
Practical Anonymous Divisible E-Cash From
Bounded Accumulators?

Man Ho Au, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{mhaa456,wsusilo,ymu}@uow.edu.au

Abstract. We present an efficient off-line divisible e-cash scheme which
is truly anonymous without a trusted third party. This is the second
scheme in the literature which achieves full unlinkability and anonymity,
after the seminal work proposed by Canard and Gouget. The main trick
of our scheme is the use of a bounded accumulator in combination with
the classical binary tree approach.
The aims of this paper are twofold. Firstly, we analyze Canard and
Gouget’s seminal work on the efficient off-line divisible e-cash. We point
out some subtleties on the parameters generation of their scheme. More-
over, spending a coin of small value requires computation of several hun-
dreds of multi-based exponentiations, which is very costly. In short, al-
though this seminal work provides a new approach of achieving a truly
anonymous divisible e-cash, unfortunately it is rather impractical. Sec-
ondly, we present our scheme that uses a novel approach of incorporating
a bounded accumulator. In terms of time and space complexities, our
scheme is 50 to 100 times more efficient than Canard and Gouget’s work
in the spend protocol at the cost of an 10 to 500 (the large range is due
to whether pre-processing is taken into account and the probabilistic na-
ture of our withdrawal protocol) times less efficient withdrawal protocol.
We believe this trade-off between the withdrawal protocol and the spend
protocol is reasonable as the former protocol is to be executed much less
frequent than the latter. Nonetheless, while their scheme provides an af-
firmative answer to whether divisible e-cash can be truly anonymous, our
result puts it a step further and we show that truly anonymous divisible
e-cash can be practical.

1 Introduction

Electronic cash (e-cash) was introduced by Chaum [15] in 1982. In its simplest
form, an e-cash system consists of three parties (the bank B, the user U and the
merchant M) and four main procedures, namely, account establishment, with-
drawal, spending and deposit. The user U first performs an account establish-
ment protocol with the bank B. The currency circulating around is quantized as
? This paper is the extended version of the paper to appear in FC 2008 under the

same title[3].

2 Man Ho Au, Willy Susilo, and Yi Mu

coins. U obtains a coin by performing a withdrawal protocol with B and spends
the coin by participating in a spend protocol with M. To deposit a coin, S
performs a deposit protocol with B.

A practical electronic cash system should be secure, offline and anonymous.
An e-cash system is offline when the spend protocol does not require B’s par-
ticipation. In a secure e-cash system, only B can produce a valid electronic coin
and users who double-spent the same coin should be identified. The problem of
double-spending occurs in the electronic world due to the digital coins ease of
duplication. Additionally, honest spenders cannot be slandered to have double-
spent (exculpability), and when M deposits the money from the payee, B should
not be able to trace who the actual spender is (anonymity). In a truly anony-
mous e-cash, B, even with the help of M, cannot obtain any information about
the identity of the payee. In particular, spending of the same payee cannot be
linked together (sometimes refer to as unlinkability).

High efficiency is also of key importance for practical e-cash systems. For
efficiency, we look at: (1) the time and bandwidth needed for the withdrawal,
spend and deposit protocols; (2) the size of an electronic coin; and (3) the size
of the bank’s database. In particular, it is desirable if several coins can be with-
drawn or spent more efficiently than repeating several times a single withdrawal
or spending protocol.

1.1 Related Results

In a compact e-cash system [9, 4], users can withdraw efficiently a wallet W
containing 2L coins. However, these coins must be spent one by one. Users in a
divisible e-cash system can efficiently withdraw a wallet W containing 2L coins
(à la compact e-cash). However, these 2L coins can be spent together efficiently.
In particular, spending 2`, ` ≤ L, coins together can be done more efficiently
than repeating the spend protocol for 2` times.

A lot of divisible e-cash exists in the literature [24, 25, 16, 17, 23, 14, 21, 12].
Nonetheless, with the exception of [12], none of the above divisible e-cash system
is truly anonymous. For instance, everyone can tell whether the spending in [23,
14] is from the same wallet (i.e., linkable). In [21], there exists a trusted party
who can revoke the identity of every spender (also known as fair e-cash [13]).
Moreover, which part of the wallet that is being used is known. That is, if the
payee of transaction one and the payee of transaction two are using the same
part of a wallet, everyone can conclude that these two transactions are indeed
performed with different wallets. We shall investigate the practicality of the
only truly anonymous divisible e-cash scheme [12] in the next subsection. On
the other hand, in contrast to the divisible e-cash schemes, existing compact
e-cash schemes [9, 4, 2] are all truly anonymous.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 3

1.2 On the Practicality of the Truly Anonymous Divisible E-Cash
in [12]

We analyze the Canard and Gouget’s scheme from [12]. To allow efficeint with-
drawal of 2L coins, the construction in [12] requires a series of L+2 cyclic groups
(G = 〈g〉,G1 = 〈g1〉, . . . ,GL+1 = 〈gL+1〉) such that Gi ⊂ Z∗|Gi+1| for i = 1 to
L + 1 and G ⊂ Z∗|G1|

1 and the decisional discrete logarithm assumption (DDH)
holds in all Gi. However, whether such series of groups exists, for moderate L
(say, L = 10), is unknown. The authors suggest using the same setting of groups
in [21] which proposes to set |Gi|, for i = 1 to L+1, to be of prime order and as-
sume |Gi+1| = 2|Gi|+1 for i = 1 to L+1. This implies finding a series of primes
p1, . . . , pL+1 such that pi+1 = 2pi +1. Again, whether such series of primes exist,
for moderate L, is unknown and it is also unknown how these series of primes
can be efficiently generated. The authors in [21] propose using a brute-force ap-
proach. That is, randomly generate an odd number n (equals to order of group
G) and test if p1 := 2n + 1 is a prime. If yes, compute and test if p2 := 2p1 + 1
is prime. Continue until pL+1 := 2pL + 1 is also a prime. A well-known result,
the prime number theory, states that the number of primes not exceeding m
is approximately m

ln(m) . Thus, probability that a k-bit odd number is a prime
is about 2

k ln 2 . For a randomly generated k-bit odd number n, probability that
(p1, . . . , pL+1) are primes such that pi+1 := 2pi + 1 and p1 := 2n + 1 is approx-
imately k!2L

(k+L+1)!(ln(2)L)
. Taking k = 170 and L = 10, probability of obtaining

such series of prime numbers on a given k-bit odd number n is about 2−66. In
fact, in [21], n is taken to be an RSA-modulus (which is normally of 1024-bit),
and the corresponding probability is 2−94. Therefore, it is questionable whether
the systems in [21] or [12] are in fact implementable.

The spend protocol in [12] is also quite inefficient. As mentioned in the same
paper, the authors regard spending a single coin as quite an expensive opera-
tion. It is due to the need of L “1-out-of-2 zero-knowledge proof-of-knowledge of
of double discrete logarithm”. For a cheating probability of 2−t, a single zero-
knowledge proof-of-knowledge of double discrete logarithms requires t exponen-
tiations. For a cheating probability of 2−40 and a moderate L (say 10), spending
a single coin requires 2 ∗ 40 ∗ 10 = 800 exponentiations. Details analysis of the
cost of each protocol can be found in Section 5. Nonetheless, while [12] provides
an affirmative answer to whether divisible e-cash can be truly anonymous, it is
fair to say constructing a practical divisible e-cash which is truly anonymous is
not as easy.

1.3 Our Approach

The construction of our divisible e-cash is derived from the classical binary tree
approach [23, 21, 14, 12], in combination with the use of a bounded accumulator

1 In [12], it was written as G1 ⊂ Z∗|G|. However, according to their construction(as it

involves computation of ggs

1 for some s in Z∗|G|), G ⊂ Z∗|G1| should be the case.

4 Man Ho Au, Willy Susilo, and Yi Mu

[4]. We make use of the bounded accumulator to make a trade-off between com-
putational cost during the withdrawal protocol and the spend protocol. The cost
(computational and bandwidth) of our withdrawal protocol and spend protocol
is O(L) and O(1), respectively, while the corresponding figures for [12] is O(1)
and O(Lt). Since the spending protocol is executed much more frequently than
the withdrawal protocol, our system is much more desirable in practice.

The trade-off is achieved with the use of accumulators [7, 5]. During the
withdrawal protocol, the user computes the accumulation of the binary tree into
L + 1 accumulator values (V1, . . . , VL+1) and obtains L + 1 signatures. In the
spending protocol, if a node of level ` is to be used, the user only needs to
compute a zero-knowledge proof-of-knowledge such that the node he is about
to use is inside the accumulator V`. In this way, our spend protocol achieves a
complexity of O(1).

An obvious way to ensure the user honestly accumulates node values that
form a binary tree, while maintaining anonymity, is to require the user to pro-
duce zero-knowledge proof-of-knowledge such that these set of accumulator val-
ues (V1, . . . , VL+1) is correctly formed. This approach, however, is inefficient.
Another approach is to apply the cut-and-choose method in a straight-forward
manner. Specifically, the user prepares k sets of value, submits them all to the
bank who requires the user to reveal k− 1 of them in random. The bank checks
if these k − 1 sets of value are honestly generated and signs the remaining one
if the check is successful. To ensure that a user cannot cheat, k has to be large.
Thus, this approach is inefficient as well.

Luckily, bounded accumulator gives us the possibility of a third solution,
which is a modification of the cut-and-choose method. Our approach is statis-
tical, that is, a cheating user might spend more than what he withdraws for a
particular withdrawal protocol but in a long run, the bank is guaranteed that
users cannot spend more than they withdraw on average. The idea is derived
from the following fact: since the accumulator we use is bounded, the user can
only accumulate a predefined number of values regardless of whether they are
cheating or not. Naturally, there is an upper bound for which a cheating user
might gain. In our scheme, the cheating user can get at most a monetary value
of L2L, compared with a value of 2L for an honest user. If the bank inspects
the withdrawal protocol every two withdrawal requests and imposes a fine of
monetary value 2L2L if a user is found cheating, the bank is guaranteed it will
not lost money on average. In Section 3, we will formally define the security
model for divisible e-cash schemes that employ this kind of statistical approach.
In particular, the gain of a cheater cannot be large; since if the gain is large, a
cheater might not be able to pay the fine if he is caught. Secondly, a large gain
gives extra incentive for people to cheat.

Our Contributions. We propose a practical offline divisible e-cash without a
trusted third party which is truly anonymous (unlinkable). We formalize the
security model of divisible e-cash scheme that employs a statistical approach
and prove that our construction is secure under this model. We compare the
efficiency of our construction to that of [12] and shows that our system can be

Practical Anonymous Divisible E-Cash From Bounded Accumulators 5

more than 50 to 100 times more efficient, in terms of time and space, in the
spending protocol.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we
present preliminary information on the various cryptographic tools and assump-
tions used in our construction. Security model of divisible e-cash is presented in
Section 3. We present our construction in Section 4 and its efficiency analysis in
Section 5. Finally we conclude in Section 6.

2 Preliminaries

2.1 Pairing

A pairing is a bilinear mapping from two group elements to a group element.
Let ê be a bilinear map such that ê : G1 ×G2 → G3 and the following holds.

– G1 and G2 are cyclic multiplicative groups of prime order p.
– Each element of G1, G2 and G3 has unique binary representation.
– g, h are generators of G1 and G2 respectively.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Z∗p, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g, h) 6= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2 and the bilinear mapping
e are all efficiently computable.

2.2 Mathematical Assumptions

Security of our construction depends on the following existing mathematical as-
sumptions, namely, Decisional Diffie-Hellman, Symmetric External Diffie-Hellman
[1], q-Strong Diffie-Hellman [8] and AWSM [4]. Their definition is given below.

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follows: On input a quadruple (g, ga, gb, gc) ∈
G4, output 1 if c = ab and 0 otherwise. We say that the DDH assumption holds
in G if no PPT algorithm has non-negligible advantage over random guessing in
solving the DDH problem in G.

Definition 2 (Symmetric External Diffie-Hellman [1]). The Symmetric
External Diffie-Hellman (SXDH) Assumption states that the DDH problem is
hard in both G1 and G2 of a bilinear group pair (G1,G2). It implies that there
is no efficiently computable isomorphism from G2 to G1 or vice versa.

Definition 3 (q-Strong Diffie-Hellman [8]). The q-Strong Diffie-Hellman
(q-SDH) problem in (G1,G2) is defined as follows: On input a (q + 2)-tuple
(g0, h0, hx

0 , hx2

0 , · · · , hxq

0) ∈ G1×Gq+1
2 , output a pair (A, c) such that A(x+c) = g0

where c ∈ Z∗p. We say that the q-SDH assumption holds in (G1,G2) if no PPT
algorithm has non-negligible advantage in solving the q-SDH problem in (G1,G2).

6 Man Ho Au, Willy Susilo, and Yi Mu

Definition 4 (AWSM [4]2). The AWSM problem in a bilinear group pair
(G1,G2) is defined as follows: Let A ∈ G3, Y ∈ G2, g, gM , gm, g0 ∈ G1, h ∈ G2

and an oracle O that on input Mi, ti, O outputs (a1,i, a2,i, a3,i, si) that satisfy
ê(a1,i, h) = Aê(Mig

ti

M , a3,i) and ê(a2,i, a3,iY) = ê(ggti
mgsi

0 , h). The problem is to
output a1, a2, M ∈ G1, a3 ∈ G2, s, t ∈ Z∗p that satisfy ê(a1, h) = Aê(Mgt

M , a3)
and ê(a2, a3Y) = ê(ggt

mgs
0, h), such that (a1, a2, a3, s) is not equal to the output

of O on input M, t. We say that the AWSM assumption holds in G1,G2 if no
PPT algorithm has non-negligible advantage in solving the AWSM problem.

In [4], the AWSM assumption is proven in the generic group model for a bilinear
group pair such that the SXDH holds. On the other hand, AWSM assumption
does not hold in groups where SXDH assumption does not hold.

2.3 Useful Tools

Zero-Knowledge Proof of Knowledge. In zero-knowledge proof of knowledge [19],
a prover proves to a verifier that a statement is true without revealing anything
other than the veracity of the statement. Our construction involves statements
related to knowledge of discrete logarithms constructed over a cyclic group G of
prime order p. These proofs can also be used non-interactively by using the Fiat-
Shamir heuristic [18]. The non-interactive counter part is referred to as signature
proof of knowledge, or SPK for short. They are secure in the random oracle model
[6]. Following the notation introduced by Camenisch and Stadler [11], PK{(x) :
y = gx} denotes a zero-knowledge proof of knowledge protocol between a prover
and a verifier such that the prover knows some x ∈ Zp such that y = gx ∈ G.
Construction of this proof first appeared in the Schnorr Identification[26]. The
corresponding non-interactive signature proof of knowledge shall be denoted as
SPK{(x) : y = gx}(M).

ESS+ Signature. Extended special signature (ESS) was introduced in [4]. It
allows signing a block of messages, one of which being an element in a cyclic
group G. The authors also proposed two protocols, namely, signature generation
protocol and signature possession protocol. The signature generation protocol
allows a user to obtain a signature from the signer on message M in G, together
with a block of messages m1, . . . , mL in a commitment. The signer learns nothing
about m1, . . . , mL while he knows M . The signature possession protocol allows a
user to conduct a zero-knowledge proof of knowledge on a message signature pair.
ESS scheme is uf-cma secure[20] under the AWSM assumption. We modify the
signing protocol of ESS so that the signer learns nothing on the block of messages
to be signed as well. We refer this modified signature scheme as ESS+ Signature,
which is outlined in Appendix A.

ESS+ signature is uf-cma secure in the standard model under the AWSM
assumption. We would like to remark that AWSM is a strong assumption, as it
requires bilinear group pair where the SXDH assumption [1] holds.
2 Au et. al. proposed in [4] a signature scheme called ESS and proved its security in the

generic group model [27]. Here, we model their scheme as an oracle-based assumption
called AWSM. That is, ESS is secure if and only if the AWSM assumption holds.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 7

Bounded Accumulator. The notion, bounded accumulator was introduced in [4]
as an accumulator with a limit q as the maximum number of elements that can
be accumulated. We briefly review their construction here.

Let G1,G2 be a bilinear group pair. Let u0 be a random element in G1

and v0 be a random element in G2. Let q be the bound of the accumulator.
The generation algorithm randomly selects α ∈ Z∗p and computes ui = u0

αi

for
i = 1 . . . , q. Compute v1 = vα

0 . The public parameters is (u0, . . . , uq, v0, v1).
To accumulate a set of q values (e1, . . . , ek), the evaluation algorithm com-

putes the accumulator value V = u
∏k=q

k=1(ek+α)
0 . This operation does not require

knowledge of α since the ui’s are published. A witness wi such that value ei is

accumulated in the accumulator V is computed by wi = u
∏k=q

k=1,k 6=i(ek+α)

0 . The
witness-value pair shall satisfy ê(wi, v1v

ei
0) = ê(u0, v0). Construction of Zero-

knowledge proof of knowledge on a value-witness pair can be found in [22].

3 Syntax

A (statistical) divisible e-cash is a tuple (BankSetup, UserSetup, WithdrawalProto-
col, SpendProtocol, DepositProtocol, RevokeDoubleSpender, VerifyGuilt) of seven
polynomial time algorithms/protocols between three entities the bank B, the
merchant M and the user U .

– BankSetup. On input an unary string 1λ, where λ is the security parame-
ter, the algorithm outputs B’s key pair bpk, bsk, which includes wallet size
L, punishment P if a user is found cheating in Inspection Routine(to be dis-
cussed) and frequency of which Inspection Routine is carried out K.

– UserSetup. On input bpk, the algorithm outputs a key pair (pkU , skU) (resp.
(pkM, skM)) for U (resp. M).

– WithdrawalProtocol. U with input (pkU , skU) wishes to withdraws a wallet W
of 2L coins from B (with input (bpk, bsk). This protocol consists of two rou-
tines, namely, Withdrawal Routine and Inspection Routine, respectively. These
two routines share the same steps in the beginning such that the user is not
aware which routine the bank selects. At a particular point in the protocol,
the bank chooses one of these two routines.
• Withdrawal Routine. With probability K−1

K , Withdrawal Routine is exe-
cuted. The user obtains a wallet W after executing the protocol, while
the bank (possibly) retains certain information τw, called the trace in-
formation.

• Inspection Routine. With probability 1
K , Inspection Routine is executed.

Inspection Routine outputs pass/cheat. If the output is cheat, a fine of
P shall be deducted from the user account. If the output is pass, the
user is asked to restart WithdrawalProtocol from the beginning.

– SpendProtocol. This is the protocol when U(with input W, pkM) spends a
divisible coin of value 2` (` ≤ L and is decided by the user) to M. After
the protocol, M obtains a coin serial number S`, a proof of validity πS ,

8 Man Ho Au, Willy Susilo, and Yi Mu

and possibly some auxiliary information aux, and outputs 0/1, depending
whether the payment is accepted. U ’s output is an updated wallet W ′.

– DepositProtocol. M submits (S`, πS , aux) to B for deposit in this protocol.
B outputs 0/1, indicating whether the deposit is accepted. B computes, from
S`, 2` serial numbers S̃1, . . . , S̃2` . If any of the serial numbers S̃i already be-
longs to L (the database of spent coins), B invokes the RevokeDoubleSpender
algorithm to find out the double-spender. Otherwise, it adds S̃i, S`, πS , aux
to L.

– RevokeDoubleSpender. Formally, on input two spending protocol transcripts
involving the same coin, the algorithm outputs the public key pk of the
double-spender.

– VerifyGuilt. This algorithm allows the public to verify that the user with
public key pk is guilty of double-spending. In particular, when the bank
uses RevokeDoubleSpender and outputs πD and pk of the double-spender,
everyone can check if the bank is honest.

Requirements:

– (Correctness for User.) It is required whenever an honest user obtains W
from the bank who might be dishonest, an honest merchant shall output 1
when the user engage with the merchant in SpendProtocol.

– (Correctness for Merchant.) It is required whenever an honest merchant ob-
tains (S`, πS , aux) from some execution of SpendProtocol with some user
who might be dishonest, there is a guarantee that this transaction will be
accepted by the honest bank.3

– (Practicality.) It is required that P should be small enough so that the fine
is payable. For example, if P = (2L)2, it is very likely that even when a
user is found cheating in Inspection Routine, he is unable to pay the fine. In
practice, we suggest P ≤ KL2L.

3.1 Security Notions

We describe informally the security requirements of a statistical divisible e-cash
system. A secure statistical divisible e-cash scheme should possess, statistical
balance, IdentificationOfDoubleSpender, anonymity and exculpability, introduced
as follows. The reader may refer to Appendix C for the formal version of these
definitions.

– Statistical Balance. This is the most important requirement from the bank’s
point of view. Roughly speaking, balance means that no collusion of users
and merchants together can deposit more than they withdraw without being
identified. Statistical Balance means that, in a long run, the balance property

3 It can be seen that it is the bank’s responsibility to identify the double-spender.
The rationale behind is that a user can always spend the same coin to different
merchants in an offline e-cash system and the merchant have no way to detect such
a double-spending.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 9

is guaranteed. Statistical Balance is a relaxation of balance since it does not
rule out the possibility that a user might cheat without being detected and
gain a certain advantage within a small number of times. However, in a long
run, no successful strategy would allow collusion of users and merchants to
deposit more than they withdraw without being identified.
In particular, what we wish to model is the following situation. The bank
does not check every withdrawal request. However, if the user cheats during
the withdrawal, at most he can gain a monetary value P . If the bank only
checks once every K transactions and imposes a fine of KP for each caught
cheating, the Statistical Balance property will be achieved. It turns out that
this relaxation greatly increase the efficiency of our system.

– Anonymity. It is required that no collusion of users, merchants and the bank
can ever learn the spending habit of an honest user. In particular, spending
of the same user cannot be linked.

– Exculpability. It is required that an honest user cannot be proven to have
double-spent, even all other users, merchants and the bank collude.

A statistical divisible e-cash is said to be secure if it has Statistical Balance,
Anonymity and Exculpability.

4 Construction

In this section, we describe our cryptographic construction in detail and assess
its security, after giving a high level description.

4.1 High Level Description

Following the terminology of [9, 12], spending a single electronic coin consists
of generating a serial number S, which is used to detect double-spending, a
security tag T , which is used to reveal identity of the double-spender should the
underlying coin is being spent twice. The spender has to prove to the merchant
that the pair (S, T) is well-formed. Nonetheless, we provide an overview of our
system as follows.

The Setup Procedure. The bank B generates ESS+.pk,ESS+.sk pair of the
ESS+ Signature. The bank also generates the public parameters of the bounded
accumulator as Acc1, . . . ,AccL+1. Let LF , RF be two secure cryptographic
hash functions. Let H be another secure cryptographic hash function. Let G =
〈g〉 be a cyclic group of prime order p such that DDH assumption holds. Let gU ,
h be additional generators of G.

The Account Establishment Procedure. User Alice establishes an account
with the bank B by selecting x ∈ Z∗p and computes PKAlice := gx

U . She sends
PKAlice to B, along with a zero-knowledge proof-of-knowledge of the correspond-
ing secret key x.

10 Man Ho Au, Willy Susilo, and Yi Mu

The Withdrawal Procedure. Suppose user Alice, who has already established
an account with the bank, wishes to withdraw a wallet containing 2L coins. She
first randomly chooses a wallet secret w and computes a binary tree of L + 1
level as follows. The root note N0,0 is assigned the node key value k0,0 := w. For
all nodes Ni,j , the left children, Ni+1,2j , is assigned a node key value ki+1,2j :=
LF (gki,j). Similarly, the right children, Ni+1,2j+1, is assigned a node key value
ki+1,2j+1 := RF (gki,j). Let Tw be the resulting binary tree computed by Alice.
Fig.4.1 illustrates a construction of a binary tree with L = 3.

Fig. 1. Construction of A Binary Tree (L=3)

For i = 0 to L, compute Vi := Acci.Accumulate(ki,0, . . . , ki,2i−1). Alice then
tries to obtain L + 1 ESS+ Signature on block of messages (Vi, x) using the
signature generation protocol of ESS+ Signature.

B flips a fair coin b and if b == 1, B generates signatures σi = ESS+.Sign(Vi, x)
using the signature generation protocol of ESS+ Signature (so that B learns
nothing about Vi, x as discussed.) B sends σ := {σ0, . . . , σL} back to Alice.
Alice stores (σ, Tw) as her wallet W.

Otherwise if b == 0, B asks Alice to reveal her binary tree. B tests if the
Vi’s are honestly generated (that is, checks whether Vi is the accumulation of
ki,0, . . . , ki,2i−1). If yes, B asks Alice to restart the withdrawal procedure. Oth-
erwise, a fine of 2L2L is deducted from Alice’s account.

The Spending Procedure. Suppose user Alice with wallet W wishes to spend
to merchant Bob 2` dollar where ` ≤ L. Alice and Bob agree on certain trans-
action information I which contains identity of Bob and the monetary value 2`.
Bob also sends Alice a random challenge R.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 11

She first chooses a node from the binary tree Tw at level L− ` which has not
been marked as used. Let Ni,j be the node chosen (that is, i = L− `). Compute
serial number S = gki,j . Compute security tag T = gx

Uhki,jR.
Alice sends to Bob S, T together with a proof π which is a non-interactive

zero-knowledge proof-of-knowledge of the following statement:
Alice is in possession of quantities Vi, ki,j , x, σi which satisfy the following

relationship:

1. ESS+.Verify(σi, Vi, x) = 1 (using the signature possession algorithm of
ESS+ Signature.)

2. ki,j is a value inside the accumulator Vi

3. S = gki,j

4. T = gx
Uhki,jR

Bob verifies if π is a valid proof. It accepts the payment if the proof is valid.
If Bob accepts the payment, Alice marked down Ni,j and all its children, as well
as ancestors, from Tw as used node.

Example: Spending of 4 dollars. We shall using the binary tree in Fig.4.1 as
an example. Alice’s wallet includes W = {σ0, σ1, σ2, σ3, V0, V1, V2, V3, Tw} and
wishes to pay 4 dollars to merchant Bob.

Suppose the node N1,0 is being chosen. The corresponding node key k1,0

is LF (g(w)). Compute the serial number S := gLF (gw) and the security tag
T := gx

UhLF (gw)R where R is the random challenge given by merchant Bob.
She sends (S, T, πS , 2)4 to Bob, where πS is an non-interactive zero-knowledge
proof-of-knowledge of the following:

SPKSpend

{
(σ1, V1,x, LF (gw)) :

ESS+.Verify(σ1, V1, x) = 1 ∧
LF (gw) is an element accumulated in V1∧

S := gLF (gw) ∧ T := gx
UhLF (gw)R

}
(R)

Bob accepts the payment if πS is a valid proof. Alice marked N0,0, N1,0, N2,0,
N2,1, N3,0, N3,1, N3,2, N3,3 as used nodes.

The Deposit Procedure. Bob sends (S, T, π, R, `) to the bank for deposit.
The bank checks if R is fresh (that is, if R has been used before by Bob). If the
check is successful, then credit Bob’s account.

The bank then tries to detect if the coin S has been double-spent. Let S be
the serial number of a coin of monetary value 2`. Let Ni,j be the correspond-
ing node of the binary tree. From S, the bank computes the 2` serial numbers
corresponding to the leaves of subtree of node Ni,j by repeatedly applying the
functions LF (·), RF (·) and g(·).
4 The 2 here indicates the monetary value of the coin is 22.

12 Man Ho Au, Willy Susilo, and Yi Mu

For each serial number Si, the bank checks if it exists in the database. If not,
it stores (Si, S, T, R, π) in its database. Suppose there exists another entry in
the database (S′i, S

′, T ′, R′, π′), the bank runs the identify procedure discussed
in the following subsection.

Example: Depositing a coin of 4 dollars. Continuing our example, Bob submits
(S, T, πS , R, 2) to the bank for deposit after getting 4 dollars from Alice. The
bank verifies is a valid proof and R is fresh and credits Bob. From S, the bank
computes S0, . . . , S3 as follows. Compute intermediate value S̃0 = gLF (S) and
S̃1 = gRF (S). Compute S0 = gLF (S̃0), S1 = gRF (S̃0), S2 = gLF (S̃1), S3 = gLF (S̃1).
The bank checks if S0, S1, S2, S3 exists in its database of spent-coins. If not, it
stores (S0, S1, S2, S3, S, T, πS , R) in the database.

The Identify (Double-Spender) Procedure. On input two entries (Si, S,
T , R, π) and (S′i, S′, T ′, R′, π′), the bank computes the identity of the double-

spender as follows. If S and S′ are the same, compute PKcheater := (T R′

T ′R)
1

R′−R .
On the other hand, if S and S′ are different, S and S′ must be of different

monetary value. Without loss of generality, assume the monetary value of coin
with serial number S is greater than that of S′. The bank can compute the node
key ki,j such that S′ = gki,j from S by repeatedly applying the LF (·), RF (·), g(·)

in suitable order. From ki,j , the bank computes pkcheater = T ′

hR′ki,j
and obtains

identity of the double-spender.

Example: Catching Double-Spender. Continuing our example. Assuming Alice
spends another 2 dollars to Bob, this time using the node N2,1 in an attempt
to over-spends her wallet. Assume the resulting transcript is (S′, T ′, πS′ , R

′, 1).
When Bob submits this transcript for deposit, the bank will identify it as a
double-spent coin since S′1 := gLF (S′) will be equal to S3 in the above example.
The bank can then compute, from S in the above example, k2,1 = RF (S). From
k2,1, the bank computes PKcheater := T ′

hR′k2,1
such that PKcheater = PKAlice.

This completes the high-level description of our system.

4.2 System Construction.

Bank’s Setup. Let 2L be the size of a wallet in the system. Let λ be a security
parameter. On input λ, generate a λ-bit prime p. Generate a bilinear group pair
of order p. That is, ê : G1 ×G2 → G3 is a bilinear map such that |G1| = |G2| =
|G3| = p. Let g, gA, gB , g0, g1, g2, g3, g4, u0, gU , gS , gT be random elements in G1,
h, h1, h2, h3, v be random elements in G2. Since G1, G2 are of prime orders, all
the above random elements are generators. Let H : {0, 1}∗ → Z∗p be a secure
cryptographic hash function. Let H0 : {0, 1}∗ → Z∗p, H1 : {0, 1}∗ → Z∗p be two
other secure cryptographic hash function.

The bank randomly chooses X ∈ G1, y, α0, . . . , αL ∈ Z∗p. Compute Y = hy

and Z = ê(X,h). For i = 0 to L and for j = 1 to 2i, compute ui,j = u
αj

i
0 .

Compute vi = vαi for i = 0 to L.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 13

The public key of the bank is bpk :=
(
λ, ê, G1, G2, G3, p, H, H1, L , g, gA,

gB , g0, g1, g2, g3, g4, u0, gU , gT , [ui,1, . . ., ui,2i]i=L
i=0 ∈ G1, Y , h, h1, h2, h3, v, v0,

. . ., vL ∈ G2, Z ∈ G3

)
. The private key of the bank is bsk :=

(
X ∈ G1, y ∈ G2

)
.

Remarks: The αi’s are no longer needed and the bank shall delete them. Later
we shall see knowledge of αi helps breaking the balance property of the scheme,
while, it does not help breaking anonymity or exculpability. Thus, we shall be-
lieve the bank to delete those values since keeping them is exactly against its
interest.

User Account Establishment. User Alice chooses x as her private key and
computes PKAlice = {gx

U}. She sends PKAlice to the bank, along with the proof
of correctness. The bank stores PKAlice as the identity of Alice in its database.
Alice stores (PKAlice, x) as her key pair.

Withdrawal Protocol. To withdraw a wallet W from the bank, Alice first
prepares a binary tree Tw as follows. Randomly chooses w ∈ Z∗p. Set k0,0 := w.
Execute algorithm ComputeAllNodeKey on w,L and obtain all the node key ki,j

of binary tree Tw. Then, she computes the accumulation of the node keys of

each levels as follows. For i = 0 to L, she computes Vw,i = u
∏2i−1

j=0 (αi+ki,j)

0
5. She

computes the commitment of the binary tree Tw and her private key x. This is
done by randomly choosing ai, b

′
i ∈ Z∗p, computes Cw,i = Vw,ig

ai

A , Dw,i = g
b′i
0 gai

B .

She sends
[
Cw,i, Dw,i

]i=L

i=0
to the bank.

With probability 1/2, the bank will ask Alice to execute Inspection Routine.
Alice has to reveal Tw, ai, b′i for i = 0, . . . , L to the bank. The bank checks
if Alice computes the values Vw,i’s honestly. If Alice is found dishonest, a fine
of 2L2L is deducted from Alice account. Otherwise, the withdrawal protocol is
repeated from the beginning.

If Inspection Routine is not chosen to be carried out, Alice is required to
send a proof of knowledge of representation of Dw,i to the bank. The bank
verifies the proof, randomly chooses b′′i , ci ∈ Z∗p for i = 0 to L and computes

Ai = X(Cw,i)ci , Bi = (gg
b′′i
0 PKAliceDw,i)

1
y+ci , Ci = hci . Then bank sends[

(Ai, Bi, Ci, ai, b
′′
i ,)

]i=L

i=0
to Alice.

Alice computes bi = b′i + b′′i for i = 0 to L, checks, for i = 0 to L, if

ê(Ai, h) ?= Ziê(Vw,igA
ai , Ci),

ê(Bi, CiY) ?= ê(g, h)ê(gB , h)ai ê(g0, h)bi ê(gU , h)x,

and set W :=
(

Tw,
[
(Ai, Bi, Ci, ai, bi)

]i=L

i=0

)
.

5 This computation does not require knowledge of αi. It can be computed using

uαi
0 , . . . , u

α2i

i
0

14 Man Ho Au, Willy Susilo, and Yi Mu

Algorithm ComputeAllNodeKey
Input: w, L
Output: k0,0, k1,0, k1,1, . . . , kL,0, . . . , kL,2L−1

K0,0 := w
For i = 1 to L

For j = 0 to 2i − 1
if j mod 2 == 0 \\ Left children of parent node

ki,j := H0(g
Ki−1,j/2
S) \\ H0 for left children

else \\ Right children of parent node

ki,j := H1(g
Ki−1,j/2
S) \\ H1 for right children

Fig. 2. Withdrawal Protocol - Computation of a Binary Tree

Spend Protocol. Alice with wallet W wishes to pay merchant Bob with 2`

(` < L) dollar in the spend protocol. Alice and Bob first agree on the transaction
information I which includes ` and Bob’s identity. Alice chooses an unused node
key of level i := L− `. Let ki,j be the node key being chosen.

1. Bob sends to Alice a random challenge m.
2. Alice computes M = H(I, m). She computes serial number of the coin S =

g
ki,j

S and security tag T = PKAliceg
Mki,j

T . She also computes a proof of
correctness ΠS such that S, T are correctly formed as follows:

SPKSpend

{
(Ai, Bi, Ci, ai, bi, x, ki,j , Vw,i,Wi,j) :

ê(Ai, h) = Ziê(Vw,ig
ai

A , Ci) ∧ ê(Bi, CiY) = ê(ggai

B gbi
0 gx

U , h) ∧
S = g

ki,j

S ∧ T = gx
Ug

Mki,j

T ∧ ê(Wi,j , viv
ki,j) = ê(Vw,i, v)

}
(M),

where Wi,j = u
∏k=2i−1

k=0,k 6=j(αi+ki,k)

0 . She sends $:= (S, T, ΠS , I,m) to Bob.
3. Bob accepts the payment $ if ΠS is a valid proof statement.
4. Alice marks the node Ni,j , its ancestors and all its children in Tw as used

nodes.

Remarks: Instantiation of SPK ΠS is shown in Appendix B.

Deposit Protocol. Bob with $ from Alice approaches the bank in the deposit
protocol. He submits $ to the bank, who checks if I matches the merchant
identity and checks if m has been used before. The bank credits Bob if both
checks passes.

Let 2` be the value of the coin and i := L− `. The bank executes algorithm
ComputeAllSerials on S, ` and obtains SL,0, . . . , SL,2` . The bank then checks
if SL,0, SL,2` is in its database of spent-coin serial numbers. If yes, it runs the
RevokeDoubleSpender algorithm described below. Otherwise, it stores SL,0, SL,2` ,
together with $ in its database of spent-coin serial numbers.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 15

Algorithm ComputeAllSerials
Input: S, L, `
Output: SL,0, . . . , SL,2`−1

For j = 0 to 2` − 1
Temp := S; index := j;
For i = ` + 1 to L

if index mod 2 == 0 \\ Left children of parent node

Temp := g
H0(Temp)
S \\ H0 for left children

else \\ Right children of parent node

Temp := g
H1(Temp)
S \\ H1 for right children

index := index/2;
SL,j := Temp;

Fig. 3. Deposit Protocol - Computation of All Serial Numbers Associated with a Par-
ticular Coin

RevokeDoubleSpender Let $:= (S, T, ΠS , I, m) and $′ := (S′, T ′, ΠS′ , I
′, m′)

be two coins such that one of the output from algorithm ComputeAllSerials is the
same. Denote M := H(I,m) and M ′ = H(I ′,M ′). If both coins are of the

same value, compute PK := (T M′

T ′M)
1

M′−M and output PK as the identity of the
double-spender.

Without loss of generality, assume value of coin $ is 2` and value of coin
$′ is 2`′ such that ` > `′. Let SL,α, 0 ≤ α ≤ 2` − 1, be the output from
ComputeAllSerials on (S, L, `) such that SL,α equals to one of the output serial
numbers from ComputeAllSerials on (S′, L, `′). Execute algorithm GetNodeKey

with input S, α, L, `, `′ and obtain k. Compute PK := T ′

hM′k and output PK as
the identity of the double-spender.

Algorithm GetNodeKey
Input: S, α, L, `, `′

Output: K

Temp := S; index := α;
For i = 1 to `− `′

if index mod 2 == 0 \\ Left children of parent node
K := H1(Temp, 0) \\ 0 for left children
else \\ Right children of parent node
K := H1(Temp, 1) \\ 1 for right children

index := index/2;
Temp := gK

S ;

Fig. 4. RevokeDoubleSpender Algorithm - Computation of a Node Key from a Parent
Serial Number

16 Man Ho Au, Willy Susilo, and Yi Mu

VerifyGuilt The algorithm RevokeDoubleSpender can be executed by the pub-
lic. Thus, a proof that the bank is outputting the double-spender honestly is to
publish two double-spent transcript.

4.3 Security Analysis

Regarding the security of our construction, we have the follow theorem whose
proof can be found in Appendix D.

Theorem 1. Our construction is secure under the q-SDH assumption and the
AWSM assumption in the random oracle model.

5 Efficiency Analysis

Table 1 summarizes the complexities of different protocols of our scheme and
the scheme in [12]. The cost of the protocol with pre-processing of our scheme is
listed as a reference. It is somehow hard to quantify the exact cost of the spend
protocol in [12] as the instantiation of the SPK is very complex. Furthermore, it
involves L + 1 cyclic groups of different orders. We simplify the comparison by
stating the total number of group elements needed. If the Strong RSA-based CL
signature [10] is used, as stated in [12], the group G in the paper would be the
group of quadratic residue modulus a safe-prime product n, which would be of
1024-bit. t is the security parameter controlling the cheating probability of the
proof-of-knowledge of double-discrete logarithm. For example, t = 80 would give
the protocol a cheating probability of 2−80.

For a moderate value L = 10 and t = 40, spending a coin of monetary value
1 in [12] requires 816 and 857 multi-based exponentiations from the user and
the merchant respectively, and a total bandwidth of 981 elements in Z∗|G| and
28 elements in G. If the base group is of order n which is 1024-bit, each of the
above elements is at least 1024-bit in size. On a contrary, spending a coin of
any monetary value in our scheme requires a constant cost of 21 and 13 multi-
based exponentiations from the user and the merchant respectively. And a total
bandwidth of 9 elements in G and 21 elements in Z∗|G| is needed.

6 Conclusion

We presented an efficient off-line divisible e-cash scheme which is truly anony-
mous. While [12] shows that truly anonymous off-line divisible e-cash can be
constructed, in this paper, we provided one step further by providing an affir-
mative answer whether a practical and efficient off-line divisible e-cash can be
constructed. Our scheme is very efficient and practical (c.f. [12]).

Acknowledgments.

We would like to thank Qiong Huang and the anonymous reviewers of FC 2008
for their helpful comments and suggestions.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 17

Time Complexities

This paper Canard et. al.[12]

WithdrawalProtocol
User

Bank User Bank
w/o Preproc. w/ Preproc.

multi-EXP 2L+1 + 9L + 5 2L + 2 2L+1 + 8L + 6 2 3
Pairing 2L + 2 2L + 2 0 0 0

SpendProtocol User
Merchant User Merchant

(coin of value 2L−i) w/o Preproc. w/ Preproc.

multi-EXP 21 1 13 6 + 2ti + i 2ti + i + t + 7
Pairing 6 0 8 0 0

Space Complexities

WithdrawalProtocol Total Bandwidth Required Total Bandwidth Required

G element 7L + 7 3
Z∗|G| element 7L + 8 2

SpendProtocol Total Bandwidth Required Total Bandwidth Required
(coin of value 2L−i)

G element 9 2(i + 1) + 6
Z∗|G| element 21 2ti + 4t + i + 11

Table 1. Time and Space Complexities of this paper and [12].

References

1. G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags via insubvert-
ible encryption. In ACM Conference on Computer and Communications Security,
pages 92–101, 2005.

2. M. H. Au, W. Susilo, and Y. Mu. Practical compact e-cash. In ACISP, pages
431–445, 2007.

3. M. H. Au, W. Susilo, and Y. Mu. Practical anonymous divisible e-cash from
bounded accumulators. In Financial Cryptography and Data Security, 2008. to
appear.

4. M. H. Au, Q. Wu, W. Susilo, and Y. Mu. Compact e-cash from bounded accumu-
lator. In CT-RSA, pages 178–195, 2007.

5. N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT, pages 480–494, 1997.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

7. J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In EUROCRYPT, pages 274–285, 1993.

8. D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT, pages 56–73, 2004.

9. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EURO-
CRYPT, pages 302–321, 2005.

10. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols.
In SCN, pages 268–289, 2002.

11. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups
(extended abstract). In CRYPTO, pages 410–424, 1997.

18 Man Ho Au, Willy Susilo, and Yi Mu

12. S. Canard and A. Gouget. Divisible e-cash systems can be truly anonymous. In
EUROCRYPT, pages 482–497, 2007.

13. S. Canard and J. Traoré. On fair e-cash systems based on group signature schemes.
In ACISP, pages 237–248, 2003.

14. A. H. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. In
EUROCRYPT, pages 561–575, 1998.

15. D. Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology:
Proceedings of CRYPTO ’82, pages 199–203. Plenum, New York, 1983.

16. S. D’Amiano and G. D. Crescenzo. Methodology for digital money based on general
cryptographic tools. In EUROCRYPT, pages 156–170, 1994.

17. T. Eng and T. Okamoto. Single-term divisible electronic coins. In EUROCRYPT,
pages 306–319, 1994.

18. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

19. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, pages 291–304, 1985.

20. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

21. T. Nakanishi and Y. Sugiyama. Unlinkable divisible electronic cash. In ISW, pages
121–134, 2000.

22. L. Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA,
pages 275–292, 2005.

23. T. Okamoto. An efficient divisible electronic cash scheme. In CRYPTO, pages
438–451, 1995.

24. T. Okamoto and K. Ohta. Universal electronic cash. In CRYPTO, pages 324–337,
1991.

25. J. C. Pailles. New protocols for electronic money. In ASIACRYPT, pages 263–274,
1992.

26. C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3):161–174, 1991.

27. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, pages 256–266, 1997.

A ESS+ Signature.

Let (G1,G2) be a bilinear group pair as discussed. Let g, gA, gB , g0, g1, . . . , gk be
random elements of G1, h be random elements in G2. The signing key is a pair
(X, y) ∈ (G1 × Z∗p). The corresponding public key is (Z = ê(X, h), Y = hy) ∈
(G3 ×G2).

To sign a block of messages (M, m1, . . . , mk) ∈ (G1 × (Zp)k), the signer
randomly chooses a, b, c ∈ Z∗p and computes A = X(MgA

a)c ∈ G1, B =
(ggB

agb
0g

m1
1 . . . gk

mk)
1

y+c ∈ G1, C = hc ∈ G2. The signature on (M, m1, . . . ,mk)
is (A,B, C, a, b).

To verify a signature, the verifier checks if the following holds:

ê(A, h) ?= Zê(MgA
a, C)

ê(B, CY) ?= ê(g, h)ê(gB , h)aê(g0, h)bê(g1, h)m1 . . . ê(gk, h)mk

Practical Anonymous Divisible E-Cash From Bounded Accumulators 19

Note that the pairings ê(g, h), ê(gi, h) (i = 0, . . . , k) can be pre-computed or
regarded as public parameters.

In the signature generation protocol, a user obtains a signature on (M , m1,
. . ., mk) such that the signer learns nothing about the messages being signed.
This protocol is different from the one in [4]. In [4], the protocol is somehow
“hybrid” such that M , but not m1, . . . , mk, is known to the signer. The protocol
consists of three steps.

1. The user computes (C1, C2) = (M(gA)a, gB
agb′

0 gm1
1 . . . gk

mk) for some ran-
domly generated a, b′ ∈ Z∗p. The user sends (C1, C2, πC2) to the signer, where
πC2 is an non-interactive proof of knowledge of the presentation of C2 to
bases gB , g0, g1, . . . , gk

6.
2. The signer verifies πC2 and proceeds only if it is valid. it selects c, b′′ ∈ Z∗p

at random, computes A = X(MgA
a)c ∈ G1, B = (ggb′′

0 C2)
1

y+c ∈ G1 and
C = hc ∈ G2. He sends (A,B, C, b′′) to the user.

3. The user computes b = b′ + b′′ and sets the signature as (A,B, C, a, b)

The signature possession protocol allows a user to demonstrate possession of
a message signature pair to any third parties without revealing the signature nor
the messages signed. It consists of three steps and can be converted into non-
interactive form using Fiat-Shamir heuristic [18]. The details of the construction
can be found in [4].

B Instantiation of SPK

The details of SPK ΠS in SpendProtocol is presented as follows.

SPKΠS Signing. To produce a proof ΠS for on message M , do the following.

1. Produce auxiliary commitments (T̃A, T̃B , T̃C , T̃V , T̃W , T̃1, T̃2) by randomly
picking ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7 ∈R Z∗p and computing T̃A = Aig1

ρ1 , T̃B =
Big

ρ2
2 , T̃C = Cih

ρ3
1 , T̃V = Vw,ig

ρ4
3 , T̃W = Wi,jg

ρ5
4 , T̃1 = hρ3

2 hρ6
3 and T̃2 =

hρ5
2 hρ7

3 .
2. Return ΠS as (T̃A, T̃B , T̃C , T̃V , T̃W , T̃1, T̃2, ΠI), where ΠI is a signature

proof of knowledge of:

SPKI

{
(ai, bi, x, ki,j , ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, β1, β2, β3, β4, β5, β6, β7, β8) :

T̃1 = hρ3
2 hρ6

3 ∧ T̃2 = hρ5
2 hρ7

3 ∧ 1 = T̃−ρ4
1 hβ1

2 hβ2
3 ∧

1 = T̃−ai
1 hβ3

2 hβ4
3 ∧ 1 = T̃−ρ2

1 hβ5
2 hβ6

3 ∧ 1 = T̃
−ki,j

2 hβ7
2 hβ8

3 ∧
ê(T̃A,h)

Ziê(T̃V ,T̃C)
= êρ1

1hêβ1
31 ê(gA, T̃C)ai ê(T̃V , h1)−ρ3 ê(g3, T̃c)−ρ4 ê−β3

A1 ∧
ê(T̃B , T̃C)ê(T̃B , Y)ê−1

gh = êai

Bhêbi

0hêx
Uhê(g2, T̃C)ρ2 ê(T̃B , h1)ρ3 êρ2

2Y ê−β5
21 ∧

6 Formally, SPK{(b′, m1, . . . , mk) : C2 = gB
agb′

0 gm1
1 . . . gk

mk}(R) for some randomly
generated R will serve the purpose.

20 Man Ho Au, Willy Susilo, and Yi Mu

S = g
ki,j

S ∧ T = gx
U (gM

T)ki,j ∧ ê(T̃V ,v)

ê(T̃W ,vi)
= ê(T̃W , v)ki,j êρ4

3v ê−β7
4v ê−ρ5

4vi

}
(M)

on message M , which can be computed using the knowledge of ai, bi, x, ki,j ,
ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, β1, β2, β3, β4, β5, β6, β7 and β8, where β1 = ρ3ρ4,
β2 = ρ4ρ6, β3 = ρ3ai, β4 = ρ6ai, β5 = ρ3ρ2, β6 = ρ6ρ2, β7 = ρ5ki,j

and β8 = ρ7ki,j . In the above, we denoted ê(g1, h) as ê1h, ê(g3, h1) as ê31,
ê(gA, h1) as êA1, ê(g, h) as êgh, ê(gB , h) as êBh, ê(g0, h) as ê0h, ê(gU , h) as
êUh, ê(g2, Y) as ê2Y , ê(g2, h1) as ê21, ê(g3, v) as ê3v, ê(g4, v) and ê4v, ê(g4, vi)
as ê4vi .

7

SPKΠI Signing. To produce a signature proof of knowledge ΠI on message M ,
do the following:

1. (Commit.) Pick ra, rb, rx, rk, rρ1 , rρ2 , rρ3 , rρ4 , rρ5 , rρ6 , rρ7 , rβ1 , rβ2 , rβ3 , rβ4 ,
rβ5 , rβ6 , rβ7 , rβ8 ∈R Z∗p uniformly at random. Compute T1 = h

rρ3
2 h

rρ6
3 , T2 =

h
rρ5
2 h

rρ7
3 , T3 = T̃

−rρ4
1 h

rβ1
2 h

rβ2
3 , T4 = T̃−ra

1 h
rβ3
2 h

rβ4
3 , T5 = T̃

−rρ2
1 h

rβ5
2 h

rβ6
3 ,

T6 = T̃−rk
2 h

rβ7
2 h

rβ8
3 ,

T7 = ê
rρ1
1h ê

rβ1
31 ê(gA, T̃C)ra ê(T̃V , h1)−rρ3 ê(g3, T̃C)−rρ4 ê

−rβ3
A1 ,

T8 = êra

Bhêrb

0hêrx

Uhê(g2, T̃C)rρ2 ê(T̃B , h1)rρ3 ê
rρ2
2Y ê

−rβ5
21 , T9 = grk

S , T10 = grx

U (gM
T)rk

and T11 = ê(T̃W , v)rk ê
rρ4
3v ê

−rβ7
4v ê

−rρ5
4vi

.
2. (Challenge.) Compute c as: H(T̃A, T̃B , T̃C , T̃V , T̃W , T̃1, T̃2, T1, T2, T3, T4,

T5, T6, T7, T8, T9, T10, T11, S, T , M).
3. (Response.) Compute za = ra−cai, zb = rb−cbi, zx = rx−cx, zk = rk−cki,j ,

zρi = rρi − cρi for i = 1 to 7 and zβi = rβi − cβi for i = 1 to 8.
4. (Output.) The signature proof of knowledge ΠI on M is

ΠI = (c, za, zb, zx, zk, zρ1 , zρ2 , zρ3 , zρ4 , zρ5 , zρ6 , zρ7 , zβ1 , zβ2 , zβ3 , zβ4 , zβ5 , zβ6 , zβ7 , zβ8).

SPKΠS Verification. To verify a proof ΠS := (T̃A, T̃B , T̃C , T̃V , T̃W , T̃1, T̃2,
ΠI) on message M , do the following:

1. Parse ΠI as (c, za, zb, zx, zk, zρ1 , zρ2 , zρ3 , zρ4 , zρ5 , zρ6 , zρ7 , zβ1 , zβ2 , zβ3 ,
zβ4 , zβ5 , zβ6 , zβ7 , zβ8).

2. Compute T ′1 = T̃ c
1h

zρ3
2 h

zρ6
3 , T ′2 = T̃ c

2h
zρ5
2 h

zρ7
3 , T ′3 = T̃

−zρ4
1 h

zβ1
2 h

zβ2
3 , T ′4 =

T̃−za
1 h

zβ3
2 h

zβ4
3 , T ′5 = T̃

−zρ2
1 h

zβ5
2 h

zβ6
3 , T ′6 = T̃−zk

2 h
zβ7
2 h

zβ8
3 , T ′9 = Scgzk

S , T ′10 =
T cgzx

U (gM
T)zk ,

T ′7 =

(
ê(T̃A, h)

Ziê(T̃V , T̃C)

)c

ê
zρ1
1h ê

zβ1
31 ê(gA, T̃C)za ê(T̃V , h1)−zρ3 ê(g3, T̃C)−zρ4 ê

−zβ3
A1 ,

T ′8 =

(
ê(T̃B , T̃C)ê(T̃B , Y)

êgh

)c

êza

Bhêzb

0hêzx

Uhê(g2, T̃C)zρ2 ê(T̃B , h1)zρ3 ê
zρ2
2Y ê

−zβ5
21 , and

7 Note that all these pairings can be pre-computed or regarded as part of the bank’s
public key.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 21

T ′11 =

(
ê(T̃V , v)
ê(T̃W , vi)

)c

ê(T̃W , v)zk ê
zρ4
3v ê

−zβ7
4v ê

−zρ5
4vi

.

3. Return valid if c equals: H(T̃A, T̃B , T̃C , T̃V , T̃W , T̃1, T̃2, T ′1, T ′2, T ′3, T ′4,
T ′5, T ′6, T ′7, T ′8, T ′9, T ′10, T ′11, S, T , M). Return invalid otherwise.

C Security Games

We use a game-based approach to define the security formally. The adversary’s
capabilities are modeled by arbitrary and adaptive queries to oracles. The oracles
are defined as follows.

– UserSetup. This oracle allows the adversary A to add a user into the system.
Upon invocation, this oracle act as the bank and engage with the adversary
A in the UserSetup protocol. The public key pk presented by A is added to
a set XA

– Withdrawal. This oracle allows the adversary A to withdraw money from an
honest bank. Upon invocation, A presents a public key pk ∈ XA and engages
in the WithdrawalProtocol as a user to obtain a wallet. A can choose whether
Inspection Routine is to be run or not.

– Spend. This oracle allows the adversary A to act as a merchant to receive
payment from an honest user. Upon invocation, A specific the monetary
value to be paid. The oracle stores the total monetary value paid to A in a
counter qO.

– Hash. A can ask for the values of the hash functions for any input.

Statistical Balance. What we wish to model in statistical balance is that the max-
imum gain of an adversary A is P for an cheating WithdrawalProtocol request.
(A cheating WithdrawalProtocol request is an attempt to run WithdrawalProtocol
with the bank such that if Inspection Routine is being executed, the output will
be cheat). Specifically, we wish to model the case when the adversary runs q1

honest WithdrawalProtocol and q2 cheating WithdrawalProtocol, he can only get
2Lq1 +Pq2 monetary value. To model this fact, we introduce a new entity called
a moderator M whose only purpose is to decide if an withdrawal request is valid
or not. By valid we mean if Inspection Routine is being run, the output shall be
pass. Formally, the game statistical Balance is defined as follows.

Definition 5 (Game Statistical Balance).

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs BankSetupto generate bpk and also a master secret
key bsk. C keeps bsk to itself and sends bpk to adversary A and moderator
M. M initialize a counter W to 0.

– (Probing Phase.) The adversary A can perform a polynomially bounded num-
ber of queries to the oracles in an adaptive manner. For each Withdrawal
query, A is also required to run Inspection Routine(in parallel) with modera-
tor M. If the output of Inspection Routine is pass, M sets W := W + 2L.
Otherwise, M sets W := W + P .

22 Man Ho Au, Willy Susilo, and Yi Mu

– (End Game Phase.) M outputs the value W . Let qO be the monetary value
A obtains from oracle Spend. A wins the game if it can deposit W + 1 + qO

dollar to C such that, on input any two of these deposits transcript,the
RevokeDoubleSpender algorithm does not output any of the public keys pre-
sented during the Withdrawal Oracle query.

The advantage of A is defined as the probability that A wins.

Anonymity. The following game between a challenger C and an adversary A
formally defines anonymity.

Definition 6 (Game Anonymity).

– (Initialization Phase.) The challenger C gives a sufficiently large security
parameter λ to A. A generates bpk and bsk. A gives bpk to C. Since A is in
possession of bsk, only Hash oracle query is allowed in Game Anonymity.

– (Challenge Phase.) C chooses two public keys PK and PK ′ and presents
them to A. C runs the WithdrawalProtocol with A acting as bank to obtain
several wallets w0, · · · , wt and w′0, · · · , w′t on behalf of the two public keys. A
then acts as merchant and ask for spending from C. A is allowed to specify
which wallet C uses, with the restriction that it cannot ask C to over-spend
any of the wallets. Finally, C randomly chooses one wallet w from user PK
and one wallet w′ from user PK ′ from the set of wallets that are legal for the
challenge, flip a fair coin to decide to use w or w′ for the challenge spending.

– (End Game Phase.) The adversary A decides which public key C uses.

A wins the above game if it guesses correctly. The advantage of A is defined
as the probability that A wins minus 1

2 .

Exculpability. The following game between a challenger C and an adversary A
formally defines exculpability.

Definition 7 (Game Exculpability).

– (Initialization Phase.) The challenger C gives a sufficiently large security
parameter λ to A. A then generates bpk and bsk. A gives bpk to C. Since A is
in possession of bsk, only Hash oracle query is allowed in Game Exculpability.

– (Challenge Phase.) C runs the WithdrawalProtocol for qj times with A act-
ing as bank to obtain wallets w1, · · · , wqj . A then act as merchant and ask
for spending from C. A is allowed to specific which wallet C uses, with the
restriction that it cannot ask C to over-spend any of the wallets. A can also
ask to corrupt any of the user in the above withdrawal protocol. A corrupted
user need to surrender its private key as well as the wallet to A.

– (End Game Phase.) A outputs (pk, πD). A wins the game if VerifyGuilt on
(pk, πD) outputs 1 such that pk is one of the public key presented during
WithdrawalProtocol from C in the challenge phase and pk has not been cor-
rupted.

The advantage of A is defined as the probability that A wins.

Practical Anonymous Divisible E-Cash From Bounded Accumulators 23

D Proof of Theorem 1

We sketch the proof for Theorem 1 in the following three subsections, one for
each security requirement.

Statistical Balance. Let A be an adversary that makes qO spend queries. We
outline why the success probability of A is negligible under the q2L-SDH as-
sumption and the AWSM assumption, by constructing a simulator S acting as
challenger C (and Moderator M).

For each UserSetup query, C rewinds and extracts the secret key corresponding
to the public key. For each withdrawal query, A is required to present a public
key pk ∈ XA. Rewind and extract the representation of Dw,i. C (also act as
moderator M) obtains the values w and randomness used in Cw,i and Dw,i that
is used to compute the accumulator values. If the values does not match (or A
refuse to give out those values), set W := W +L2L. Otherwise, set W := W +2L.
Since in both cases, representation of Dw,i is known, and x such that pk = gx

U

is known, invoke the signing oracle of ESS+ Signature to finish the view of the
withdrawal protocol of A. If w is correctly formed, C stores the 2L serial numbers
associated with in in S.

For each spending query, C simply simulates the HVZK protocol using a value
w as a wallet secret. The simulation is perfect since the protocol is HVZK.

Finally,A deposits W+qO dollars. If the deposit transcript consists of coins of
value 2`, generate the 2` serial numbers associated with it.A wins the game either
by (1) all the W + qO serial numbers during deposit are unique or (2) some of
the serial numbers are duplicated but RevokeDoubleSpender on the corresponding
deposit attempt does not output a pk ∈ XA. Now we are to analyze these two
cases separately.

Case (1): Since that only qO serial numbers are given to A during the spend
queries, A must have produce another W serial numbers. Due to the soundness
of the underlying proof of knowledge protocols, each valid withdrawal query only
gives A 2L valid serial numbers. Due to the bound of the bounded accumulator
(under the 2L-SDH assumption), each cheating withdrawal query only gives A
L2L valid serial numbers. Thus, A must have conducted a false proof as part of
the signature of knowledge such that one of the following is fake:

1. Possession of an ESS+ Signature on block of messages (V, b, x).
2. k is a value in accumulator V
3. S = gk

S .

The fake proof of possession of ESS+ Signature happens with negligible probabil-
ity under the AWSM assumption. The fake proof that S (and T) are well-formed
happens with negligible probability under the discrete logarithm assumption.
Thus A’s success probability is negligible in Case (1).

Case (2): We have shown in case (1) that A cannot convince an S to accept an
invalid serial number with non-negligible probability. We now suppose duplicated
S are accepted. Due to the zero-knowledge property of the Spend Protocol, A
learns nothing about the message-signature pair. Thus, A cannot produce valid

24 Man Ho Au, Willy Susilo, and Yi Mu

deposit using the same set of values from spend query twice except using identical
transcripts, which shall be rejected.

It remains to show the associated T is bounded by specification except with
negligible probability so that the correctness of the RevokeDoubleSpender implies
the recovering of PK. Due to the soundness of the proof of knowledge protocol,
T = gx

UgMk
T is the only valid T to accompany serial number S = gk

S . Since M
is chosen by the random oracle, the two M ’s shall be different in the two trans-
actions. To deviate from these valid tags, A must fake the proof during Spend
Protocol which we have already shown to happen with negligible probability
only.

Thus, A can only win if he can forge an ESS+ Signature or break the secu-
rity property (bound) of the bounded accumulator. It happens with negligible
probability under the AWSM assumption and the q-SDH assumption.

Anonymity. To tell if two transactions are linked, the adversary needs to dis-
tinguish if two serial numbers are from the same wallet. Let g, ga, gb, Z be the
DDH problem instance. The simulator can set gT = ga8 and during the challenge
spending, set (S, T) as (gk

S := gb, gx
UZR) and simulate the protocol. The protocol

is indistinguishable from the real world for user with secret key x if Z = gab and
it contains no information on any user if Z is just a random element. Thus, using
the adversary as a black-box, S can solve the DDH problem.

Exculpability. In RevokeDoubleSpender, both transcripts contain the proof of
correctness of T , which involves proving knowledge of the user secret x. To
slander an honest user, adversary without knowledge of user secret x has to fake
the knowledge of T which involve knowledge of x to base gU . This happens with
negligible probability under the discrete logarithm assumption.

8 This requires the random elements in bpk to be set as the output of some hash
functions. This is a common practice since it ensure the bank does not know the
relative discrete logarithm of those random elements.

