
A Synthetic Indifferentiability Analysis of Some
Block-Cipher-Based Hash Functions∗

Zheng Gong, Xuejia Lai and Kefei Chen
Department of Computer Science and Engineering

Shanghai Jiaotong University, China
neoyan@sjtu.edu.cn,{lai-xj,chen-kf}@cs.sjtu.edu.cn

Abstract

At ASIACRYPT 2006, Chang et al. analyzed the indifferentiability of
some popular hash functions based on block ciphers, namely, the twenty col-
lision resistant PGV, the MDC2 and the PBGV hash functions, etc. In par-
ticular, two indifferentiable attacks were presented on the four of the twenty
collision resistant PGV and the PBGV hash functions with the prefix-free
padding. In this article, a synthetic indifferentiability analysis of some block-
cipher-based hash functions is considered. First, a more precise definition
is proposed on the indifferentiability adversary in block-cipher-based hash
functions. Next, the advantage of indifferentiability is separately analyzed
by considering whether the hash function is keyed or not. Finally, a limita-
tion is observed in Chang et al.’s indifferentiable attacks on the four PGV and
the PBGV hash functions. The formal proofs show the fact that those hash
functions are indifferentiable from a random oracle in the ideal cipher model
with the prefix-free padding, the NMAC/HMAC and the chop construction.

1 Introduction

Block-Cipher-Based Hash Function. A cryptographic hash function H : K ×
M→ Y maps an infinite set of inputsM to a finite set of n-bit outputs Y . It is one
of the most important primitives in cryptography to provide a unique “fingerprint”

∗This paper is supported by NSFC under the grants 60573032, 90604036 and National 863
Projects 2006AA01Z422. A preliminary version has been published on Design, Codes and Cryp-
tography, Springer. 48:3, Sept 2008.

1

on a certain information. The design of today’s cryptographic hash functions still
follows the Merkle-Damgard(MD) structure [18, 9], by iterating a round function
on the input message. The hash function will be collision resistant if the round
function is.

In practice, there are two main approaches for designing the round function
in the MD structure. First, the most in-use hash functions, e.g., MD5 and SHA-1
were constructed by iterating a dedicated compression function. There also exists a
second setting for hash function design and analysis, in which one makes the round
function out of a block cipher. A well-known advantage of the block-cipher-based
approach is to minimize the efforts in the design of a secure compression function.
In the past decades, many hash functions were designed from block ciphers, e.g.,
the PGV [22], the PBGV [21] and the MDC2 [4] hash functions. The down side of
the block-cipher-based hash function is a decrease in speed. Still, the efficiency of
AES and the recent advances in collision finding [25, 26] motivate renewed interest
in finding good ways to turn a block cipher into a cryptographic hash function.
Instructive examples can be found in [16, 13].

Random Oracle Model. Random oracle model was first introduced by Bellare
and Rogaway as a “paradigm for design efficient protocols” [1]. It assumes that all
parties, including the adversary, have access to a public, truly random oracle. This
model becomes extremely useful since the schemes designed under such a model
would be simpler and more practical compared to the standard model. In most of
applications, random oracle is an oracle that anybody can query but no one has
control over it. This corresponds to a completely valid application of the random
oracle (as explained in [1]). However, in some proofs, random oracle is considered
to be under control of a simulator. The simulator can listen to any query made
to the oracle, so he knows what queries were asked. Yet he has no control over
the output, so the oracle still remains a real random oracle [11]. Finally in some
proofs, random oracle is considered to be under complete control of a simulator.
The simulator can actually manipulate the answers of the oracle gives, as long as
each answer is computationally indistinguishable from a real random oracle [3].

Since random oracle performs quite like cryptographic hash function, people
suggested to replace the random oracle in the scheme with a “secure” hash function
(e.g., SHA-1, SHA-256) to preserve the security in the standard model. One has to
be careful with the selection of the hash function, some specific vulnerabilities will
be found when instantiates a random oracle with a “bad” hash function [5, 20].
Research on how to instantiate a random oracle with a certain hash function has
been red hot in recent years. Many valuable references on this problem could not
be indicated at a specific location: [6, 10, 12, 19]. All these researches take the

2

underlying hash function in the scheme as a black-box, which means the internal
structure of the hash function is ignored. Since one can prove such a scheme is
secure in the random oracle model, solving those problems back to the efforts that
design a cryptographic hash function to instantiate such a random oracle.

Indifferentiability Methodology. In [17], Maurer et al. first introduced a term
“indifferentiability” and a formal model to “distinguish” whether a given construc-
tion has any difference from a heuristic random oracle. The indifferentiability has
been focused on the question: what conditions should be imposed on the round
function F to make sure that the hash function CF satisfies the certain conditions
of the random oracle. This approach is based on the fact that one of the problems in
assessing the security of a hash function is caused by arbitrary length of inputs. It
is clear that the weakness of F will generally result in the weakness of CF , but the
converse does not hold in general. The main problem is to derive such sufficient
conditions. The indifferentiability between a hash function and a random oracle is
a more rigorous white-box analysis which needs to expose the internal structure of
the hash function, while the indistinguishability just requires a black-box analysis.

Recently, Coron et al. [8] first implemented the notion of indifferentiabil-
ity for the analysis of some classical MD variants. They showed that plain MD
hash function can be differentiable from a random oracle, then proved that MD
structure hash functions will be indifferentiable with the prefix-free padding, the
HMAC/NMAC and the chop construction. In [7], Chang et al. continued this ini-
tial effort and analyzed the indifferentiability of some popular block-cipher-based
hash functions with the prefix-free padding. In particular, a formal proof of indif-
ferentiability was given on the twenty collision resistant PGV [2] and the PBGV
[21] hash functions. Based on those indifferentiability results, they claimed that
there are sixteen collision resistant PGV hash functions are indifferentiable from a
random oracle in the ideal cipher model, while the remain four PGV hash functions
are not. They also gave an indifferentiable attack on the PBGV hash function, and
said by using the same idea one can find indifferentiable attacks on MDC2 [4],
QG-I, and LOKI-DBH [14], etc.

Our Contributions In this paper, a synthetic indifferentiability analysis of some
block-cipher-based hash functions is considered. First, we propose a more precise
definition on the indifferentiability adversary in block-cipher-based hash functions.
Next, we analyze the advantage of indifferentiability in keyed and unkeyed modes.
The authors of [7] only focused on the collision event, not all of the indifferentiable
events in assessing the security of a hash function, e.g., preimage attack, second
preimage attack. Moreover, they only analyzed the situation in unkeyed mode.
Since keyed hash functions are receiving more and more attention, after the genius

3

attacks were found in widely-used dedicated-key hash functions, such as MD4,
MD5 and SHA-1 [25, 26]. The indifferentiability analysis of keyed hash function
will be necessary in both of theory and practice. Prior to the current work, we
are unaware of any analysis on the advantage of indifferentiability for keyed hash
function based on any block cipher. Finally, we observe a limitation in Chang
et al.’s indifferentiable attacks on the four PGV and the PBGV hash functions,
which implies that their attacks are not possible if one limits the message space
to messages of at least two blocks. In particular, we formally prove the four PGV
and the PBGV hash functions are indifferentiable from a random oracle with the
prefix-free padding, the HMAC/NMAC and the chop construction.

Organization. The remainder of this paper is organized as follows. In Section
2, we review the definitions and describe a more precise definition of the indiffer-
entiability adversary in block-cipher-based hash functions. In Section 3, first, we
analyze the advantage of indifferentiability in keyed and unkeyed modes. Next, we
show a limitation in Chang et al.’s attacks on the four PGV and the PBGV hash
functions. Finally, we give our indifferentiability analysis of the four PGV and the
PBGV hash functions. Section 4 gives a conclusion.

2 Preliminaries

Here we review the notation and definitions that will be used throughout the paper.
Let the symbol ⊕ be the bitwise exclusive OR. For binary sequences a and b,
a||b denotes their concatenation. The i-th block of a message M is mi and so
M = m1||m2|| · · · ||m|M |/n, where n is the block length. Let IV be the initial
value. The same terminology and abbreviations in different definitions are the
same meaning, except there are special claims in the context.

2.1 Ideal Cipher Model

Let κ, n, ` be integers. A block cipher is a keyed function E : {0, 1}κ×{0, 1}n →
{0, 1}n. For each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is a permutation on
{0, 1}n. If E is a block cipher then E−1 denotes its inverse, where E−1

k (y) = x
such that Ek(x) = y. Let Bloc(κ, n) be the family of all block ciphers E :
{0, 1}κ × {0, 1}n → {0, 1}n. A block-cipher-based hash function is a hash func-
tion H : {0, 1}∗ → {0, 1}` and E ∈ Bloc(κ, n) is the block cipher used in the
round function of H . If ` = n, then H is called a single block length(SBL) hash

4

function, e.g., the PGV hash functions [22]. If ` = 2n, then H is called a double
block length(DBL) hash function, e.g., MDC2 [4], QG-I, and LOKI-DBH [14].

Ideal cipher model is the formal model for the security analysis of block-
cipher-based hash functions, which is dating back to Shannon [24] and widely
used, e.g., in [2, 15, 22]. By choosing a block cipher E ∈ Bloc(κ, n), an adversary
is given access to two oracles E and E−1. Thus, the i-th query-response ri is a
four-tuple that

ri = (σi, ki, xi, yi)

where σi ∈ {1,−1}, ki ∈ {0, 1}κ, and xi, yi ∈ {0, 1}n. If σi = 1 then the
adversary queries (ki, xi) and the response is yi = Eki

(xi), otherwise he queries
(ki, yi) and the response is xi = E−1

ki
(yi). Since Ek(·) is a permutation on {0, 1}n,

it holds
Pr[Eki

(xi) = yi] = Pr[E−1
ki

(yi) = xi] =
1

n− i + 1
.

In the ideal cipher model, the complexity of an attack is measured by the total
number of the optimal adversary’s queries to the two oracles E and E−1.

2.2 Indifferentiability

Here we recall the definition for the indifferentiability analysis [17].

Definition 2.1 A Turing machine C with oracle access to an ideal primitive F
is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive Rand if there
exists a simulator S, such that for any distinguisher D it holds the advantage of
indifferentiability that:

Adv(D) = |Pr[DC,F = 1]− Pr[DRand,S = 1]| < ε,

where S has oracle access to Rand and runs in time at most tS , and D runs in
time at most tD and makes at most q queries. CF is said to be (computationally)
indifferentiable from Rand if ε is a negligible function of the security parameter k
(in polynomial time tD and tS).

It is proved in [17] that if CF is indifferentiable from Rand, then CF can
replace Rand in any cryptosystem, and the resulting cryptosystem is at least as
secure in the F model as in the Rand model. In other words, if a block-cipher-
based hash function CF is indifferentiable from a random oracle Rand in the ideal

5

cipher model, then CF can replace Rand in any cryptosystem, while keeping the
resulting system (with CF) to remain secure in the ideal cipher model if the original
system (with Rand) is secure in the random oracle model.

In this paper, hash function H denotes the Turing machine CF where the ideal
primitive F is the round function of C. Let E denote the block cipher used in the
round function F and E−1 is its inverse. Since we focus on block-cipher-based
hash functions in case of the ideal cipher model, S has to simulate the encryption
oracle E and the decryption oracle E−1. Therefore, any distinguisher D obtains
the following rules: either the block-cipher E, E−1 is chosen at random and the
hash function H is constructed from it, or the hash function H is chosen at random
(Rand) and the simulated encryption and decryption oracles S, S−1 are imple-
mented by a simulator S with oracle access to Rand. Those two ways to build up
a cryptographic hash function should be indifferentiable.

2.3 Indifferentiability Adversary in Block-Cipher-Based Hash Func-
tions

For indifferentiability analysis of block-cipher-based hash functions, first it needs
to formally define an adaptive adversary’s activities in those hash functions. In
[7], Chang et al. just defined the adversary in hash functions based on dedicated
compression functions in the random oracle model. A more precise definition of
the indifferentiability adversary in block-cipher-based hash functions is defined as
follows.

Let D be a distinguisher and S be a simulator for the formal analysis of indif-
ferentiability. By following Definition 2.1, the goal ofD is to distinguish two cryp-
tosystems O1 and O2, such that O1 = (H, E, E−1) and O2 = (Rand, S, S−1).
H : K ×M → Y denotes a hash function constructed from a block-cipher E :
{0, 1}κ × {0, 1}n → {0, 1}n where K ∈ {0, 1}κ,M ∈ {0, 1}∗ and Y ∈ {0, 1}`.
Rand is a random oracle which has the same domain and range with H . hi de-
notes the hash value of the i-th query. The function Pad(·) denotes the padding
rule of the hash function H . Let ri ← (hi−1

mi−→ hi) be the i-th query-response
to the oracles {E, E−1, S, S−1} where mi ∈ {0, 1}n. Ri = (r1, · · · , ri) de-
notes the query-response set on the oracles {E, E−1, S, S−1} after the i-th query.

Let r′i ← (IV
M−→ hi) be the i-th query-response to the oracles {H, Rand}

where M ∈ M. R′i = (r′1, · · · , r′i) denotes the query-response set on the ora-
cles {H, Rand} after the i-th query. A functional closure R∗ on R is the set with
the following properties.

6

1. If hi−1
mi−→ hi, hi

mi+1−→ hi+1 ∈ Ri+1, then hi−1
mi||mi+1−→ hi+1 ∈ R∗i+1.

2. If hi−1
mi−→ hi, hi−1

mi||mi+1−→ hi+1 ∈ Ri+1, then hi
mi+1−→ hi+1 ∈ R∗i+1.

The (H, Rand)-query inputs an arbitrary length message and outputs a fixed
length hash value, while the {E, E−1, S, S−1}-query inputs a fixed length plain-
text or cipher-text and outputs the corresponding cipher-text or plain-text, respec-
tively. The details of the two categories of queries are described below.

• Query on {E, E−1, S, S−1}:

– For the i-th query on {E, S}, distinguisher D queries (1, hi−1,mi)
and the response is yi = Ehi−1

(mi) or S(hi−1,mi), where yi,mi ∈
{0, 1}n. By computing the hash value hi from the tuple (yi, hi−1,mi),
the i-th query-response set Ri = Ri−1 ∪ (hi−1

mi−→ hi).
– For the i-th query on {E−1, S−1}, distinguisherD queries (−1, hi−1, yi)

and the response is mi = E−1
hi−1

(yi) or S−1(hi−1, yi), where yi,mi ∈
{0, 1}n. By computing the hash value hi from the tuple (yi, hi−1,mi),
the i-th query-response set Ri = Ri−1 ∪ (hi−1

mi−→ hi).
– Let Rq be the query-response set of the oracles {E, E−1, S, S−1} af-

ter the maximum q queries. According to the transitive and substitute
properties of Rq, the functional closure R∗q is the complete view of
distinguisher D on the oracles {E, E−1, S, S−1}.

• Query on {H, Rand}:

– For the i-th query on {H, Rand}, distinguisher D selects an arbitrary
length message Mi ∈ M and a key ki ∈ K. Thus, the query on
hash functions will be (ki,Mi). In particular, ki equals a fixed value
IV in unkeyed hash functions. The response of {H, Rand} is hi =
H(ki, Pad(Mi)) or Rand(ki, Pad(Mi)) where hi ∈ Y .

– Let R′i = R′i−1 ∪ (ki
Mi−→ hi) be the query-response set on the oracles

{H, Rand} after the i-th query. The query-response set R′q is the
complete view of distinguisher D on the oracles {H, Rand} after the
maximum q queries.

In indifferentiability analysis, all repetition queries will be ignored, e.g., Ri =
Rj or R′

i = R′
j for any i 6= j. For simplicity, one can assume there are no such

trivial queries since they do not help anything in the view of the distinguisher.

7

3 Indifferentiability Analysis of Some Block-Cipher-Based
Hash Functions

In this section, a synthetic indifferentiability analysis of block-cipher-based hash
functions is considered. First, we give a definition on the advantage of indifferen-
tiability in block-cipher-based hash functions of keyed and unkeyed modes. Next,
we observe a limitation in Chang et al.’s indifferentiable attacks on the four PGV
and the PBGV hash functions, then formally prove the fact that those hash func-
tions are indifferentiable from a random oracle with the prefix-free padding, the
HMAC/NMAC and the chop construction.

3.1 Advantage of Indifferentiability

In fact, the original advantage of indifferentiability(Adv(D)) presented by Chang
et al. [7] is incomplete because it just covered the collision event, while there
are some other indifferentiable events need to be totally considered. For an exact
bound of the advantage, one has to carefully consider all the security events that
will affect the advantage of indifferentiability. Based on the original analysis in [7]
and the extended definition of the adversary in block-cipher-based hash functions in
Section 2.3, a more precise advantage of indifferentiability is analyzed as follows.

In our indifferentiability analysis, let Badi, i = 1, 2 be the set of the in-
differentiable events on the two cryptosystems O1 = (H, E, E−1) and O2 =
(Rand, S, S−1), respectively. The oracles {H, E,E−1} and {Rand, S, S−1} are
identically distributed in the past view of the distinguisher and Badi does not oc-
cur. If D is a distinguisher then we write Adv(D) as a measure of the maximal
advantage of indifferentiability over all distinguishers D. For brevity, D1 denotes
the event DH,E,E−1

= 1 and D2 denotes the event DRand,S,S−1
= 1. The function

Max() returns the largest value of inputs. The advantage of indifferentiability on
the two cryptosystems O1 and O2 is at most

8

Adv(D) = |Pr[DH,E,E−1
= 1]− Pr[DRand,S,S−1

= 1]|
= |(Pr[D1 ∩Bad1] + Pr[D1 ∩ ¬Bad1])
− (Pr[D2 ∩Bad2] + Pr[D2 ∩ ¬Bad2])|

= |(Pr[D1|Bad1]× Pr[Bad1]− Pr[D2|Bad2]× Pr[Bad2])
+ (Pr[D1|¬Bad1]× Pr[¬Bad1]− Pr[D2|¬Bad2]× Pr[¬Bad2])|

≤ Max(Pr[Bad1], P r[Bad2]])× |Pr[D1|Bad1]− Pr[D2|Bad2]|
+ |Pr[D1|¬Bad1]× Pr[¬Bad1]− Pr[D2|¬Bad2]× Pr[¬Bad2]|

≤ Max(Pr[Bad1], P r[Bad2]])× (1 + Pr[D1|¬Bad1])
≤ 2×Max(Pr[Bad1], P r[Bad2]]).

We stress that the maximum value holds since if Pr[Bad1] ≥ Pr[Bad2],
one can choose Pr[D1|Bad1] = 1, P r[D2|Bad2] = 0, and vice versa. Now
we analyze the set of the indifferentiable events Badi in block-cipher-based hash
functions. For unkeyed hash functions, the events include the collision(Coll), the
second preimage(Sec) and the preimage(Pre). Because collision resistance im-
plies second preimage resistance, while separates from preimage resistance, then
the set of the indifferentiable events in unkeyed hash functions is

Badi = {Colli, P rei}, i = 1, 2.

For keyed hash functions, there are more indifferentiable events need to be
considered. Depends on the key and the challenge are fixed or random, one thus has
seven sensible notions, which are named Pre, ePre, aPre, Sec, eSec, aSec, and
Coll. The leading “a” in the name of a notion is meant to suggest always: if a hash
function is secure for any fixed key, then it is always secure. The leading “e” in the
name of a notion is meant to suggest everywhere: if a hash function is secure for
any fixed challenge, then it is everywhere secure. According to the implications and
separations of the seven security notions[23], collision resistance implies (always)
second preimage resistance and always/everywhere preimage resistance implies
preimage resistance, the set of the indifferentiable events in keyed hash functions
is

Badkey
i = {Colli, eSeci, aPrei, ePrei}, i = 1, 2.

For brevity, we ignore the description of those security notions and the proofs
of the implications and separations here. See [18, 23] for more details.

9

3.2 Indifferentiability of The Four PGV Hash Functions

In [7], Chang et al. first proved there are sixteen out of the twenty collision resis-
tant PGV hash functions [2] which are indifferentiable from a random oracle in the
ideal cipher model with the prefix-free padding. And then they designed two in-
differentiable attacks on the four PGV and the PBGV hash functions, respectively.
The authors of [7] claimed that the two attacks are not only possible with one-block
message, but also more than one block. Furthermore, they said by using the same
idea one can find indifferentiable attacks on some of the double block length hash
functions, e.g., MDC2, QG-I, and LOKI-DBH. Here we show a limitation in their
attacks, which implies that their attacks are rather artificial and only possible in the
one-block padded message. In particular, we construct the simulations to prove that
the four PGV and the PBGV hash functions are indifferentiable from a random or-
acle in the ideal cipher model with the prefix-free padding, the NMAC/HMAC and
the chop construction. First we give the analysis of the four PGV hash functions.

The four PGV hash functions are Ehi−1
(mi) ⊕ mi (PGV-17), Ehi−1

(mi ⊕
hi−1)⊕mi⊕hi−1(PGV-18), Ehi−1

(mi)⊕mi⊕hi−1(PGV-19), Ehi−1
(mi⊕hi−1)⊕

mi(PGV-20). Let H : K ×M → Y be a hash function constructed from a block-
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n where K ∈ {0, 1}κ,M ∈ {0, 1}∗ and
Y ∈ {0, 1}`. Rand is a random oracle which has the same domain and range with
H . hi denotes the hash value of the i-th query. The function Pad(·) denotes the
prefix-free padding. Let ri ← (hi−1

mi−→ hi) be the i-th query-response to the
oracles {E, E−1, S, S−1} where mi ∈ {0, 1}n. Ri = (r1, · · · , ri) denotes the
query-response set on the oracles {E, E−1, S, S−1} after the i-th query and R∗
is its functional closure. Let r′i ← (IV

M−→ hi) be the i-th query-response to
the oracles {H, Rand} where M ∈ M. R′i = (r′1, · · · , r′i) denotes the query-
response set on the oracles {H, Rand} after the i-th query. Let IV be the initial
value. Chang et al.’s indifferentiable attack on PGV-17 is recalled in Fig 3.1.

Distinguisher D can access to oracles (O1,O2) where O1 = (H, E, E−1) and
O2 = (Rand,S,S−1).

1. D selects a message M such that Pad(M) = m and |m| = n, then he
makes the query M to H and receives H(M) = hi.

2. D makes an inverse query (−1, hi−1, hi ⊕m) to S−1 and receives m∗,
where hi−1 = h0 = IV .

3. If m = m∗ output 1, otherwise output 0.

10

Prefix-free MD(IV, M) NMAC Construction (IV,M)
M = m1|| · · · ||mi, h0 = IV M = m1|| · · · ||mi, h0 = IV
For i = 1 to i do hi = F (Pad(mi), hi−1) For i = 1 to i do hi = F (mi, hi−1)
Return hi Return Perm(hi)
HMAC Construction (IV,M) Chop Construction (IV,M)
M = m1|| · · · ||mi, h0 = IV M = m1|| · · · ||mi, h0 = IV
For i = 1 to i do hi = F (mi, hi−1) For i = 1 to i do hi = F (mi, hi−1)
Return hi+1 = F (hi, IV) Return Chop(hi)

Fig 3.2 Definitions of the four MD variants proposed in [8]. Pad(mi) is the prefix-free padding,

returns 1||mi if mi is the last block, else returns 0||mi. Perm(x), x ∈ {0, 1}` is a random

permutation in {0, 1}`. Chop(x), x ∈ {0, 1}` returns first s-bit of x.

Fig 3.1 Chang et al.’s indifferentiable attack on PGV-17.

It is obvious that the simulator S can return m∗ = m only with probability
2−n, thus PGV-17 is differentiable from a random oracle in the ideal cipher model.
But their attack needs the key (hi−1) in the first iteration is fixed (IV) or assumed
known by the distinguisher. If one limits the message space to messages of at least
two blocks, e.g., the prefix-free padding Pad(M) returns 1||mi if mi is the last
block, else returns 0||mi. Because the distinguisher D only queried the hash value
hi = H(M) from (H, Rand), D cannot make an inverse query (−1, hi−1, hi ⊕
m) since the internal hash value hi−1 is unknown, and D only knows (IV

M−→
hi) ∈ R′i. If D queried the internal value hi−1 before, then S can track it since
hi−1 ∈ R∗i . Therefore, Chang et al.’s indifferentiable attack on the four PGV hash
functions is rather artificial and only possible with one-block message. In practice,
the attack can be avoided by using some well-known MD variants which were
proposed in [8], namely, the prefix-free padding, the NMAC/HMAC and the chop
construction, described in Fig 3.2.

Now we give a simulation to prove the fact that PGV-17 is indifferentiable
from a random oracle in the ideal cipher model with the prefix-free padding. To
avoid some trivial attacks, the last block contains the length of input. Let q be the
maximum times of oracle access and l is the maximum length of a query made by
D. Based on the definition in Section 2.3, the simulation is described below.

• Rand-Query. For the i-th Rand-query Mi ∈M, if Mi is a repetition query,
the oracle Rand retrieves r′j ← (IV

Mi−→ hj) where r′j ∈ R′i−1, j ≤ i − 1,
then returns Rand(Mi) = hj . Else Rand randomly selects a hash value

11

hi ∈ Y and updates R′i = R′i−1 ∪ {IV
Mi−→ hi}, then returns Rand(Mi) =

hi.

• {S, S−1}-Query. To answer the distinguisherD’s encryption and decryption
queries, the simulator S responses as follows.

1. For the i-th query (1, hi−1,mi) on S:

(a) If ∃IV
M−→ hi−1 ∈ R∗i−1 and Pad(M) = mi, S runs Rand(M)

and obtains the response hi, updatesRi = Ri−1∪{hi−1
mi−→ hi},

then returns hi ⊕mi;
(b) Else S randomly selects a hash value hi ∈ Y and updates Ri =

Ri−1 ∪ {hi−1
mi−→ hi}, then returns hi ⊕mi.

2. For the i-th query (−1, hi−1, ci) on S−1:

(a) If ∃IV
M−→ hi−1 ∈ R∗i−1, S runs Rand(M) and obtains the

response hi. And then, if ci = hi ⊕ Pad(M), S updates Ri =

Ri−1 ∪ {hi−1
Pad(M)−→ hi} and returns mi = Pad(M);

(b) Else S randomly selects a message mi ∈ {0, 1}n and updates
Ri = Ri−1 ∪ {hi−1

mi−→ ci ⊕mi}, then returns mi.

Before stating the main result of the four PGV hash functions, the probability
of the indifferentiable events Badi, i = {1, 2} is analyzed for the two cryptosys-
tems O1 and O2.

Lemma 1 In PGV-17 hash function with the prefix-free padding, Pr[Bad1] =
2−n+1 ·O(q2) and Pr[Bad2] = 2−n+1 · l2 ·O(q2), where l is the maximum number
of length in a hash query.

Proof. For the i-th query (−1, hi−1, ci) on the encryption oracle S, it is possible
that distinguisher D’s query ci is a valid cipher-text such that ci = Ehi−1

(mi)
where hi−1 was never queried before. Since q is the maximum times of oracle
access and l is the maximum length of a query made by D, thus the probability
that the above event occurs is Pr[Pre1] = O(q

2n) or Pr[Pre2] = l · O(q
2n).

In the worst case, the simulator S has to track at most l × O(q) times to find if

∃IV
M−→ hi−1 ∈ R′i. Thus, in case of O1, the probability of the indifferentiable

events Bad1 is

Pr[Bad1] = 2×Max(Pr[Coll1], P r[Pre1]) = 2×Pr[Coll1] = 2−n+1 ·O(q2).

12

In case of O2, the total number of choices is l · q, where l is the maximum
number of length in a hash query. Similarly, the probability of the indifferentiable
events Bad2 is

Pr[Bad2] = 2×Max(Pr[Coll2], P r[Pre2]) = 2×Pr[Coll2] = 2−n+1·l2·O(q2).

By implementing the advantage of indifferentiability in keyed hash function,
similar results can be easily deduced in keyed mode. ¤

Conventionally, the running time should be the worst case’s running time of
D. According to Lemma 1, we have the following theorem.

Theorem 1 PGV-17 hash function is (tD, tS , q, ε)-indifferentiable from a random
oracle in the ideal cipher model with the prefix-free padding, for any distinguisher
D in polynomial time bound td, with ts = l ·O(q) and the advantage ε = 2−n+1 ·
l2 ·O(q2), where l is the maximum length of a query made by D.

Proof. The results are obvious from the proof of Lemma 1, so we omit the proof
here. ¤

By using the similar method one can find PGV-18, PGV-19, PGV-20 are also
indifferentiable from a random oracle with the prefix-free padding in the ideal ci-
pher model. It is easy to extend the same results with the NMAC/HMAC and the
chop construction. Thus we obtain the following main theorem of this section.

Theorem 2 The four PGV hash functions are (tD, tS , q, ε)-indifferentiable from a
random oracle in the ideal cipher model with the prefix-free padding, the HMAC/NMAC,
and the chop construction, for any distinguisher D in polynomial time bound tD,
with tS = l ·O(q) and the advantage ε = 2−n+1 ·l2 ·O(q2), where l is the maximum
length of a query made by D.

3.3 Indifferentiability of The PBGV Hash Function

Similar to the four PGV hash functions, Chang et al.’s indifferentiable attack on
the PBGV hash function is only possible with one-block message. In this section,
we give an indifferentiability analysis on the PBGV hash function.

Let H : K ×M → Y be the PBGV hash function constructed from block-
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n where κ = n, K ∈ {0, 1}κ,M ∈ {0, 1}∗

13

and Y ∈ {0, 1}2n. Rand is a random oracle which has the same domain and
range with H . (hi, gi) denotes the hash value of the i-th query. The function
Pad(·) denotes the prefix-free padding. Let IV = (h0, g0) be the initial value.
The PBGV hash function takes l · 2n-bit message M = (m1,m2, · · · ,ml) (where
mi = mi,1||mi,2, |mi,1| = |mi,2| = n) and IV as inputs. For i = 1 to l, the PBGV
hash function H : H(M) = (hl, gl) is iterated as follows.

hi = Emi,1⊕mi,2(hi−1 ⊕ gi−1)⊕mi,1 ⊕ hi−1 ⊕ gi−1

gi = Emi,1⊕hi−1
(mi,2 ⊕ gi−1)⊕mi,2 ⊕ hi−1 ⊕ gi−1

Chang et al’s indifferentiable attack on the PBGV hash function is recalled in
Fig 3.3. By the same reason, this attack is also impossible if one limits the message
space to messages of at least two blocks.

Distinguisher D can access to oracles (O1,O2) where O1 = (H, E, E−1) and
O2 = (Rand, S, S−1).

1. D selects a message M such that Pad(M) = m1 = m1,1||m1,2 and
|m1| = 2n, then he makes the query M to H and receives H(M) =
(h1, g1).

2. D makes an inverse query (−1,m1,2⊕ h0⊕ g0⊕ g1,m1,1⊕ h0) to S−1

and receives out.

3. If out = m1,2 ⊕ g0 output 1, otherwise 0.

Fig 3.3 Chang et al.’s indifferentiable attack on PBGV.

Now we give a simulation to prove the PBGV hash function with the prefix-
free padding is also indifferentiable from a random oracle. Let distinguisher D can
access to oracles (O1,O2) where O1 = (H, E,E−1) and O2 = (Rand, S, S−1).
Let ri ← ((hi−1, gi−1)

mi−→ (hi, gi)) be the i-th query-response to the oracles
{E, E−1, S, S−1} where mi ∈ {0, 1}2n. Ri = (r1, · · · , ri) denotes the query-
response set on the oracles {E, E−1, S, S−1} after the i-th query and R∗ is its

functional closure. Let r′i ← (IV
M−→ (hi, gi)) be the i-th query-response to the

oracles {H, Rand}where M ∈M. R′i = (r′1, · · · , r′i) denotes the query-response
set on the oracles {H, Rand} after the i-th query.

• Rand-Query. For the i-th Rand-query Mi ∈M, if Mi is a repetition query,
the oracle Rand retrieves r′j ← (IV

Mi−→ (hj , gj)) where r′j ∈ R′i−1, j ≤

14

i − 1, then returns Rand(Mi) = (hj , gj). Else Rand randomly selects a

hash value (hi, gi) ∈ Y and updates R′i = R′i−1 ∪ {IV
Mi−→ (hi, gi)}, then

returns Rand(Mi) = (hi, gi).

• {S, S−1}-Query. To answer the distinguisherD’s encryption and decryption
queries, the simulator S proceeds as follows.

1. For the i-th query (1, xi, yi) on S:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R∗i−1, S computes Pad(M) = mi =

mi,1||mi,2. And then,

i. if xi = mi,1 ⊕mi,2 and yi = hi−1 ⊕ gi−1, S runs Rand(M)
and obtains the response (hi, gi), updatesRi = Ri−1∪{(hi−1, gi−1)

mi−→
(hi, gi)}, then returns hi ⊕mi,1 ⊕ yi;

ii. if xi = mi,1 ⊕ hi−1 and yi = mi,2 ⊕ gi−1, S runs Rand(M)
and obtains the response (hi, gi), and updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns gi ⊕ hi−1 ⊕ yi.

(b) Else S randomly selects (hi, gi, hi−1,mi,1), computes mi,2 =
xi ⊕ mi,1 and gi−1 = yi ⊕ hi−1, and updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns hi ⊕mi,1 ⊕ yi.

2. For the i-th query (−1, xi, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R∗i−1, the simulator S computes

Pad(M) = mi = mi,1||mi,2. And then,

i. if xi = mi,1 ⊕ mi,2, S runs Rand(M) and obtains the re-
sponse (hi, gi). And then, if yi = hi ⊕mi,1 ⊕ hi−1 ⊕ gi−1, S
updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and returns
hi−1 ⊕ gi−1;

ii. if xi = mi,1 ⊕ hi−1, S runs Rand(M) and obtains the re-
sponse (hi, gi). And then, if yi = gi ⊕mi,2 ⊕ hi−1 ⊕ gi−1, S
updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and returns
mi,2 ⊕ gi−1.

(b) Else S randomly selects (hi−1, gi−1,mi,1, gi), computes hi = yi⊕
mi,1 ⊕ hi−1 ⊕ gi−1 and mi,2 = xi ⊕mi,1, updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns hi−1 ⊕ gi−1.

Before stating the main result of the PBGV hash function, a simple lemma is
proved.

15

Lemma 2 In PBGV double block length hash functions with the prefix-free padding,
Pr[Bad1] = 2−n−3 · O(q2) and Pr[Bad2] = 2−n−3 · l2 · O(q2), where l is the
maximum number of length in a hash query.

Proof. In [14], it is proved that the upper bound of the collision attack on the
PBGV hash function is 4×O(2n/2).

Pr[Bad1] = 2×Max(Pr[Coll1], P r[Pre1]) = 2×Pr[Coll1] = 2−n−3 ·O(q2).

In case of O2, the total number of choices is l · q, where l is the maximum
number of length in a hash query. Similarly, the probability of the indifferentiable
events Bad2 is

Pr[Bad2] = 2×Max(Pr[Coll2], P r[Pre2]) = 2×Pr[Coll2] = 2−n−3·l2·O(q2).

By implementing the advantage of indifferentiability in keyed hash function,
similar results can be easily deduced in keyed mode. ¤

Similar to the four PGV hash functions, one can easily obtain the following
result from the above analysis.

Theorem 3 The PBGV hash function is (tD, tS , q, ε)-indifferentiable from a ran-
dom oracle in the ideal cipher model with the prefix-free padding, the NMAC/HMAC,
and the chop construction, for any distinguisher D in polynomial time bound tD,
with tS = 2l · O(q) and the advantage ε = 2−n−3 · l2 · O(q2), where l is the
maximum length of a query made by D.

Although Knudsen et al. [14] proved that the PBGV hash function and some
of fast DBL hash functions can not be optimally secure against the preimage, the
second preimage and the collision attacks, our indifferentiable result of the PBGV
hash function does not conflict with theirs. By assuming the block cipher used in
the hash function is ideal, the advantage of indifferentiability will be reduced to a
negligible value. We stress that the advantage of indifferentiability is based on the
computational complexity, not on the measurement of the unconditional security at
all. Similar results can be extended from the proof of the PBGV hash function on
some other DBL hash functions, e.g., MDC2, QG-I, and LOKI-DBH.

16

4 Conclusion

Since hash functions play a pivotal role in nearly all of the cryptosystems, investi-
gating how to design a better hash function is important. In this paper, a synthetic
indifferentiability analysis of some block-cipher-based hash functions is described.
The results show the fact that all of the 20 collision resistant PGV hash functions
and the PBGV hash function are indifferentiable from a random oracle with the
prefix-free padding, the HMAC/NMAC and the chop construction. The analysis
can be extended to MDC2, QG-I, and LOKI-DBH, etc. As the notion of indif-
ferentiability is a critical methodology to find the gap between hash function and
random oracle in a white-box investigation, there are still many hash functions and
MD variants open with regarding to indifferentiability analysis.

Acknowledgments.We would like to thank the anonymous reviewers for helpful
comments that improved the presentation of this paper.

References

[1] M. Bellare and P. Rogaway. Random oracle are practical: a paradigm for
designing efficient protocols. In ACM CCS’93, ACM, pp. 62-73. 1993.

[2] J. Black, P. Rogaway and T. Shrimpton. Black-Box Analysis of the Black-
Cipher-Based Hash-Function Constructions from PGV. Advances in Cryptol-
ogy - CRYPTO’02. LNCS 2442, pp. 320-335. 2002.

[3] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
SIAM J. of Computing, Vol. 32, No. 3, pp. 586-615. 2003.

[4] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, C.H. Meyer, J.
Oseas, S. Pilpel and M. Schilling. Data Authentication Using Modification
Detection Codes Based on a Public One Way Encryption Function. U.S.
Patent Number 4,908,861, March 13, 1990.

[5] D. Brown. Generic Groups, Collision Resistance, and ECDSA. In
http://eprint.iacr.org/2002/026. 2002.

[6] R. Canetti, O. Goldreich and S. Halevi. The randoom oracle methodology,
revisited. In Proceedings of 30th ACM Symposium on the Theory of Com-
puting, ACM Press, pp. 209-218. 1998.

17

[7] D. H. Chang, S. J. Lee, M. Nandi and M. Yung. Indifferentiable Security
Analysis of Popular Hash Functions with Prefix-Free Padding. X. Lai and K.
Chen(Eds): ASIACRYPT 2006, LNCS 4284, pp. 283-298. 2006.

[8] J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited:
How to Construct a Hash Function. Advances in Cryptology - CRYPTO’05,
LNCS 3621, pp. 21-39. 2005.

[9] I. Damgård. A Design Principle for Hash Functions, Advances in Cryptology,
Cyrpto’89, LNCS 435, pp. 416-427. 1990.

[10] A. Dent. Adapting the weakness of the random oracle to the generic model.
In ASIACRYPT 2002, LNCS 2501, pp. 101-109. 2002.

[11] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmet-
ric Encryption Schemes. In CRYPTO’99, LNCS 1666, pp. 537-554. 1999.

[12] S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir
Paradigm. In FOCS 2003, IEEE Computer Society, pp. 102-122. 2003.

[13] S. Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In FSE 2006, LNCS 4047, pp. 210-225. 2006.

[14] L.R. Knudsen, X. Lai and B. Preneel. Attacks on Fast Double Block Length
Hash Functions. Journal of Cryptology(1998) 11: 59-72.

[15] X. Lai and J. L. Massey. Hash Functions Based on Block Ciphers. In Ad-
vances in Cryptology-Eurocrypt’92, LNCS 658, pp. 55-70. 1993.

[16] S. Lucks. A Failure-Friendly Design Principle for Hash Functions. In ASI-
ACRYPT 2005, LNCS 3788, pp. 474-494. 2005.

[17] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Methodology.
Theory of Cryptography - TCC 2004, LNCS 2951, pp. 21-39. 2004.

[18] R.C. Merkle. One way hash functions and DES, Advances in Cryptology,
Crypto’89, LNCS 435, pp. 428-446. 1990.

[19] J.B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In CRYPTO’98, LNCS 2442,
pp. 111-126. 2002.

18

[20] P. Paillier and D. Vergnaud. Discrete-Log-Based Signatures May Not Be
Equivalent to Discrete Log. In ASIACRYPT 2005, LNCS 3788, pp. 1-20.
2005.

[21] B. Preneel, A, Bosselaers, R. Govaerts and J. Vandewalle. Collision-free
Hash-functions Based on Blockcipher Algorithms. In Proceeding of 1989 In-
ternational Carnahan Conference on Security Technology, pp. 203-210. 1989.

[22] B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Advances in Cryptology - CRYPTO’93,
LNCS 773, pp. 368-378. 1994.

[23] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Def-
initions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance and Collision Resistance. In FSE 2004, LNCS 3017,
pp. 371-388. 2004.

[24] C. Shannon. Communication theory of secrecy systems. Bell Systems Tech-
incal Journal, 28(4): pages 656-715. 1949.

[25] X. Wang, Y. Yin and H. Yu. Finding Collision in the Full SHA-1. In
CRYPTO’05, LNCS 3621, pp. 17-36. 2005.

[26] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In EU-
ROCRYPT’05, LNCS 3494, pp. 19-35. 2005.

19

