, Springer-Verlag
2006.

[3] D. Boneh, M. Franklin, Identity Based Encryption Scheme from the Weil Pairing,
in CRYPTO ’01, Springer LNCS 2248 (2001), pp. 213–239.

[4] A.J. Devegili, M.Scott, R. Dahab, Implementing Cryptographic Pairings over
Barreto-Naehrig Curves, in: Pairing-Based Cryptography Pairing 2007. LNCS
vol. 4575, pp. 197–207, Springer-Verlag 2007.

[5] K. Eisentrager, K. Lauter, P. Montgomery. Improved Weil and Tate Pairing for
Elliptic and Hyperelliptic Curves, in Algorithmic Number Theory Symposium,
ANTS VI, LNCS vol. 3076, pp. 169–183, Springer-Verlag 2004.

[6] D. Freeman, M. Scott, E. Teske, A Taxonomy of Pairing-
Friendly Elliptic Curves, preprint, 2006. Available at
http://math.berkeley.edu/dfreeman/papers/taxonomy.pdf

[7] D. Freeman, Constructing Pairing Friendly Elliptic Curves with Embedding De-
gree 10,In: Algorithmic Number Theory, LNCS vol. 4076, pp. 452–465, Springer
Heidelberg, 2006.

[8] S. Galbraith, Pairings, in: Advances in Elliptic Curve Cryptography, pp. 183–213,
Cambridge University Press, 2005.

[9] S. Galbraith, Supersingular Curves in Cryptography, in Advances in Cryptology
- ASIACRYPT 2001. Springer-Verlag, LNCS 2248, pp. 495–513, 2001,

[10] S. Galbraith, K. Harrison, D. Soldera. Implementing the Tate Pairing. Algorith-
mic Number Theory, 5th International Symposium ANTS-V, LNCS vol. 2369,
pp. 20–32, Springer-Verlag, 2002.

[11] K. Harrison, D. Page, N.P. Smart, Software Implementation of Finite Fields of
Characteristic 3, for Use in Pairing Based Cryptosystem. In: LMS Journal of
Computation and Mathematics, London, vol.5(1), pp.181–193, London Mathe-
matical Society, London 2002.

[12] A. Menezes, T. Okamoto, S. Vanstone, Reducing Elliptic Curve Logarithms to
Logarithms In A Finite Field. In: Proceedings 23rd Annual ACM symposium on
Theory of Computing, pp. 80–89. ACM press, New York (1991)

[13] V. Miller, Short Programs for Functions on Curves, unpublished manuscript,
1986. Available at http://crypto.stanford.edu/miller/miller.pdf.

[14] A. Miyaji, M. Nakabayashi, S. Takano, New Explicit Conditions of Elliptic Curve
Traces for FR-Reduction, IEICE Taransactions on Fundamentals, pp. 1234–1243,
E84–A(5)(2001).

12

[15] D. Page, N.P. Smart, F. Vercauteren, A Comparison of MNT Curves and Super-
singular Curves, AAECC vol 17, pp. 379–392, Springer-Verlag 2006.

[16] M Scott, P. Barreto. Generating More MNT Elliptic Curves. Designs, Code and
Cryptography, Vol. 38, No.2, pp.209–217, 2006

[17] S. Tanaka, More Constructing Pairing-Friendly Elliptic Curves for Cryp-
tography, Masters Thesis, Tokyo Metropolitan Univerity (2007). Available
at www.tnt.math.metro-u.ac.jp/labo/master/2006/satoru/thesis2006r1.pdf (in
japanese).

[18] S. Tanaka, K. Nakamula, More Constructing Pairing-Friendly Elliptic Curves for
Cryptography, to appear in Transactions of the Japan Society for Industrial and
Applied Mathematics (JSIAM), vol. 17, No. 4, 2007. (in japanese)

13

