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Abstract

Can a one-way functiogi onn input bits be used with fewer thanbits while retaining comparable
hardness of inversion? We show that the answer to this fuadtaiquestion is negative, if one is limited
black-box reductions.

Instead, we ask whether one can savesecretrandom bits at the expense of mgmeblic random
bits. Using a shorter secret input is highly desirable, mbf because it saves resources, but also because
it can yield tighter reductions from higher-level primis to one-way functions. Our first main result
shows that if the number of output elementg'a$ at mosg*, then a simple construction using pairwise-
independent hash functions results in a new one-way fumdtiat uses only: secret bits. We also
demonstrate that it is not the knowledgesafcurityof f, but rather of itsstructure that enables the
savings: a black-box reduction cannot, for a gengraleduce the secret-input length, even given the
knowledge that security of is only 2=*; nor can a black-box reduction use fewer thasecret input
bits whenf has2 distinct outputs.

Our second main result is an application of the public-ramdess approach: we show a construction
of a pseudorandom generator based onregular one-way function with output range &hownsize
2F. The construction requires a seed of o2dy+ O(k log k) bits (as opposed t@(n log n) in previous
constructions); the savings come from the reusability dliggandomness. The secret part of the seed is
of length onlyk (as opposed to in previous constructions), less than the length of thewagfunction
input.
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1 Introduction

PRG Seed Length It is important to keep the seed required for a pseudorandamergtor (PRG) as short
as possible, lest the amount of true random bits needed ibexroeed the amount of pseudorandom bits its
application requires, thus rendering it pointless. Moegpin reductions from PRGs (or other constructs) to
one-way functions, the blowup in the input length turns oute the most central parameter in determining
the security of the construct. It is therefore a major goatetuce this parameter (as was addressed in
[GIL 90, HL92, HHRO6b, Hol06, HHRO6a]). The ultimate goal is a&hin blowup, a necessary, although
not a sufficient, condition to achieve a reduction with tighturity preservation, i.e. a linear preserving one
[HL92, HILL99].

Consider, therefore, the following problem: when is it pokesto build a pseudorandom generator
out of a one-way functiorf while keeping the generator seed length linear in the onefurction input
lengthn? Certainly this is possible if is a permutation—in fact, in the original PRG constructidn o
[BM82, Yao82] the seed length is equal to the one-way functiput length. However, no broader class
of one-way functions satisfying this condition is currgrithown: even one-way bijections, if their output
range is not easily mapped {0, 1}", are not known to satisfy this condition (the best consionst for
them are the same as for other regular one-way functionsysied below).

In this paper we demonstrate constructions of PRGs withittead input length condition for a large
class ofknown regularone-way functions. Specifically, if every output phasa preimages (thug has2*
distinct outputs wheré = n — log ) and (a lowerbound on} is known, then we can build a PRG with
seed lengtt2n + O(klog k). Thus, for functions with high enough degeneracy, whiere O(n/logn),
our PRG has a linear-length seed, like the Blum-Micali-Yd&@built from one-way permutations. The
construction, described in Section 4, builds upon the tiecks of Haitner, Harnik and Reingold [HHRO6D],
which require longer seed length ©fn log n), but assume only regularity rather thiamownregularity.

New Tool: One-Way Functions with Short Secret Inputs We arrive at our pseudorandom generator as
part of a study of a more fundamental problem: when is it fbsdio reduce the input length of a one-
way function while maintaining some of its security? In atheords, given a one-way functiofi with
input lengthn, when is it possible to build another functignof input length/(n) < n with comparable
security? Indeed, if this were possible, then one couldekample, build a pseudorandom generator from
g rather than frony, and maintain a reasonable seed length even if the PRG gotsir blows up the input
size. However, we show that in general it is impossible taifitantly reduce the input length of one-way
function in a black-box manner, even for regular one-waycfiams (Theorem 5). That is, one must invest
essentially the fulk random bits when calling a one-way function.

This result, however, does not doom all efforts of using the-aay function with a shorter input. The
insight is to use the paradigm introduced by Herzberg ang [ldh92], which separatepublicrandomness
from secretrandomness. It turns out to be possible to reduce the amdwaceetrandomness at the cost
of additionalpublic randomness. In Theorem 1 we show how to convert any one-wayidum f with 2%
distinct outputs into &ollectionof one-way functions;, with inputs of lengthk, where the index into the
collection is the public randomness. The simple consinatises a pairwise inde-
pendent family ofexpandinghash functions. The choice of the function from the j

collection is a choice of a hash functién and we defingf; (z) = f(h(z)). This X
choice is made usingn public random coins, which are available to any potential
inverter.

One way to achieve such a result is by using a technical Lenfrdis and Smith [DS05, Lemma
12], which shows the same construction secure if it uses2 log% + 1 secret input bits, where is the
additive security loss. In particular, even if one needsrtsuee that extra security loss is exponentially
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Figure 1: Our pseudorandom generator on seefdis a pairwise-independent hash function frérhits to

n bits; k', k%, ..., h* are almost-pairwise independent hash functions from theubspace off to k bits,
generated by a bounded space generator from a commors sddeingthO(k log k); b, is the Goldreich-
Levin hardcore bit (the sameis used throughout)s, s andr are included in the output or, equivalently, are

public.

small, the result of [DS05] requires only linearly more infits. However, the linear improvement we
achieve over [DSO05] is crucial for building our pseudoramdgenerator, as we explain shortly. To achieve
this improvement, we take a different path from [DSO05]: éast of showing that the distributionig (), i)
and(f(h(zx)), h) are statistically close, we show they have polynomiallpated subset weights, a relation
between distributions that we cgHdomination.

The secret input to our one-way function need not consigt whiform independent bits: inputs from
any distribution of entropyk suffice (the same is true for our pseudorandom generatotraotien). This
is beneficial, because uniform random bits may be harder t@irothat simply strings of high entropy.
Moreover, this enables our pseudorandom generator cotistiu

Application: The PRG Construction We construct our pseudorandom generator by applying the ran
domized iterate construction of [HHRO06b] (henceforth eédlfthe HHR construction”) tg;, for a known
regularf. Because, is secure even whehis public, the coins fok can be given only once and used for all
iterations, resulting in a shorter seed. As compared to tiR ldonstruction, we replace the need for many
large hash functions with one large hash function (thused forf;), and many small one&l{,...,h" used

in the randomized iterate construction). Our construciatustrated in Figure 1.

To get some intuition for the construction, observe thétig regular, then the number of secret random
input bits we require forf;, is the entropy of the output of;,. This enables iteration, because the output
of f;, has enough entropy to be used (after an appropriate tramsfion) as an input to the nex,. We
could not use the result of [DS05], because it requires muoatientropy than is output; nor could we use
functions that are not regular, because they produce leépstaeentropy than the input requires. The proof of
pseudorandomness is not as simple as applying the HHR tesfilt because the HHR construction needs
to start with a regular one-way function, afidis not necessarily regular evenfifis.

In Appendix A we show how one can further exploit the knowkeddthe regularity and further shorten
the seed of our PRG tn + O(k log log k), albeit at the cost of lowering its security.

In addition to considering the overall PRG seed length, al$® important to consider how much of the
generator seed must be secret, because secret randomdite tee much harder to obtain than nonsecret
ones (again, this was already observed in [HL92]). Our PRiBadirst to require aublinearnumber of
secret bits, namely, jusgt (the HHR generator, like the generators of [BM82, GKL93[juieesn secret
bits). Moreover, just like for our one-way function, the mednput to our PRG need not consist of uniform
independent bits, but can come from any distribution ofatic.

Specifically, Renyi entropy of order 2, i.e., negative ldtjm of collision probability.

20f course, almost uniform independent bits can be obtaired & distribution of high entropy through the use of a strong
extractor (whose seed can be public), but extractors naglskse entropy, so this approach would require a seapaiti with
entropy higher thai, which, as we already pointed out, would create difficulf@oour PRG construction.



Example: One-way Function and PRG Based on Factoring Consider the problem of building a one-
way function based on the hardness of factoring productsvoftbit randomly chosen primes. If one is
willing to assume a trusted party with secret coins, thes gasy: the trusted party chooses two secret
randomb-bit primesp andgq, publishesN = pq, and the function can be, for example, squaring modilo

However, without trusted setup, there is no such easy aan&in. In order to work on the domain
{0,1}", the one-way function needs to include the process of géngrthe two random primes. A natural
way to do this is to test some number of random integers fongdiiy. To guarantee that two primes are
found with probability2=* for some security parameter the number of integers tested should®gsb)
(because the probability that a randéshit integer is prime i9(1/b)). The natural function therefore gets
n = O(sb?) bits as input, splits them int®(sb) integers of lengttb each, finds the first two such integers
p, g that are prime (if they do not exist, outpli, and outputs their produd¥ = pq. We call this function
fmuit (Observe that, for sufficiently large it is one-way under the assumption that factoring is hard).

For reasonably secure values fofe.g., 2048) ang (e.g., 64), the input length of f,,,;; will be on
the order of tens of megabytes. To come up with such a longsequt is, naturally, quite costly. Because
the output off,,,.;.; is short, however, we can apply our result on convertingwag-functions to families
with shorter secret inputs. Settihg= 2b = o(y/n), we obtain a family of one-way functions with secret
inputs of length only2b—as short as the description of the two primpesndq. To sample a function from
this family, one still need® (n) random bits, but they can be public, and are therefore musheepensive
to obtain (e.g., from adversarially observable sourceb siscuser behavior or ambient noise). Finally we
note that using our techniques, one can generate a praduet pq of two secreth-bit primesp,q using
private randomness of entro2y (and the appropriate amount of public randomness). Thisbeamsed,
for example, for generating public/secret key pairs for R#ARaillier functions, from a modest amount of
private randomness.

Consider now trying to make a PRG out 6f,,;;. The prior most efficient way (in terms of seed length)
to achieve this is to notice thdt,,.;; is a regular one-way function (except the negligipfe’ portion that
leads to the O output) and use the HHR construction, whiakstakseed ab (n log n) bits with O(n) of the
bits being secret.For reasonable parameter settings, it would be useful ordyplications that can afford
to gather tens of megabytes of secret randomness and gigadiypublic randomness before invoking the
PRG.

Instead, observe thdt,,,;; is also a knowhregular one-way function, with < 2b. Applying our PRG
construction, we get a pseudorandom generator with2just o(y/n) secret seed bits (which is roughly
what'’s required to describe the two primes, anyway) éha) seed bits total (which is linear in what's
anyway required as an input 10,.:)-

Impossibility Results As already mentioned, Theorem 5 shows that the total inmgtheof a one-way
function cannot be reduced in a black-box manner, thusreads to use public randomness in order to
reduce the amount of secret randomness. It is natural tof diis iapproach can also work for one-way
functions with a large number of outputs. On the positive sidle show in Theorem 2 that if a sufficiently
large portion of the inputs goes to a sufficiently small mortdf the outputs, then the answer is yes. In
general, however, this appears unlikely to be the caseh#fdllowing reasons. In Theorem 6 we show
that the number ofecretrandom bits used when calling a one-wagrmutationf cannot be reduced to

3It seems fruitless to try to turfi,..;; iNto a permutation to order to apply the efficient constarctf [BM82, Yao82]. Indeed,
a natural way to build a bijection fronfi,...;+ is to include in the output all the unused bits as well as mfztion on where» and
q were in the sequence. However, this does not make it a petionythecause the output range (which includes the product o
two primes) is not easily mapped back to the input domain toftbings. Unfortunately, known solutions for bijectiong aot any
better than those for regular functions.

40ur results apply to a weaker notion of “known:can be a lower bound on the regularity fafrather than its exact value.



be substantially smaller thanby use of black-box reductions. This theorem is actuallyergeneral, and
shows that our positive result is indeed tight for regulag-aray functions, and the number of secret bits
cannot be reduced any further in a black-box manner. MoredVeorem 7 shows that there is no black-
box reduction that takes a one-way functipmvith hardnes2* on n input bits and produce a collection of
one-way functions om — s + O(log n) input bits. Thus, unlesg has hardness very close2®, in general
the number of secret inputs bits must remain linear if onetsvemhaveany hardness at all.

Discussion Ideally, one would like to use only as many secret bits as ¢lcairty one gets from the one-
way function (it is clear that at least that many bits are seagy: a one-way function with secret input bits
can be easily inverted with probabiliB/ ). Indeed, typical conjectured one-way functions, for egham
RSA or discrete logarithm, are known to provide less seguhian 2™ (for the above examples, at most
roughly 2"1/3). Our negative results show that this is not possible in g#ngith a black-box reduction
(although we do not rule it out for specific functions such memte logarithm, of course). Our positive
result, however, shows that if this weaker than optimal sgcmanifests itself in a “structural” way, i.e.,
with the function having fewer outputs (a one-way functiomhwk output bits can be easily inverted with
probability 2=%), then reduction in the number of inputs bits is possible.

It is natural to ask, of course, if one can not simply use timeesane-way functiorf on a shorter input.
It should be noted that our negative results do not consiggr sonstructions, and hence do not rule them
out. However, this option is unavailable whéis a fixed-length function secure in a concrete sense, such as
a 128-bit block cipher or a hardware device implementing uferdexponentiation for a 2,048-bit modulus.
In this case, our impossibility results indicate that if we given a hardware implementation of a one-way
function we should use it with its full input length (unlesg wan look inside the box and learn something
from there). This last observation adds motivation to tsghht take as input an exponentially hard one-way
function and construct from it a pseudorandom generatdr wiétakersecurity (ofn!°¢™) (e.g., some of the
results stated in [Hol06, HHRO06a] and the one in Appendix Ahis paper). These results would be less
interesting if there was a direct method of trading inpugtérfor security.

Even when the one-way function has variable input lengtimgLison a shorter input will reduce security.
Of course, our construction also reduces security, butebargy loss (i.e., security of;, with n-bit f as
compared to security of onn bits) is polynomial. In contrast, simply usingon a shorter input can reduce
security maore than polynomially when the reduction in inlemigth is superlinear.

Security comparison of the origingl and our constructiorf;, depends on what parameters are set to
equal each other. For example, we can compare the securftpiof: bits to the security of;, with a n-bit
f (thus equating the input length 3 and hence the output length and likely most of the compmriati
cost). In that casef, incurs a polynomial deterioration in security. Herzberg &by [HL92] advocate
equating the secret input length. In that comparison, oastroctions can actually bmoresecure thayf,
becausef needs alh bits to be secret, whilg;, and our PRG need only < n secret bits.

2 Definitions and Notation

If Y is a set, we denote hy also the uniform distribution over that set, unless anothstribution ony
is specified. We denote Hy,, the uniform distribution ovef0, 1}". Given a distributionX and a function
f: X — Y, we denote by (X) the induced distribution of.

Let P and@ be distributions over some finite domal. The collision-probability ofP is CP(P) =
> .ex P(2)% P andQ e-close (or have statistical distancyif for every A C X it holds that Pr,.p(A)—
Pr,g(A)| < e (equivalently,; > _ | Prp[z] — Prglz]| < ).



We assume familiarity with the standard notions of compomal indistinguishability, one-way func-
tions and pseudorandom generators (with public inputsgoivalently, as public-coin collections), which,
for completeness, are recalled in Appendix B.

Definition 1 (Regular functions) A functionf : {0,1}* — {0,1}* is regular if for any z,y € {0,1}",

lF7EHf @) = 17X F )] fk(n) = —log(|{f(z) | * € {0,1}"}]) then f is said to beregular with
output entropy k. Whenk is also polynomial-time computable on infti, f is known-regular.

It is also customary to say thdtis an a-regular function(for somea : N — N) — this means thaf is a
regular function with output entropy(n) = n — log a(n), i.e. preimage sizes are equaki(m).

Definition 2 (Family of almost pairwise-independent hash factions) Let{ X, },en,{Y, }nen be two fam-
ilies of subsets of0,1}*. For anyn € N let H,, be a collection of functions where eathc H,, is from
X, toY,. {H,}nen is an (efficient) family of d-almost pairwise-independent hash functions if: 1.
there is a polynomial-time sampler which ane N outputs a description of randomly chosene H,,,
2. for anyh € H,, |h| (i.e., the description length df) is polynomial inlog | X,,|, 3. eachh € H,, is a
polynomially-computable function, and 4. for alt£ 2’ € X, and ally, 3’ € Y,,,

1

P [h) =y ARG =] = | < 60)

A 0-almost pairwise independent family is called simpdjrwise independent.

There are various constructions of efficient families ofywae-independent hash functions (ide= 0) for
any X,, = {0,1}" andY;, = {0,1}*(®) whose description length (i.gh/) is linear inmaz{n, £(n)} (e.g.,
[CWT7T7]). Itis possible to construagt-almost pairwise independent families #r> 0 whose description
size depends very mildly on the input size. In particulainggCwW77], [WC81] and [NN93] one gets
constructions of efficient families of almost pairwise-@péndent hash functions fo¢,, = {0,1}"™ and
Y, = {0,1}(") whose description length € (log(n) + £(n) + log(1/6)).

Proposition 1 Let {H,,} be a family ofj-almost pairwise independent hash functions fréfp to Y.
Then for anyn, and any distincte, o € X, the following distributions have statistical distance abst
§|Yy,|?/2: 1. uniform onY;, x Yy, 2. (h(x1), h(x2)) for uniformly randoni € H,,.

Proof: For anyyy,y. € Y,
|Pra[(h(21), h(z2)) = (Y1, ¥2)] — Prizy zo)evixva (21, 22) = (1, 42)]| < 6 by definition. Summing over
all 41,92 € Y,, and dividing by 2, we get the desired resul{]

To simplify exposition, we will often work with (almost) pavise independent hash functions on some
fixed domain and rang& andY (rather than consider familigsX, }, {Y,,}).

Definition 3 (g-Domination) Let B andC be distributions on the same dé&tandg a real-valued function.
We will say thatC' g-dominatesB if V.S C II, Pro[S] > ¢g(Prp[S]) (this is a generalization of the notion of
“dominates” from [Lev86], which contemplated lineaj.

Lemmal If C' g-dominatesB for a convex functiory, then for any distributionD on a set®, D x C
g-dominatesD x B.



Proof: Let E C ® x II. Letp(n), for m € II, bePry — p[(¢, ) € E].

DP><rC[E] - w@Cp(ﬂ-)

1
_ /0 Pr [p(r) > o] da (USINGE(x) = [ Prl > o] da)

T C

> /019 (WErB[p(W) > a]) dox

1
g (/ Pr [p(7) > af da> (Jensen’s inequality, singgis convex)
0

T+ B

=g (ﬂ EBP(W)> =9 <DP;rB[E]> - 0

A common approach in cryptographic reduction is to focuy @ml the subset oB for which p(r) is
large, and use Markov’s inequality to obtajidomination ofD x B by D x C, for ¢’ € w(g). Instead, this
lemma, which takes all subsets into account, saves theaiserag and the corresponding loss of tightness
in reductions.

v

3 One-way Functions and Public Randomness

Here we show that a one-way function needs only as many sapdtbits as the number of output bits it
produces. We state our theorem in terms of bits in order ta gebre concise statement; neither the domain
nor the range need to be restricted to bit strings of a padatidength, as shown in Lemma 2.

Theorem 1 Let f : {0,1}* — {0,1}* be a one-way function that am-bit inputs has at mos?* distinct

outputs. Let,, ,, be a family of pairwise-independent functions froin1}* to {0, 1}". Define the domain-

sampledf as fj,(z) £ f(h(z)) for h € Hyn andx € {0, 1}%. Then{ f,}nen, , is a public-coin collection

of one-way functions.
The theorem is immediate from the following lemma.

Lemma2 Letf:Y — Z be afunction, wher&Z| = K. Let X be a distribution with collision probability

at mostl/K, and letHx y be a family of pairwise-independent functions from the ele10ofX to Y.
def

For everyh € Hx y definefy, : X — Z as f,(z) = f(h(x)). Then any adversary that inverts f;, with
probability at leaste overz € X andh € Hx y can be used to invert on uniformly random inputs from
Y with probability at least*/21 — 1/(4K?) (¢2/2 if f is regular) in thesame running timas A (plus the
time required to pick and evaluate a random hash functiomftox y).

Proof: Suppose that an algorithm, when given(f;(z), h) computest’ such thatf,(z') = f5(x) with
probabilitye. That is,
Pr A(fn(z),h)) = fr(x)] > €
o) (X,HX,Y)[fh( (fn(@),h)) = fa(2)]

Consider the following procedurg/4 for inverting f: on inputz € Z, choose a randori’ Hxy, let
x' = A(z, 1), and outputh’(2'). Note that the notation’ in M4, rather thar, emphasizes that the
does not necessarily have to be consistent withile there exist many with = such that = f;,(z), the
chosen’’ might not be one of them.



We will analyze the success probability df* as follows. The success of (and thereforel/4) is
determined by its internal coin flips and its input 2’). We will show that the distribution of (coinflips,
input) pairs thatA sees when run within/ g-dominates the distribution for whicH is designed, for
a polynomialg; therefore, the probability of the event th&af* succeeds in inverting is polynomially
related to the probability of the event thatinverts the domain-samplefl We will first showg-domination
for inputs only, ignoring the coinflips, and take care of tbanflips later.

It is worth comparing the following proposition, abogtdomination of inputs, to the aforementioned
lemma by Dodis and Smith [DS05, Lemma 12], which analyzesanee construction but with longer inputs
to h, showing that f(y), #') is close to( f (h(z)), k). Our proof technique is entirely different and builds on
the technique of [HHRO6b].

Proposition 2 For any (not necessarily one-way) : ¥ — Z with K distinct outputs, distributionX
with CP(X) < 1/K, and pairwise-independent hash fanty y-, the distribution(f(y), #’) (wherey «
Y, W « Hx.y) g-dominates(f(h(z)), h) (wherex « X,h « Hxy), for g(§) = §*/21 — 1/(4K?), or
g(8) = 62%/2if f is regular.

Proof: We need show that for any C Z x Hx y,

: 54 1
f P h >4, th P ' P —
I (z,h) — )?X'Hx_’y[(fh(x)’ ) < S] =7 en (y,h') « gxﬁxjy[(f(y% ) < S] - 21 4K2

(replace the right-hand-side wit /2 if f is regular).

First we give a one-paragraph outline of the proof of thisppsition. Call the points it good Let
(y,h) € Y x Hx y be calledgoodif and only if (f(y), k) is good. We will divide the spacE of inputs to
f into K equal-size chunks, producing a set of chunks callecCall (c,h) € C' x Hx,y goodif Jy € ¢
such that(y, k) is good (i.e., a chunk is good if contains a preimage of a gandtn Z). We will show,
simply using properties df x y, that the fraction of good chunks (under the uniform distidn) is at least
62 /2.125. This will imply that A works on some portion of sufficiently many chunks. Then, gishe fact
that f has onlyK outputs, we will show thatl works on a sufficiently large portion of most of these chunks.
The actual proof is in Appendix C.[]

M4 succeeds whenevet succeeds; in turn, the success or failuredoflepends on the poirit, 7')
chosen, and on the coin flips df. Let ®, with probability distributionD, be the space of all coin flips of
A. Letll = Z x Hx,y, let B be the distribution odl obtained by choosing — X,h € Hxy, and
z = fi(x), and letC be the distribution oAl obtained by choosing a uniform ¢ Y, ' € Hx y, and
z = f(y). Applying Lemma 1 below to the everit that thatA succeeds (herg(d) = 6*/21 — 1/4K?, or
62 /2 in the case of regular functions), we obtain the desireestant. [

3.1 The Case of Many Outputs

Theorem 1 can be used to reduce the number of secret inpt bitsne-way function provided the function
has a sufficiently small output range. As we show in this sactihe same technique is useful even if the
function has large output range, as long as an appreciaugdn of the inputs falls into a rather small subset
of the output range. Namely, suppose there is a set of ou@utsf size2* such thatPr,c 1013 [f (y) €
Og) > pu. If k < \/pun, then itis possible to reduce the number of secret inpuffiuita » to k%/py, as
follows.

Let X be a distribution of collision probability /2%, andH x y and f;(z) as above. Lemma 4 below
states thaf, (x) is a collection ofveakone-way functions, i.e., is not invertible with probalyilappreciably
more thanl — pg.



We can then use the standard hardness amplification te@hnigdao [Yao82] in order to convert the
weak one-way function collection into a strong one. The népie simply concatenates many independent
copies of the weak one-way function. The number of repattioeeded to reduce the easily invertible
fraction of inputs to (negligibly more thany2* from 1 —py; is k/py (thus requirings? /py secret bits) This
gives the following result, whose proof is similar to the girof Theorem 1 and is outlined in Appendix D.

Theorem 2 Let f : {0,1}* — {0,1}* be a one-way function and suppose for everthere exists a set
Op (n) of sizek(n) such thatPr,co 13- [f(y) € Ou(n)] > pu(n). For everyn € N let Hy ,, be a family

of pairwise-independent functions frombits to n bits. Denote/ = k/py and definefz(z1, ..., z¢) &

(fh1 ({L’l), . ,fhé(xg)) for h = (hl, . ,hg) € Hi’n andzy,...,xy € {0, 1}k. Then{f_ﬁ}ﬁe% . is a
public-coin collection of one-way functions. ’

4 Pseudorandom Generator Collection from any Known RegulalOWF

In this section we show a construction of a pseudorandomrgtarecollection from any regular one-way
function. Unlike in the randomized iterate constructiohE3KL93, HHRO6b], here the underlying function
f hasknown(i.e. efficiently computable) regularity. We use this knedde to get a PRG collection with
particularly short secret input and little security loss.

Namely, supposg is a regular OWF with output entropy(n), and that(t(n),e(n)) is the security
of f. On secret seed of lengtfy(n) = k(n), our PRG collection attains the security @foly(n) +
t(n), poly(e(n))) (Theorem 3). For example,if{n) = n'/3, then we get security comparablg(ton), e(n))
using onlyn'/3 secret bits. And since, for sufficiently smallthe public index of our PRG collection is of
linear sizeO(n), one can also view it as a PRG, rather than collection, withdgg®curity preservation: on
seed lengthO(n) it attains securitypoly(n) + t(n), poly(e(n))).

Our construction in fact requires a somewhat weaker camdiin f than known regularity;f still must
be regular, but it is sufficient to have an efficiently compleaupper bound:(n) on the output entropy of
f. Note that a more accurate bound leads to greater savinge imumber of secret seed bits.

Theorem 3 Let f be a regular one-way function with securiy(n), ¢(n)) and output entropy at most
k(n) (for kK computable in time polynomial in). Then there is a public-coin PRG collecti@# which is
(poly(n) 4 t(n), poly(e(n)))-indistinguishable on secret seeds of lengtfin) = k(n) and public seeds of
lengthsp(n) = 2n + O(k(n)log k(n)). (In particular sp(n) = O(n) if k = O(n/logn).)

Before the actual construction we present the basic todi@fandomized iterate [GKL93, HHRO6b].
We define it slightly differently than[GKL93, HHRO6b]: theioutputs a value iim(f), and ours outputs
a hash function image.

Definition 4 (The m** Randomized Iterate of ) Let f : {0,1}*¥ — {0,1}¢ and letH be a family of
functions from{0,1}* to {0,1}*. Forinputz € {0,1}* andh = (h',... h!) € H! define them!"
Randomized Iterate f™ : {0,1}* x H! — Im(f) for everym € [t] recursively as:

fm(‘%E) = hm(f(fm_l(wﬁﬁ)))
wheref%(z,h) = .

We first show a construction with public seed length+ O(k?) and then describe how it may be
reduced to as low &n + O(k log k), following the same technique as in the HHR construction.



Construction 1 The generator takes the following as inputs:
1. A secret random < {0,1}*

2. A (public) description of one hash functiérfrom a familyH;, ,, of pairwise independent hash func-
tions fromk bits ton bits (requires2n bits).

3. (Public) descriptions of hash functionsi = (k!, ..., h*) from a familyH, ; of 2-3*-almostpair-
wise independent hash functions frérits to & bits (requiresO(k) bits each).

4. A (public) random string € {0, 1}* for the Goldreich-Levin [GL89] hardcore bit. (requiresk bits).
The generator is defined as follows:

Gy (@) = b (@), b (L (2, 1), b (f (2, R))
wheref;'b denotes theé'” randomized iterate of the functiof) = ho f (see Figure 1).

Theorem 4 Supposef is regular one-way with output entropy at mést) and security(t(n), e(n)). Then
G in Construction 1 is a public-coin pseudorandom generatilection. Itis(poly(n)+t(n), poly(e(n)))-
indistinguishable on secret seeds of lenggiin) = k(n) (and public seeds of lengty(n) = 2n+ O(k?)).

(In particular, sp(n) = O(n) if k(n) = O(y/n)).

Proof: G takesk bits and outputg + 1 bits. Thus it is expanding. We must now prove that it is indist
guishable. It is tempting to first fix and since by Theorem f is a one-way function, simply plug; in the
HHR construction. However, the HHR construction reliesvilgan the fact that the underlying function
is regular or at least very close to regular. The functigron the other hand isot guaranteed to be regular
onceh is fixed, even iff is regular to begin with. If: were from ak-wise independent family (rather than
a pairwise independent one) then one can prove that wittwiedming probabilityf; is close to regular.
This is not the case with pairwise independgreind on the contrary, it is likely that with noticeable proba-
bility f; will deviate too much from a regular function. Our proof tells the basic structure of the proof of
the HHR construction, so we give a sketch, detailing thespahtich differ from [HHRO6b].

As in the previous iterative constructions (such as [BM8&2082, Lev87],
[GKL93, HHRO06D]), the key to the proof is the unpredictailof the sequence

(FE@m), £ @ B, i B )

even for an adversary who is givéh, fL). Once this is shown (Lemma 3), it follows from the stronger
Goldreich-Levin theorem [Lev93], that the output of the PR@ext-bit unpredictable with essentially the
same security. Next-bit unpredictability is equivalentindistinguishability with a security Ioss/ko(l)
(see [Gol01], Theorem 3.3.7). Thus the outputiols indeed pseudorandom, with security essentially the
same as of the above sequence. We now turn to the proof ofdiciadaility.

LetSupp(n) = H¥, x Hy., x {0, 1}*, and call an element Gupp aninstance Let® = {0, 1} denote
the set of all coin toss sequences. We say that an algodithmrertsi-th iteration (on random coing and
instance(h, A, fi(a,h))) if

A(w, h, h, f? (z,h)) = ff_l(x,ﬁ).

J D(n) be the distribution of instances produced by the generitor,
Jh, f;L(x 1)) for uniform (7, h,z). Let Z(n) be the uniform distribution of instances, i.e. uniform
1 2):



Lemma 3 Let A be an algorithm with running time& ¢(n). Suppose that
Pr[A invertsi-th iteration on(w, h, b, fi (2, h))] > €(n),

wherew is uniform and(%, , fi(x,h)) is distributed according td(n). Then there is an algorithni
which runs in time< poly(n) +t(n) and invertsf (z) with probability > ¢25(n)/(16(k + 1)) (for |z| = n).

Proof: On inputy, the algorithmB generates randolfh, B),
setsu — A(h, h, h(y)), and outputss(u).

Fix somen and then we can omit it from the notatio® chooses the hash functions independently of
1y, I.e. it produces instances distributed according tdHowever,A is guaranteed to invert with probability
e on a different distributionD. The bulk of the proof is devoted to proving thatinverts with comparable
probability ~ €2 also on distributionZ. The basic idea of the proof is similar to [HHRO06b]: we showatth
collision probabilities ofZ and D are closely related'P(Z) > O(k) - CP(D), and from that we conclude
that event probabilities are closely related as Wely[S] > (Prp[S])?/O(k). In particular, the inversion
event happens with probabilitf /O (k) underZ. The actual proof is more involved than this simple outline,
the main complications being: 1. there is a single expankiégl functior which is used in every iteration,
so the technique of [HHRO6b] is not directly applicable, 8ntcacting hash functions’ cause collisions,
S0 an inverse of-th iteration may be unrelated 1o The proof continues in Appendix E.CJ

Reducing the public seed length. To reduce the public seed length of the above constructiom fr
2n + O(k?) to 2n + O(klogk), we follow exactly the same derandomization technique afenHHR
construction. The idea is to not use independent choiceasif functions foh = (hy, ..., ;) but rather
choose functions that are correlated yet satisfy the prbtifeoprevious section. The central observation is
that the collision probability of a randomized iterate cancdomputed by &ounded spacprogram. More
precisely, there is a simple bounded space branching proguah that its input tape consists of the choice
of h and its acceptance probability is precisely the collisioobgability of filf (the probability is over inputs

z, ) for every fixedh. Thus replacing the hash functions in the input tape by thputwf a generator that
fools bounded space programs (such as the generators 82[NI$W94]) changes the collision probabil-
ity only by a small additive error. This is sufficient to make tproof of the previous section go through.
Loosely speaking, the bounded space program takes twalimifutsz; andz,.%> At the first step the pro-
gram reads the randomizing hash functidrand computegf%(xl, h') andf%(mg, h') and stores only these
two intermediate values (not storing andz,). At each iteration the program reads a hew randomizing
hash and computes the next randomized iterate of the twesaluhile not storing the previous one. At
the end the program simply compares the two values and autponly if they are the same value. An
accurate account of such a program, bounded space geseaatbthe revisions needed in the proof appears
in [HHRO6b].

Construction 2 The generator takes the following as inputs:

1. A secret random < {0,1}*

2. Description of one hash functidnfrom a family;, ,, of pairwise independent hash functions frém
bits ton bits (requires2n bits).

>The program actually computes the collision probabilitydoe fixed pair of inputs:;, 2. The actual collision probability is
the average over all possible input fixings. But since thesgaor fools each program separately, it will also fool therage.
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3. Seeds € {0,1}9klogk) to a bounded space generator BSG with space bairahd error2—*. The
output BSG(s) = (h',..., h¥) of the generator consists of the descriptiong dfash functions from
a family’H, ;, of almostpairwise independent hash functions frérits to k bits.

4. Arandom string: € {0, 1}* for the Goldreich-Levin hardcore bit. (requiresk bits).

The generator is defined as follows:

G'(x,h,5,7) = b (2), b, (f} (z, BSG(9))), ..., b (fF (¢, BSG(s))), h, 5,7

Wheref;; denotes theé!” randomized iterate of the functiof) = ho f.

The seed length of the aforementioned generatafXlisg |H, x| - log k) (which equalsO(k log k) with our
choice of parameters) and thus the overall constructioestaked lengttn + O(k log k).

On using secret seeds from non-uniform distributions. A simple modification makes our PRG secure
even when used with secret seed drawn from any distribdfi@s long a<' P(X) < 2. The modification
can be applied to either Construction 2 or Construction le piblic seed then increases by odlk)
bits, therefore it remains unchanged asymptotically. $¥lessee Appendix E.2 for a brief description of the
modification.

5 Black-Box Separations

As discussed in the introduction, it is natural to ask undeictv conditions one can reduce the input length
to a one-way function below its “native” length More abstractly, we want to knovis there a generic way
of securely using a OWF an-bit inputs, if we are given only < »n random bits? How small cahbe?

We formalize these questions using circuits, where it iy éatalk about security on fixed-length input.
(It is possible to formulate them in the uniform context, they become too cumbersome.) We then give
some indications that improving upon our results requimsinlack-box reductions. Roughly, by “no black-
box reduction ofP to Q" we mean that the security protif Q is secure therP is t00” is necessarily non-
black-box (the construction d? from (Q, however, may be black-box). Before elaborating, let usrimilly

summarize the optimality results:
1. For anyl < n, there is no black-box reduction &bit input OWF to regularn.-bit-input OWF (and,
as a corollary, no black-box reduction to either OWF of kndvandness, or arbitrary OWF).

2. Foranyl < n—log «, there is no black-box reduction bbit input one-way-collection ta-regularn-
bit-input OWF (and, as a corollary, no black-box reductioeither OWF of known hardness 2" /«,
or arbitrary OWF).

3. Foranys < nandl < n — s, there is no black-box reduction tbit input one-way-collection to an
n-bit input OWF of hardness at most

5.1 Formal Statements

Let 7" denote the set of alf : {0,1}" — {0,1}". Letwv(n) denote a negligible function (one decaying
faster than any inverse polynomial). Note that(n) is then a superpolynomial function.

Circuits, oracle circuits. Let|A| denote the size of the circuit. For an oracle circuitd and a function
f:{0,1}* — {0,1}™, A’ denotes the oracle circuit in which each oracle gate withtinpoutputsf ().

If G = {gi}icqo,1}~ is acollection of functiong; : {0,1}™ — {0, 1}™ then A9 denotes the oracle circuit in
which each oracle gate, on inpit =) outputsg; ().

11



Inverter.  Acircuit A : {0,1} — {0,1}" isap-inverter for f : {0,1}" — {0, 1} if Prye(o 13 [A(f(2)) €
F~Y(f(z))] > p. A 1-inverter is callecperfect

Black-box reduction. LetF C F™. A pair of circuits(R, g) is an(l, p)-reduction toF if for any f € F:
1. g hasl input wires.
2. If V is a perfect inverter fog/, thenR""f is ap-inverter for f.
A sequencg R, g,) of (I, p,)-reductions toH,, C F" is calledd(n)-savingif: 1. (|R,|+ |gn|)/pn is
polynomial inn, 2. n — 1, = d(n).

Let Fi=% C Fa., denote its subset of all-regular functions. LeF |5, C Fa.. denote the subset of all
at mosts-hard permutationgpermutations which havelg'2-inverter of size< s).

Black-box collection reduction. A pair of circuits(R, g) is a(l, m, p)-collection-reduction taF if:

1. For anyf € F, and any(i, =) € {0,1}™ x {0,1}!, ¢/ (i, z) is of the form(i, y).

2. If V is a perfect inverter fog/, thenR">f is ap-inverter for f.

AsequencéR,,, g,,) of (1, my, p,)-reductions td,, C F" is calledd(n)-savingif: 1. m,(|R,|+|gn|)/pn
is polynomial inn, 2.n — 1,, = d(n).

Theorem 5 Leta(n)=v(n)2". There is nav(log n)-saving reduction toFre™.

Proof: Suppose to the contrary thak, g) is aw(log n)-saving reduction t&Fr:2™ . Consider some partic-
ular f, and letD be the set of all possible oracle queries thatan ask, on any input. Thes| < |g|2!,
because on each of thedistinct inputsg asks at mosfy| queries. The basic idea of the lower bound proof
is that, forl < n — w(logn), and polynomial-sized, S occupies a negligible fraction gfs domain. But
the one-wayf can be easy of, andg” is then not one-way.

Formally: apply Lemma 6 of Appendix F toR,, g,) with ¢ = w(log(n)) andp = p(n). Since
2¢/2 = 1/v(n) and2" 198 (") = 27 /o (n) = 1/v(n) we conclude thalR,,| + |g,| is superpolynomial. [J

Theorem 6 Leta(n) = v(n)2". There is ndw(log(n))+log a(n))-saving collection-reduction t&™ .
Proof: Suppose thatR, g) is the collection-reduction which contradicts the theorsatement, and ldt
be the number ofj’s input wires. We show that it is possible to build frof®, g) a circuit B of size

about2! which inverts anyf € F=%™ . To do this, note thaR" inverts anyf € F=2™ as long as it is
given an inverted/ for g/. ButV can be implemented as a circuit of s2¢v(n). ThereforeR" can be
implemented (without any oracle) as a circuit of size aj@J2’ /v (n). But this is too small to invert any

function f € 7™ The formal argument follows.

If |g,,| is superpolynomial we are done. Else supplggégrows polynomially fast. Apply Lemma 9 of
Appendix F withd = w(log(n)) (andlog |I| < |gn| sincelog |I| is at most the number of input wires of
gn), to get that R,,| > p(n)2<0°e(™) /|g, | which is superpolynomial. O]

Theorem 7 Lets(n) < n. There is ndw(log(n)) + s(n))-saving collection-reduction th-“[‘éf,&").

Proof Sketch: Let f be a random permutation and letp, y) outputz = f~!(y) if p is ans-bit prefix of
x. This ensures thaf is “exactly” s-hard. For any constructiop/ with input sizel = n — s — d (and
description of family indexn polynomial inn), we can show an oraclk which inverts it, but such that
does not significantly reduce the hardnesg .oSome minor modifications are needed to ensure(thdt)
is a permutation.

V, on input(, y), simply outputs a random for which gif(x) = y. To see thaf is still s-hard, suppose
there is a poly-size inverted(/):.V for f. From it one can build a circuiB/ which perfectly simulates
AUV Each call toh can be simulated usirg)—* queries tof, and each call t&” using~ 2! queries to
f. SoB/ calls f about|B|(2! + 2"~*) < |B|(2 - 2"*) times. With this many queries, the probability of
inverting f cannot exceed: 27°, so f is still s-hard. [
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Corollary 1 (To Theorem 5) There is nav(log n)-saving reduction to".

Corollary 2 (To Theorem 6) There is now(logn) + log «(n))-saving reduction toF™.
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A Further Shortening the PRG Seed

In our pseudorandom generator, the output of the last hastidm has, intuitively, almost bits of entropy.
It entropy can be converted to pseudorandomness using eackextwith a public seed (of length). To
get this pseudorandomness to be, ex§s "-close to uniform for some, one will lose® (log®*! n) bits.
If we take this approach, then the we need to run the randaieeate construction nadt times, but
O(log®™ n) times; thus, we need the space-bounded generator to produde but ©(log*! n) hash
functions, which can be done in spaB¢k log(log®™! n)) = O(kloglog k). The result is a PRG with seed

length2n + O(k log log k) of which only % bits needs to be secret, but security reduced to the barennimi
nlogc n

B Standard Definitions

A function e(n) is negligible inn (denoteds(n) € neg(n)) if e(n) = o(1/p(n)) for every positive polyno-
mial p.

By a Distribution Ensembleve mean a serie§D,, },eny WhereD,, is a distribution ovef0, 1}". Let
{X,.} and{Y,,} be distribution ensembles. Define the distinguishing athgmof an algorithmd between
the ensemble$X,,} and{Y;} denoted a®\* ({ X, }, {Y,.}), by:

AA({Xn}> {Yn}) = |P1"[A(1n,Xn) = 1] - Pr[A(l”,Yn) = 1”

where the probabilities are taken over the distributidhsandY,,, and the randomness df. We say that
{X,} and {Y,,} are computationally-indistinguishablgGM84] if for every PPT A, A4 ({X,},{Y,}) €
neg(n).
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Definition 5 (One-way functions) Let f : {0,1}* — {0, 1}* be a polynomial-time computable functiof.
is one-way if for everyPPT A, Pr, _ (o 13 [A(1", f(x)) € f~'(f(x))] is negligible inn.

A few convention remarks: When the value of the securityapaater (i.e.1™) is clear, we allow ourselves
to omit it from the adversary’s parameters list. Since ang-aay function is w.l.o.g. length-regular (i.e.,
inputs of same length are mapped to outputs of the same leitgthn be viewed as an ensemble of functions
mapping inputs of a given length to outputs of some polynbfiriathe input) length. Therefore we can
write: let f : {0,1}" — {0,1}*(™) be a one-way function, whetn) is a polynomial-time computable
function ofn.

The following definition follows the definition of one-way riations with public randomness from
[HL92] (though we do not require the amounts of public randess and secret randomness to be poly-
nomially related—it is possible to imagine, for instandttfor & secret random bits a one-way function
could need:'°¢* public ones).

Definition 6 (Public-coin collection of one-way functions)Letsp, sg : N — N. A collection of functions
{fi}iefo,13+ is public-coin one-way if it is:

1. Easy to compute:There exists an efficient (randomized) algoritfirauch that for any, z, f(i,z) =

fl((ﬂ)

2. Hard to invert: For everyPpT A:

Pr [A(i, fi(x)) € 7' (fi(x))] € neg(n).

i— {0,1}5P(") & — {0,1}55(")

For ease of notation, in the rest of the paper we use in pla¢safething more meaningful, as long
as it can be computed in polynomial-time from public coinglsas a descriptioh of a member of a hash
function family.

Definition 7 (Pseudorandom-Generator (PRG) [BM82, Yao82])LetG : {0,1}" — {0,1}*() be a poly-
nomial-time computable function whefe:) > n. We say tha& is aPseudorandom-Generator if G(U,,)
is computationally-indistinguishable frof,,).

The following definition follows the definition of pseudodom generators with public randomness
from [HL92].

Definition 8 (Public-coin collection of PRGs) Letd, sp,ss : N — N andd > 0. A collection of functions
{Gi}icqo,13- is said to be a public-coin collection of PRGs if it is:

1. Easy to compute:There is an efficient algorithr& such that for any, z, G(i, z) = G;(x).
2. Expanding: If |i| = sp(n) thenG; : {0,1}5s(") — {0, 1}3s(m)+d(n)

3. Indistinguishable: The ensembles, G;(x)) and (i, Z) are indistinguishablei( = and Z are uniform
on{0,1}°7(™, {0,1}#s(®) and Bss("+d() respectively).

The functionsl, sp and sg are calledexpansionpublic seed lengtiandsecret seed lengthespectively.
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C Proof of Proposition 2

We continue where we left off on page 7. The division into dfsis as follows. Call two pointg;, yo of
Y siblingsif f(y1) = f(y2); asibling setis the setf ~!(z) for somez € Z. Order all the points o by
the number of siblings they have, in increasing order, kegepibling sets together. Let= ||Y|/K |, and
let R = |Y| mod K be the remainder (note th& = 0 if f is regular). Put the first + 1 points into the
first chunk, the next- + 1 points into the second chunk, and so on for the fitsthunks; then put the next
o points into chunkR + 1, the nexts points into chunkR + 2, and so on, obtaining a total &f chunks.
(Each chunk contains precisely one sibling sgt i regular.) For a poing € Y, letc(y) be the chunk that
containsy. Call the set of theé< chunksC, and define the functioh : X — C ash(z) = ¢(h(z)).

The following claim is adapted from [HHROG6b]. It says, edsdly, that if a set of chunks is heavy
under the distribution imposed W), then it also heavy under the uniform distribution.

Claim 1 Forany setl’ C C' x Hx.y, if Pr(, 1) — xxy o [(2(x),h) € T] > 4, then

P W) e T] > 62/2.125 (62 /2if f is regular) .
oy T (00 €] 2 82/2.125 (521 f is regulay
Proof: The statement we want to prove is equivalen{®h > §%|Hx y|K/2.125. We will prove it by

showing that ifI" is too small, then collision probability of the distribqtion(ﬁ(x), h) is too high.
On the one hand, the collision probabilityP, (,h) — XxHxy (h(x),h) is equal to

g P il 7h = il ,h
p (xhhl)’(m’hﬂr(_XxHX’Y[( 1(331) 1) (2(5132) 2)]

= Pr hi=h Pr hi(z1), h1) = (ha(x3), ha)lh1 = h
hl’hQ‘_HX,Y[ 1 = ho] (m’hl)’(th)(_XXﬁxy[( 1(21), 1) = (ha(z2), ha) |1 = ho]
1 A .

|HX’Y| h «— 'HX,y,::gl,:Bg — X[ (wl) ((B2)]
The eventfz(acl) = ﬁ(xg) happens ifz; = x5 (whose probability, by the assumption on collision prob-
ability of X, is at mostl/K), or if 21 # w9, but the choice of. mapped them to the same chunk. The
probability of the latter event is analyzed easily if we aseall chunks are of size, i.e., K divides Y|
(in particular, if f is regular). In such a case, for any fixed # z2, Pry 3y [h(z1) = h(z2)] =

2 .
Y ecC Yo pce Ph 1y [y1 = h(z1) A ya = h(za)] = K - (%) : ﬁ = L. The general case is a
bit messier: for any fixed; # -,

~

Pr o [h(x1) = h(zz)] =

h—MHxy
- Z Z Pr [y = h(z1) A y2 = h(z2)] +

ce{ct,...cr} Y1,92€C h=Hxy
> > [y1 = h(@1) A y2 = h(z2)]
h<—7'(XY
c€{crt1,---CK } Y1,Yy2€C
R(o +1)? n (K —R)o? Ko?+2Ro+R
Y2 Y2 (Ko+R)?

Looking at signs of partial derivatives with respectbtand R, and observing thdt’| > K, henqea > 1,
shows that the maximum of this expression occurs at 1 andR = K/3. Thus,Prj, — 3, [h(21) =

hzo)] < 2K/(4K/3)* = 9/(8K).
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Hencep < 1/|Hxy|(1/K 4+ 9/(8K)) = 2.125/(K |Hx.y|), andp < 2/(K|Hx.y|) for regularf.

On the other handp isAat least the prgbability that aAcoIIision occurs, and m;spinsideT: p >
Pro hn)(washe) — XxHxy [(B1(21),h1) = (ha(22), h2) A (hi(z1),h1) € T). If both (hy(x1),h1) and
(fzg(:ng), hs) end up inT (which happens with probability?), then they collide with probability at least
1/|T| (no matter what the distribution is inside 1/|T| is the lowest possible collision probability), and
hencep > 6%/|T|.

Thus, the two bounds op show thaty?/|T| < 2.125/(K|Hx y|) (2 instead of 2.125 for regulaf),
which is exactly what we needed to show.]

Applying this claim to the sel’ of good pairg(c, h) (and observing thar, ) — XxHX,Y[(B($)> h) €

~

T] > 4, because if f(h(z)), h) € S, then(h(z),h) € T)), we see thaPr iy — cxwyy (e, h') € T] >
§2/2.125. For regularf (replacing2.125 with 2), this concludes the proof of the proposition, because a
good chunk gives exactlyy’| /K good elements of . For generalf, we have to work harder.

Letay, = Pr.— ¢[(c, h) € T]; we have just shown thal;, _ 4, , ap, > §%/2.125. Now fix h, and call
z,y or cgoodif (z,h), (y,h), or (c, h), respectively, is good. We will show that the fraction of dgmints
y is polynomially related tey,. (Of course, each chunk that contains a good point may als@icomany
points that are not good, so this is hot immediate. )

Claim 2 If, for a fixedh, Pr. — ¢[cis good] = oy, thenPr,cy [y is good] > 2a3 /9 — 1/(4K?).

Proof: To prove this, we will make use of two facts: firstyifs good, then so are all of its siblings (because
the definition of good depends only g¢ity)); second, many values have to have many siblings, because
the total number of outputs gfis only K.

Let T}, be the set of good chunks; recall thiat. . o[c € T),] = ap,, i.e.,|Tx| = ap K. To see an intuitive
explanation for the second fact, assume for a moment thiatgikets do not cross chunk boundaries. Then
the average number of siblings sets per chunkjrcannot exceed/«y: else, the total number of distinct
sibling sets (and hence outputs ff would exceed1/«a;) - (e K) = K. The actual math involved,
unfortunately, is uglier, both because sibling sets casscobunk boundaries, and because average number
of sibling sets (and hence the weight of the average sibktgisinsufficient for our analysis: it is possible
that only below-average sets are the ones that cause cluhkdgricluded irif},.

We now proceed to the formal argument. Call the chunKkgim, co, . .., ¢; according to the ordering
of points described at the beginning of the proof (icg.contains elements with smaller sibling sets, and
contains elements with larger sibling sets); note thatoy, K.

First, we will count all the large sibling sets. Namely, cdes all goody whose sibling sets are of size
greater tharwr. Thesey belong to chunkg,, 1, ..., ¢, for somed. Note that all elements of such a sibling
set are good, as long as a single element is good; and evami aust contain at least one good element.

Sub-Claim 1 If a sibling set of size at least + 1 intersects withv chunks, then it contains more than
(o + 1)v/3 elements.

Proof: Note that the statement is trivial for< 3; and if a sibling set intersects with 3 chunks, then it must
contain at least + 2 elements; so we consider only> 4. If the sibling set contains elements, then it
can intersect with at mogiv — 2)/0 + 2 chunks, because the rightmost and the leftmost chunk esqtiir
least one element each from the sibling set, and the rengathinnks require at leastelements. Therefore,
v < (w-—2)/o+2,and hencev > (v —2)o +2 > vo/3+ (2v/3—2)0 +2 > vo/3+ (2v/3 —2)+2 >
vo/3+v/3. O

Therefore, the total number of gogd incyy1,...,c+tisatleas{t—d)(c+1)/3 > (t—d)|Y|/(3K).

We will now count goodys in smaller sibling sets, those overlapping with chuaks. . , ;.
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Sub-Claim 2 If y € ¢;, then the size of the sibling setwfi.e.,|f~1(f(v))|) is greater than(i — 1)|Y |/ K2.

Proof: There ar@ — 1 chunks that come beforg and their average size is ledst / K (because we arranged
for chunks of sizer + 1 > |Y|/K to come before the chunks of siz¢. Thus, total number of points that
come before (and including)in the ordering is at leadt+ (i — 1)|Y|/ K. They are contained in at moAt
distinct sibling sets; hence, the size of the average gjlslat is greater thafi — 1)|Y'|/K?2. The sibling set
that containgy is the largest of them (because of the ordering), and hensenatier than the average []
Consider now the chundy. It is in T, because of some goade c4; neither thisy nor its siblings have
been counted above, when we were counting members of ldigegssets, because no gogdn ¢y, ..., cq
has a sibling set of size greater thanThe sibling set of thay (and note that every element of that sibling
set is good) is of size greater théh — 1)|Y'|/K?2, by the above sub-claim. The chunk ; may be in
T}, because of some other element of the same sibling set, ang Renwill not count any points in it.
However, no elements of the same sibling set are in chunkegirgc,; 1, because the size of the sibling
set of size no greater than Therefore, we can proceed ¢g_», and similarly identify a good in it, and
count its sibling set, of size greater thah— 3)|Y’|/K?. Continuing in this manner, we get that the number
of good points is more than
(t—a)|Y| Y] Y| (t—d d?>—1
T+F((d—1)+(d—3)+(d—5)+...)_7 <T+ 1K )
(becauséd — 1) + (d — 3) + (d — 5) + --- > (d*> — 1)/4). To get rid of the variablel, we use the fact
that(t — d)/3 + d?/(4K) > 2t%/(9K) (this can be shown as follows: becaukg ¢, if t < 2K/3, then the
derivative with respect td is negative, with the minimum reached whes d and(t — d)/3 + d?/(4K) >
t2/(4K) > 2t2/(9K); if t > 2K/3, then the minimum is reached at the zero of the derivativeerwh
d=2K/3and(t —d)/3+d*/(4K) = t/3 — K/9 > 2t? /9K, with the last inequality holding because the
quadratic2t? /9K — t/3 + K/9 has roots = K/2 andt = K, andK/2 < t < K). Thus, remembering
thatt/ K = ay,, we get that the number of good points is more than

(22 LY (20 1
K \9K 4K 9 4K?2 )’

and hence the probability that a uniformly chosen poirit'iis good is more thafa?/9 — 1/(4K?). This
concludes the proof of Claim 2.0J

By Claim 2,Pr(y 1y — v xry  [(f (1), h) is good] > Ey, — 4, (204 /9 — 1/(4K?)). Because average
of squares is no less than the square of the average (by Jenseguality), we havel, . 4, . a}% >
(En — pxy an)® = (80%/17)° by Claim 1. ThusPr, ) — yuny o [(f(y), h) is good] > 2 8261/(9 -
17%) — 1/(4K?). This proves Proposition 2.

D Proof of Theorem 2

We state and prove the technical lemma that immediatelyigsphe theorem.

Lemma4 Letf : Y — Z be afunction, leOy C Z be a set of sizé(, andIy = f~'(Op). Suppose
|In| = pu|Y|. LetX be a distribution with collision probability at mosy K, and letH x y be a family of

pairwise-independent functions from the elementX' db Y. For everyh € Hx y definef, : X — Z as
def

fu(z) = f(h(z)). Then any adversary that invertsf;, with probability at least1 — py) + ¢ overz € X
andh € Hx,y (for e > 0) can be used to invert on uniformly random inputs frorr™ with probability at
leaste? /(21py) — pu/(4K?) in thesame running timas A (plus the time required to pick and evaluate a
random hash function frory y).
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Proof: The proof is very similar to the proof of Lemma 2. We constrtiet sameM/ 4 and analyze its
success probability. We highlight the differences in thalgsis.

Proposition 3 Forany S’ C Z x Hxy, if

!
> _
o FP)gX%X’y[(fh(x), h)e S>>0 ~pu)+é

for 6 > 0, then

5t pH
P I N> e
(y,h') — gxﬁx’y[(f(y% ) € S] - 21PH 4K2

Proof: Let S = S’ N Oy x Hxy. Note that the weight of5 with respect to( fy,(x), h) is leastd:
Pren) — xxtrxy (), h) € 8] = Pruny  xxrixy [fn(@) h) € ST=Priup) — xxryy [fn(@) ¢ Onl.
Because for any fixed and randont, the valueh(x) is uniformly distributed.Pr, n) — xx#x y [fr(z) ¢
Onl = Pripny — xxrxy M(@) ¢ In] =1 — py. We will work with S instead ofS” from now on.

Instead of dividing the entir& into K chunks as in Proposition 2 we divide only; into K chunks.
We do not definéz(;n), because not every point ¥ belongs to a chunk. However, for eveyye Iy, we
definec(y) as the chunk to whicl belongs.

Claim 3 For any setl’ C C x Hxy, if Przn) — xxmyy [P(®) € In A (c(h(x)),h) € T] > ¢, then
Pricnny — oxrxy (6 1) € T) > 6% /(pr + 1.125pF) > 62 /(2.125pp).

Proof: The proof is essentially the same as of Claim 1. Consider riblegility

= P h Ig N h Ig A h hi) = c((h ho)l.
P (mvhl)’(%hﬂ{_xmx’y[ 1(®1) € Iy A ha(z2) € Iy A (c(hi(21)), h1) = c((ha(x2)), h2)]

On the one hangd < 1/(|Hx y|K)(pu + 1.125p%). On the other hangy > §2/|T|. This gives the desired
bound. O

Observe that if f(h(x)),h) € S, thenh(x) € Iy and(c(h(zx)), h) is good. Hence, we can apply the
above claim to the séft of good(c, h) pairs.

Claim 4 If, for a fixedh, Pr. — ¢cis good] = a,, thenPr,ey [y is good] > (202 /9 — 1/(4K?))pp.

Proof: The proof is essentially the same as of Claim 2, replagifignith |I;|. O

Putting the two claims together gives the proof of the pramrs [

The proof of Lemma 4 follows by an application of Lemma 1, vihis applicable becausg (y), #')
g-dominateq f(h(x)), h), for the convex function

20py 1K 2py 4K2
0 otherwise.

B—QA—pua))*  pm if B—QA-pua))*  pu >0
9(B) = { 0

E Proof of Lemma 3 (Unpredictable Sequence)
Let £ C & x Supp be the set of coins-instances on whidlsucceeds:

A~

E = {(w, (h,h, 2)) | Ainvertsi-th iteration on(w, , h, z)}.
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Also let L C Supp be the set of instances with no more thigh/e preimages undek’, which fall into

Im(f;) Wheref; (u) = f(h(u))):
L= {(.h,2) | 1(0) "1 (2) 0 Im(fy)] < 2/Ve}.

Let us call(® x L)N E thegood sebf coins-instances. We shall prove that its probabilityemtie uniform
distribution is at least

62

Pr dxL)NE|> .
(w,(ﬁ,fz,z)) — <I>><Z[( ) ] - 8(k + 1)

(1)

This inequality is sufficient to claim the lemma. To see thiegt note that instance®, i, z) = (i, h, k' (y))
which B prepares are distributed according4di.e. they are uniform, becaugeis regular). Suppose that
(w, (h, h,z)) € (& x L) N E (which by (1) happens with probability ¢2/8(k + 1)). By definition of ,
that means thatl’s outputu is the inverse of-th iteration on instancéh, h, z); thereforeh!(f(h(u))) =

z = hi(y). Thusy and f(h(u)) are siblings undeh’. But sincez € L, f(h(u)) has at mosg/+/c such
siblings, from whichy was chosen at random. The view4fis independent of which sibling is chosen, so
with probability \/¢/2 we have thaty = f(h(u)), i.e. B’s output is an inversg¢~!(y). Thus the overall
probability of B's success i8%/8(k + 1) - \/€/2 = €25 /(16(k + 1)).

We now turn to proving (1). The first step is to show that thebptulity of the good set® x L) N E
under the distributiord x D, is at least/2. Indeed,Prs«p[E] > € by theorem assumption. We now use
23k .almost pairwise independence/dfto show thaPrg. p[® x L] > 1 — ¢/2 (in fact this holds for any
coinsw € @, i.e. we provePrp[L] > 1 — €/2).

Fix arbitrary » andz € {0,1}*, and letZ;, . = {h | (A")"'(2) N Im(f;)] < 2/V/e}. We proceed by
a Chebyshev-like argument. For anye I'm(f;) define the indicator rvi(z) = 1 <= h'(z) = z.
ThenV = Zxé[m(fh) I(z) is the random variable which counts the number’'sfpreimages undet’,

which are inIm(f;). We are therefore interestedr,:[V' > 2//€]. Recall thath’ ared-almost pairwise
independent wheré = 273 and we have

2
E(V?) = E ( > I(w)) =EY (I()I(y)) = Y _E(I(x)I(y)) = lelr[(h(w)’h(y)) = (2,2)]
) T,y T,y z,Y

h zeIm(f;
< @46 <|Im(f)PR 7 +0) <2 s <1+27h <2

:Biy

Using Markov's inequality we get :[hd?r[VZ > 4/¢] < €/2 or equivalentlyPr[V > 2/\/¢] < €/2, i.e.
Pr[L; ] <1—¢/2. Averaging oven, z yields the require®rp[L] > 1 — ¢/2.

32

So we have seen thBtrg«p[® x L] > 1 — €/2 andPrg« p[F] > €. Therefore

P%[(CD x LYNE] > ¢€/2. (2)

P x
The desired equation (1) now follows from Lemma 1 and the¥aihg

Claim 5 For any set of instanceS C Supp

Prols)?
s> oy
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Indeed, the above claim says tiats g-dominated byD (see Definition 3), fop(x) =
® x Z is g-dominated by? x D, and so from (2) we conclude (1).

It remains to prove Claim 5. In other words, in this claim weestially show that whatever can be done
with the knowledge of the randomizing functiohsand’ = (h',...,Rh*) can be done about as well when
(h, ﬁ) are simply chosen at random (as the reducfibdoes).

Proof: [of Claim 5] We proceed along the lines of [HHR06b] — by shogvihat the collision probabilities
of D andZ are closely related, and using the uniformity-oive show that event probabilities under those
distributions are also closely related. In particular wstfshow

2(k+1) By Lemmal,

CP(D)<2(k+1)-CP(Z) (3)

and then we use this, as well as the uniformityofto conclude that the claim is true.

Proof of (3). Suppose that = & (i.e. we wish to establish the relation between collisionbabilities in the
last, k-th, iteration). It will be apparent in the proof that the samelation holds for any other< k. By
definition, CP(D) = Pr((h, h, % (x, ], h)) = (W, f;f(ac’,ﬁ/, '))]. For the collision to happen, we must

have(h, h) = (K, ) so

(=

1
‘Hkn’ X ‘Hék’ z,x’ hh

CP(D) = v [ff(z,hh) = fi(2' R R)].

We now show that
b<2(k+1)CP(f(Uy,)).
Define for anyi < k and anyh the random variableg, ; = f;(fi(x.h, h)) andy;ﬁ = fi(fi (2 h,h h)).
For anyh let c;, = C'P(f(h(x))). We first prove thaPr[y, ; = v ) < ke + (k= 1278,
Let C; denote the event tha;;z.jl = y;h i.e. a collision ini-th iteration. Let/N; denote the event

CyU---UC;, i.e. no collision up to and includingth iteration. We are interested iv[(3i < k)Cj],
which is equal to

Pr[Ci U(CoNNy)U---U(C; N Nig_1)] < Pr[Cy] +Pr[Cy | N1] + - + Pr[Cy | Ng_1].
Clearly, Pr[Cy] = Pr[f;(z) = f;(2')] = ¢;. Let us now upperbound theth term of the sum:
Pr[C;4+1 | N;]. We are conditioning orV; so Yih #+ y'h Then, by2—3*-almost pairwise independence
of h™*1, we have thath™ ! (y, ;), K" (y! ;) is (2~ 3k 22’“/2) close to uniform (see Proposition 1), that is

2% /2-close to uniform. Therefore by def|n|t|on of statisticatence, the probability of the collision event
Fi (W (y, 1)) = fi, (B (Y, ), differs at most by~ ’f/2 from the probabilityc; of the same event under

the uniform distribution. In other word®r(y, ; ; = ’H—l i | Ni] = Pr[Cip1 | N;] < 27%/2 4 ¢;. Sum-
ming up all thePr[C; 1 | N;] we getthe requirer(y, ; = yk ) =Pr((F < k)Ci] < kej 4+ (k—1)2 —k /2.
SinceE; ¢; = CP(f(U,)) we have

= E <k‘ch + (k — 1)2*/2) +2.27F <kCP(f(Un)) + (k — 1)2*/2 +2.27F
h

IN

kCP(f(Uy)) + (k+1)27%
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But the output entropy of is at mostk, and sincef is regular this means that* < CP(f(U,)). Therefore
b < 2(k+1)CP(f(Uy)).

_ b 2(k+1)CP(f(Un)) CP(f(Un))
We concludeC’ P(D) = o ] < o | .Clearly,CP(Z) > T L] ThusCP(D) <

2(k+1)CP(Z),i.e. (3) holds.

Using (3) to show the claim. Take any eventS C Supp. Consider firstCP(D), i.e. Pr[a = b] for
a, b independently drawn fronD. This probability is lower bounded by the probability of tbellision
occurring withinS, i.e. CP(D) > Prpla,b € S Aa = b] = (Prp[S])?Prla = b | a,b € S]. Denoting
py = Pryla =y | a € S] we therefore have

2
(Soesm)  (prpls)?
CP(D) = (Pr[S])* - Prla=b|a.b € 5] = <1;r[s1>2y€§;p§ 2 (BrlS))*~—gr—— = fS‘

where the second inequality follows from™", z2 > (37, ;)2 /m.

Now considerC' P(Z). SinceZ is uniform, its collision probability is simply /|Supp|, therefore

2(k+1)/|Supp| = 2(k + 1)CP(Z).
We can now use (3) (which says ti¥k + 1)C'P(Z) > C'P(D)), and the above equations to get

2
2(k +1)/|Supp| = 2(k + 1)CP(Z) > CP(D) > %.
Multiplying by | S| we reach the desiret{k + 1) Prz[S] > (Prp[S])*.
This concludes the proof of Claim 5, and therefore Lemma 3Tdrabrem 4.

E.1 Optimizing security preservation

It is possible to save a factor gfe in the security reduction, at a cost of possibly requiringrenpublic
seed bits. Namely, one can change the PRG to extract thedBfierevin hardcore bit from the output of
f in each iteration. It is then possible to construct an ireret which invertsf(z) with probability about
€2(n)/k. But the length of the Goldreich-Levin vecteithen must be equal t§ the length off’s output,
so we havesp(n) > {(n).

E.2 Onusing secret seeds from non-uniform distributions

SupposeX is a distribution with the only guarantee th@P(X) < 2~*. We outline the modification which
makes our PRG secure even when its seasl drawn fromX. Namely, suppose that the support.f
is {0, 1}™, and letH,, .. be a family of2~3*-almost pairwise independent hash functions friiml }™ to
{0,1}*. The modified generator first pre-processes its seby applying a randon’ Hy,.1 to 2, and
then uses our PRG (either of Construction 2 or of Constractjoon secret seef (z). The hash function
hY need not be secret. As explained in Sectioh¢an be specified usin@(k) bits, therefore the public
seed length remains essentially unchang@k(og k) for Construction 2, o©(k?) for Construction 1).

The security proof of this modified construction is almost #ame as the proof of Theorem 4. The
only difference shows up in computingP(D) in Claim 5: the first collision evenf; happens with a
higher probability tham;, since it can be caused By. But sinceh® is 2-3%-almost pairwise independent,
Pr[Cy] < CP(X)+2-27F 4+ ¢; <3.27F 4 ¢;. ThereforeC'P(D) is still bounded byO(k)/2¥, and the
rest of the proof is essentially unchanged.
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F Supporting Lemmas for Black-Box Separations

Lemma5 Let AY : {0,1}' — {0,1}™ be any oracle circuit of size at most = 2"~'=<, There is an
a-regular functionf : {0,1}" — {0,1}* and a setD C {0,1}" with | f(D)| < 2"~/ such that for any
z € {0,1}, A/(2) never makes a query outsid&

Proof: We constructf and D as follows.
1. Initially let D = (0, y = 0 and letf be undefinedeverywhere.
2. Forz € {0,1}":

(a) RunA(z) and answer each its quefyq) as follows:

i. If f(q)isundefined, add to D, answery and definef(q) := y.
ii. If f(q)Iis defined, then answef(q).
iii. After answering a query, check [ ~*(y)| = «; if so, sety «— y + 1.

In the remaining undefined point§,can be extended arbitrarily to asregular function. The size of(D)
is the final value ofy. At leasta queries are necessary to incregdey 1. There are’ inputs, and on each
of them A asks at mos§ queries. Thereforg < 52! /a < 2" ¢/a. O

Lemma6 Letl = n —candp > 2-¢2t1 If (R, g) is an (I, p)-reduction toFres then|g| > 2¢/2 or
|R| > p2n—a+3_

Proof: SupposéR| < T'and|g| = S < 2¢/2. By Lemma 5 there arg¢, D such tha(Vz)gf () never makes
a query outsideD, and|f(D)| < 2" ¢/%/a. Let F be the set of all functions which agree withon D
(.e. all /" : {0,1} — {0,1}* st. 2 € D = f(x) = f'(x)). Then for anyz and anyf, /' € F,
g (z) = ¢’ (z). SoV, the perfect inverter fog”, is in fact a perfect inverter for any’ as long asf € F.

ThereforeR">/ is ap-inverter for anyf € F. Let X := {0,1}" \ f~'(D) and letH’ be the set of
all a-regular functionsh : X — {0,1}". Sincef~!(D) is at most a/2-fraction of {0,1}", R"/ must
work reasonably well ok, i.e. it is ap/2-inverter for anyh € H. Its oracleV'-gates can be replaced by
brute-force inverters foy, resulting in a circuitB/ which makes at mosf’| queries toX (recall thatg
never asks a query outside, so its brute force inverter does not either). Lemma 8 canlm@applied, and
it follows that at most &7'/p)(8«/| X|)-fraction of H can bep/2-inverted byS. This fraction is smaller
than1, a contradiction! J

Lemma 7 Let (R, g) be a(l,m,p)-collection-reduction fromFx:s. Then there is a circuiB with |B| <
|R|(2+1m) which is ap-inverter for anyf € Frie.

Proof: We build the required inverteB from R andg. Suppose that’ is the perfect inverter fog/. Then
R":f is ap-inverter for f. We shall replace each call to the inverting orakleby a circuit W/ which
is a brute-force perfect inverter fgf. The circuitW only needs oracle access fo and its structure is
independent off — it is determined by. In this way each call to the perfect invertéris accurately
simulated, saB/(z) = RY"/ () for anyz, i.e. B/ is ap-inverter for f.

The brute force invertel’/ works as follows. On inputi, y) it evaluatesy” (4, z) for all = € {0, 1}'.
If either of those is equal tg, then it outputs the corresponding This can be implemented in a circuit of
size0(2') timesm, the size of the circuit evaluating’. Thus|IW| € O(m2!).

Since each call t& is replaced byV, the total size of3 is | R|O(m2!) as required. O
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Lemma 8 Leta € N and letA be a circuit of sizeS < 2n~loee—1 | et F denote the set of atk-regular

functionsf : X — Y. Then
S da

Af peinverts f] < = —.

Pr
fer
Proof: Leta = loga. Fix somey € Y. Let us compute the probability over that A/ (y) € f~'(y). Let
Z be the set of query answers whigdH (y) receives. Sinc&Z| < S, we have thaf ~'(Z) < Sa.
If A never queries any € f~!(y), then the probability that he outputs an inverseydf at most
1/(1X]|/a = 5).
After making i queries the probability that for the next query f(z) = vy, is at mostl /(| X|/a —
i). Since there are at most queries, the probability that any of them getss the answer, is at most
Y0 /(X /o — ).
The probability thatA outputs an inverse of is therefore at mosEZ.S:0 /(| X/ — i) < 2(S +
/(| X]/e) < S/(1X]/4a).
It is now easy to see that thereZisC F with |T'|/|F| > 1 — p, such that
S da

F(f(x “(f(x .
(VfeT) Pr[A(f(x) € f(f( ))]<p,X‘, O

Pr
zeX

Lemma9 Letl = n — loga — d. If (R,g) is a (I, m,p)-collection-reduction fromFg¢s, then|R| >
p2¢=4 /m.

Proof: Suppose|R| = S < p2¢*/m. By Lemma 7, there is a-inverter of sizeS(2't1m) <
p2"~%=3 which works for anyf. But by Lemma 8, any algorithm of size”~¢~3 canp-invert at most
p2n—a=3 /p2—ntat2 — 1 /2 - fraction of functions. O
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