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Abstract—Password-authenticated key exchange (PAKE) protocols are designed to be se-
cure even when the secret key used for authentication is a human-memorable password. In this
paper, we consider PAKE protocols in the group scenario, in which a group of clients, each of
them shares a password with an “honest but curious” server, intend to establish a common secret
key (i.e., a group key) with the help of the server. In this setting, the key established is known
to the clients only and no one else, including the server. Each client needs to remember pass-
words only while the server keeps passwords in addition to private keys related to his identity.
Towards our goal, we present a compiler that transforms any group key exchange (KE) protocol
secure against a passive eavesdropping to a group PAKE which is secure against an active ad-
versary who controls all communication in the network. This compiler is built on any group KE
protocol (e.g., the Burmester-Desmedt protocol), any identity-based encryption (IBE) scheme
(e.g., Gentry’s scheme), and any identity-based signature (IBS) scheme (e.g., Paterson-Schuldt
scheme). It adds only two rounds and O(1) communication (per client) to the original group
KE protocol. As long as the underlying group KE protocol, IBE scheme and an IBS scheme
have provably security without random oracles, a group PAKE constructed by our compiler can
be proven to be secure without random oracles.

Keywords: Group key agreement, protocol compiler, password-authenticated key exchange,
common reference model.

1 Introduction

Popularity of group-oriented applications and protocols is currently on the increase and, as
a result, group communication is taking place in many different settings, from network layer
multicasting to application layer tele- and video-conferencing. Securing group communication
makes demands of protocols for group authenticated key exchange (AKE), which allows a group
of users communicating over an insecure public network to establish a common secret key (i.e.,
a group key) and furthermore to be guaranteed that they are indeed sharing this key with each
other.

Protocols for 2-party AKE has been extensively investigated in [36, 15, 37, 13, 11, 32, 33, 34].
A number of works have considered extending the 2-party Diffie-Hellman protocol [36] to the
multi-party setting [43, 57, 29, 58, 10, 50, 51]. Among them, the works of Ingemarsson et al.
[43], Burmester and Desmedt [29], and Steiner et al. [58] may be the most well-known. They
are merely key exchange (KE) protocols, intended to be secure against a passive adversary only.
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However, AKE protocols aim to be secure against more powerful adversaries, who - in addition
to eavesdropping - control all communication in the network. A number of initial protocols for
group AKE were suggested in [44, 19, 7, 8, 59]. But none of these works have rigorous security
proofs in a well-defined model.

Bresson et al. [22, 23, 24] were the first to define a formal model of security for group
AKE and give the first provably secure protocols for this setting. Their model was built on the
earlier work of Bellare and Rogaway in the two-party setting [12, 13, 11] and their protocols
were based on the work of Steiner et al. [58], which requires O(n) rounds to establish a key
among n users, and therefore not scalable. A constant-round group AKE with a security proof
in the random oracle model was given in [20], but it was shown to be insecure in [56]. Katz and
Yung [48] were the first to give scalable protocol for group AKE along with a rigorous proof of
security in the standard model. They also presented the first efficient compiler that transforms
any group KE protocols secure against a passive eavesdropping to authenticated protocols by
signing message flows. Their compiler adds only one round to the original protocol. However,
this compiler requires each user to have a pair of public and private keys for digital signature.
The (high-entropy) private key is not human-memorable and needs additional cryptographic
devices to store it.

Bellovin and Merritt [14] were the first to consider AKE based on (low-entropy) password
only and introduced a series of so-called “encrypted key exchange” (EKE) protocols for two-party
AKE. A password-based AKE (i.e., PAKE) has to be immune to the dictionary attack, in which
an adversary exhaustively tries all possible passwords from a dictionary in order to determine
the correct one. Even though these attacks are not very effective in the case of high-entropy
keys, they can be very damaging when the secret key is a password since the attacker has a non-
negligible chance of winning. Dictionary attacks are usually divided into two categories: offline
and online dictionary attacks. Formal models of security for two-party PAKE were firstly given
independently by Bellare, Pointcheval and Rogaway [11], and Boyko, MacKenzie, Patel and
Swaminathan [21] in 2000. Since then, protocols for two-party PAKE have been continuously
proposed and proven to be secure in either the random oracle model (e.g.,[26, 27, 3, 4, 5]) or
the standard model (e.g., [40, 46, 45]).

Bresson et al. [25, 28] were the first to adapt a group KE protocol to the password-based
scenario. As the original protocol, the first group PAKE protocol was not scalable and practical
for large groups. In addition, their security proof required ideal models. Recently, a number
of constant-round group PAKE have been proposed in the literature by Abdalla et al. [2, 6],
by Bohli et al. [16], and by Kim, Lee and Lee [49]. All of these constructions are built on
the Burmester-Desmedt protocol [29, 31] and are rather efficient. Among them, the works of
Abdalla et al. [6] and Bohli et al. [16] enjoy security proofs in the standard model.

Most of existing group PAKE protocols assume that users of a group share the same pass-
word, e.g., [25, 28, 2, 6]. In the scenarios where a user wants to participate in many groups, the
number of passwords that he would need to remember would be linear in the number of possible
groups. In order to limit the number of passwords that each user has to remember, a couple of
group PAKE protocols assume that each user shares a password only with a server, which helps
users of a group with establishment of a common secret key (i.e., a group key), e.g., [3, 4, 52].
The server is assumed to behave in an “honest but curious” manner. By the knowledge of
passwords, the server may attempt to learn the group key. The setting with different passwords
seems to be more practical in the real world than the setting with the same password.

More recently, Abdalla et al. [1] presented a protocol compiler that transforms any two-party
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AKE into a group AKE with two more rounds of communication. Their idea is inspired by the
construction of Burmester and Desmedt [29], where the trick of constructing a group key from
pairwise agreed keys among users of a group was firstly introduced. In particular, applying this
compiler to a two-party PAKE protocol yields a group PAKE protocol. The primary motivation
of this compiler was the two-party setting. As implied in [48, 47], a compiler tailored from the
group setting scales better than the compiler from two-party setting. This leads a question, is
there any protocol compiler that transforms any group KE protocol directly to a group PAKE
protocol?
Contribution. To the best of our knowledge, there has not yet been any protocol compiler
that can transform any group KE protocol directly into a group PAKE protocol at present.
In this paper, we present such a compiler on the basis of the “state-of-the-art” identity-based
cryptosystem, a public-key cryptosystem in which an arbitrary string (e.g., user identity) can
be used as the public key.

Our compiler employs any group KE protocol secure against passive eavesdropping, any IBE
with chosen-ciphertext security and any IBS with existential unforgeability. We assume that
clients of a group, each of them shares a password with an “honest but curious” server, intend
to establish a common secret key (i.e., a group key) with the help of the server, where the key
established is known to the clients only and no one else, including the server. For more details
of the “honest but curious” server, we can refer to the work of Abdalla et al. in [3].

The basic idea of our compiler is that users of a group firstly run the group KE protocol
to establish a group key without any help of the server, and then the server helps users of the
group with mutual authentication and key confirmation by the shared password (protected with
the IBE scheme), and finally each user authenticates the server, along with partnered users and
the established key during the group KE, by the IBS scheme.

To analyze the security of our compiler, we put forth a formal model of security for ID-based
PAKE in the group setting, by embedding Boneh et al.’s ID-based model [17][18] into the group
PAKE model given by Bresson et al. in [25, 28] and improved by Abdalla et al. [1].

Our model assumes that all users and servers refer to the common public parameters includ-
ing the public key of a private key generator (commonly used in ID-based model). Thus, our
model is between the Halevi-Krawczyk model [42] (where each user needs to keep the public
key of each server or to authenticate it with the public key of a certificate authority) and the
Katz-Ostrovsky-Yung model [48] (where all users and servers refer the common public parame-
ters only). Different from the Halevi-Krawczyk model, our model is ID-based, where the public
key of a server is its identity (which is meaningful) and public key authentication is unneces-
sary. Thus, the Public Key Infrastructure (PKI) is not needed in our model. Similar to the
Katz-Ostrovsky-Yung model, our model includes the public key of a private key generator in the
common public parameters. Although the Katz-Ostrovsky-Yung model assumes that the public
parameter generator uses random numbers as the public key of Cramer-Shoup cryptosystem
[35], it can, in fact, chooses the private key at first and then computes the public key without
being detected. Furthermore, provided with the public key in the common public parameters, if
the corresponding private key is compromised, both the Katz-Ostrovsky-Yung protocol and our
protocol have to reset.

We provide a rigorous proof of security for our compiler. Our compiler does not rely on the
random oracle model as long as the underlying primitives themselves do not rely on it. By using
Burmester-Desmedt group KE protocol [29], Gentry IBE scheme [39], Paterson-Schuldt IBS
scheme [54], our compiler can construct a group PAKE with provably security in the standard
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model.

Organization. In Section 2, we introduce a new model for ID-based group PAKE. In Section 3,
we describe the underlying cryptographic primitives to build our group PAKE. Then, in Section
4, we present a new ID-based group PAKE compiler. After that, in Section 5, the brief security
proof for our protocol is given. We conclude this paper in Section 6. In addition, the detail
security proof is provided in Appendix.

2 Definitions

A formal model of security for group PAKE was firstly given by Bresson et al. in [25, 26] (based
on Bellare et al.’s formal model for 2-party PAKE [12]), and improved by Abdalla et al. in [1].
Boneh and Franklin were the first to define chosen ciphertext security for IBE under chosen
identity attack [17, 18]. In this section, we put forward a new model of security for ID-based
group PAKE, on the basis of definitions given by Bresson et al., Abdalla et al. and Boneh et al.

Participants, Initialization and Passwords. An ID-based group PAKE protocol involves
three kinds of participants: (1) A set of clients (denoted as Client); (2) A set of servers (denoted
as Server), which behave in an honest but curious manner; (3) A Private Key Generator (PKG),
which generates public parameters and corresponding private keys for servers, and behaves in
an honest but curious manner as well. We assume that ClientServerPair is the set of pairs
of the client and the server, who share a password. In addition, User = Client

⋃
Server and

Client
⋂

Server = ∅.
Prior to any execution of the protocol, we assume that an initialization phase occurs. During

initialization, PKG generates public parameters for the protocol, which are available to all partic-
ipants, and issues private keys for each server. For any pair (A,S) ∈ ClientServerPair, the client
A and the server S are assumed to share the same password pwS

A. We assume that the client
A chooses pwS

A independently and uniformly at random from a “dictionary” D = {pw1, pw2,
· · · , pwN} of size N , where N is a fixed constant which is independent of the security parameter.
The password pwS

A is then stored at the server S for authentication.
After initialization, a server can be still added to the system as long as it obtains its private

key related to its identity from PKG. A client can join the system once he shares his password
with a server.

Execution of the Protocol. In the real world, a protocol determines how users behave in
response to input from their environments. In the formal model, these inputs are provided by
the adversary. Each user is assumed to be able to execute the protocol multiple times (possibly
concurrently) with different partners. This is modeled by allowing each user to have unlimited
number of instances with which to execute the protocol. We denote instance i of user U as
U i. A given instance may be used only once. The adversary is given oracle access to these
different instances. Furthermore, each instance maintains (local) state which is updated during
the course of the experiment. In particular, each instance U i has associated with it the following
variables, initialized as NULL or FALSE (as appropriate) during the initialization phase.

• sidi
U and pidi

U are variables (initialized as NULL) denoting the session identity and partner
identity for an instance, respectively. The session identity sidi

U is simply a way to keep
track of the different executions of a particular user U . The partner identity pidi

U is the
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set of users with whom U i believes it is interacting to establish a session key (including U
itself).

• acci
U and termi

U are boolean variables (initialized as FLASE) denoting whether a given
instance has been accepted or terminated, respectively. Termination means that the given
instance has done receiving and sending messages, acceptance indicates successful termi-
nation. In our case, acceptance means that the instance is sure that a group key has been
established, thus, when an instance U i accepts, sidi

U and pidi
U are no longer NULL.

• usedi
U is a boolean variable (initialized as FLASE) denoting whether an instance has begun

executing the protocol. This is a formalism which will ensure each instance is used only
once.

• statei
U (initialized as NULL) records any state necessary for execution of the protocol by a

user instance U i.

• ski
A is a variable (initialized as NULL) denoting the session key for a client instance Ai.

Computation of the session key is, of course, the ultimate goal of the protocol. When Ai

accepts (i.e., acci
A = TRUE), ski

A is no longer NULL.

The adversary A is assumed to have complete control over all communications in the network
and the adversary’s interaction with the users (more specifically, with various instances) or PKG
is modeled via access to oracles which we describe now. The state of an instance may be updated
during an oracle call, and the oracle’s output may depend upon the relevant instance. The oracle
types are as follows:

• Execute(Ai1
1 , Ai2

2 , · · · , Ain
n , Sj) – If Ai`

` and Sj have not yet been used (where A` ∈ Client,
S ∈ Server, (A`, S) ∈ ClientServerPair, ` = 1, 2, · · · , n), this oracle executes the protocol
among these instances and outputs the transcript of this execution. This oracle call rep-
resents passive eavesdropping of a protocol execution. In addition to the transcript, the
adversary receives the values of sid, pid, acc, and term for all instances, at each step of
protocol execution.

• Send(U i,M) – This sends message M to instance U i. Assuming termi
U = FALSE, this

instance runs according to the protocol specification, updating state as appropriate. The
output of U i (i.e., the message sent by the instance) is given to the adversary, who receives
the updated values of sidi

U , pidi
U , acci

U , and termi
U . This oracle call models the active attack

to a protocol.

• KeyGen(PKG, S) – This sends the identity of the server S to PKG, which generates private
keys dS corresponding to S and forwards it to the adversary. This oracle models possible
compromising of a server due to, for example, hacking into the server. This implies that
all passwords stored in the server are disclosed.

• Corrupt(A) – This query allows the adversary to learn the passwords of the client A, which
models the possibility of subverting a client by, for example, witnessing a user type in his
password, or installing a “Trojan horse” on his machine. This implies that all passwords
held by A are disclosed.
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• Reveal(Ai) – This outputs the current value of session key ski
A for a client instance if

acci
A = TRUE. This oracle call models possible leakage of session keys due to, for example,

improper erasure of session keys after use, or cryptanalysis.

• Test(Ai) – This oracle does not model any real-world capability of the adversary, but is
instead used to define security of the session key of client instance Ai. If acci

A = TRUE
and ski

A 6= NULL, a random bit b is generated. If b = 0, the adversary is given ski
A, and if

b = 1 the adversary is given a random session key. The adversary is allowed a single Test
query, at any time during its execution.

A passive adversary is given access to the Execute, KeyGen, Reveal, Corrupt, and Test oracles,
while an active adversary is additionally given access to the Send oracles. We assume that all
servers behave in a honest but curious manner. We can imagine a server as a passive adversary
who have already queried a KeyGen oracle to retrieve the server’s private keys and all passwords
stored in it. In addition, we assume that all servers have no access to any form of Send oracles.
In the definition of Execute and Send oracles, we reasonably require that A1, A2, · · · , An share
different passwords with the same server S.

Partnering. We say that client instances Ai and Bj are partnered if there exists a server
instance Sk associated with Ai and Bj such that (1) pidi

A = pidj
B = pidk

S and (2) sidi
A = sidj

B =
sidk

S . The notion of partnering will be fundamental in defining both correctness and security.

Correctness. To be viable, a key exchange protocol must satisfy the following notion of cor-
rectness: if Ai and Bj are partnered and acci

A = accj
B = TRUE, then it must be the case that

ski
A = skj

B 6= NULL (i.e., they conclude with the same session key).

Freshness. Informally, the adversary succeeds if it can guess the bit b used by a Test oracle.
Before formally defining the adversary’s success, we must first define a notion of freshness. A
client instance Ai is fresh unless one of the following is true at the conclusion of the experiment,
namely, at some point,

• The adversary queried Reveal(Ai) or Reveal(Bj) with the client instances Ai and Bj being
partnered.

• The adversary queried KeyGen(PKG, S) where the server instance S ∈ pidi
A, before a query

of the form Send(U `,M), where U ∈ pidi
A, has taken place, for some message M (or

identities).

• The adversary queried Corrupt(A) or Corrupt(B) with the client instance Ai and Bj being
partnered, before a query of the form Send(U `,M), where U ∈ pidi

A, has taken place, for
some message M (or identities).

Note that a client instance is fresh to a server or PKG adversary as long as the first event
did not happen, because the server or PKG adversary has no access to any Send oracles and the
last two events always happen.

The adversary is thought to succeed only if its Test query is made to a fresh instance. Note
that this is necessary for any reasonable definition of security, otherwise, the adversary could
always succeed, e.g., submitting a Test query for an instance for which it had already submitted
a Reveal query. In addition, a server instance Sj is fresh if any client instance Ai such that
(A,S) ∈ ClientServerPair, sidi

A = sidj
S , and pidi

A = pidj
S , is fresh.
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Advantage of the adversary. We say an adversary A succeeds if it makes a single query
Test(Ai) to a fresh client instance Ai, with acci

A = TRUE at the time of this query, and outputs
a single bit b′ with b′ = b (recall that b is the bit chosen by the Test oracle). We denote this event
by Succ. The advantage of adversary A in attacking protocol P is a function in the security
parameter k, defined as

AdvP
A(k) = 2 · PrPA[Succ]− 1

where the probability is taken over the random coins used by the adversary and the random
coins used during the course of the experiment (including the initialization phase). It remains
to define what we mean by a secure protocol. Note that a probabilistic polynomial-time (PPT)
adversary can always succeed by trying all passwords one-by-one in an online impersonation
attack. This is possible since the size of the password dictionary is constant. Informally, a
protocol is secure if this is the best an adversary can do. Formally, an instance U i represents
an online attack if both the following are true at the time of the Test query: (1) at some point,
the adversary queried Send(U i, ∗), and (2) at some point, the adversary queried Reveal(Aj) or
Test(Aj), where the client instance Aj ∈ pidi

U . In particular, instances with which the adversary
interacts via Execute, KeyGen, Reveal and Corrupt queries are not counted as online attacks. The
number of online attacks represents a bound on the number of passwords the adversary could
have tested in an online fashion.

Definition 1. Protocol P is a secure protocol for password-authenticated key exchange if, for
all dictionary size N and for all PPT adversaries A making at most Q(k) online attacks, there
exists a negligible function ε(·) such that

AdvP
A(k) ≤ Q(k)/N + ε(k)

The above definition ensures that the adversary can (essentially) do no better than guess a single
password during each online attack. Calls to the Execute, KeyGen, Reveal and Corrupt oracles,
which are not included in Q(k), are of no help to the adversary in breaking the security of the
protocol. This means the passive attacks and offline dictionary attacks are of no use.

Forward secrecy. We follow the definition of forward secrecy from [47, 1] and consider the
weak corrupt model of [12], in which corrupting a client means retrieving his passwords, while
asking KeyGen query on a server means retrieving its private keys and all passwords stored in
it. Forward secrecy is then achieved if such queries do not give the adversary any information
about previous agreed session keys. In addition, we follow the definition of freshness from [1].
The adversary is allowed to ask the Test query on a client instance, where he has known (1) the
passwords of the client or any of his partners by Corrupt query; or (2) the private key of the
server and all password stored in it by KeyGen query, however, he has not asked any Send query
to the instance of the client or any of his partners. In this sense, the above definition of security
implies forward secrecy.

Key privacy with respect to the server. The notion of key privacy respect to the server was
introduced in [3] to capture the idea where the session key shared between two instances should
only be known to these two instances and no one else, including the server, who behaves in an
honest but curious manner. In our model, the server can be imagined as a passive adversary
who has already queried a KeyGen oracle to retrieve the server’s private keys and all passwords
stored in it. On the basis of the above definition for forward secrecy, key privacy with respect
to the server is implied in forward secrecy.
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3 Cryptographic Building Blocks

3.1 Group Key Exchange

A group key exchange (KE) protocols allow users of a group communicating over an insecure
public network to establish a common secret key (i.e., a group key), where the shared secret key
is derived by two or more users as a function of the information contributed by, or associated
with, each of these, (ideally) such that no user can predetermine the resulting key. They are
intended to be secure against the passive adversary only. A passive adversary is given access to
the Execute, Reveal, and Test oracles as defined in Section 2. In the definition of Execute oracle,
we reasonably require that different executions yield different group session keys.

We say a passive adversary A succeeds if it makes a single query Test(Ai) to a fresh instance
Ai (i.e., no Reveal oracle is queried to Ai and his partnered instances), and outputs a single bit
b′ with b′ = b (recall that b is the bit chosen by the Test oracle). We denote this event by Succ.
The advantage of a passive adversary A in attacking a group KE protocol P is a function in the
security parameter k, defined as AdvP

A(k) = 2 · PrPA[Succ]− 1.
A group KE protocol P is secure against passive eavesdropping if no polynomial bounded

adversary A has a non-negligible advantage in attacking it.
The group KE protocols proposed by Ingemarsson et al. [43], Burmester and Desmedt [29],

and Steiner et al. [58] may be the most well-known. Among them, Burmester-Desmedt protocol
has been shown to be secure against passive eavesdropping in the standard model by Katz and
Yung [48].

3.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme is specified by four randomized algorithms: Setup,
Extract,Encrypt,Decrypt as follows.

• Setup: On input a security parameter k, it returns params (public system parameters) and
master-key (known only to the “Private Key Generator”).

• Extract: On inputs params,master-key and a public identity ID ∈ {0, 1}∗, it returns a
private key d.

• Encrypt: On inputs params, ID, and a message M ∈ M (the plaintext space), it returns a
ciphertext C ∈ C (the ciphertext space).

• Decryption: On inputs params, C ∈ C, and a private key d, it returns M ∈M.

Chosen ciphertext security is the standard acceptable notion of security for a public key
encryption scheme. An IBE scheme is semantically secure against the adaptive chosen cipher-
text attack if no polynomial bounded adversary A has a non-negligible advantage against the
challenger in the following game:

• Initialize: The challenger runs the Setup algorithm, gives params to the adversary, but
keeps the master-key to itself.

• Phase 1: The adversary adaptively asks a number of different queries q1, q2, · · · , qm, where
qi is either Extract(IDi) or Decrypt(IDi, Ci).
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• Challenge: Once the adversary decides that Phase 1 is over, it outputs a pair of equal
length plaintexts (M0,M1) and an identity ID on which it wishes to be challenged, where
ID must not appear in Phase 1. The challenger picks a random bit b ∈ {0, 1} and sends
C = Encrypt(ID,Mb) as the challenge to the adversary.

• Phase 2: The adversary issues more queries qm+1, qm+2, · · · , qn adaptively as in Phase 1,
except that the adversary may not request a private key for ID or the decryption of (ID, C).

• Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.

We define the adversary A’s advantage in attacking the IBE scheme as a function of the
security parameter k, AdvE

A(k) = |PrEA[b′ = b] − 1/2|, where the probability is over the random
bits used by the challenger and the adversary. The most efficient identity-based encryption
schemes are currently based on bilinear pairings on elliptic curves, such as the Weil or Tate
pairings. Boneh and Franklin [17, 18] were the first to give an IBE scheme from Weil pairing
and prove it to be adaptive chosen-ciphertext security in the random oracle model. More recently,
several new IBE schemes from pairing (e.g., [60][39]) were proposed and proven to be adaptive
chosen-ciphertext security in the standard model. A common feature of the latest IBE schemes
is that the plaintext space is a cyclic group of prime order.

3.3 Identity-Based Signature

An identity-based signature (IBS) scheme can be described by four algorithms Setup,Extract,
Sign,Verify as follows.

• Setup: On input a security parameter k, it returns params (public system parameters) and
master-key (known only to the “Private Key Generator”).

• Extract: Given params,master-key and a public identity ID ∈ {0, 1}∗, it returns a private
key dID.

• Sign: Given a message M , params, ID and a private key dID, it generates a signature σ of
the user (with identity ID) on M .

• Verify: Given a signature σ, a message M , and params, ID, it outputs accept if σ is a valid
signature of the user (with identity ID) on M , and outputs reject otherwise.

An IBS scheme is existential unforgeability under the chosen message attack [41] if no polyno-
mial bounded adversary A has a non-negligible advantage against the challenger in the following
game:

• Initialize: The challenger runs the Setup algorithm, gives params to the adversary, but
keeps the master-key to itself.

• Queries: The adversary adaptively asks a number of different queries q1, q2, · · · , qm, where
qi is either Extract(IDi) or Sign(IDi,M).

• Forgery: Once the adversary decides that queries are over, it outputs a message M ′, an
identity ID′ and a string σ′. The adversary succeeds (denoted as Succ) if Verify(ID′,M ′, σ′) =
1, where ID′ cannot appear in Extract queries and (ID′,M ′) cannot appear in Sign queries.

9



We define the adversary A’s advantage in attacking the IBS scheme as a function of the
security parameter k, AdvS

A(k) = PrSA[Succ], where the probability is over the random bits used
by the challenger and the adversary.

A generic approach to construct IBS schemes is to use an ordinary (i.e., non-identity-based)
signature scheme and simply attach a certificate containing the public key of the signer to the
signature [38]. An IBS scheme with provable security in the standard model was given by
Paterson and Schuldt in [54].

3.4 Decisonal Squaring Diffie-Hellman Problem

The computational squaring Diffie-Hellman (CSDH) problem in a cyclic group G with a prime
order q and a generator g is: Given g, ga where a is randomly chosen from Z∗

q , determine ga2
.

The problem is as hard as Diffie-Hellman problem [53, 30, 9].
The decisional squaring Diffie-Hellman (DSDH) problem in a cyclic group G with a prime

order q and a generator g is to distinguish between two distributions (g, ga, ga2
) (dentoed as

b = 0) and (g, ga, z) (denoted as b = 1), where a is randomly chosen from Z∗
q and z is randomly

chosen from G. This problem is not harder than the decisional DH problem, but we believe that
this problem can still be hard, that is, we can assume that the advantage of any PPT algorithm
A that outputs b ∈ {0, 1} in solving the DSDH problem is negligible, namely,

|Pr[A(g, ga, ga2
) = 0]− Pr[A(g, ga, z) = 0]|

is negligible, where the probability is over the random choice of a in Z∗
q and z in G, and the

random bits consumed by A.

4 An Efficient Compiler for Group PAKE

4.1 Description of the Compiler

In this section, we present an efficient compiler transforming any group KE protocol P to a
group PAKE protocol P ′.

Following the communication model given in [3], we assume that arbitrary point-to-point
connections among clients and servers to be available. The network is non-private and fully
asynchronous, that is, the adversary may delay, eavesdrop, insert and delete message at will.

Given a group KE protocol P , our compiler constructs a group PAKE protocol P ′ as shown
in Fig. 1, in which n clients A1, A2, · · · , An (in lexicographic order) wish to establish a common
authenticated secret key (i.e., a group key) with the help of a server S. A completely formal
specification of the group PAKE protocol will appear in Section 5, where we give a brief proof
of security for the protocol in the security model described in Section 2.

We present the protocol by describing initialization and execution. The cryptographic build-
ing blocks of our protocol include a group KE protocol, an IBE scheme and an IBS scheme. We
let k be the security parameter given to the setup algorithm.

Initialization. Given a security parameter k ∈ Z∗, the initialization includes:

Parameter Generation: On input k, (1) PKG runs SetupP of the group KE protocol P to generate
system parameters, denoted as paramsP ; (2) PKG runs SetupE of the IBE scheme to generate
public system parameters for the IBE scheme, denoted as paramsE , and the secret master-keyE
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for itself; (3) PKG runs SetupS of the IBS scheme to generate public system parameters for the
IBS scheme, denoted as paramsS , and the secret master-keyS for itself; In addition, PKG chooses a
large cyclic group G with a prime order q and a generator g, and a hash function H : {0, 1}∗ →M
(whereM is the plaintext space of IBE), from a collision-resistant hash family. The public system
parameters for the protocol P ′ is params = {H,G, q, g}

⋃
paramsP

⋃
paramsE

⋃
paramsS and the

secret (master-keyE , master-keyS) is known only to PKG.

Round 0 (Group Key Exchange (P ))

Clients A`, ` = 1, 2, · · · , n

(skP
A1 , skP

A2 , · · · , skP
An

)← ExecuteP (A1, A2, · · · , An)

pidA`
← (A1, A2, · · · , An)

Round 1 (Client Authentication)

Client A`, ` ∈ {1, 2, · · · , n}, pidA`
← pidA`

∪ {S}, sidA` ← g
skP

A`

Auth` ← EIDS [H(sidA` |pidA`
|pwS

A`
)]

{S} ← msgA`
= A`|sidA` |Auth`

Server S, pidS ← (A1, A2, · · · , An, S), sidS ← sidA1

If ∃` such that DdS [Auth`] 6= H(sidS |pidS |pwS
A`

), then return ⊥

Round 2 (Server Authentication)

Server S

AuthS ← Sd′
S
[pidS |sidS ]

{A1, A2, · · · , An} ← msgS = S|AuthS

Client A`, ` = 1, 2, · · · , n
If VIDS [pidA`

|sidA` , AuthS ] 6= 1, then return ⊥
Else accept← TRUE, skP ′

A`
← g

(skP
A`

)2

Fig. 1. ID-based group PAKE protocol P ′

Key Generation: On input the identity IDS of a server S ∈ Server, params, and (master-keyE ,
master-keyS), PKE runs ExtractE of the IBE scheme and sets the decryption key of S to be dS,
and runs ExtractS of the IBS scheme and sets the signing key of S to be d′S.

Password Generation: On input (A,S) ∈ ClientServerPair, a string pwS
A, the password, is uni-

formly drawn by the client A from the dictionary Password = {pw1, pw2, · · · , pwN}, and then
store it in the server S.

Protocol Execution. For a group of clients A1, A2, · · · , An (in lexicographic order), where
there exists a server S such that (A`, S) ∈ ClientServerPair, when A` (having password pwS

A`
)

(` = 1, 2, · · · , n) agree to establish a common authenticated secret key (i.e., a group key) via
S, they firstly run the group KE protocol P and each client A` computes the initial group key
skP

A`
. Note that the clients may not be authentic and the initial group key derived by different

clients in the same session may not be equal. Mutual authentication and key confirmation run
as follows.

Each client A` compute sidA`
= g

skP
A` and an IBE encryption of H(sidA`

|pidA`
|pwS

A`
) based

on the identity IDS of the server, denoted as Auth`. Then msgA`
= A`|sidA`

|Auth` is submitted
to the server S.
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Upon receiving the messages msgA`
(` = 1, 2, · · · , n), the server S lets sidS = sidA1 and

decrypts the ciphertexts with its decryption key dS, and verifies whether

DdS
[Auth`] = H(sidS |pidS |pwS

A`
) (1)

If equation (1) holds for ` = 1, 2, · · · , n, the server S uses its signing key d′S to generate a
signature AuthS = Sd′S

[pidS |sidS ], and then broadcasts msgS = S|AuthS .
Upon receiving msgS, each client A` checks if

VIDS
[pidA`

|sidA`
,AuthS ] = 1 (2)

If equation (2) holds, A` computes g
(skP

A`
)2 and accepts it as the authenticated group key

skP ′
A`

.

4.2 Correctness, Explicit Authentication, Trust Model and Efficiency

Correctness. In the case where two clients Ai and Aj are partnered with accAi = accAj =
TRUE, the signature of the server on pidAi

|sidAi = pidAj
|sidAj = pidS |sidS ensures that pidAi

=

pidAj
and sidAi = sidAj . Therefore, g

skP
Ai = g

skP
Aj and further skP

Ai
= skP

Aj
(mod q). This means,

g
(skP

Ai
)2 = g

(skP
Aj

)2
, that is, skP ′

Ai
= skP ′

Aj
. Thus, our protocol meets correctness.

Explicit authentication. By verifying equation (1) which involves the password pwS
A`

, the
partner identity pidS and the initial group key skP

A`
for ` = 1, 2, · · · , n, the server S can make

sure the authenticity of each client A` and the initial group key. By verifying equation (2) which
involves the signature of the server, each client A` is convinced of the authenticity of the server
S, other partners and the initial group key. If both equations (1) and (2) hold, all clients are
legitimate, the initial group key is genuine and thus the final group key g

(skP
A`

)2 is authentic.
This shows that the group PAKE protocol P ′ achieves explicit authentication, that is, each
client knows that its intended partners have successfully computed a matching session key (i.e,
a group key).

Trust model. The protocol compiler for group PAKE given by Abdalla et al. [1] is applicable
where each user of the group is honest. If two adjacent users are dishonest, they can conspire to
include one (or several) impersonating attacker(s) between them, while other users are unaware
of this attack. Our compiler assumes that there exist “honest but curious” servers, which are
trusted to authenticate users of the group, but may perform passive attacks on the protocol to
retrieve the group key. In terms of trust management, we believe that our compiler is more
practical than Abdalla et al.’s compiler.

Efficiency consideration. The efficiency of our group PAKE protocol depends on performance
of the underlying group KE protocol, IBE and IBS schemes. Only two rounds are added to the
original group KE protocol P . In these two rounds, each client sends out one message and
receives one message only. This compiler adds only O(1) communication (per client) to the
original group KE protocol. If our compiler employs Burmester-Desmedt group key exchange
protocol, our group PAKE protocol has 4 rounds only. The communication cost of each client is
O(2n) bits, where n is the number of clients. If Abdalla et al.’s compiler employs KOY 2-PAKE
protocol [46] and constructs the commitment scheme with Cramer-Shoup public key encryption
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scheme [35], their group PAKE protocol has 5 rounds. The communication cost of each user is
O(6n) bits. In this sense, we believe that our compiler is more efficient than Abdalla et al.’s
compiler. Note that we take into account cryptographic blocks with provably security in the
standard model only.

5 Proof of Security

We follow the methods of the security proofs given in [48, 46] to prove the security of our
compiler without random oracles. First of all, we provide a formal specification of the group
PAKE protocol by specifying the initialization phase and the oracles to which the adversary has
access, as shown in Fig. 2−4.

During the initialization phase for security parameter k, algorithm Initialize generates params
= {G, q, g, H}

⋃
paramsP

⋃
paramsE

⋃
paramsS and the secret (master-keyE ,master-keyS) at first.

Furthermore, the sets Client, Server, ClientServerPair are determined. Passwords for clients are
chosen at random, and then stored at corresponding servers.

Initialize(1k)

(paramsP,E,S , master-keyE,S)
R← SetupP,E,S(1k)

(Client, Server, ClientServerPair)
R← UserGen(1k), (G, q, g)

R← GGen(1k), H
R← CRHF(1k)

For each i ∈ {1, 2, · · ·} and each U ∈ User

acci
U ← termi

U ← usedi
U ← FALSE, sidi

U ← pidi
U ← ski

U ← NULL

For each S ∈ Server, dS, d
′
S ← ExtractE,S(IDS , paramsE,S , master-keyE,S)

For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN}
Return Client, Server, ClientServerPair, G, q, g, H, paramsP,E,S

Fig. 2. Specification of the initialize

Execute(Ai1
1 , · · · , Ain

n , Sj), where A` ∈ Client, S ∈ Server

If (∃` such that (A`, S) 6∈ ClientServerPair ∨ usedi`
A`

) ∨ usedj
S , return ⊥

usedi`
A`
← usedj

S ← TRUE, pidi`
A`
← pidj

S ← {A1, · · · , An, S}, ` = 1, 2, · · · , n
(skP

A1 , skP
A2 , · · · , skP

An
)← ExecuteP (Ai1

1 , Ai2
2 , · · · , Ain

n )

sidi`
A`
← g

skP
A` , Auth` ← EIDS [H(sidi`

A`
|pidi`

A`
|pwS

A`
)], msgA`

← A`|sidi`
A`
|Auth`, ` = 1, 2, · · · , n

sidj
S ← sidi1

A1
, AuthS ← Sd′

S
[pidj

S |sid
j
S ], msgS ← S|AuthS

acci`
A`
← termi`

A`
← accj

S ← termj
S ← TRUE, ski`

A`
← g

(skP
A`

)2
, ` = 1, 2, · · · , n

Return statusi1
A1

, · · · , statusin
An

, statusj
S

KeyGen(PKG, S)

Return dS, d
′
S and pwS

A for any A

Corrupt(A)

Return pwS
A for any S

Reveal(Ai)

Return ski
A

Test(Ai)

b
R← {0, 1}, sk′ R← Ω. If b = 1 return sk′ else return ski

A

Fig. 3. Specification of the Execute, KeyGen, Corrupt, Reveal, Test oracles
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Send0(A
i`
` , (Ai1

1 , · · · , Ain
n ))

If usedi`
A`

, return ⊥
usedi`

A`
← TRUE

· · · · · · · · ·
Send′0(A

i`
` , Sj)

If ¬usedi`
A`
∨ (A`, S) 6∈ ClientServerPair ∨ termi`

A`
, return ⊥

pidi`
A`
← {A1, · · · , An, S}, sidi`

A`
← g

skP
A` , Auth` ← EIDS [H(sidi`

A`
|pidi`

A`
|pwS

A`
)]

MsgOut← A`|sidi`
A`
|Auth`, state

i`
A`
← (pidi`

A`
, skP

A`
, MsgOut)

Return statusi`
A`

Send′1(S
j , (A

i`
` |sid

i`
A`
|Auth`)`=1,2,···,n)

If (∃` such that (A`, S) 6∈ ClientServerPair) ∨ usedj
S , return ⊥

usedj
S ← TRUE, pidj

S ← {A1, A2, · · · , An, S}, sidj
S ← sidi1

A1

If ∃` such that DdS [Auth`] 6= H(sidj
S |pidj

S |pw
S
A`

), reject and return statusj
S

AuthS ← Sd′
S
[pidj

S |sid
j
S ], accj

S ← termj
S ← TRUE, MsgOut← S|AuthS

Return statusj
S

Send′2(A
i`
` , Sj |AuthS)

statei`
A`
← (pidi`

A`
, skP

A`
, FirstMsgOut)

If ¬usedi`
A`
∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

If VIDS [pidi`
A`
|sidi`

A`
, AuthS ] 6= 1, reject and return statusi`

A`

acci`
A`
← termi`

A`
← TRUE, ski`

A`
← g

(skP
A`

)2

Return statusi`
A`

Fig. 4. Specification of the Send oracles

The description of the Execute oracle matches the high-level protocol described in Fig. 1, but
additional details (for example, the updating of state information) are included. We let statusiU
denote the vector of values (sidi

U , pidi
U , acci

U , termi
U ) associated with instance U i. Given an

adversary A, we imagine a simulator that runs the protocol for A. More preciously, the simulator
begins by running algorithm Initialize(1k) (which includes choosing passwords for clients) and
giving the public output of the algorithm to A. When A queries an oracle, the simulator
also responds by executing the appropriate algorithm. The simulator also records all state
information defined during the course of the experiment.

In particular, when the adversary completes its execution and outputs a bit b′, the simulator
can tell whether the adversary succeeds by checking whether (1) a single Test query was made,
for some client instance U i; (2) acci

U was true at the time of Test query; (3) instance U i is fresh;
and (4) b′ = b. Success of the adversary is denoted by event Succ. For any experiment P ′ we
define

AdvP ′
A (k) = 2 · PrP

′
A [Succ]− 1

Based on the model described in Section 2, we have

Theorem 1. Assume that (1) the group KE protocol is secure against passive eavesdropping;
(2) the IBE scheme is secure against the chosen-ciphertext attack; (3) the IBS scheme is existen-
tial unforgeability under the chosen-message attack; (4) the decisional squaring Diffie-Hellman
(DSDH) problem is hard over a cyclic group G with a prime order q and a generator g; (5)
CRHF is a collision-resistant hash family; then the protocol P ′ described in Fig. 1 is a secure
group PAKE protocol.

The detail proof of Theorem 1 is provided in Appendix.
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6 Conclusion

In this paper, we present an efficient compiler to transform any group KE protocol to a group
PAKE protocol from identity-based cryptosystem. In addition, we provide a rigorous proof of
security for our compiler. As long as our group PAKE protocol is built on a group KE protocol,
and IBE and IBS schemes with provable security without random oracles, it can be proven to
be secure without random oracles.
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Appendix: Proof of Theorem 1

We begin with some terminology that will be used throughout the proof. A given message
is called oracle-generated if it was output by the simulator in response to some oracle query.
The message is said to be adversarially-generated otherwise. An adversarially-generated
message must not be the same as any oracle-generated message.

We refer to the real execution of the experiment, as described above, as P ′
0. We will introduce

a sequence of transformations to the experiment P ′
0 and bound the effect of each transformation

on the adversary’s advantage. We then bound the adversary’s advantage in the final experiment.
This immediately yields a bound on the adversary’s advantage in the original experiment.

Experiment P ′
1: In this experiment, the simulator interacts with the adversary as before except

that the adversary does not succeed, and the experiment is aborted, if any of the following occur:
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1. At any point during the experiment, an oracle-generated message (e.g., msgA`
or msgS) is

repeated.

2. At any point during the experiment, a collision occurs in the hash function H (regardless
of whether this is due to a direct action of the adversary, or whether this occurs during
the course of the simulator’s response to an oracle query).

It is immediate that events 1 occurs with only negligible probability, event 2 occurs with neg-
ligible probability assuming CRHF as a collision-resistant hash family. Put everything together,
we are able to see that

Claim 1. If CRHF is a collision-resistant hash family, |Adv
P ′

0
A (k)− Adv

P ′
1

A (k)| is negligible.

Experiment P ′
2: In this experiment, the simulator interacts with the adversary A as in exper-

iment P ′
1 except that the adversary’s queries to Execute oracles are handled differently: for any

Execute(Ai1
1 , · · · , Ain

n , Sj) oracle where the adversary has not queried Reveal(Ai`
` ) (` = 1, 2, · · · , n)

in the end of experiment P ′
1, the initial group key skP

A`
(` = 1, 2, · · · , n) established during the

group key exchange protocol P are replaced with a random value from an appropriate set.
The difference between the current experiment and the previous one is bounded by the

probability that an adversary breaks the security of the group key exchange protocol P . More
precisely, we have

Claim 2. If the group key exchange protocol P is secure against passive eavesdropping,
|Adv

P ′
1

A (k)− Adv
P ′

2
A (k)| is negligible.

Assume that there are m such Execute queries in the end of experiment P ′
1, the claim is

proved by m sub-experiments P
′(1)
2 , · · · , P ′(m)

2 = P ′
2, in each of which only one such Execute is

handled differently. Let P
′(0)
2 = P ′

1, we only need to prove |Adv
P
′(t−1)
2

A (k) − Adv
P
′(t)
2

A (k)| (where
1 ≤ t ≤ m) to be negligible.

If |Adv
P
′(t−1)
2

A (k) − Adv
P
′(t)
2

A (k)| is non-negligible, where P
′(t)
2 is for Execute(Ai1

1 , · · · , Ain
n , Sj),

we show that the simulator can use A as a subroutine to perform the passive attack to the GKE
protocol P as follows.

Given the parameters paramsP of a GKE protocol P , the simulator runs the initialization
protocol as shown in Fig. 2, expect that paramsP is not generated. To respond to those Execute
queries with Reveal asked by the adversary A, the simulator queries ExecuteP and RevealP to
the protocol P at first. When A asks Execute(Ai1

1 , · · · , Ain
n , Sj) query, the simulator queries

ExecuteP (Ai1
1 , · · · , Ain

n ) and then TestP (Ai1
1 ) to the protocol P . Suppose that TestP (Ai1

1 ) = skb

where b ∈ {0, 1}, sk0 is the group key while sk1 is a random value from Ω. Let skP
A`

= skb

(` = 1, 2, · · · , n), the simulator constructs Execute(Ai1
1 , · · · , Ain

n , Sj) accordingly (i.e., letting
sidi`

A`
= gh(skb)) and responds to A.

When b = 0, the distribution of adversary’s view in the current experiment and P
′(t−1)
2

are identical, and thus the adversary has the same Adv
P
′(t−1)
2

A (k). If b = 1, the distribution of
adversary’s view in the current experiment and P

′(t)
2 are identical, and thus the adversary has

the same Adv
P
′(t)
2

A (k). If |Adv
P
′(t−1)
2

A (k) − Adv
P
′(t)
2

A (k)| is non-negligible, the simulator can decide
when b = 0 or b = 1 with a non-negligible advantage, and thus win the game against the protocol
P .
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Since the GKE protocol P is assumed to be secure against the passive attack, |Adv
P
′(t−1)
2

A (k)−

Adv
P
′(t)
2

A (k)| must be negligible and Claim 2 is true.

Experiment P ′
3: In this experiment, the simulator interacts with the adversary A as in exper-

iment P ′
2 except that the adversary’s queries to Execute oracles are handled differently: for any

Execute(Ai1
1 , · · · , Ain

n , Sj) oracle where the adversary has not queried Reveal(Ai`
` ) (` = 1, 2, · · · , n)

in the end of experiment P ′
2, the final group key ski`

A`
(` = 1, 2, · · · , n) are replaced with a random

value from G.
The difference between the current experiment and the previous one is bounded by the

probability to solve the decisional squaring Diffie-Hellman (DSDH) problem over a cyclic group
G with a prime order q and a generator g. More precisely, we have

Claim 3. If the decisional squaring Diffie-Hellman (DSDH) problem is hard over (G, q, g),
|Adv

P ′
2

A (k)− Adv
P ′

3
A (k)| is negligible.

If the above difference is non-negligible, we show that the simulator can use A as a subroutine
to solve the DSDH problem with non-negligible probability as follows.

Given a DSDH problem (g, ga, Z), where a is randomly chosen from Z∗
q and Z is either ga2

(denoted as b = 0) or a random element z from G (denoted as b = 1), the simulator (without
knowledge of a and b) runs the initialization protocol as shown in Fig. 2, except that (G, q, g)
is not generated. To respond to Execute(Ai1

1 , · · · , Ain
n , Sj) query where the adversary A has not

queried Reveal(Ai`
` ) (` = 1, 2, · · · , n), the simulator chooses a random number r ∈ Z∗

q and lets
sidi`

A`
= (ga)r and ski`

A`
= Zr2

(` = 1, 2, · · · , n). Because all initial group keys have been replaced
with random values in experiment P ′

2, when b = 0, the distribution of adversary’s view in the
current experiment and P ′

2 are identical, and thus the adversary has the same Adv
P ′

2
A (k); when

b = 1, the distribution of adversary’s view in the current experiment and P ′
3 are identical, and

thus the adversary has the same Adv
P ′

3
A (k).

If |Adv
P ′

2
A (k)−Adv

P ′
3

A (k)| is non-negligible, the simulator can decide when b = 0 or b = 1 with
a non-negligible advantage, and thus solve the DSDH problem. Therefore, the above difference
must be negligible and the claim is true.

In experiment P ′
3, the adversary’s probability of correctly guessing the bit b used by the

Test oracle is exactly 1/2 if the Test query is made to a fresh client instance Ai invoked by an
Execute oracle, where the freshness only requires that the adversary has not queried Reveal(Ai)
or Reveal(Bj) with the client instances Ai and Bj being partnered. This is so because the final
group keys for such instances in P ′

3 are chosen at random from G, and hence there is no way
to distinguish whether the Test oracle outputs a random group key or the “actual” group key
(which is just a random element, anyway).

Note that an adversary is allowed to ask the above Test oracle even if he has queried KeyGen
or Corrupt oracles, but the probability of correctly guessing the bit b is 1/2, too. Therefore, a
server adversary never succeed in the game.

The remainder of the proof concentrates on the instances invoked by Send oracles.

Experiment P ′
4: In this experiment, we modify the simulator’s responses to Send′1 and Send′2

queries.
Before describing this change we introduce some terminology. The simulator first runs the

protocol initialization as shown in Fig. 2. For a query Send′1(S
j , (msgA1

, · · · ,msgAn
)), where
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(msgA1
, · · · ,msgAn

) is adversarially-generated, if equation (1) holds for ` = 1, 2, · · · , n, then
(msgA1

, · · · ,msgAn
) is said to be valid. Otherwise, (msgA1

, · · · ,msgAn
) is said to be invalid.

Similarly, for a query Send′2(A
i`
` , msgS) where msgS is adversarially-generated, if equation (2)

holds, then msgS is said to be valid. Otherwise, msgS is said to be invalid. Informally, valid
messages use correct passwords or signing keys while invalid messages do not.

Given this terminology, we continue with our description of experiment P ′
4. When the ad-

versary makes oracle queries Send′1(S
j , (msgA1

, · · · ,msgAn
)), the simulator examines (msgA1

, · · · ,
msgAn

). If it is adversarially-generated and valid, the query is answered as in experiment P ′
4

except that accj
S is assigned the special value ∇. In any other case, (i.e., (msgA1

, · · · ,msgAn
)

is oracle-generated, or adversarially-generated but invalid), the query is answered exactly as
in experiment P ′

4. When the adversary makes oracle queries Send′2(A
i`
` ,msgS), the simulator

examines msgS . If msgS is adversarially-generated and valid, the query is answered as in ex-
periment P ′

3 except that acci`
A`

is assigned the special value ∇. In any other case, (i.e., msgS

is oracle-generated, or adversarially-generated but invalid), the query is answered exactly as in
experiment P ′

3.
Finally, the definition of the adversary’s success in P ′

4 is changed. If the adversary ever
queries Send′1 or Send′2 with accj

S = ∇ or acci`
A`

= ∇, the simulator halts and the adversary
succeeds. Otherwise the adversary’s success is determined as in experiment P ′

3.
The distribution on the adversary’s view in experiments P ′

3 and P ′
4 are identical up to the

point when the adversary queries Send′1 or Send′2 with accj
S = ∇ or acci`

A`
= ∇. If such a query

is never made, the distributions on the view are identical. Therefore, we have

Claim 4. Adv
P ′

3
A (k) ≤ Adv

P ′
4

A (k).

In experiment P ′
4, the adversary A succeeds if one of the following occurs: (1) the adversary

queries Send′1(S
j , (msgA1

, · · · ,msgAn
)) for adversarially-generated and valid (msgA1

, · · · ,msgAn
),

that is, accj
S = ∇ (let Succ1 denote this event); (2) the adversary queries Send′2(A

i`
` ,msgS) for

adversarially-generated and valid msgS , that is, acci`
A`

= ∇ (let Succ2 denote this event); (3)
neither Succ1 nor Succ2 happens, the adversary wins the game by a Test query to a fresh client
instance Ai.

In the last event, if the fresh client instance Ai is invoked by Send oracles, the messages in
these Send oracles have to be oracle-generated. In this case, the group of these Send oracles
form an Execute oracle, where the final group key ski

A can be replaced by a random value from
G on the basis of Claims 1 to 3.

To evaluate Pr
P ′

4
A [Succ2], we do the following experiment.

Experiment P ′
5. Given the parameters (paramsS) of IBS, the simulator responds to all oracle

queries as in experiment P ′
4 except that it begins by running a modified initialization as follows.

Initialize′(1k, paramsS)–

(paramsP,E , master-keyE)
R← SetupP,E(1k), (G, q, g)

R← GGen(1k), H
R← CRHF(1k)

(Client, Server, ClientServerPair)
R← UserGen(1k)

For each S ∈ Server, dS ← ExtractE(IDS , paramsE , master-keyE)

For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN} ⊂ Z∗
p

Return Client, Server, ClientServerPair, G, q, g, h, H, paramsP,E,S

The distribution of the adversary’s view on experiments P ′
4 and P ′

5 are identical.
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Claim 5. If the IBS has existential unforgeability under chosen-message attack, then Pr
P ′

5
A [Succ2]

is negligible.

If Pr
P ′

5
A [Succ2] is non-negligible, the simulator can use the adversary A to construct a forger

A′ attacking the IBS scheme as follows.
For KeyGen queries asked by the adversary A, the simulator has the adversary A′ to query

the challenger of the IBS scheme. Each time the simulator responds to Send′1 query asked by
A, it checks if the messages are valid or not (note that it knows the decryption key dS and
passwords). For oracle-generated Send′1 query, the simulator has A′ to query the signing oracle
Sd′S

of the IBS scheme on the message pidj
S |sid

j
S and returns the signature AuthS . In addition,

the simulator responds to all other oracles as in P ′
4.

In case that the adversary A queried Send′2(A
i`
` ,msgS) to a fresh client instance Ai`

` for
adversarially-generated and valid msgS (that is, acci`

A`
= ∇), the adversary A′ uses it to forge a

signature of the signer S on the message msgS . The freshness of Ai`
` ensures that the adversary

has not queried KeyGen(PKG, S) before Send′2(A
i`
` ,msgS) oracle query.

If Pr
P ′

5
A [Succ2] is non-negligible, the advantage of the forger A′ attacking the IBS scheme is

non-negligible. It is in contradiction with the assumption that the IBS scheme has existential
unforgeability. Therefore, Pr

P ′
5

A [Succ2] must be negligible and the claim follows.

To evaluate Pr
P ′

5
A [Succ1], we do the following experiment.

Experiment P ′
6: In this experiment, the simulator interacts with the adversary A as in ex-

periment P ′
5 except that the adversary’s queries to Execute and Send′0 oracles are handled dif-

ferently: for Execute(Ai1
1 , · · · , Ain

n , Sj) and Send′0(A
i`
` , Sj) oracles where the adversary has not

queried KeyGen(PKG, S), Auth` is computed as EIDS
[H(sidi`

A`
|pidi`

A`
|pw′)] where pw′ is randomly

chosen from Z∗
p−Password (i.e., it is not a valid password). The following bounds the effect this

transformation can have on the adversary’s advantage.

Claim 6. If the IBE scheme is secure against the chosen-ciphertext attack, |Adv
P ′

5
A (k)−Adv

P ′
6

A (k)|
is negligible.

Assume that there are m pairs of client instance Aiλ
λ and server instance Sj in experiment

P ′
5, where (1) sidiλ

Aλ
= sidj

S and (2) the adversary has not queried KeyGen(PKG, S). The claim

is proved by m sub-experiments P
′(1)
6 , · · · , P ′(m)

6 = P ′
6, each of them corresponds to a pair of

(Aiλ
λ , Sj). In the sub-experiment for (Aiλ

λ , Sj), only Execute and Send′0 related to Aiλ
λ and Sj are

handled differently. Let P
′(0)
6 = P ′

5, we only need to prove |Adv
P
′(t−1)
6

A (k) − Adv
P
′(t)
6

A (k)| (where
1 ≤ t ≤ m) to be negligible.

If |Adv
P
′(t−1)
6

A (k)−Adv
P
′(t)
6

A (k)| is non-negligible, where P
′(t)
6 is the sub-experiment for (Aiλ

λ , Sj),
we show that the simulator can use A as a subroutine to perform the chosen-ciphertext attack
to the IBE as follows.

Given public parameters paramsE for an instance of the IBE scheme, the simulator begins
by running a modified initialization protocol as follows.

Initialize′′(1k, paramsE)–

(paramsP,S , master-keyS)
R← SetupP,S(1k), (G, q, g)

R← GGen(1k), H
R← CRHF(1k)

(Client, Server, ClientServerPair)
R← UserGen(1k),

For each S ∈ Server, d′S ← ExtractS(IDS , paramsS , master-keyS)
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For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN} ⊂ Z∗
p

Return Client, Server, ClientServerPair, G, q, g, h, H, paramsP,E,S

Let M0 = H(sidiλ
Aλ
|pidiλ

Aλ
|pwS

Aλ
) and M1 = H(sidiλ

Aλ
|pidiλ

Aλ
|pw′). Assume that the simulator

wishes to challenge the two equal length plaintexts (M0,M1) and the identity IDS . Given
the ciphertext C = EIDS

(Mb) where b ∈ {0, 1} is unknown, the simulator responds all of the
adversary’s queries as in experiment P

(t−1)
6 except from Execute and Send′0 queries related to

Aiλ
λ and Sj as shown in Fig. 5 and Fig. 6, respectively.

Execute(Ai1
1 , · · · , Ain

n , Sj)

If (∃` such that (A`, S) 6∈ ClientServerPair ∨ usedi`
A`

) ∨ usedj
S , return ⊥

usedi`
A`
← usedj

S ← TRUE, pidi`
A`
← pidj

S ← {A1, · · · , An, S}, ` = 1, 2, · · · , n

(skP
A1 , skP

A2 , · · · , skP
An

)← ExecuteP (Ai1
1 , Ai2

2 , · · · , Ain
n )

sidi`
A`

R← G, Auth` ←
{

C (` = λ)

EID[H(sidi`
A`
|pidi`

A`
|pwS

A`
)] (` 6= λ)

msgA`
← A`|sidi`

A`
|Auth`

sidj
S ← sidi1

A1
, AuthS ← Sd′

S
[pidj

S |sid
j
S ], msgS ← S|AuthS

acci`
A`
← termi`

A`
← accj

S ← termj
S ← TRUE, ski`

A`

R← G, ` = 1, 2, · · · , n
Return statusi1

A1
, · · · , statusin

An
, statusj

S

Fig. 5. The modified Execute oracle for proof of Claim 6
Send′0(A

i`
` , Sj)

If ¬usedi`
A`
∨ (A`, S) 6∈ ClientServerPair ∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

pidi`
A`
← {A1, · · · , An, S}

sidi`
A`
← g

skP
A` , Auth` ←

{
C (` = λ)

EID[H(sidi`
A`
|pidi`

A`
|pwS

A`
)] (` 6= λ)

MsgOut← A`|sidi`
A`
|Auth`, state

i
A`
← (pidi`

A`
, skP

A`
, MsgOut)

Return statusi`
A`

Send′1(S
j , (A

i`
` |sid

i`
A`
|Auth`)`=1,2,···,n)

If (∃` such that (A`, S) 6∈ ClientServerPair) ∨ usedj
S , return ⊥

usedj
S ← TRUE, pidj

S ← {A1, A2, · · · , An, S}, sidj
S ← sidi1

A1

If MsgIn is adversarially-generated

If ∀`, DdS [Auth`] = H(sidj
S |pidj

S |pw
S
A`

), then accj
S ← ∇

Else accj
S ← termj

S ← TRUE, AuthS ← Sd′
S
[pidj

S |sid
j
S ], MsgOut← S|AuthS

Return statusj
S

Send′2(A
i`
` , Sj |AuthS)

statei`
A`
← (pidi`

A`
, skP

A`
, FirstMsgOut)

If ¬usedi`
A`
∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

If MsgIn is adversarially-generated

If VIDS [pidi`
A`
|sidi`

A`
, AuthS ] = 1, then accj

S ← ∇
Else acci`

A`
← termi`

A`
← TRUE, ski`

A`
← g

(skP
A`

)2

Return statusi`
A`

Fig. 6. The modified Send oracles for the proof of Claim 6

Note that an adversarially-generated message which contains A`|sidi`
A`
|C in Send′1(S

j , ∗)
query, where ` 6= λ or ` = λ but sidi`

A`
6= sidj

S , is invalid. The decryption of C is either

22



H(sidiλ
Aλ
|pidiλ

Aλ
|pwS

Aλ
) or H(sidiλ

Aλ
|pidiλ

Aλ
|pw′). Because different sessions have different sid, differ-

ent clients use different passwords, and H is a collision-resistant hash function, we have both
H(sidiλ

Aλ
|pidiλ

Aλ
|pwS

Aλ
) 6= H(sidi`

A`
|pidi`

A`
|pwS

A`
) and H(sidiλ

Aλ
|pidiλ

Aλ
|pw′) 6= H(sidi`

A`
|pidi`

A`
|pwS

A`
) for

the above message, which means equation (1) does not hold for `. Although the simulator cannot
query the decryption of C, it can respond to all kinds of Send′1 queries involving C properly.

When b = 0, the distribution of adversary’s view in the current experiment and P
′(t−1)
6

are identical, and thus the adversary has the same Adv
P
′(t−1)
6

A (k). If b = 1, the distribution of
adversary’s view in the current experiment and P

′(t)
6 are identical, and thus the adversary has

the same Adv
P
′(t)
6

A (k). If |Adv
P
′(t−1)
6

A (k) − Adv
P
′(t)
6

A (k)| is non-negligible, the simulator can decide
when b = 0 or b = 1 with a non-negligible advantage.

Since the IBE is assumed to be secure against the chosen-ciphertext attack, |Adv
P
′(t−1)
6

A (k)−

Adv
P
′(t)
6

A (k)| must be negligible and Claim 2 is true.

Now let us consider an adversarially-generated Send′1(S
j , (Ai`

` |sid
i`
A`
|Auth`)1,2,···,n) query to

a fresh server instance Sj . The freshness of Sj implies that the adversary has not queried
KeyGen(PKG, S) oracle and any Corrupt(A`) (` = 1, 2, · · · , n). In experiment P ′

6, all messages
which are dependent of pwS

A`
(` = 1, 2, · · · , n) have been replaced by those which are independent

of these passwords. Therefore, the adversary’s view is independent of the passwords pwS
A`

(` = 1, 2, · · · , n) chosen by the simulator. In order to win the game, the adversary has to try all
passwords one-by-one in an online impersonation attack. The probability that Succ1 occurs is
at most Q(k)/N , where Q(k) is the number of online attacks made by the adversary A.

In experiment P ′
6, the adversary succeeds if either Succ1 or Succ2 occurs, or else by guessing

the value of b used by the Test oracle. However, if neither Succ1 nor Succ2 occurs and the
adversary queries Test(Ai) where Ai is fresh and acci

U = TRUE, then ski
A is randomly-distributed

in G independent of the adversary’s view. Thus, the adversary’s probability of success when
neither Succ1 nor Succ2 occurs is 1/2. The preceding discussion implies that

Pr
P ′

6
A [Succ] ≤ Q(k)/N + 1/2 · (1−Q(k)/N)

and thus the adversary’s advantage in experiment P ′
6 is at most Q(k)/N . The sequence of claims

proved above show that

Adv
P ′

0
A [Succ] ≤ Adv

P ′
6

A (k) + ε(k)

for some negligible function ε(·) and therefore the adversary’s advantage in P ′
0 (i.e., the original

protocol) is at most Q(k)/N plus some negligible quantity. This complete the proof of the
theorem.
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