
Saving Private Randomness
in One-Way Functions and Pseudorandom Generators

Nenad Dedić∗ ‡ § Danny Harnik† § Leonid Reyzin∗ §

December 10, 2007

Abstract

Can a one-way functionf onn input bits be used with fewer thann bits while retaining comparable
hardness of inversion? We show that the answer to this fundamental question is negative, if one is limited
black-box reductions.

Instead, we ask whether one can save onsecretrandom bits at the expense of morepublic random
bits. Using a shorter secret input is highly desirable, not only because it saves resources, but also because
it can yield tighter reductions from higher-level primitives to one-way functions. Our first main result
shows that if the number of output elements off is at most2k, then a simple construction using pairwise-
independent hash functions results in a new one-way function that uses onlyk secret bits. We also
demonstrate that it is not the knowledge ofsecurityof f , but rather of itsstructure, that enables the
savings: a black-box reduction cannot, for a generalf , reduce the secret-input length, even given the
knowledge that security off is only 2−k; nor can a black-box reduction use fewer thank secret input
bits whenf has2k distinct outputs.

Our second main result is an application of the public-randomness approach: we show a construction
of a pseudorandom generator based on anyregular one-way function with output range ofknownsize
2k. The construction requires a seed of only2n +O(k log k) bits (as opposed toO(n log n) in previous
constructions); the savings come from the reusability of public randomness. The secret part of the seed is
of length onlyk (as opposed ton in previous constructions), less than the length of the one-way function
input.

∗Boston University, Department of Computer Science, 111 Cummington St., Boston, MA 02215.http://www.cs.bu.
edu/∼reyzin.

†IBM Research, Haifa, Israel.danny.harnik@gmail.com. Research conducted while at the Technion, Haifa, Israel.
‡Google, Inc., 76 9th Ave, 6th Floor, New York, NY 1001,http://cs-people.bu.edu/nenad/
§Research conducted, in part, at the Institute for Pure and Applied Mathematics at UCLA, whose hospitality the authors grate-

fully acknowledge.

1 Introduction

PRG Seed Length It is important to keep the seed required for a pseudorandom generator (PRG) as short
as possible, lest the amount of true random bits needed to runit exceed the amount of pseudorandom bits its
application requires, thus rendering it pointless. Moreover, in reductions from PRGs (or other constructs) to
one-way functions, the blowup in the input length turns out to be the most central parameter in determining
the security of the construct. It is therefore a major goal toreduce this parameter (as was addressed in
[GIL+90, HL92, HHR06b, Hol06, HHR06a]). The ultimate goal is a linear blowup, a necessary, although
not a sufficient, condition to achieve a reduction with tightsecurity preservation, i.e. a linear preserving one
[HL92, HILL99].

Consider, therefore, the following problem: when is it possible to build a pseudorandom generator
out of a one-way functionf while keeping the generator seed length linear in the one-way function input
length n? Certainly this is possible iff is a permutation—in fact, in the original PRG construction of
[BM82, Yao82] the seed length is equal to the one-way function input length. However, no broader class
of one-way functions satisfying this condition is currently known: even one-way bijections, if their output
range is not easily mapped to{0, 1}n, are not known to satisfy this condition (the best constructions for
them are the same as for other regular one-way functions, discussed below).

In this paper we demonstrate constructions of PRGs with the linear input length condition for a large
class ofknown regularone-way functions. Specifically, if every output off hasα preimages (thusf has2k

distinct outputs wherek = n − log α) and (a lowerbound on)α is known, then we can build a PRG with
seed length2n + O(k log k). Thus, for functions with high enough degeneracy, wherek = O(n/ log n),
our PRG has a linear-length seed, like the Blum-Micali-Yao PRG built from one-way permutations. The
construction, described in Section 4, builds upon the techniques of Haitner, Harnik and Reingold [HHR06b],
which require longer seed length ofO(n log n), but assume only regularity rather thanknownregularity.

New Tool: One-Way Functions with Short Secret Inputs We arrive at our pseudorandom generator as
part of a study of a more fundamental problem: when is it possible to reduce the input length of a one-
way function while maintaining some of its security? In other words, given a one-way functionf with
input lengthn, when is it possible to build another functiong of input lengthℓ(n) < n with comparable
security? Indeed, if this were possible, then one could, forexample, build a pseudorandom generator from
g rather than fromf , and maintain a reasonable seed length even if the PRG construction blows up the input
size. However, we show that in general it is impossible to significantly reduce the input length of one-way
function in a black-box manner, even for regular one-way functions (Theorem 5). That is, one must invest
essentially the fulln random bits when calling a one-way function.

This result, however, does not doom all efforts of using the one-way function with a shorter input. The
insight is to use the paradigm introduced by Herzberg and Luby [HL92], which separatespublic randomness
from secretrandomness. It turns out to be possible to reduce the amount of secretrandomness at the cost
of additionalpublic randomness. In Theorem 1 we show how to convert any one-way function f with 2k

distinct outputs into acollectionof one-way functionsfh with inputs of lengthk, where the indexh into the

fhx

collection is the public randomness. The simple construction uses a pairwise inde-
pendent family ofexpandinghash functions. The choice of the function from the
collection is a choice of a hash functionh, and we definefh(x) = f(h(x)). This
choice is made using2n public random coins, which are available to any potential
inverter.

One way to achieve such a result is by using a technical Lemma of Dodis and Smith [DS05, Lemma
12], which shows the same construction secure if it usesk + 2 log 1

ε + 1 secret input bits, whereε is the
additive security loss. In particular, even if one needs to ensure that extra security loss is exponentially

1

fĥ h1 f h2 … f hkx

br br br br

ĥ ĥ

br

Figure 1: Our pseudorandom generator on seedx. ĥ is a pairwise-independent hash function fromk bits to
n bits; h1, h2, . . . , hk are almost-pairwise independent hash functions from the output space off to k bits,
generated by a bounded space generator from a common seeds of lengthO(k log k); br is the Goldreich-
Levin hardcore bit (the samer is used throughout).̂h, s andr are included in the output or, equivalently, are
public.

small, the result of [DS05] requires only linearly more input bits. However, the linear improvement we
achieve over [DS05] is crucial for building our pseudorandom generator, as we explain shortly. To achieve
this improvement, we take a different path from [DS05]: instead of showing that the distributions(f(x), h)
and(f(h(x)), h) are statistically close, we show they have polynomially related subset weights, a relation
between distributions that we callg-domination.

The secret input to our one-way function need not consist ofk uniform independent bits: inputs from
any distribution of entropy1 k suffice (the same is true for our pseudorandom generator construction). This
is beneficial, because uniform random bits may be harder to obtain that simply strings of high entropy.2

Moreover, this enables our pseudorandom generator construction.

Application: The PRG Construction We construct our pseudorandom generator by applying the ran-
domized iterate construction of [HHR06b] (henceforth called “the HHR construction”) tofh for a known
regularf . Becausefh is secure even whenh is public, the coins forh can be given only once and used for all
iterations, resulting in a shorter seed. As compared to the HHR construction, we replace the need for many
large hash functions with one large hash function (theĥ used forfĥ), and many small ones (h1, . . . , hk used
in the randomized iterate construction). Our constructionis illustrated in Figure 1.

To get some intuition for the construction, observe that iff is regular, then the number of secret random
input bits we require forfh is the entropy of the output offh. This enables iteration, because the output
of fh has enough entropy to be used (after an appropriate transformation) as an input to the nextfh. We
could not use the result of [DS05], because it requires more input entropy than is output; nor could we use
functions that are not regular, because they produce less output entropy than the input requires. The proof of
pseudorandomness is not as simple as applying the HHR resultto fĥ, because the HHR construction needs
to start with a regular one-way function, andfĥ is not necessarily regular even iff is.

In Appendix A we show how one can further exploit the knowledge of the regularity and further shorten
the seed of our PRG to2n +O(k log log k), albeit at the cost of lowering its security.

In addition to considering the overall PRG seed length, it isalso important to consider how much of the
generator seed must be secret, because secret random bits tend to be much harder to obtain than nonsecret
ones (again, this was already observed in [HL92]). Our PRG isthe first to require asublinearnumber of
secret bits, namely, justk (the HHR generator, like the generators of [BM82, GKL93], requiresn secret
bits). Moreover, just like for our one-way function, the secret input to our PRG need not consist of uniform
independent bits, but can come from any distribution of entropy k.

1Specifically, Renyi entropy of order 2, i.e., negative logarithm of collision probability.
2Of course, almost uniform independent bits can be obtained from a distribution of high entropy through the use of a strong

extractor (whose seed can be public), but extractors necessarily lose entropy, so this approach would require a secret input with
entropy higher thank, which, as we already pointed out, would create difficultiesfor our PRG construction.

2

Example: One-way Function and PRG Based on Factoring Consider the problem of building a one-
way function based on the hardness of factoring products of two b-bit randomly chosen primes. If one is
willing to assume a trusted party with secret coins, then it is easy: the trusted party chooses two secret
randomb-bit primesp andq, publishesN = pq, and the function can be, for example, squaring moduloN .

However, without trusted setup, there is no such easy construction. In order to work on the domain
{0, 1}n, the one-way function needs to include the process of generating the two random primes. A natural
way to do this is to test some number of random integers for primality. To guarantee that two primes are
found with probability2−s for some security parameters, the number of integers tested should beΘ(sb)
(because the probability that a randomb-bit integer is prime isΘ(1/b)). The natural function therefore gets
n = Θ(sb2) bits as input, splits them intoΘ(sb) integers of lengthb each, finds the first two such integers
p, q that are prime (if they do not exist, output0), and outputs their productN = pq. We call this function
fmult (observe that, for sufficiently larges, it is one-way under the assumption that factoring is hard).

For reasonably secure values forb (e.g., 2048) ands (e.g., 64), the input lengthn of fmult will be on
the order of tens of megabytes. To come up with such a long secret input is, naturally, quite costly. Because
the output offmult is short, however, we can apply our result on converting one-way functions to families
with shorter secret inputs. Settingk = 2b = o(

√
n), we obtain a family of one-way functions with secret

inputs of length only2b—as short as the description of the two primesp andq. To sample a function from
this family, one still needsΘ(n) random bits, but they can be public, and are therefore much less expensive
to obtain (e.g., from adversarially observable sources such as user behavior or ambient noise). Finally we
note that using our techniques, one can generate a productN = pq of two secretb-bit primesp,q using
private randomness of entropy2b (and the appropriate amount of public randomness). This canbe used,
for example, for generating public/secret key pairs for RSAor Paillier functions, from a modest amount of
private randomness.

Consider now trying to make a PRG out offmult. The prior most efficient way (in terms of seed length)
to achieve this is to notice thatfmult is a regular one-way function (except the negligible2−s portion that
leads to the 0 output) and use the HHR construction, which takes a seed ofO(n log n) bits withO(n) of the
bits being secret.3 For reasonable parameter settings, it would be useful only in applications that can afford
to gather tens of megabytes of secret randomness and gigabytes of public randomness before invoking the
PRG.

Instead, observe thatfmult is also a known4 regular one-way function, withk < 2b. Applying our PRG
construction, we get a pseudorandom generator with just2b = o(

√
n) secret seed bits (which is roughly

what’s required to describe the two primes, anyway) andO(n) seed bits total (which is linear in what’s
anyway required as an input tofmult).

Impossibility Results As already mentioned, Theorem 5 shows that the total input length of a one-way
function cannot be reduced in a black-box manner, thus leading us to use public randomness in order to
reduce the amount of secret randomness. It is natural to ask if this approach can also work for one-way
functions with a large number of outputs. On the positive side, we show in Theorem 2 that if a sufficiently
large portion of the inputs goes to a sufficiently small portion of the outputs, then the answer is yes. In
general, however, this appears unlikely to be the case, for the following reasons. In Theorem 6 we show
that the number ofsecretrandom bits used when calling a one-waypermutationf cannot be reduced to

3It seems fruitless to try to turnfmult into a permutation to order to apply the efficient construction of [BM82, Yao82]. Indeed,
a natural way to build a bijection fromfmult is to include in the output all the unused bits as well as information on wherep and
q were in the sequence. However, this does not make it a permutation, because the output range (which includes the product of
two primes) is not easily mapped back to the input domain of bit strings. Unfortunately, known solutions for bijections are not any
better than those for regular functions.

4Our results apply to a weaker notion of “known”:α can be a lower bound on the regularity off , rather than its exact value.

3

be substantially smaller thann by use of black-box reductions. This theorem is actually more general, and
shows that our positive result is indeed tight for regular one-way functions, and the number of secret bits
cannot be reduced any further in a black-box manner. Moreover, Theorem 7 shows that there is no black-
box reduction that takes a one-way functionf with hardness2s on n input bits and produce a collection of
one-way functions onn− s +O(log n) input bits. Thus, unlessf has hardness very close to2n, in general
the number of secret inputs bits must remain linear if one wants to haveanyhardness at all.

Discussion Ideally, one would like to use only as many secret bits as the security one gets from the one-
way function (it is clear that at least that many bits are necessary: a one-way function withn secret input bits
can be easily inverted with probability2−n). Indeed, typical conjectured one-way functions, for example,
RSA or discrete logarithm, are known to provide less security than2n (for the above examples, at most
roughly 2n1/3

). Our negative results show that this is not possible in general with a black-box reduction
(although we do not rule it out for specific functions such as discrete logarithm, of course). Our positive
result, however, shows that if this weaker than optimal security manifests itself in a “structural” way, i.e.,
with the function having fewer outputs (a one-way function with k output bits can be easily inverted with
probability2−k), then reduction in the number of inputs bits is possible.

It is natural to ask, of course, if one can not simply use the same one-way functionf on a shorter input.
It should be noted that our negative results do not consider such constructions, and hence do not rule them
out. However, this option is unavailable whenf is a fixed-length function secure in a concrete sense, such as
a 128-bit block cipher or a hardware device implementing modular exponentiation for a 2,048-bit modulus.
In this case, our impossibility results indicate that if we are given a hardware implementation of a one-way
function we should use it with its full input length (unless we can look inside the box and learn something
from there). This last observation adds motivation to results that take as input an exponentially hard one-way
function and construct from it a pseudorandom generator with weakersecurity (ofnlog n) (e.g., some of the
results stated in [Hol06, HHR06a] and the one in Appendix A inthis paper). These results would be less
interesting if there was a direct method of trading input length for security.

Even when the one-way function has variable input length, using it on a shorter input will reduce security.
Of course, our construction also reduces security, but the security loss (i.e., security offh with n-bit f as
compared to security off onn bits) is polynomial. In contrast, simply usingf on a shorter input can reduce
security more than polynomially when the reduction in inputlength is superlinear.

Security comparison of the originalf and our constructionfh depends on what parameters are set to
equal each other. For example, we can compare the security off onn bits to the security offh with an-bit
f (thus equating the input length tof , and hence the output length and likely most of the computational
cost). In that case,fh incurs a polynomial deterioration in security. Herzberg and Luby [HL92] advocate
equating the secret input length. In that comparison, our constructions can actually bemoresecure thatf ,
becausef needs alln bits to be secret, whilefh and our PRG need onlyk < n secret bits.

2 Definitions and Notation

If Y is a set, we denote byY also the uniform distribution over that set, unless anotherdistribution onY
is specified. We denote byUn the uniform distribution over{0, 1}n. Given a distributionX and a function
f : X → Y , we denote byf(X) the induced distribution onY .

Let P andQ be distributions over some finite domainX. The collision-probability ofP is CP (P) =
∑

x∈X P (x)2. P andQ ε-close (or have statistical distanceε) if for everyA ⊆ X it holds that|Prx←P (A)−
Prx←Q(A)| ≤ ε (equivalently,12

∑

x∈X |PrP [x]− PrQ[x]| ≤ ε).

4

We assume familiarity with the standard notions of computational indistinguishability, one-way func-
tions and pseudorandom generators (with public inputs, or equivalently, as public-coin collections), which,
for completeness, are recalled in Appendix B.

Definition 1 (Regular functions) A functionf : {0, 1}∗ → {0, 1}∗ is regular if for any x, y ∈ {0, 1}n,
|f−1(f(x))| = |f−1(f(y))|. If k(n) = − log(|{f(x) | x ∈ {0, 1}n}|) thenf is said to beregular with
output entropy k. Whenk is also polynomial-time computable on input1n, f is known-regular.

It is also customary to say thatf is anα-regular function(for someα : N → N) — this means thatf is a
regular function with output entropyk(n) = n− log α(n), i.e. preimage sizes are equal toα(n).

Definition 2 (Family of almost pairwise-independent hash functions) Let{Xn}n∈N,{Yn}n∈N be two fam-
ilies of subsets of{0, 1}∗. For anyn ∈ N letHn be a collection of functions where eachh ∈ Hn is from
Xn to Yn. {Hn}n∈N is an (efficient) family of δ-almost pairwise-independent hash functions if: 1.
there is a polynomial-time sampler which onn ∈ N outputs a description of randomly chosenh ∈ Hn,
2. for anyh ∈ Hn, |h| (i.e., the description length ofh) is polynomial inlog |Xn|, 3. eachh ∈ Hn is a
polynomially-computable function, and 4. for allx 6= x′ ∈ Xn and all y, y′ ∈ Yn,

∣
∣
∣
∣

Pr
h← Hn

[h(x) = y
∧

h(x′) = y′]− 1

|Yn|2
∣
∣
∣
∣
≤ δ(n).

A 0-almost pairwise independent family is called simplypairwise independent.

There are various constructions of efficient families of pairwise-independent hash functions (i.e.δ = 0) for
anyXn = {0, 1}n andYn = {0, 1}ℓ(n) whose description length (i.e.,|h|) is linear inmax{n, ℓ(n)} (e.g.,
[CW77]). It is possible to constructδ-almost pairwise independent families forδ > 0 whose description
size depends very mildly on the input size. In particular, using [CW77], [WC81] and [NN93] one gets
constructions of efficient families of almost pairwise-independent hash functions forXn = {0, 1}n and
Yn = {0, 1}ℓ(n) whose description length isO(log(n) + ℓ(n) + log(1/δ)).

Proposition 1 Let {Hn} be a family ofδ-almost pairwise independent hash functions fromXn to Yn.
Then for anyn, and any distinctx1, x2 ∈ Xn the following distributions have statistical distance at most
δ|Yn|2/2: 1. uniform onYn × Yn, 2. (h(x1), h(x2)) for uniformly randomh ∈ Hn.

Proof: For anyy1, y2 ∈ Yn,
∣
∣Prh[(h(x1), h(x2)) = (y1, y2)]− Pr(z1,z2)∈Yn×Yn

[(z1, z2) = (y1, y2)]
∣
∣ ≤ δ by definition. Summing over

all y1, y2 ∈ Yn and dividing by 2, we get the desired result.�
To simplify exposition, we will often work with (almost) pairwise independent hash functions on some

fixed domain and rangeX andY (rather than consider families{Xn}, {Yn}).

Definition 3 (g-Domination) LetB andC be distributions on the same setΠ, andg a real-valued function.
We will say thatC g-dominatesB if ∀S ⊆ Π, PrC [S] ≥ g(PrB [S]) (this is a generalization of the notion of
“dominates” from [Lev86], which contemplated linearg).

Lemma 1 If C g-dominatesB for a convex functiong, then for any distributionD on a setΦ, D × C
g-dominatesD ×B.

5

Proof: Let E ⊂ Φ×Π. Let p(π), for π ∈ Π, bePrφ← D[(φ, π) ∈ E].

Pr
D×C

[E] = E
π ← C

p(π)

=

∫ 1

0
Pr

π ← C
[p(π) > α] dα (usingE(x) =

∫
Pr[x > α] dα)

≥
∫ 1

0
g

(

Pr
π ← B

[p(π) > α]

)

dα

≥ g

(∫ 1

0
Pr

π ← B
[p(π) > α] dα

)

(Jensen’s inequality, sinceg is convex)

= g

(

E
π ← B

p(π)

)

= g

(

Pr
D×B

[E]

)

. �

A common approach in cryptographic reduction is to focus only on the subset ofB for which p(π) is
large, and use Markov’s inequality to obtaing′-domination ofD×B by D×C, for g′ ∈ ω(g). Instead, this
lemma, which takes all subsets into account, saves the increase ing and the corresponding loss of tightness
in reductions.

3 One-way Functions and Public Randomness

Here we show that a one-way function needs only as many secretinput bits as the number of output bits it
produces. We state our theorem in terms of bits in order to geta more concise statement; neither the domain
nor the range need to be restricted to bit strings of a particular length, as shown in Lemma 2.

Theorem 1 Let f : {0, 1}∗ → {0, 1}∗ be a one-way function that onn-bit inputs has at most2k distinct
outputs. LetHk,n be a family of pairwise-independent functions from{0, 1}k to {0, 1}n. Define the domain-

sampledf asfh(x)
def
= f(h(x)) for h ∈ Hk,n andx ∈ {0, 1}k . Then{fh}h∈Hk,n

is a public-coin collection
of one-way functions.

The theorem is immediate from the following lemma.

Lemma 2 Letf : Y → Z be a function, where|Z| = K. LetX be a distribution with collision probability
at most1/K, and letHX,Y be a family of pairwise-independent functions from the elements ofX to Y .

For everyh ∈ HX,Y definefh : X → Z asfh(x)
def
= f(h(x)). Then any adversaryA that invertsfh with

probability at leastε overx ∈ X andh ∈ HX,Y can be used to invertf on uniformly random inputs from
Y with probability at leastε4/21 − 1/(4K2) (ε2/2 if f is regular) in thesame running timeasA (plus the
time required to pick and evaluate a random hash function fromHX,Y).

Proof: Suppose that an algorithmA, when given(fh(x), h) computesx′ such thatfh(x′) = fh(x) with
probabilityε. That is,

Pr
(x,h)← (X,HX,Y)

[fh(A(fh(x), h)) = fh(x)] ≥ ε

Consider the following procedureMA for inverting f : on inputz ∈ Z, choose a randomh′ ∈ HX,Y , let
x′ = A(z, h′), and outputh′(x′). Note that the notationh′ in MA, rather thanh, emphasizes that theh′

does not necessarily have to be consistent withz. While there exist manyh with x such thatz = fh(x), the
chosenh′ might not be one of them.

6

We will analyze the success probability ofMA as follows. The success ofA (and thereforeMA) is
determined by its internal coin flips and its input(z, h′). We will show that the distribution of (coinflips,
input) pairs thatA sees when run withinM g-dominates the distribution for whichA is designed, for
a polynomialg; therefore, the probability of the event thatMA succeeds in invertingf is polynomially
related to the probability of the event thatA inverts the domain-sampledf . We will first showg-domination
for inputs only, ignoring the coinflips, and take care of the coinflips later.

It is worth comparing the following proposition, aboutg-domination of inputs, to the aforementioned
lemma by Dodis and Smith [DS05, Lemma 12], which analyzes thesame construction but with longer inputs
to h, showing that(f(y), h′) is close to(f(h(x)), h). Our proof technique is entirely different and builds on
the technique of [HHR06b].

Proposition 2 For any (not necessarily one-way)f : Y → Z with K distinct outputs, distributionX
with CP (X) ≤ 1/K, and pairwise-independent hash familyHX,Y , the distribution(f(y), h′) (wherey ←
Y, h′ ← HX,Y) g-dominates(f(h(x)), h) (wherex ← X,h ← HX,Y), for g(δ) = δ4/21 − 1/(4K2), or
g(δ) = δ2/2 if f is regular.

Proof: We need show that for anyS ⊆ Z ×HX,Y ,

if Pr
(x,h)← X×HX,Y

[(fh(x), h) ∈ S] ≥ δ , then Pr
(y,h′)← Y×HX,Y

[(f(y), h′) ∈ S] ≥ δ4

21
− 1

4K2

(replace the right-hand-side withδ2/2 if f is regular).
First we give a one-paragraph outline of the proof of this proposition. Call the points inS good. Let

(y, h) ∈ Y ×HX,Y be calledgood if and only if (f(y), h) is good. We will divide the spaceY of inputs to
f into K equal-size chunks, producing a set of chunks calledC. Call (c, h) ∈ C × HX,Y good if ∃y ∈ c
such that(y, h) is good (i.e., a chunk is good if contains a preimage of a good point in Z). We will show,
simply using properties ofHX,Y , that the fraction of good chunks (under the uniform distribution) is at least
δ2/2.125. This will imply thatA works on some portion of sufficiently many chunks. Then, using the fact
thatf has onlyK outputs, we will show thatA works on a sufficiently large portion of most of these chunks.
The actual proof is in Appendix C.�

MA succeeds wheneverA succeeds; in turn, the success or failure ofA depends on the point(z, h′)
chosen, and on the coin flips ofA. Let Φ, with probability distributionD, be the space of all coin flips of
A. Let Π = Z × HX,Y , let B be the distribution onΠ obtained by choosingx ← X,h ∈ HX,Y , and
z = fh(x), and letC be the distribution onΠ obtained by choosing a uniformy ∈ Y , h′ ∈ HX,Y , and
z = f(y). Applying Lemma 1 below to the eventE that thatA succeeds (hereg(δ) = δ4/21 − 1/4K2, or
δ2/2 in the case of regular functions), we obtain the desired statement. �

3.1 The Case of Many Outputs

Theorem 1 can be used to reduce the number of secret input bitsto a one-way function provided the function
has a sufficiently small output range. As we show in this section, the same technique is useful even if the
function has large output range, as long as an appreciable fraction of the inputs falls into a rather small subset
of the output range. Namely, suppose there is a set of outputsOH of size2k such thatPry∈{0,1}n [f(y) ∈
OH] ≥ pH . If k <

√
pHn, then it is possible to reduce the number of secret input bitsfrom n to k2/pH , as

follows.
Let X be a distribution of collision probability1/2k, andHX,Y andfh(x) as above. Lemma 4 below

states thatfh(x) is a collection ofweakone-way functions, i.e., is not invertible with probability appreciably
more than1− pH .

7

We can then use the standard hardness amplification technique of Yao [Yao82] in order to convert the
weak one-way function collection into a strong one. The technique simply concatenates many independent
copies of the weak one-way function. The number of repetitions needed to reduce the easily invertible
fraction of inputs to (negligibly more than)1/2k from 1−pH isk/pH (thus requiringk2/pH secret bits) This
gives the following result, whose proof is similar to the proof of Theorem 1 and is outlined in Appendix D.

Theorem 2 Let f : {0, 1}∗ → {0, 1}∗ be a one-way function and suppose for everyn there exists a set
OH(n) of sizek(n) such thatPry∈{0,1}n [f(y) ∈ OH(n)] ≥ pH(n). For everyn ∈ N letHk,n be a family

of pairwise-independent functions fromk bits to n bits. Denoteℓ = k/pH and definefh(x1, . . . , xℓ)
def
=

(fh1(x1), . . . , fhℓ
(xℓ)) for h = (h1, . . . , hℓ) ∈ Hℓ

k,n and x1, . . . , xℓ ∈ {0, 1}k . Then{fh}h∈Hℓ
k,n

is a

public-coin collection of one-way functions.

4 Pseudorandom Generator Collection from any Known RegularOWF

In this section we show a construction of a pseudorandom generator collection from any regular one-way
function. Unlike in the randomized iterate constructions of [GKL93, HHR06b], here the underlying function
f hasknown(i.e. efficiently computable) regularity. We use this knowledge to get a PRG collection with
particularly short secret input and little security loss.

Namely, supposef is a regular OWF with output entropyk(n), and that(t(n), ǫ(n)) is the security
of f . On secret seed of lengthsS(n) = k(n), our PRG collection attains the security of(poly(n) +
t(n), poly(ǫ(n))) (Theorem 3). For example, ifk(n) = n1/3, then we get security comparable to(t(n), ǫ(n))
using onlyn1/3 secret bits. And since, for sufficiently smallk, the public index of our PRG collection is of
linear sizeO(n), one can also view it as a PRG, rather than collection, with good security preservation: on
seed lengthO(n) it attains security(poly(n) + t(n), poly(ǫ(n))).

Our construction in fact requires a somewhat weaker condition onf than known regularity:f still must
be regular, but it is sufficient to have an efficiently computable upper boundk(n) on the output entropy of
f . Note that a more accurate bound leads to greater savings in the number of secret seed bits.

Theorem 3 Let f be a regular one-way function with security(t(n), ǫ(n)) and output entropy at most
k(n) (for k computable in time polynomial inn). Then there is a public-coin PRG collectionG, which is
(poly(n) + t(n), poly(ǫ(n)))-indistinguishable on secret seeds of lengthsS(n) = k(n) and public seeds of
lengthsP (n) = 2n +O(k(n) log k(n)). (In particular sP (n) = O(n) if k = O(n/ log n).)

Before the actual construction we present the basic tool of the randomized iterate [GKL93, HHR06b].
We define it slightly differently than[GKL93, HHR06b]: theirs outputs a value inIm(f), and ours outputs
a hash function image.

Definition 4 (The mth Randomized Iterate off) Let f : {0, 1}k → {0, 1}ℓ and letH be a family of
functions from{0, 1}ℓ to {0, 1}k. For input x ∈ {0, 1}k and h = (h1, . . . , ht) ∈ Ht define themth

Randomized Iterate fm : {0, 1}k ×Ht → Im(f) for everym ∈ [t] recursively as:

fm(x, h) = hm(f(fm−1(x, h)))

wheref0(x, h) = x.

We first show a construction with public seed length2n + O(k2) and then describe how it may be
reduced to as low as2n +O(k log k), following the same technique as in the HHR construction.

8

Construction 1 The generator takes the following as inputs:
1. A secret randomx ∈ {0, 1}k

2. A (public) description of one hash functionĥ from a familyHk,n of pairwise independent hash func-
tions fromk bits ton bits (requires2n bits).

3. (Public) descriptions ofk hash functionsh = (h1, . . . , hk) from a familyHℓ,k of 2−3k-almostpair-
wise independent hash functions fromℓ bits tok bits (requiresO(k) bits each).

4. A (public) random stringr ∈ {0, 1}k for the Goldreich-Levin [GL89] hardcore bitbr (requiresk bits).
The generator is defined as follows:

Gĥ,h,r(x) = br(x), br(f
1
ĥ
(x, h)), . . . , br(f

k
ĥ
(x, h)) ,

wheref i
ĥ

denotes theith randomized iterate of the functionfĥ = ĥ ◦ f (see Figure 1).

Theorem 4 Supposef is regular one-way with output entropy at mostk(n) and security(t(n), ǫ(n)). Then
G in Construction 1 is a public-coin pseudorandom generator collection. It is(poly(n)+ t(n), poly(ǫ(n)))-
indistinguishable on secret seeds of lengthsS(n) = k(n) (and public seeds of lengthsP (n) = 2n+O(k2)).
(In particular, sP (n) = O(n) if k(n) = O(

√
n)).

Proof: G takesk bits and outputsk + 1 bits. Thus it is expanding. We must now prove that it is indistin-
guishable. It is tempting to first fix̂h and since by Theorem 1fĥ is a one-way function, simply plugfĥ in the
HHR construction. However, the HHR construction relies heavily on the fact that the underlying function
is regular or at least very close to regular. The functionfĥ on the other hand isnot guaranteed to be regular

onceĥ is fixed, even iff is regular to begin with. If̂h were from ak-wise independent family (rather than
a pairwise independent one) then one can prove that with overwhelming probabilityfĥ is close to regular.

This is not the case with pairwise independentĥ and on the contrary, it is likely that with noticeable proba-
bility fĥ will deviate too much from a regular function. Our proof follows the basic structure of the proof of
the HHR construction, so we give a sketch, detailing the parts which differ from [HHR06b].

As in the previous iterative constructions (such as [BM82, Yao82, Lev87],
[GKL93, HHR06b]), the key to the proof is the unpredictability of the sequence

(

fk
ĥ
(x, h), fk−1

ĥ
(x, h), . . . , f1

ĥ
(x, h), x

)

,

even for an adversary who is given(h, ĥ). Once this is shown (Lemma 3), it follows from the stronger
Goldreich-Levin theorem [Lev93], that the output of the PRGis next-bit unpredictable with essentially the
same security. Next-bit unpredictability is equivalent toindistinguishability with a security loss1/kO(1)

(see [Gol01], Theorem 3.3.7). Thus the output ofG is indeed pseudorandom, with security essentially the
same as of the above sequence. We now turn to the proof of unpredictability.

Let Supp(n) = Hk
ℓ,k×Hk,n×{0, 1}k , and call an element ofSupp aninstance. LetΦ = {0, 1}N denote

the set of all coin toss sequences. We say that an algorithmA invertsi-th iteration (on random coinsω and
instance(h, ĥ, f i

ĥ
(x, h))) if

A(ω, h, ĥ, f i
ĥ
(x, h)) = f i−1

ĥ
(x, h).

Let D(n) be the distribution of instances produced by the generator,i.e.
(h, ĥ, f i

ĥ
(x, h)) for uniform (h, ĥ, x). Let Z(n) be the uniform distribution of instances, i.e. uniform

(h, ĥ, z).

9

Lemma 3 LetA be an algorithm with running time≤ t(n). Suppose that

Pr[A invertsi-th iteration on(ω, h, ĥ, f i
ĥ
(x, h))] ≥ ǫ(n),

whereω is uniform and(h, ĥ, f i
ĥ
(x, h)) is distributed according toD(n). Then there is an algorithmB

which runs in time≤ poly(n)+ t(n) and invertsf(x) with probability≥ ǫ2.5(n)/(16(k +1)) (for |x| = n).

Proof: On inputy, the algorithmB generates random(h, ĥ),
setsu← A(h, ĥ, hi(y)), and outputŝh(u).

Fix somen and then we can omit it from the notation.B chooses the hash functions independently of
y, i.e. it produces instances distributed according toZ. However,A is guaranteed to invert with probability
ǫ on a different distributionD. The bulk of the proof is devoted to proving thatA inverts with comparable
probability≈ ǫ2 also on distributionZ. The basic idea of the proof is similar to [HHR06b]: we show that
collision probabilities ofZ andD are closely relatedCP (Z) ≥ O(k) ·CP (D), and from that we conclude
that event probabilities are closely related as wellPrZ [S] ≥ (PrD[S])2/O(k). In particular, the inversion
event happens with probabilityǫ2/O(k) underZ. The actual proof is more involved than this simple outline,
the main complications being: 1. there is a single expandinghash function̂h which is used in every iteration,
so the technique of [HHR06b] is not directly applicable, 2. contracting hash functionshi cause collisions,
so an inverse ofi-th iteration may be unrelated toy. The proof continues in Appendix E.�

Reducing the public seed length. To reduce the public seed length of the above construction from
2n + O(k2) to 2n + O(k log k), we follow exactly the same derandomization technique as inthe HHR
construction. The idea is to not use independent choices of hash functions forh = (h1, . . . , hk) but rather
choose functions that are correlated yet satisfy the proof of the previous section. The central observation is
that the collision probability of a randomized iterate can be computed by abounded spaceprogram. More
precisely, there is a simple bounded space branching program such that its input tape consists of the choice
of h and its acceptance probability is precisely the collision probability offk

ĥ
(the probability is over inputs

x, h) for every fixedĥ. Thus replacing the hash functions in the input tape by the output of a generator that
fools bounded space programs (such as the generators of [Nis92, INW94]) changes the collision probabil-
ity only by a small additive error. This is sufficient to make the proof of the previous section go through.
Loosely speaking, the bounded space program takes two initial inputsx1 andx2.5 At the first step the pro-
gram reads the randomizing hash functionh1 and computesf1

ĥ
(x1, h

1) andf1
ĥ
(x2, h

1) and stores only these
two intermediate values (not storingx1 andx2). At each iteration the program reads a new randomizing
hash and computes the next randomized iterate of the two values, while not storing the previous one. At
the end the program simply compares the two values and outputs 1 only if they are the same value. An
accurate account of such a program, bounded space generators and the revisions needed in the proof appears
in [HHR06b].

Construction 2 The generator takes the following as inputs:

1. A secret randomx ∈ {0, 1}k

2. Description of one hash function̂h from a familyHk,n of pairwise independent hash functions fromk
bits ton bits (requires2n bits).

5The program actually computes the collision probability for one fixed pair of inputsx1, x2. The actual collision probability is
the average over all possible input fixings. But since the generator fools each program separately, it will also fool the average.

10

3. Seeds ∈ {0, 1}O(k log k) to a bounded space generator BSG with space bound2k and error2−k. The
outputBSG(s) = (h1, . . . , hk) of the generator consists of the descriptions ofk hash functions from
a familyHℓ,k of almostpairwise independent hash functions fromℓ bits tok bits.

4. A random stringr ∈ {0, 1}k for the Goldreich-Levin hardcore bitbr (requiresk bits).

The generator is defined as follows:

G′(x, ĥ, s, r) = br(x), br(f
1
ĥ
(x,BSG(s))), . . . , br(f

k
ĥ
(x,BSG(s))), ĥ, s, r

Wheref i
ĥ

denotes theith randomized iterate of the functionfĥ = ĥ ◦ f .

The seed length of the aforementioned generators isO(log |Hℓ,k| · log k) (which equalsO(k log k) with our
choice of parameters) and thus the overall construction takes seed length2n +O(k log k).

On using secret seeds from non-uniform distributions. A simple modification makes our PRG secure
even when used with secret seed drawn from any distributionX as long asCP (X) ≤ 2−k. The modification
can be applied to either Construction 2 or Construction 1. The public seed then increases by onlyO(k)
bits, therefore it remains unchanged asymptotically. Please see Appendix E.2 for a brief description of the
modification.

5 Black-Box Separations

As discussed in the introduction, it is natural to ask under which conditions one can reduce the input length
to a one-way function below its “native” lengthn. More abstractly, we want to know:Is there a generic way
of securely using a OWF onn-bit inputs, if we are given onlyℓ < n random bits? How small canℓ be?

We formalize these questions using circuits, where it is easy to talk about security on fixed-length input.
(It is possible to formulate them in the uniform context, butthey become too cumbersome.) We then give
some indications that improving upon our results requires non-black-box reductions. Roughly, by “no black-
box reduction ofP to Q” we mean that the security proof“if Q is secure thenP is too” is necessarily non-
black-box (the construction ofP from Q, however, may be black-box). Before elaborating, let us informally
summarize the optimality results:

1. For anyl < n, there is no black-box reduction ofl-bit input OWF to regularn-bit-input OWF (and,
as a corollary, no black-box reduction to either OWF of knownhardness, or arbitrary OWF).

2. For anyl < n−log α, there is no black-box reduction ofl-bit input one-way-collection toα-regularn-
bit-input OWF (and, as a corollary, no black-box reduction to either OWF of known hardness< 2n/α,
or arbitrary OWF).

3. For anys < n andl < n − s, there is no black-box reduction ofl-bit input one-way-collection to an
n-bit input OWF of hardness at mosts.

5.1 Formal Statements

Let Fn denote the set of allf : {0, 1}n → {0, 1}n. Let ν(n) denote a negligible function (one decaying
faster than any inverse polynomial). Note that1/ν(n) is then a superpolynomial function.

Circuits, oracle circuits. Let |A| denote the size of the circuitA. For an oracle circuitA and a function
f : {0, 1}n → {0, 1}m, Af denotes the oracle circuit in which each oracle gate with input x outputsf(x).
If G = {gi}i∈{0,1}n is a collection of functionsgi : {0, 1}n → {0, 1}m thenAG denotes the oracle circuit in
which each oracle gate, on input(i, x) outputsgi(x).

11

Inverter. A circuit A : {0, 1}l → {0, 1}n is ap-inverter forf : {0, 1}n → {0, 1}l if Prx∈{0,1}n [A(f(x)) ∈
f−1(f(x))] ≥ p. A 1-inverter is calledperfect.

Black-box reduction. LetF ⊆ Fn. A pair of circuits(R, g) is an(l, p)-reduction toF if for any f ∈ F :
1. g hasl input wires.
2. If V is a perfect inverter forgf , thenRV,f is ap-inverter forf .
A sequence(Rn, gn) of (ln, pn)-reductions toHn ⊆ Fn is calledd(n)-saving if: 1. (|Rn| + |gn|)/pn is
polynomial inn, 2. n− ln = d(n).

LetFn,α
REG ⊆ FALL denote its subset of allα-regular functions. LetFn,s

LOW ⊆ FALL denote the subset of all
at mosts-hard permutations(permutations which have a1/2-inverter of size< s).

Black-box collection reduction. A pair of circuits(R, g) is a(l,m, p)-collection-reduction toF if:
1. For anyf ∈ F , and any(i, x) ∈ {0, 1}m × {0, 1}l, gf (i, x) is of the form(i, y).
2. If V is a perfect inverter forgf , thenRV,f is ap-inverter forf .
A sequence(Rn, gn) of (ln,mn, pn)-reductions toHn ⊆ Fn is calledd(n)-savingif: 1. mn(|Rn|+|gn|)/pn

is polynomial inn, 2. n− ln = d(n).

Theorem 5 Letα(n)=ν(n)2n. There is noω(log n)-saving reduction toFn,α(n)
REG .

Proof: Suppose to the contrary that(R, g) is aω(log n)-saving reduction toFn,α(n)
REG . Consider some partic-

ular f , and letD be the set of all possible oracle queries thatgf can ask, on any input. Then|S| ≤ |g|2l,
because on each of the2l distinct inputs,g asks at most|g| queries. The basic idea of the lower bound proof
is that, forl < n − ω(log n), and polynomial-sizedg, S occupies a negligible fraction off ’s domain. But
the one-wayf can be easy onS, andgf is then not one-way.

Formally: apply Lemma 6 of Appendix F to(Rn, gn) with c = ω(log(n)) and p = p(n). Since
2c/2 = 1/ν(n) and2n−log α(n) = 2n/α(n) = 1/ν(n) we conclude that|Rn|+ |gn| is superpolynomial. �

Theorem 6 Letα(n) = ν(n)2n. There is no(ω(log(n))+log α(n))-saving collection-reduction toFn,α(n)
REG .

Proof: Suppose that(R, g) is the collection-reduction which contradicts the theoremstatement, and letl
be the number ofg’s input wires. We show that it is possible to build from(R, g) a circuit B of size

about2l which inverts anyf ∈ Fn,α(n)
REG . To do this, note thatRV inverts anyf ∈ Fn,α(n)

REG as long as it is
given an inverterV for gf . But V can be implemented as a circuit of size2l/ν(n). ThereforeRV can be
implemented (without any oracle) as a circuit of size about|R|2l/ν(n). But this is too small to invert any

functionf ∈ Fn,α(n)
REG . The formal argument follows.

If |gn| is superpolynomial we are done. Else suppose|gn| grows polynomially fast. Apply Lemma 9 of
Appendix F withd = ω(log(n)) (and log |I| < |gn| sincelog |I| is at most the number of input wires of
gn), to get that|Rn| > p(n)2ω(log(n))/|gn| which is superpolynomial. �

Theorem 7 Lets(n) < n. There is no(ω(log(n)) + s(n))-saving collection-reduction toFn,s(n)
LOW .

Proof Sketch: Let f be a random permutation and leth(p, y) outputx = f−1(y) if p is ans-bit prefix of
x. This ensures thatf is “exactly” s-hard. For any constructiongf with input sizel = n − s − d (and
description of family indexm polynomial inn), we can show an oracleV which inverts it, but such thatV
does not significantly reduce the hardness off . Some minor modifications are needed to ensure that(f, h)
is a permutation.

V , on input(i, y), simply outputs a randomx for whichgf
i (x) = y. To see thatf is still s-hard, suppose

there is a poly-size inverterA(f,h),V for f . From it one can build a circuitBf which perfectly simulates
A(f,h),V . Each call toh can be simulated using2n−s queries tof , and each call toV using≈ 2l queries to
f . SoBf callsf about|B|(2l + 2n−s) < |B|(2 · 2n−s) times. With this many queries, the probability of
invertingf cannot exceed≈ 2−s, sof is still s-hard. �

12

Corollary 1 (To Theorem 5) There is noω(log n)-saving reduction toFn.

Corollary 2 (To Theorem 6) There is no(ω(log n) + log α(n))-saving reduction toFn.

Acknowledgements
We thank anonymous referees for their many helpful suggestions. Research of N.D. and L.R. was supported,
in part, by the Institute for Pure and Applied Mathematics atUCLA, and by US National Science Foundation
grants CCF-0515100, CNS-0546614 and CNS-0202067. Research of D.H. was supported by a Lady Davis
Fellowship and by a grant from the Israeli Science Foundation.

References

[BM82] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo random
bits. In23rd FOCS, pages 112–117, 1982.

[CW77] I. Carter and M. Wegman. Universal classes of hash functions. In9th ACM Symposium on
Theory of Computing, pages 106–112, 1977.

[DS05] Y. Dodis and A. Smith. Correcting errors without leaking partial information. In37th STOC,
pages 654–663, 2005.

[GIL+90] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman. Security preserving
amplification of hardness. In31st IEEE Symposium on Foundations of Computer Science, pages
318–326, 1990.

[GKL93] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators.SIAM
Journal of Computing, 22(6):1163–1175, 1993.

[GL89] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions. In21st ACM
Symposium on the Theory of Computing, pages 25–32, 1989.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of the ACM, 28(4):270–299,
1984.

[Gol01] O. Goldreich.Foundations of Cryptography. Cambridge University Press, 2001.

[HHR06a] I. Haitner, D. Harnik, and O. Reingold. Efficient pseudorandom generators from exponentially
hard one-way functions. In33rd ICALP, 2006, Pt. II, LNCS, volume 4052, pages 228–239.
Springer, 2006.

[HHR06b] I. Haitner, D. Harnik, and O. Reingold. On the powerof the randomized iterate. InCRYPTO
’06, LNCS, volume 4117, pages 22–40. Springer, 2006.

[HILL99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function.SIAM Journal of Computing, 29(4):1364–1396, 1999.

[HL92] A. Herzberg and M. Luby. Pubic randomness in cryptography. InCRYPTO ’92, LNCS, volume
740, pages 421–432. Springer, 1992.

[Hol06] T. Holenstein. Pseudorandom generators from one-way functions: A simple construction for
any hardness. InTCC ’06, pages 443–461, 2006.

13

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms. In
26th STOC, pages 356–364, 1994.

[Lev86] Leonid A. Levin. Average case complete problems.SIAM Journal on Computing, 15(1):285–
286, 1986.

[Lev87] L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7:357–363,
1987.

[Lev93] Leonid A. Levin. Randomness and nondeterminism.The Journal of Symbolic Logic,
58(3):1102–1103, 1993.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM Journal on Computing, 22(4):838–856, 1993.

[WC81] M. Wegman and J. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 1981.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In23rd IEEE Symposium on Founda-
tions of Computer Science, pages 80–91, 1982.

A Further Shortening the PRG Seed

In our pseudorandom generator, the output of the last hash function has, intuitively, almostk bits of entropy.
It entropy can be converted to pseudorandomness using an extractor with a public seed (of lengthk). To
get this pseudorandomness to be, e.g.,nlogc n-close to uniform for somec, one will loseΘ(logc+1 n) bits.
If we take this approach, then the we need to run the randomized iterate construction notk times, but
Θ(logc+1 n) times; thus, we need the space-bounded generator to producenot k, but Θ(logc+1 n) hash
functions, which can be done in spaceO(k log(logc+1 n)) = O(k log log k). The result is a PRG with seed
length2n+O(k log log k) of which onlyk bits needs to be secret, but security reduced to the bare minimum
nlogc n.

B Standard Definitions

A function ε(n) is negligible inn (denotedε(n) ∈ neg(n)) if ε(n) = o(1/p(n)) for every positive polyno-
mial p.

By a Distribution Ensemblewe mean a series{Dn}n∈N whereDn is a distribution over{0, 1}n. Let
{Xn} and{Yn} be distribution ensembles. Define the distinguishing advantage of an algorithmA between
the ensembles{Xn} and{Yn} denoted as∆A({Xn}, {Yn}), by:

∆A({Xn}, {Yn}) = |Pr[A(1n,Xn) = 1]− Pr[A(1n, Yn) = 1]|

where the probabilities are taken over the distributionsXn andYn, and the randomness ofA. We say that
{Xn} and {Yn} are computationally-indistinguishable[GM84] if for every PPT A, ∆A({Xn}, {Yn}) ∈
neg(n).

14

Definition 5 (One-way functions) Letf : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function.f
is one-way if for everyPPTA, Prx← {0,1}n [A(1n, f(x)) ∈ f−1(f(x))] is negligible inn.

A few convention remarks: When the value of the security-parameter (i.e.,1n) is clear, we allow ourselves
to omit it from the adversary’s parameters list. Since any one-way function is w.l.o.g. length-regular (i.e.,
inputs of same length are mapped to outputs of the same length), it can be viewed as an ensemble of functions
mapping inputs of a given length to outputs of some polynomial (in the input) length. Therefore we can
write: let f : {0, 1}n → {0, 1}ℓ(n) be a one-way function, whereℓ(n) is a polynomial-time computable
function ofn.

The following definition follows the definition of one-way functions with public randomness from
[HL92] (though we do not require the amounts of public randomness and secret randomness to be poly-
nomially related—it is possible to imagine, for instance, that fork secret random bits a one-way function
could needklog k public ones).

Definition 6 (Public-coin collection of one-way functions)LetsP , sS : N→ N. A collection of functions
{fi}i∈{0,1}∗ is public-coin one-way if it is:

1. Easy to compute:There exists an efficient (randomized) algorithmf such that for anyi, x, f(i, x) =
fi(x).

2. Hard to invert: For everyPPTA:

Pr
i← {0,1}sP (n),x← {0,1}sS (n)

[A(i, fi(x)) ∈ f−1
i (fi(x))] ∈ neg(n) .

For ease of notation, in the rest of the paper we use in place ofi something more meaningful, as long
as it can be computed in polynomial-time from public coins, such as a descriptionh of a member of a hash
function family.

Definition 7 (Pseudorandom-Generator (PRG) [BM82, Yao82])LetG : {0, 1}n → {0, 1}ℓ(n) be a poly-
nomial-time computable function whereℓ(n) > n. We say thatG is aPseudorandom-Generator if G(Un)
is computationally-indistinguishable fromUℓ(n).

The following definition follows the definition of pseudorandom generators with public randomness
from [HL92].

Definition 8 (Public-coin collection of PRGs) Letd, sP , sS : N→ N andd > 0. A collection of functions
{Gi}i∈{0,1}∗ is said to be a public-coin collection of PRGs if it is:

1. Easy to compute:There is an efficient algorithmG such that for anyi, x, G(i, x) = Gi(x).

2. Expanding: If |i| = sP (n) thenGi : {0, 1}sS (n) → {0, 1}sS (n)+d(n).

3. Indistinguishable: The ensembles(i,Gi(x)) and(i, Z) are indistinguishable (i, x andZ are uniform
on{0, 1}sP (n), {0, 1}sS (n) andBsS(n)+d(n), respectively).

The functionsd, sP andsS are calledexpansion, public seed lengthandsecret seed length, respectively.

15

C Proof of Proposition 2

We continue where we left off on page 7. The division into chunks is as follows. Call two pointsy1, y2 of
Y siblings if f(y1) = f(y2); a sibling setis the setf−1(z) for somez ∈ Z. Order all the points ofY by
the number of siblings they have, in increasing order, keeping sibling sets together. Letσ = ⌊|Y |/K⌋, and
let R = |Y | mod K be the remainder (note thatR = 0 if f is regular). Put the firstσ + 1 points into the
first chunk, the nextσ + 1 points into the second chunk, and so on for the firstR chunks; then put the next
σ points into chunkR + 1, the nextσ points into chunkR + 2, and so on, obtaining a total ofK chunks.
(Each chunk contains precisely one sibling set iff is regular.) For a pointy ∈ Y , let c(y) be the chunk that
containsy. Call the set of theK chunksC, and define the function̂h : X → C asĥ(x) = c(h(x)).

The following claim is adapted from [HHR06b]. It says, essentially, that if a set of chunks is heavy
under the distribution imposed bŷh(x), then it also heavy under the uniform distribution.

Claim 1 For any setT ⊆ C ×HX,Y , if Pr(x,h)← X×HX,Y
[(ĥ(x), h) ∈ T] ≥ δ, then

Pr
(c,h′)← C×HX,Y

[(c, h′) ∈ T] ≥ δ2/2.125 (δ2/2 if f is regular) .

Proof: The statement we want to prove is equivalent to|T | ≥ δ2|HX,Y |K/2.125. We will prove it by
showing that ifT is too small, then collision probabilityp of the distribution(ĥ(x), h) is too high.

On the one hand, the collision probabilityCP(x,ĥ)← X×HX,Y
(ĥ(x), ĥ) is equal to

p = Pr
(x1,h1),(x2,h2)← X×HX,Y

[(ĥ1(x1), h1) = (ĥ2(x2), h2)]

= Pr
h1,h2 ← HX,Y

[h1 = h2] Pr
(x1,h1),(x2,h2)← X×HX,Y

[(ĥ1(x1), h1) = (ĥ2(x2), h2)|h1 = h2]

=
1

|HX,Y |
Pr

h←HX,Y ,x1,x2 ← X
[ĥ(x1) = ĥ(x2)] .

The event̂h(x1) = ĥ(x2) happens ifx1 = x2 (whose probability, by the assumption on collision prob-
ability of X, is at most1/K), or if x1 6= x2, but the choice ofh mapped them to the same chunk. The
probability of the latter event is analyzed easily if we assume all chunks are of sizeσ, i.e.,K divides |Y |
(in particular, if f is regular). In such a case, for any fixedx1 6= x2, Prh←HX,Y

[ĥ(x1) = ĥ(x2)] =
∑

c∈C

∑

y1,y2∈c Prh←HX,Y
[y1 = h(x1) ∧ y2 = h(x2)] = K ·

(
|Y |
K

)2
· 1
|Y |2

= 1
K . The general case is a

bit messier: for any fixedx1 6= x2,

Pr
h←HX,Y

[ĥ(x1) = ĥ(x2)] =

=
∑

c∈{c1,...cR}

∑

y1,y2∈c

Pr
h← HX,Y

[y1 = h(x1) ∧ y2 = h(x2)] +

∑

c∈{cR+1,...cK}

∑

y1,y2∈c

Pr
h← HX,Y

[y1 = h(x1) ∧ y2 = h(x2)]

=
R(σ + 1)2

|Y |2 +
(K −R)σ2

|Y |2 =
Kσ2 + 2Rσ + R

(Kσ + R)2
.

Looking at signs of partial derivatives with respect toσ andR, and observing that|Y | ≥ K, henceσ ≥ 1,
shows that the maximum of this expression occurs atσ = 1 andR = K/3. Thus,Prh←HX,Y

[ĥ(x1) =

ĥ(x2)] ≤ 2K/(4K/3)2 = 9/(8K).

16

Hence,p ≤ 1/|HX,Y |(1/K + 9/(8K)) = 2.125/(K|HX,Y |), andp ≤ 2/(K|HX,Y |) for regularf .
On the other hand,p is at least the probability that a collision occurs, and happens insideT : p ≥

Pr(x1,h1),(x2,h2)← X×HX,Y
[(ĥ1(x1), h1) = (ĥ2(x2), h2) ∧ (ĥ1(x1), h1) ∈ T]. If both (ĥ1(x1), h1) and

(ĥ2(x2), h2) end up inT (which happens with probabilityδ2), then they collide with probability at least
1/|T | (no matter what the distribution is insideT , 1/|T | is the lowest possible collision probability), and
hencep ≥ δ2/|T |.

Thus, the two bounds onp show thatδ2/|T | ≤ 2.125/(K|HX,Y |) (2 instead of 2.125 for regularf),
which is exactly what we needed to show.�

Applying this claim to the setT of good pairs(c, h) (and observing thatPr(x,h)← X×HX,Y
[(ĥ(x), h) ∈

T] ≥ δ, because if(f(h(x)), h) ∈ S, then(ĥ(x), h) ∈ T)), we see thatPr(c,h′)← C×HX,Y
[(c, h′) ∈ T] ≥

δ2/2.125. For regularf (replacing2.125 with 2), this concludes the proof of the proposition, because a
good chunk gives exactly|Y |/K good elements ofY . For generalf , we have to work harder.

Let αh = Prc← C [(c, h) ∈ T]; we have just shown thatEh←HX,Y
αh ≥ δ2/2.125. Now fix h, and call

z, y or c good if (z, h), (y, h), or (c, h), respectively, is good. We will show that the fraction of good points
y is polynomially related toαh. (Of course, each chunk that contains a good point may also contain many
points that are not good, so this is not immediate.)

Claim 2 If, for a fixedh, Prc← C [c is good] = αh, thenPry∈Y [y is good] > 2α2
h/9− 1/(4K2).

Proof: To prove this, we will make use of two facts: first, ify is good, then so are all of its siblings (because
the definition of good depends only onf(y)); second, manyy values have to have many siblings, because
the total number of outputs off is only K.

LetTh be the set of good chunks; recall thatPrc← C [c ∈ Th] = αh, i.e.,|Th| = αhK. To see an intuitive
explanation for the second fact, assume for a moment that sibling sets do not cross chunk boundaries. Then
the average number of siblings sets per chunk inTh cannot exceed1/αh: else, the total number of distinct
sibling sets (and hence outputs off) would exceed(1/αh) · (αhK) = K. The actual math involved,
unfortunately, is uglier, both because sibling sets can cross chunk boundaries, and because average number
of sibling sets (and hence the weight of the average sibling set) is insufficient for our analysis: it is possible
that only below-average sets are the ones that cause chunks to be included inTh.

We now proceed to the formal argument. Call the chunks inTh c1, c2, . . . , ct according to the ordering
of points described at the beginning of the proof (i.e.,c1 contains elements with smaller sibling sets, andct

contains elements with larger sibling sets); note thatt = αhK.
First, we will count all the large sibling sets. Namely, consider all goody whose sibling sets are of size

greater thanσ. Thesey belong to chunkscd+1, . . . , ct for somed. Note that all elements of such a sibling
set are good, as long as a single element is good; and every chunk must contain at least one good element.

Sub-Claim 1 If a sibling set of size at leastσ + 1 intersects withv chunks, then it contains more than
(σ + 1)v/3 elements.

Proof: Note that the statement is trivial forv < 3; and if a sibling set intersects with 3 chunks, then it must
contain at leastσ + 2 elements; so we consider onlyv ≥ 4. If the sibling set containsw elements, then it
can intersect with at most(w − 2)/σ + 2 chunks, because the rightmost and the leftmost chunk require at
least one element each from the sibling set, and the remaining chunks require at leastσ elements. Therefore,
v ≤ (w− 2)/σ + 2, and hencew ≥ (v− 2)σ + 2 ≥ vσ/3 + (2v/3− 2)σ + 2 ≥ vσ/3 + (2v/3− 2) + 2 ≥
vσ/3 + v/3. �

Therefore, the total number of goodys incd+1, . . . , c+ t is at least(t−d)(σ+1)/3 ≥ (t−d)|Y |/(3K).
We will now count goodys in smaller sibling sets, those overlapping with chunksc1, . . . , cd.

17

Sub-Claim 2 If y ∈ ci, then the size of the sibling set ofy (i.e., |f−1(f(y))|) is greater than(i−1)|Y |/K2.

Proof: There arei−1 chunks that come beforey, and their average size is least|Y |/K (because we arranged
for chunks of sizeσ + 1 > |Y |/K to come before the chunks of sizeσ). Thus, total number of points that
come before (and including)y in the ordering is at least1+ (i− 1)|Y |/K. They are contained in at mostK
distinct sibling sets; hence, the size of the average sibling set is greater than(i− 1)|Y |/K2. The sibling set
that containsy is the largest of them (because of the ordering), and hence nosmaller than the average.�

Consider now the chunkcd. It is in Th because of some goody ∈ cd; neither thisy nor its siblings have
been counted above, when we were counting members of large sibling sets, because no goody in c1, . . . , cd

has a sibling set of size greater thanσ. The sibling set of thaty (and note that every element of that sibling
set is good) is of size greater than(d − 1)|Y |/K2, by the above sub-claim. The chunkcd−1 may be in
Th because of some other element of the same sibling set, and hence we will not count any points in it.
However, no elements of the same sibling set are in chunks precedingcd−1, because the size of the sibling
set of size no greater thanσ. Therefore, we can proceed tocd−2, and similarly identify a goody in it, and
count its sibling set, of size greater than(d− 3)|Y |/K2. Continuing in this manner, we get that the number
of good points is more than

(t− d)|Y |
3K

+
|Y |
K2

((d− 1) + (d− 3) + (d− 5) + ...) =
|Y |
K

(
t− d

3
+

d2 − 1

4K

)

(because(d − 1) + (d − 3) + (d − 5) + · · · ≥ (d2 − 1)/4). To get rid of the variabled, we use the fact
that(t− d)/3 + d2/(4K) ≥ 2t2/(9K) (this can be shown as follows: becaused ≤ t, if t < 2K/3, then the
derivative with respect tod is negative, with the minimum reached whent = d and(t− d)/3 + d2/(4K) ≥
t2/(4K) > 2t2/(9K); if t ≥ 2K/3, then the minimum is reached at the zero of the derivative, when
d = 2K/3 and(t− d)/3 + d2/(4K) = t/3−K/9 ≥ 2t2/9K, with the last inequality holding because the
quadratic2t2/9K − t/3 + K/9 has rootst = K/2 andt = K, andK/2 < t ≤ K). Thus, remembering
thatt/K = αh, we get that the number of good points is more than

|Y |
K

(
2t2

9K
− 1

4K

)

= |Y |
(

2α2
h

9
− 1

4K2

)

,

and hence the probability that a uniformly chosen point inY is good is more than2α2/9 − 1/(4K2). This
concludes the proof of Claim 2.�

By Claim 2,Pr(y,h)← Y×HX,Y
[(f(y), h) is good] ≥ Eh←HX,Y

(2α2
h/9 − 1/(4K2)). Because average

of squares is no less than the square of the average (by Jensen’s inequality), we haveEh←HX,Y
α2

h ≥
(
Eh←HX,Y

αh

)2 ≥
(
8δ2/17

)2
by Claim 1. Thus,Pr(y,h)← Y×HX,Y

[(f(y), h) is good] ≥ 2 · 82δ4/(9 ·
172)− 1/(4K2). This proves Proposition 2.

D Proof of Theorem 2

We state and prove the technical lemma that immediately implies the theorem.

Lemma 4 Let f : Y → Z be a function, letOH ⊂ Z be a set of sizeK, andIH = f−1(OH). Suppose
|IH | = pH |Y |. LetX be a distribution with collision probability at most1/K, and letHX,Y be a family of
pairwise-independent functions from the elements ofX to Y . For everyh ∈ HX,Y definefh : X → Z as

fh(x)
def
= f(h(x)). Then any adversaryA that invertsfh with probability at least(1− pH) + ε overx ∈ X

andh ∈ HX,Y (for ε > 0) can be used to invertf on uniformly random inputs fromY with probability at
leastε4/(21pH)− pH/(4K2) in thesame running timeasA (plus the time required to pick and evaluate a
random hash function fromHX,Y).

18

Proof: The proof is very similar to the proof of Lemma 2. We constructthe sameMA and analyze its
success probability. We highlight the differences in the analysis.

Proposition 3 For anyS′ ⊆ Z ×HX,Y , if

Pr
(x,h)← X×HX,Y

[(fh(x), h) ∈ S′] ≥ (1− pH) + δ

for δ > 0, then

Pr
(y,h′)← Y×HX,Y

[(f(y), h′) ∈ S′] ≥ δ4

21pH
− pH

4K2
.

Proof: Let S = S′ ∩ OH × HX,Y . Note that the weight ofS with respect to(fh(x), h) is leastδ:
Pr(x,h)← X×HX,Y

[fh(x), h) ∈ S] ≥ Pr(x,h)← X×HX,Y
[fh(x), h) ∈ S′]−Pr(x,h)← X×HX,Y

[fh(x) /∈ OH].
Because for any fixedx and randomh, the valueh(x) is uniformly distributed,Pr(x,h)← X×HX,Y

[fh(x) /∈
OH] = Pr(x,h)← X×HX,Y

[h(x) /∈ IH] = 1− pH . We will work with S instead ofS′ from now on.
Instead of dividing the entireY into K chunks as in Proposition 2 we divide onlyIH into K chunks.

We do not definêh(x), because not every point inY belongs to a chunk. However, for everyy ∈ IH , we
definec(y) as the chunk to whichy belongs.

Claim 3 For any setT ⊆ C × HX,Y , if Pr(x,h)← X×HX,Y
[h(x) ∈ IH ∧ (c(h(x)), h) ∈ T] ≥ δ, then

Pr(c,h′)← C×HX,Y
[(c, h′) ∈ T] ≥ δ2/(pH + 1.125p2

H) ≥ δ2/(2.125pH).

Proof: The proof is essentially the same as of Claim 1. Consider the probability

p = Pr
(x1,h1),(x2,h2)← X×HX,Y

[h1(x1) ∈ IH ∧ h2(x2) ∈ IH ∧ (c(h1(x1)), h1) = c((h2(x2)), h2)] .

On the one handp ≤ 1/(|HX,Y |K)(pH + 1.125p2
H). On the other hand,p ≥ δ2/|T |. This gives the desired

bound. �

Observe that if(f(h(x)), h) ∈ S, thenh(x) ∈ IH and(c(h(x)), h) is good. Hence, we can apply the
above claim to the setT of good(c, h) pairs.

Claim 4 If, for a fixedh, Prc← C [c is good] = αh, thenPry∈Y [y is good] > (2α2
h/9− 1/(4K2))pH .

Proof: The proof is essentially the same as of Claim 2, replacing|Y | with |IH |. �

Putting the two claims together gives the proof of the proposition. �

The proof of Lemma 4 follows by an application of Lemma 1, which is applicable because(f(y), h′)
g-dominates(f(h(x)), h), for the convex function

g(β) =

{
(β−(1−pH))4

21pH
− pH

4K2 if (β−(1−pH))4

21pH
− pH

4K2 > 0 ,

0 otherwise.
�

E Proof of Lemma 3 (Unpredictable Sequence)

Let E ⊆ Φ× Supp be the set of coins-instances on whichA succeeds:

E = {(ω, (h, ĥ, z)) | A invertsi-th iteration on(ω, h, ĥ, z)}.

19

Also let L ⊆ Supp be the set of instances with no more than2/
√

ǫ preimages underhi, which fall into
Im(fĥ) (wherefĥ(u) = f(ĥ(u))):

L = {(h, ĥ, z) | |(hi)−1(z) ∩ Im(fĥ)| ≤ 2/
√

ǫ}.

Let us call(Φ×L)∩E thegood setof coins-instances. We shall prove that its probability under the uniform
distribution is at least ǫ2

8(k+1) :

Pr
(ω,(h,ĥ,z))← Φ×Z

[(Φ × L) ∩ E] ≥ ǫ2

8(k + 1)
. (1)

This inequality is sufficient to claim the lemma. To see that,first note that instances(h, ĥ, z) = (h, ĥ, hi(y))
which B prepares are distributed according toZ (i.e. they are uniform, becausef is regular). Suppose that
(ω, (h, ĥ, z)) ∈ (Φ × L) ∩ E (which by (1) happens with probability≥ ǫ2/8(k + 1)). By definition ofE,
that means thatA’s outputu is the inverse ofi-th iteration on instance(h, ĥ, z); thereforehi(f(ĥ(u))) =
z = hi(y). Thusy andf(ĥ(u)) are siblings underhi. But sincez ∈ L, f(ĥ(u)) has at most2/

√
ǫ such

siblings, from whichy was chosen at random. The view ofA is independent of which sibling is chosen, so
with probability

√
ǫ/2 we have thaty = f(ĥ(u)), i.e. B’s output is an inversef−1(y). Thus the overall

probability ofB’s success isǫ2/8(k + 1) · √ǫ/2 = ǫ2.5/(16(k + 1)).
We now turn to proving (1). The first step is to show that the probability of the good set(Φ × L) ∩ E

under the distributionΦ ×D, is at leastǫ/2. Indeed,PrΦ×D[E] ≥ ǫ by theorem assumption. We now use
2−3k-almost pairwise independence ofhi to show thatPrΦ×D[Φ× L] ≥ 1− ǫ/2 (in fact this holds for any
coinsω ∈ Φ, i.e. we provePrD[L] ≥ 1− ǫ/2).

Fix arbitrary ĥ andz ∈ {0, 1}k , and letLĥ,z = {h | (hi)−1(z) ∩ Im(fĥ)| ≤ 2/
√

ǫ}. We proceed by

a Chebyshev-like argument. For anyx ∈ Im(fĥ) define the indicator r.v.I(x) = 1 ⇐⇒ hi(x) = z.
ThenV =

∑

x∈Im(f
ĥ
) I(x) is the random variable which counts the number ofz’s preimages underhi,

which are inIm(fĥ). We are therefore interested inPrhi [V > 2/
√

ǫ]. Recall thathi areδ-almost pairwise
independent whereδ = 2−3k and we have

E
hi

(V 2) = E




∑

x∈Im(f
ĥ
)

I(x)





2

= E

∑

x,y

(I(x)I(y)) =
∑

x,y

E(I(x)I(y)) =
∑

x,y

Pr
hi

[(h(x), h(y)) = (z, z)]

≤
∑

x,y

(2−2k + δ) ≤ |Im(fĥ)|2(2−2k + δ) ≤ 22k(2−2k + δ) ≤ 1 + 2−k ≤ 2.

Using Markov’s inequality we get thatPr[V 2 > 4/ǫ] ≤ ǫ/2 or equivalentlyPr[V > 2/
√

ǫ] ≤ ǫ/2, i.e.
Pr[Lĥ,z] ≤ 1− ǫ/2. Averaging over̂h, z yields the requiredPrD[L] ≥ 1− ǫ/2.

So we have seen thatPrΦ×D[Φ × L] ≥ 1− ǫ/2 andPrΦ×D[E] ≥ ǫ. Therefore

Pr
Φ×D

[(Φ × L) ∩ E] ≥ ǫ/2. (2)

The desired equation (1) now follows from Lemma 1 and the following

Claim 5 For any set of instancesS ⊆ Supp

Pr
Z

[S] ≥ (PrD[S])2

2(k + 1)
.

20

Indeed, the above claim says thatZ isg-dominated byD (see Definition 3), forg(x) = x2

2(k+1) . By Lemma 1,
Φ× Z is g-dominated byΦ×D, and so from (2) we conclude (1).

It remains to prove Claim 5. In other words, in this claim we essentially show that whatever can be done
with the knowledge of the randomizing functionsĥ andh = (h1, . . . , hk) can be done about as well when
(h, ĥ) are simply chosen at random (as the reductionB does).
Proof: [of Claim 5] We proceed along the lines of [HHR06b] — by showing that the collision probabilities
of D andZ are closely related, and using the uniformity ofZ we show that event probabilities under those
distributions are also closely related. In particular we first show

CP (D) ≤ 2(k + 1) · CP (Z) (3)

and then we use this, as well as the uniformity ofZ, to conclude that the claim is true.
Proof of (3). Suppose thati = k (i.e. we wish to establish the relation between collision probabilities in the
last,k-th, iteration). It will be apparent in the proof that the same relation holds for any otheri < k. By
definition,CP (D) = Pr[(h, ĥ, fk

ĥ
(x, h, ĥ)) = (h

′
, ĥ′, fk

ĥ
(x′, h

′
, ĥ′))]. For the collision to happen, we must

have(h, ĥ) = (h
′
, ĥ′) so

CP (D) =
1

|Hk,n| × |Hk
ℓ,k|
·

b
︷ ︸︸ ︷

Pr
x,x′,h,ĥ

[fk
ĥ
(x, h, ĥ) = f i

ĥ
(x′, h, ĥ)] .

We now show that
b ≤ 2(k + 1)CP (f(Un)).

Define for anyi ≤ k and anyĥ the random variablesyi,ĥ = fĥ(f i
ĥ
(x, h, ĥ)) andy′

i,ĥ
= fĥ(f i

ĥ
(x′, h, ĥ)).

For anyĥ let cĥ = CP (f(ĥ(x))). We first prove thatPr[yk,ĥ = y′
k,ĥ

] ≤ kcĥ + (k − 1)2−k.

Let Ci denote the event thatyi,ĥ = y′
i,ĥ

, i.e. a collision ini-th iteration. LetNi denote the event

C1 ∪ · · · ∪Ci, i.e. no collision up to and includingi-th iteration. We are interested inPr[(∃i ≤ k)Ci],
which is equal to

Pr[C1 ∪ (C2 ∩N1) ∪ · · · ∪ (Ci ∩Nk−1)] ≤ Pr[C1] + Pr[C2 | N1] + · · ·+ Pr[Ck | Nk−1].

Clearly, Pr[C1] = Pr[fĥ(x) = fĥ(x′)] = cĥ. Let us now upperbound thei-th term of the sum:
Pr[Ci+1 | Ni]. We are conditioning onNi so yi,ĥ 6= y′

i,ĥ
. Then, by2−3k-almost pairwise independence

of hi+1, we have that(hi+1(yi,ĥ), hi+1(y′
i,ĥ

)) is (2−3k · 22k/2)-close to uniform (see Proposition 1), that is

2−k/2-close to uniform. Therefore, by definition of statistical distance, the probability of the collision event
fĥ(hi+1(yi,ĥ)) = fĥ(hi+1(y′

i,ĥ
)), differs at most by2−k/2 from the probabilitycĥ of the same event under

the uniform distribution. In other words,Pr[yi+1,ĥ = y′
i+1,ĥ

| Ni] = Pr[Ci+1 | Ni] ≤ 2−k/2 + cĥ. Sum-

ming up all thePr[Ci+1 | Ni] we get the requiredPr[yk,ĥ = y′
k,ĥ

] = Pr[(∃i ≤ k)Ci] ≤ kcĥ +(k−1)2−k/2.

SinceEĥ cĥ = CP (f(Un)) we have

b = Pr
x,x′,h,ĥ

[yk,ĥ = y′
k,ĥ

] + Pr
x,x′,h,ĥ

[hk(yk,ĥ) = hk(y′
k,ĥ

) | yk,ĥ 6= y′
k,ĥ

] ≤ Pr
x,x′,h,ĥ

[yk,ĥ = y′
k,ĥ

] + 2 · 2−k

= E
ĥ

(

kcĥ + (k − 1)2−k/2
)

+ 2 · 2−k ≤ kCP (f(Un)) + (k − 1)2−k/2 + 2 · 2−k

≤ kCP (f(Un)) + (k + 1)2−k.

21

But the output entropy off is at mostk, and sincef is regular this means that2−k ≤ CP (f(Un)). Therefore
b ≤ 2(k + 1)CP (f(Un)).

We concludeCP (D) = b
|Hk,n|·|H

k
ℓ,k|
≤ 2(k+1)CP (f(Un))

|Hk,n|·|H
k
ℓ,k|

. Clearly,CP (Z) ≥ CP (f(Un))

|Hk,n|·|H
k
ℓ,k|

. ThusCP (D) ≤
2(k + 1)CP (Z), i.e. (3) holds.
Using (3) to show the claim. Take any eventS ⊆ Supp. Consider firstCP (D), i.e. Pr[a = b] for
a, b independently drawn fromD. This probability is lower bounded by the probability of thecollision
occurring withinS, i.e. CP (D) ≥ PrD[a, b ∈ S ∧ a = b] = (PrD[S])2 Pr[a = b | a, b ∈ S]. Denoting
py = Pra[a = y | a ∈ S] we therefore have

CP (D) ≥ (Pr
D

[S])2 · Pr[a = b | a, b ∈ S] = (Pr
D

[S])2
∑

y∈S

p2
y ≥ (Pr

D
[S])2

(
∑

y∈S py

)2

|S| =
(PrD[S])2

|S|

where the second inequality follows from
∑m

i=1 x2
i ≥ (

∑m
i=1 xi)

2/m.
Now considerCP (Z). SinceZ is uniform, its collision probability is simply1/|Supp|, therefore

2(k + 1)/|Supp| = 2(k + 1)CP (Z).

We can now use (3) (which says that2(k + 1)CP (Z) ≥ CP (D)), and the above equations to get

2(k + 1)/|Supp| = 2(k + 1)CP (Z) ≥ CP (D) ≥ (PrD[S])2

|S| .

Multiplying by |S| we reach the desired2(k + 1)PrZ [S] ≥ (PrD[S])2.
This concludes the proof of Claim 5, and therefore Lemma 3 andTheorem 4.

E.1 Optimizing security preservation

It is possible to save a factor of
√

ǫ in the security reduction, at a cost of possibly requiring more public
seed bits. Namely, one can change the PRG to extract the Goldreich-Levin hardcore bit from the output of
f in each iteration. It is then possible to construct an inverter B which invertsf(x) with probability about
ǫ2(n)/k. But the length of the Goldreich-Levin vectorr then must be equal toℓ, the length off ’s output,
so we havesP (n) ≥ ℓ(n).

E.2 On using secret seeds from non-uniform distributions

SupposeX is a distribution with the only guarantee thatCP (X) ≤ 2−k. We outline the modification which
makes our PRG secure even when its seedx is drawn fromX. Namely, suppose that the support ofX
is {0, 1}m, and letHm,k be a family of2−3k-almost pairwise independent hash functions from{0, 1}m to
{0, 1}k . The modified generator first pre-processes its seedx by applying a randomh0 ∈ Hm,k to x, and
then uses our PRG (either of Construction 2 or of Construction 1) on secret seedh0(x). The hash function
h0 need not be secret. As explained in Section 2,h0 can be specified usingO(k) bits, therefore the public
seed length remains essentially unchanged (O(k log k) for Construction 2, orO(k2) for Construction 1).

The security proof of this modified construction is almost the same as the proof of Theorem 4. The
only difference shows up in computingCP (D) in Claim 5: the first collision eventC1 happens with a
higher probability thancĥ, since it can be caused byh0. But sinceh0 is 2−3k-almost pairwise independent,
Pr[C1] ≤ CP (X) + 2 · 2−k + cĥ ≤ 3 · 2−k + cĥ. ThereforeCP (D) is still bounded byO(k)/2k , and the
rest of the proof is essentially unchanged.

22

F Supporting Lemmas for Black-Box Separations

Lemma 5 Let Af : {0, 1}l → {0, 1}m be any oracle circuit of size at mostS = 2n−l−d. There is an
α-regular functionf : {0, 1}n → {0, 1}k and a setD ⊆ {0, 1}n with |f(D)| < 2n−d/α such that for any
x ∈ {0, 1}l, Af (x) never makes a query outsideD.

Proof: We constructf andD as follows.

1. Initially let D = ∅, y = 0 and letf beundefinedeverywhere.

2. Forx ∈ {0, 1}l:

(a) RunA(x) and answer each its queryf(q) as follows:

i. If f(q) is undefined, addq to D, answery and definef(q) := y.

ii. If f(q) is defined, then answerf(q).

iii. After answering a query, check if|f−1(y)| = α; if so, sety ← y + 1.

In the remaining undefined points,f can be extended arbitrarily to anα-regular function. The size off(D)
is the final value ofy. At leastα queries are necessary to increasey by 1. There are2l inputs, and on each
of themA asks at mostS queries. Thereforey ≤ S2l/α ≤ 2n−d/α. �

Lemma 6 Let l = n − c and p ≥ 2−c/2+1. If (R, g) is an (l, p)-reduction toFn,α
REG then |g| > 2c/2 or

|R| > p2n−a+3.

Proof: Suppose|R| < T and|g| = S ≤ 2c/2. By Lemma 5 there aref,D such that(∀x)gf (x) never makes
a query outsideD, and |f(D)| < 2n−c/2/α. Let F be the set of all functions which agree withf on D
(i.e. all f ′ : {0, 1}n → {0, 1}n s.t. x ∈ D =⇒ f(x) = f ′(x)). Then for anyx and anyf, f ′ ∈ F ,
gf (x) = gf ′

(x). SoV , the perfect inverter forgf , is in fact a perfect inverter for anygf as long asf ∈ F .
ThereforeRV,f is a p-inverter for anyf ∈ F . Let X := {0, 1}n \ f−1(D) and letH′ be the set of

all α-regular functionsh : X → {0, 1}n. Sincef−1(D) is at most ap/2-fraction of {0, 1}n, RV,f must
work reasonably well onX, i.e. it is ap/2-inverter for anyh ∈ H. Its oracleV -gates can be replaced by
brute-force inverters forg, resulting in a circuitBf which makes at most|T | queries toX (recall thatg
never asks a query outsideD, so its brute force inverter does not either). Lemma 8 can nowbe applied, and
it follows that at most a(T/p)(8α/|X|)-fraction ofH can bep/2-inverted byS. This fraction is smaller
than1, a contradiction! �

Lemma 7 Let (R, g) be a(l,m, p)-collection-reduction fromFn,α
REG. Then there is a circuitB with |B| ≤

|R|(2l+1m) which is ap-inverter for anyf ∈ Fn,α
REG.

Proof: We build the required inverterB from R andg. Suppose thatV is the perfect inverter forgf . Then
RV,f is a p-inverter for f . We shall replace each call to the inverting oracleV by a circuit W f which
is a brute-force perfect inverter forG. The circuitW only needs oracle access tof , and its structure is
independent off – it is determined byg. In this way each call to the perfect inverterI is accurately
simulated, soBf(x) = RV,f (x) for anyx, i.e. Bf is ap-inverter forf .

The brute force inverterW f works as follows. On input(i, y) it evaluatesgf (i, x) for all x ∈ {0, 1}l.
If either of those is equal toy, then it outputs the correspondingx. This can be implemented in a circuit of
sizeO(2l) timesm, the size of the circuit evaluatinggf . Thus|W | ∈ O(m2l).

Since each call toV is replaced byW , the total size ofB is |R|O(m2l) as required. �

23

Lemma 8 Let α ∈ N and letA be a circuit of sizeS < 2n−log α−1. LetF denote the set of allα-regular
functionsf : X → Y . Then

Pr
f∈F

[Af p-invertsf] <
S

p

4α

|X| .

Proof: Let a = log α. Fix somey ∈ Y . Let us compute the probability overf , thatAf (y) ∈ f−1(y). Let
Z be the set of query answers whichAf (y) receives. Since|Z| ≤ S, we have thatf−1(Z) ≤ Sα.

If A never queries anyx ∈ f−1(y), then the probability that he outputs an inverse ofy is at most
1/(|X|/α − S).

After making i queries the probability that for the next queryx, f(x) = y, is at most1/(|X|/α −
i). Since there are at mostS queries, the probability that any of them getsy as the answer, is at most
∑S−1

i=0 1/(|X|/α − i).
The probability thatA outputs an inverse ofy is therefore at most

∑S
i=0 1/(|X|/α − i) ≤ 2(S +

1)/(|X|/α) ≤ S/(|X|/4α).
It is now easy to see that there isT ⊆ F with |T |/|F| > 1− p, such that

(∀f ∈ T) Pr
x∈X

[Af (f(x)) ∈ f−1(f(x))] <
S

p

4α

|X| , . �

Lemma 9 Let l = n − log α − d. If (R, g) is a (l,m, p)-collection-reduction fromFn,α
REG, then |R| >

p2d−4/m.

Proof: Suppose|R| = S ≤ p2d−4/m. By Lemma 7, there is ap-inverter of sizeS(2l+1m) ≤
p2n−a−3, which works for anyf . But by Lemma 8, any algorithm of sizep2n−a−3 canp-invert at most
p2n−a−3/p2−n+a+2 = 1/2 - fraction of functions. �

24

