
Algebraic Side-Channel Collision Attacks

on AES

Andrey Bogdanov1 and Andrey Pyshkin2

1 Chair for Communication Security
Ruhr University Bochum, Germany

abogdanov@crypto.rub.de
2 Department of Computer Science

Technical University Darmstadt, Germany
pychkine@cdc.informatik.tu-darmstadt.de

Abstract. This paper presents a new powerful side-channel cryptana-
lytic method - algebraic collision attacks - representing an efficient class
of power analysis being based on both the power consumption informa-
tion leakage and specific structure of the attacked cryptographic algo-
rithm. This can result in an extremely low measurement count needed
for a key recovery.
The algebraic collision attacks are well applicable to AES, if one-byte
collisions are detectable. For the recovery of the complete AES key, one
needs 3 measurements with a probability of 0.42 and 4.24 PC hours post-
processing, 4 measurements with a probability of 0.82 and several seconds
of offline computations or 5 measurements with success probability close
to 1 and several seconds post-processing.

Key words: AES, collision attacks, side-channel attacks, generalized
collisions, Gröbner basis, algebraic attacks, Faugère’s F4 algorithm

1 Introduction

Power analysis based side-channel attacks have gained major importance since
their introduction in [6]. Differential power analysis (DPA) is probably the most
discussed side-channel attack in scientific literature due to its generic applicabil-
ity to a variety of implementations. However, a number of other power analysis
techniques exist that exhibit particular suitability in some special cases, side-
channel collision attacks representing one of such alternative approaches.

The usage of internal collisions in side-channel attacks was proposed by Hans
Dobbertin (see also [10] for an early discussion of collision attacks). An internal

collision, as defined in [9] and [8], occurs, if a function f within a cryptographic
algorithm processes different input arguments, but returns an equal output ar-
gument. As applied to AES, Schramm et al. [8] consider one byte transform of
the MixColumn operation of the first AES round as the colliding function f .
To detect collisions, power consumption curves bytewise corresponding to sep-
arate S-box operations in the second round at a fixed internal state position

after the key addition can be compared, see e.g. [1]. Some methods to overpass
random masking of AES implementations using collision attacks can be found
in [2]. However, we take another approach in this paper.

The key idea of our improvements to collision attacks is based on the notion
of a generalized internal collision introduced in [3]. One can look at several
instances of the same function f , if their implementations are similar enough,
and try to detect equal inputs to these instances by comparing the corresponding
power traces. Ideally, the several logical instances of f should share the same
implementation that is executed serially, which is e.g. often the case low-end
implementations in embedded systems. A generalized internal collision in an
iterative cryptographic algorithm A with respect to a function f occurs within
one or several runs of A if two inputs to f in some (possibly different) iterations
of A at some (possibly different) positions are equal.

In the case of AES, the 8-bit S-box transform can be the target function f .
The S-box remains the same for all executions, rounds and byte positions within
the round (as opposed to DES and a large variety of other cryptographic al-
gorithms, where different S-boxes are applied at different positions within the
round). This increases the number of instances to compare and of potential col-
lisions to be used afterwards for recovering key bits.

Each collision can be considered as a nonlinear equation over a finite field. The
set of all detected collisions corresponds to a system of nonlinear equations with
respect to the key. If the linear part of this system is considered only or a part
of the system is linearized, we speak about linear collision attacks (these were
considered in [3]). If this system is solved nonlinearly, one deals with algebraic

collision attacks which represent the main object of the present paper.

From the point of view of algebraic cryptanalysis, the treatment of nonlinear
equations is natural. In our constructions we only use the collisions that result
in nonlinear equation systems over GF (2) of degree ≤ 2, since one AES round
can be implicitly expressed as a system of degree 2 equations. The low degree of
the equations and the special form of the system enable an efficient application
of Gröbner basis techniques to solve such systems. However, this is not the
only algebraic technique we use. Before solving the overall system using the
Faugère F4 algorithm [5] in Magma, we first find independent subsystems on
the unknowns of the first and last rounds, that we call cycles, and solve them
separately over GF (28), each having a maximum of 2 solutions. This allows one
to determine several variables for free, speeding up the subsequent applications
of the F4 Gröbner base finding algorithm to the larger system over GF (2). Our
algebraic collision attacks seem to be the first successful real-world cryptanalytic
attacks on the full-scale AES using its weak algebraic structure [4], though being
substantially based on the side-channel leakage.

From the point of view of power analysis, the assumption that one-byte col-
lisions are reliably detectable may seem quite strong. Indeed, the application of
averaging within one power trace (for measurement devices with a high sampling
rate) or between several power traces (by sending the same input to the device
several times) may be needed to achieve an acceptable probability of collision

detection. See also [1] and [8] for real-world side-channel collision attacks. How-
ever, this is out of the scope of this paper whose purpose is to extract as much
information about the key as possible from a minimal number of collisions.

Our algebraic collision techniques allow one to mount collision attacks on
AES for 3 measurements with a probability of 0.42 and 4.24 PC hours post-
processing, for 4 measurements with a probability of 0.82 in several seconds of
offline computations or for 5 measurements with success probability close to 1
and several seconds post-processing.

The remainder of the paper is organized as follows. Section 2 recalls the
known collision attacks on AES from [8] and [3]. Section 3 introduces the alge-
braic description of equations enabling the complexity improvements for collision
attacks. Section 4 specifies our algebraic collision attacks on AES in detail, dis-
cusses some of their advanced properties and provides experimental results. We
conclude in Section 5. Appendix A gives some details on the computational plat-
form used to perform experiments. Appendix B briefly discusses the applicability
of collision attacks in practice.

2 Previous Work

2.1 Basic Collision Attack on AES

Side-channel collision attacks were proposed for the case of DES in [9] and en-
hanced in [7]. AES was first attacked using collision techniques in [8]. This side-
channel collision attack on AES is based on detecting internal one-byte collisions
in the MixColumns transformation in the first AES round. The basic idea is
to identify pairs of plaintexts leading to the same byte value in an output byte
after the MixColumns transformation of the first round and to use these pairs
to deduce information about some key bytes involved into the transform.

Let A = (aij) with i, j = 0, 3 and aij ∈ GF (28) be the internal state in
the first AES round after key addition, byte substitution and the ShiftRows

operation. Let B = (bij) with i, j = 0, 3 and bij ∈ GF (28) be the internal
state after the MixColumns transformation, B = MixColumns(A), where the
MixColumns transformation is defined for each column j as follows:

(1)

b0j

b1j

b2j

b3j

=

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

a0j

a1j

a2j

a3j

.

Here all operations are performed over GF (28). P = (pij) with i, j = 0, 3,

pij ∈ GF (28), and K(1) = (k
(1)
ij) with i, j = 0, 3, k

(1)
ij ∈ GF (28), denote the

plaintext block and the first subkey, respectively, then b00 can be represented as:

(2)

b00 = 02 · a00 ⊕ 03 · a10 ⊕ 01 · a20 ⊕ 01 · a30 =

= 02 · S(p00 ⊕ k
(1)
00) ⊕ 03 · S(p11 ⊕ k

(1)
11)

⊕01 · S(p22 ⊕ k
(1)
22) ⊕ 01 · S(p33 ⊕ k

(1)
33).

For two plaintexts P and P ′ with p00 = p11 = p22 = p33 = δ and p′00 = p′11 =
p′22 = p′33 = ǫ, δ 6= ǫ, one obtains the following, provided b00 = b′00:

(3)
02 · S(k

(1)
00 ⊕ δ) ⊕ 03 · S(k

(1)
11 ⊕ δ) ⊕ 01 · S(k

(1)
22 ⊕ δ) ⊕ 01 · S(k

(1)
33 ⊕ δ)

= 02 · S(k
(1)
00 ⊕ ǫ) ⊕ 03 · S(k

(1)
11 ⊕ ǫ) ⊕ 01 · S(k

(1)
22 ⊕ ǫ) ⊕ 01 · S(k

(1)
33 ⊕ ǫ)

Let Cδ,ǫ be the set of all key bytes k
(1)
00 , k

(1)
11 , k

(1)
22 , k

(1)
33 that lead to a collision

(3) with plaintexts (δ, ǫ). Such sets are pre-computed and stored for all 216

pairs (δ, ǫ). Each set contains on average 224 candidates for the four key bytes.
Actually, every set Cǫ,δ can be computed from the set Cǫ⊕δ,0 using some relations
between the sets. Due to some dependencies within the sets, this optimization
reduces the required disk space to about 540 megabytes.

The attack on the single internal state byte b00 is then the following. The
attacker generates random values (ǫ, δ) and inputs them to the AES module
as described above. The power consumption curve for the time period, where
b00 is processed, is stored. Then the attacker proceeds with other random values
(ǫ′, δ′), measures the power profile, stores it and correlates it with all stored power
curves. And so on. One needs about 4 collisions (one in each output byte of a
column) to recover the four bytes involved into the MixColumns transformation.
The probability that after N operations at least one collision b00 = b′00 occurs
in a single byte is:

(4) pN = 1 −
N−1
∏

l=0

(1 − l/28).

Actually, the attack can be parallelized to search for collisions in all four columns
of B in parallel. In this case the attacker needs at least 16 collisions, 4 for each
column of B, so p16

N ≥ 1/2 and N ≈ 40. Once the required number of collisions
was detected, he uses the pre-computed tables Cǫ⊕δ,0 to recover all four key
bytes for each column by intersecting the pre-computed key sets corresponding
to the collisions (ǫ, δ) detected. Thus, on average one has to perform about 40
measurements to obtain all 16 collisions needed and to determine all 16 key
bytes. Note that since the cardinality of the intersections for the sets Cǫ,δ is
not always 1, there are a number of key candidates to be tested using a known
plaintext-ciphertext pair.

2.2 Linear Collision Attack on AES

The basic collision attack on AES can be improved using the notion of generalized
collisions [3]. In round i = 1, 10, AES performs the SubBytes operation (16
parallel S-box applications) on the output bytes of the previous round XORed
with the (i + 1)-th subkey K(i+1) starting with the subkey K(1) before the first
round. A generalized internal AES collision occurs, if there are two S-boxes
within the same AES execution or within several AES runs accepting the same
byte value as their input.

AddKey

SubBytes

αα

ββ

k
(i)
03 x

(i)
03

k
(i)
22 x

(i)
22

k
(i)
03 ⊕ k

(i)
22 = x03 ⊕ x22

Fig. 1. Linear collisions

In Figure 1 a linear collision within a single AES round i is illustrated. xvu,
v, u = 0, 3, are plaintext bytes, if i = 1, or the output bytes from the previous
round i − 1, otherwise. In this example, bytes 03 and 22 collide.

A detected collision in the S-box layer of the first round in bytes (i1, j1) and
(i2, j2) with i1, j1, i2, j2 = 0, 3 corresponds to the following linear equation:

S(k
(1)
i1,j1

⊕ pi1,j1) = S(k
(1)
i2,j2

⊕ pi2,j2), (5)

k
(1)
i1,j1

⊕ k
(1)
i2,j2

= ∆
(1)
(i1,j1),(i2,j2)

= pi1,j1 ⊕ pi2,j2 (6)

for some known plaintext bytes pi1,j1 and pi2,j2 . In the same way, one can write
equations resulting from collisions within some other round i = 2, 10. In this case
we have some unknown key- and plaintext-dependent byte variables instead of
the plaintext bytes pi1,j1 and pi2,j2 .

m linear equations of type (6) resulting from a number of collisions detected
within the S-box layer in the first round build the following linear equation
system:

(7) Sm :

k
(1)
i1,j1

⊕ k
(1)
i2,j2

= ∆
(1)
(i1,j1),(i2,j2)

k
(1)
i3,j3

⊕ k
(1)
i4,j4

= ∆
(1)
(i3,j3),(i4,j4)

. . .

k
(1)
i2m−1,j2m−1

⊕ k
(1)
i2m,j2m

= ∆
(1)
(i2m−1,j2m−1),(i2m,j2m).

Note that this system has 16 variables (bytes of the first round subkey). In
system (7) the key byte numbers and the variables are not necessarily pairwise
distinct. The maximal rank of Sm is 15.

It is not necessary for Sm to have the maximal rank. If there are several
isolated subsystems within Sm, then each of them can be solved independently
as described above. If there are q independent subsystems SS1

m, . . . , SSq
m in Sm,

then Sm can be represented as a union of these subsystems:

Sm = SS1
m ∪ · · · ∪ SSq

m, SSi
m ∩ SSj

m = ∅, i 6= j.

To solve Sm in this case, one has to assign q byte values to some q variables in
the subsystems {SSi

m}q
i=1. At the end there are 28q key candidates. The correct

key is identified using a known plaintext-ciphertext. In Table 1 the estimated
numbers of isolated subsystems are provided.

Table 1. Offline complexity and success probabilities

Measurements, t 4 5 6 7 8 9 29

Linear equations, m 7.09 10.72 14.88 19.46 24.36 29.49 105.14

Isolated subsystems, q 8.81 5.88 3.74 2.20 1.43 1.15 1.00

Offline complexity ≤ 240 34.70 37.34 37.15 34.74 30.32 21.36 8

Success probability 0.037 0.372 0.854 0.991 0.999 1.000 1.000

Offline complexity ≤ 248 43.90 45.50 44.30 41.14 30.32 21.36 8

Success probability 0.092 0.548 0.927 0.997 0.999 1.000 1.000

The offline stage becomes feasible after 5 measurements (245.5 simple steps
with a probability of 0.548). Linear systems resulting from 6 measurements are
easily solvable in 237.15 steps on average with a probability of 0.85, which is more
realistic. After 11 measurements the expected offline attack complexity is about
212.11, practically all systems being solvable.

3 Algebraic Description of Nonlinear Collisions in AES

In this section we show how to improve the results using the algebraic cryptanaly-
sis techniques developed for AES. The general idea is to exploit more information
about the key available in nonlinear collisions. To extract this information we
use the algebraic representation of AES and the Faugère F4 algorithm finding
Gröbner bases. To make the resulting system of nonlinear equations solvable,
we select the collisions in a way keeping the algebraic degree of equations low
(it does not exceed 2) and the number of unknowns small (we fix a number of
variables and try to use all possible low-degree dependencies on these variables
in an efficient way).

In this section the basic nonlinear and linear collisions we use (FS- and FL-
collisions) are described algebraically. Moreover, the notion of non-collisions is
introduced and briefly discussed here.

3.1 FS-Collisions

Collisions in the first two AES rounds occurring between bytes of the first two
rounds are called FS-collisions. If input bytes α1 and α2 of two S-boxes collide,
we have the simple linear equation over GF (28): α1 ⊕ α2 = 0. If αe lies in the

S-box layer of the first round, then αe = k
(1)
i,j ⊕ pi,j , for some i, j. Otherwise, we

have

αe = k
(2)
i,j ⊕ mi · a0,j ⊕ mi+1 · a1,j+1 ⊕ mi+2 · a2,j+2 ⊕ mi+3 · a3,j+3,

where m = (m0, m1, m2, m3) = (02, 03, 01, 01), and the addition of indices is

interpreted modulo 4 and ai,j = S(k
(1)
i,j ⊕ pi,j). We distinguish between the

following three types of collisions: linear collisions in the first round, nonlinear
collisions between the first two rounds, and nonlinear collisions within the second
round. These three collision types are illustrated in Figure 2. S-boxes leading
to the detection of collisions (active S-boxes) are marked with the numbers of
collisions they account for. Collision 1 is between two bytes of the first round,

linearly binding k
(1)
00 and k

(1)
30 . Collision 2 is between the S-box number 12 of the

2nd round and the S-box 00 of the first round. It binds 6 key bytes: k
(1)
00 , k

(1)
02 ,

k
(1)
13 , k

(1)
20 , k

(1)
31 , and k

(2)
12 . Collision 3 algebraically connects two MixColumn

expressions on 8 key bytes after the S-box layer with two bytes of the second
subkey in a linear manner. The explicit algebraic equations for this example are
the following:

1 : k
(1)
00 ⊕ p1

00 = k
(1)
30 ⊕ p1

30

2 : k
(1)
00 ⊕ p2

00 = S−1(s2
12) = k

(2)
12 ⊕

01S(k
(1)
02 ⊕ p2

02) ⊕ 02S(k
(1)
13 ⊕ p2

13) ⊕ 03S(k
(1)
20 ⊕ p2

20) ⊕ 01S(k
(1)
31 ⊕ p2

31)
3 : s3

12 = s3
33,

k
(2)
12 ⊕ 01S(k

(1)
02 ⊕ p3

02) ⊕ 02S(k
(1)
13 ⊕ p3

13) ⊕ 03S(k
(1)
20 ⊕ p3

20) ⊕ 01S(k
(1)
31 ⊕ p3

31)
=

k
(2)
33 ⊕ 03S(k

(1)
03 ⊕ p3

03) ⊕ 01S(k
(1)
10 ⊕ p3

10) ⊕ 01S(k
(1)
21 ⊕ p3

21) ⊕ 02S(k
(1)
32 ⊕ p3

32)

All these relations can be described a the system of polynomial quadratic [4]
and linear equations over GF (2) in key bit variables and state variables given by
the output of the S-boxes of the first round. See Subsection 4.1. Note that there
are mirrored collisions occurring between the S-boxes of the last round (number
10) and the round next to the last one (number 9). Such collisions are called
LN-collisions.

3.2 FL-Collisions

One can also detect collisions between bytes of the first and last rounds. We
call collisions of this type FL-collisions. If plaintexts as well as ciphertexts are
known, an FL-collision leads to a simple nonlinear equation. Linear collisions
within the first round as well as those within the last round can be additionally
used.

Figure 3 illustrates these three types of collisions. As in Figure 2, S-boxes
allowing one to detect collisions are marked with the numbers of collisions they

account for. In the example of Figure 3, collision 1 is between byte k
(1)
01 of the

first round and the byte k
(10)
10 of round 10 for some input and output with p1

01 and

R

AddRoundKey

SubBytes

ShiftRows

MixColumn MixColumn MixColumn MixColumn

AddRoundKey

SubBytes

1,2 1

2,3 3

p1
00

p2
00

p2
02

p3
02 p3

03 p3
10

p2
13

p3
13

p2
20

p3
20 p3

21 p1
30

p2
31

p3
31 p3

32

s2
12

s3
12

s3
33

Fig. 2. FS-collisions

AddRoundKey

ShiftRows

1,3

1,2

3SubBytes

AddRoundKey

SubBytes

AddRoundKey

2

. . .

α1, α2
β2

p1
01, p

3
01 p3

30

c2
11 c1

13, c
2
13

Fig. 3. FL-collisions

c1
14 (note that the bytes do not have to belong to the same input/output pair).

Input k
(10)
10 ⊕α1 to S-box 10 in the last round can be expressed as S−1(k

(11)
12 ⊕c1

13)
using the corresponding ciphertext and last subkey bytes.

Collision 2 of Figure 3 is a linear collision within the last AES round. Col-
lision 3 is a standard linear collision within the first AES round. The following
equations give algebraic expressions resulting from the four collisions illustrated
in Figure 3:

1 : k
(1)
01 ⊕ p1

01 = k
(10)
10 ⊕ α1 = S−1(k

(11)
13 ⊕ c1

13),

S(k
(1)
01 ⊕ p1

01) = k
(11)
13 ⊕ c1

13

2 : k
(10)
10 ⊕ α2 = k

(10)
12 ⊕ β2, k

(11)
13 ⊕ c2

13 = k
(11)
11 ⊕ c2

11

3 : k
(1)
01 ⊕ p3

01 = k
(1)
30 ⊕ p3

30

FL-collisions can be obviously expressed as a system of quadratic equations
over GF (2). Now we show how to derive a system of quadratic equations over
GF (28) for these collisions. One way is to use the BES expression [4]. However
we have 8 variables per one key byte in this case. We describe a simpler system,
which has only 32 variables.

It is clear that linear collisions in the first or the last round can be expressed
as linear equations over GF (28). Let us consider a nonlinear FL-collision of type 1
(see example above). Its algebraic expression is given by:

S(k
(1)
i,j ⊕ pi,j) = k(11)

u,v ⊕ cu,v,

for some i, j, u, v = 0, 3. Recall that the AES S-box is the composition of the
multiplicative inverse in the finite field GF (28), the GF (2)-linear mapping, and
the XOR-addition of the constant {63}3. The GF (2)-linear mapping is invertible,
and its inverse is given by the following polynomial over GF (28):

f(x) = {6e}x27

+{db}x26

+{59}x25

+{78}x24

+{5a}x23

+{7f}x22

+{fe}x2+{05}x.

Hence we have

(k
(1)
i,j ⊕ pi,j)

−1 = f(k(11)
u,v ⊕ cu,v ⊕ 63) = f(k(11)

u,v) ⊕ f(cu,v ⊕ 63).

If we replace f(k
(11)
u,v) by a new variable k̃u,v, we obtain the quadratic equation

(k
(1)
i,j ⊕ pi,j)(k̃u,v ⊕ f(cu,v ⊕ 63)) = 1,

which holds with probability 255
256 . The following proposition follows:

Proposition 1. Solutions to the equation S(k
(1)
i,j ⊕ pi,j) = k

(11)
u,v ⊕ cu,v coincides

with solutions to the equation

(k
(1)
i,j ⊕ pi,j)(k̃u,v ⊕ f(cu,v ⊕ 63)) = 1

under the change of variables k̃u,v = f(k
(11)
u,v) with a probability of 255

256 .

3 Here and below any byte {αβ} = α · 16 + β =
P7

i=0 bi · 2i is interpreted as the
element of GF (28) = GF (2)[ω] using a polynomial representation

P7
i=0 bi ·ω

i, where
ω8 + ω4 + ω3 + ω + 1 = 0 holds.

Moreover, if k
(11)
i,j ⊕ k

(11)
u,v = ∆(i,j),(u,v) = ci,j ⊕ cu,v with i, j, u, v = 0, 3, then

we have
f(k

(11)
i,j) ⊕ f(k(11)

u,v) = k̃i,j ⊕ k̃u,v = f(∆(i,j),(u,v)).

Thus we derive for FL-collisions the system S of quadratic equations over

GF (28) in 32 variables K = {k
(1)
i,j , k̃i,j}0≤i,j≤3. Furthemore, each equation of the

resulting system S has only two variables. We call such equations binomial.

3.3 Non-Collisions

A non-collision occurs between two S-box input bytes inside one or several AES
executions if the processed bytes are not equal (no collision has been detected
between these two unknown bytes). The straightforward algebraic description
of non-collisions is as follows. Suppose two bytes b1 = {x7x6 . . . x0} and b2 =
{y7y6 . . . y0} do not collide, i.e., b1 6= b2. Then bit variables satisfy the following
equation over GF (2):

7
∏

i=0

(xi + yi + 1) = 0.

Since the degree of this equation is equal to 8, and the number of the terms is
exactly 38 = 6561, the equation seems to be useless for Gröbner basis attacks.
However, there are more constructive applications of non-collisions reducing the
search for several unknown bytes. These are specific for the structure of nonlinear
equation systems we use and are explained in Subsection 4.4.

4 Algebraic Analysis of Collisions

In this section we construct and solve concrete systems of equations based on
the ideas from the previous sections. First, we analyze the equation systems
resulting from FS- and FL-collisions. Then combined systems of equations are
constructed. Several ways to accelerate the process of finding the Gröbner bases
for the combined systems are introduced and discussed, including chains of vari-
ables in binomial equations, non-linear cycles and search optimization using
non-collisions.

4.1 Solving Equations for FS-Collisions

The straightforward application of the Faugère F4 algorithm to the system con-
structed in Subsection 3.1 gives results superior to those in [3]. These are are
summarized in Table 2.

The system of nonlinear equations is considered over GF(2). For t inputs (t
measurements) there are 128 variables of the first subkey K(1), 128 variables of
the second subkey K(2) and 128 · t intermediate variables for the output bits of
the first round S-box layer. The collision-independent equations include 39 ·16 · t
quadratic equations over GF(2) connecting the inputs and outputs of the first

round S-boxes, and 4 · 39 = 156 quadratic and 12 · 8 = 96 linear equations
connecting K(1) and K(2) using the key schedule relations, since the AES S-box
can be implicitly expressed as 39 degree 2 equations [4]. Each of the three types
of FS-collisions add 8 linear equations to the system, resulting in 8 · c equations
if c collision occurred.

The system is solved in the following way. First the system is passed to the
F4 algorithm without modifications. If it is not solvable, one guesses the largest
connected linear component and tries to solve the system again. The memory
limit for the Magma program was set to 500 MB. It can be seen from Table 2
that for 5 measurements most (> 93%) instances of the FS-system can be solved
within several hours on a PC. For 4 measurements, less systems are solvable
(about 40%) within approx. 2 hours. These attacks work in the known plaintext
scenario.

Table 2. Solving equation systems for FS-collisions over GF (2)

Measurements 5 5 4 4

Success prob. 0.425 0.932 0.042 0.397

Run time, s 142.8 7235.8 71.5 6456.0

Memory limit, MB 500 500 500 500

Number of variables 896 896 768 768

Linear/quadratic equations 96 + 8c/3276 96 + 8c/3276 96 + 8c/2652 96 + 8c/2652

4.2 Solving Equations for FL-Collisions

FL-collisions lead, as a rule, to more efficient results. Each equation binds only
two GF (28)-variables, since one deals with binomial equations introduced in
Subsection 3.2. There are 32 variables K over GF (28). The algebraic relations
on these variables are much simpler, since one has both plaintext and ciphertext
bytes (more information related to the detected collisions). Moreover, there are
nonlinear subsystems (cycles) solvable independently (see Subsection 4.4). On
average there are 1.02 cycles covering 30.08 out of 32 GF (28)-variables for 5
measurements and 0.99 cycles covering 20.08 out of 32 GF (28)-variables for 4
measurements. Statistically there are 43.58 collisions for 5 measurements and
29.66 collisions for 4 measurements.

Table 3 contains the results for applying the F4 algorithm to FL-systems of
nonlinear equations averaged over 10000 samples. After resolving the nonlinear
subsystems using F4, we guess variables defining the remaining bytes in a way
similar to the linear collision attacks (see Subsection ?? and Subsection 4.4). For
5 measurements practically all FL-systems are solvable in several seconds (232

simple offline operations), an FL-system being solvable with a probability of 0.82
within several seconds (232 simple offline operations) for 4 measurements.

Table 3. Solving equation systems for FL-collisions over GF (28)

Measurements 5 4

Success probability 1.00 0.82

Time for finding Gröbner basis, ms 3 5

Chain guesses 232 232

Memory limit, MB 500 500

Number of variables 32 32

Average number of equations 43.58 29.66

4.3 Constructing Combined Systems of Equations

Though FS- and, first of all, FL-systems perform well for 4 and 5 measurements,
their solution for 3 measurements is either extremely improbable or rather in-
feasible. Here a combined approach has to be used. For combined systems of
equations we use 23 quadratic equations over GF(2) instead of 39 ones to de-
scribe the S-boxes [4]. This representation has the advantage that only quadratic
monomials in both input and output variables are present, as opposed to the de-
scription with 39 variables where more quadratic terms are used.

We performed experiments with combined systems having 512 variables for
K(1), K(2), K(10), K(11) as well as 128 · t variables for outputs of the first S-
box layer and 128 · t variables for inputs to the S-boxes of the last round (for t
measurements). The combined systems consists of the following equations:

1. 2 · 23 · 16 · t quadratic equations describing the relationship between input
and output of the S-boxes at the first and last rounds;

2. Key schedule equations for subkeys 1, 2 and 10, 11 (2 · 4 · 23 quadratic and
2 · 12 · 8 linear ones);

3. 8 linear equations for each FS- or LN-collision;
4. 23 quadratic equations for each type 1 FL-collision. 8 linear equations for

each of the following additional collisions:
– Collisions between the S-boxes of round 1 and 9,
– Collisions between the S-boxes of round 2 and 10.

4.4 Speed-Ups

The straightforward approach to solve the system constructed in Subsection 4.3
would be to pass it to the F4 algorithm. However, this is a rather inefficient
approach. A more detailed insight into the structure of the resulting nonlinear
system reveals that the system frequently possesses subsystems that can be
efficiently solved independently of the remaining system.

Solving Chains and Nonlinear Cycles for FL-Collisions. The subset of
binomial equations over K in the system disintegrates into a number of indepen-
dent subsystems on Ki, i = 1, m. The chains possess the property that if one

element of the chain (say, one byte in the chain was guessed) uniquely defines all
the other elements of the chain. Thus, if one identifies all (linear and nonlinear)
binomial equations in the system, finds h longest chains and guesses one byte in
each of them, this determines all the unknowns in these h chains.

This system of nonlinear equations for FL-collisions S introduced in Subsec-
tion 3.2 can be solved in few milliseconds using Magma. However not always
there is a single solution.

Let us consider a partition of K

K = K1 ∪ · · · ∪ Km, Ki ∩ Kj = ∅, i 6= j

such that

1. for any i, j = 1, m (i 6= j), and any two variables vi ∈ Ki and vj ∈ Kj there
is no equation in v1, v2 in S;

2. no Ki has a partition that satisfies the first property.

We say that a subset of the variables is connected w.r.t. S, if this subset has
no partition that satisfies the first property. Thus each Ki is connected. Then the
system S can be patitioned into m isolated subsystem Si corresponding to Ki.
Pairs (Ki, Si) are called chains due to their geometric representation as vertex
chains in graphs associated with these subsystems (see e.g. [3]). Obviously, Si = ∅
iff Ki = {v} for some variable v ∈ K. In this case the right value of the variable
v can only be guessed. The case Si is a linear subsystem was considered in [3].
We have rank(Si) = #Ki − 1, and if we fix some variable vi1 ∈ Ki, the other
variables vij

∈ Ki are given by vij
= vi1 ⊕ ∆ij

with ∆ij
∈ GF (28). Suppose

now Si has one or more quadratic equations, i.e., Ki ∩ {k
(1)
0,0, . . . , k

(1)
3,3} 6= ∅ and

Ki ∩ {k̃0,0, . . . , k̃3,3} 6= ∅. Let v ∈ Ki. Since Ki is connected, there is a relation
between v and any other variable x ∈ Ki. These relations can be expressed as
linear or quadratic equations in two variables. Indeed, let x, y, z ∈ Ki, and

x · y + α · x + β · y + γ = 0; x + z = δ,

where α, β, γ, δ ∈ GF (28). If v + x = δ̄, we get

v · y + α · v + (β + δ̄) · y + (γ + α · δ̄) = 0; v + z = δ + δ̄.

In the case x · v + ᾱ · x + β̄ · v + γ̄ = 0 we have

(v + ᾱ)(x · y + α · x + β · y + γ) + (y + α)(x · v + ᾱ · x + β̄ · v + γ̄) =

(β + β̄) · v · y + (α · β̄ + γ) · v + (ᾱ · β + γ̄) · y + (ᾱ · γ + α · γ̄) = 0,

and

v · z + ᾱ · z + (β̄ + δ) · v + (γ̄ + ᾱ · δ) = 0.

We see that the degree of S-polynomials does not increase and is ≤ 2. Therefore
a Gröbner basis can be found quickly.

Let us now show how many solutions Si has. As an example, if Ki = {v, u},
and Si has two non-linear equations in u, v, then v is a root of a quadratic
equation in one variable. Therefore Si has two solutions in this case. If #Si ≥ 3,
then the solution is single. Generally, we say that Ki is strongly connected w.r.t.
Si, if there is a non-linear equation e ∈ Si such that Ki is connected w.r.t.
Si \{e}. Such chains are called cycles. It can be shown that in this case Si has at
most two solutions. Moreover, the solution is single, if Ki is strongly connected
w.r.t. Si \ {e}.

Thus the number of solutions of the whole system S is equal to
∏m

i=1 2qi ,
where qi ≤ 1, if Ki is strongly connected, and qi = 8 otherwise. Let us remark
that it is not necessary to know the value of all variables. It is enough to find
the key bytes of either the first or last round.

Using Non-Collisions to Recover Chains. To solve the combined system
we guess h bytes defining the maximum number of variables in K. In the most
practical attacks, h can be 1 or 2. Actually, one does not have to solve all the
resulting 28·h systems. Some of these guesses can be filtered out using the notion
of non-collisions introduced in Subsection 3.3. Instead of constructing implicit
degree 8 nonlinear equations, we make use of the non-collisions explicitly in the
following way.

Let C1, . . . , Ch denote the h longest chains of variables induced by binomial
equations in question, each being of length |Ci| = li, i = 1, h, Ci ∩ Cj = ∅.
The variables of the chain Ci are denoted by cij for j = 1, li. Every (cij , crs)
of l(l − 1)/2 pairs of variables in these chains are connected either by an equal-
ity (there was a collision detected) eij,rs(cij , crs) or an inequality (no collision
detected) inij,rs(cij , crs). Collisions and non-collisions (as well as the correspond-
ing equations) can be either linear (e.g. between the bytes of K(1)) or nonlinear
(e.g. between the bytes of K(1) and K(11)) as illustrated in Subsection 3.2 for
FL-collisions.

The idea behind the optimized search for chain evaluations using non-collisions
is to verify connections (inequalities or equalities) for every pair of variables in
the h longest chains C1 ∪ · · · ∪Ch for each candidate evaluation. The procedure
can be formalized using Algorithm 1:

Table 4. Number of candidate chain evaluations before and after sieving using
non-collisions (with and without nonlinear cycles) averaged over 5000 samples
for 3 measurements

h Before After on average Average speed-up

1 256 149 1.72
2 216 214.08 3.78
3 224 220.77 9.38

In our experiments we had h ∈ {1, 2, 3}. Table 4 shows the speedup we
obtained on average using the sieving technique in these cases. Note that the

Algorithm 1 Sieving guesses with non-collisions and non-linear cycles

Require: h chains C1, . . . , Ch of lengths l1, . . . , lh with 28h possible evaluations
1: for each guess (c11, . . . , ch1) ∈ {0, . . . , 28h − 1} do

2: for each chain i = 1 : h do

3: for each chain variable cij j = 2 : li do

4: Evaluate cij using chain equations
5: end for

6: end for

7: for each (cij , crs) of l(l−1)
2

pairs of chain variables in C1 ∪ · · · ∪ Ch do

8: Verify equality eij,rs(cij , crs) or inequality inij,rs(cij , crs) on variables cij , crs

9: if eij,rs(cij , crs) is inequation or inij,rs(cij , crs) is equation then

10: Go to 1 (contradiction is detected)
11: end if

12: end for

13: Output the guess (c11, . . . , ch1) as a candidate evaluation of the chains
14: end for

ratio of systems with cycles for 3 measurements is about 0.232 averaged over
5000 samples.

4.5 Solving the Combined Systems of Equations

Algorithm 2 Solving combined systems of nonlinear equations

1: if there are nonlinear cycles in the binomial chains then

2: Resolve the cycles over GF (28) using F4 or brute-force
3: Define bytes of the dependent chains
4: end if

5: Find the h longest binomial chains
6: Execute Algorithm 1 for sieving chain evaluations
7: for each non-contradicting evaluation of h chains do

8: Find Gröbner basis for the reduced combined system of nonlinear equations with
F4

9: if the Gröbner basis 6= {1} then

10: Verify the key candidates using a known plaintext-ciphertext pair
11: end if

12: end for

To solve the nonlinear systems we executed Algorithm 2. The results of the
application of this algorithm to the combined system of nonlinear equations (with
additional collisions) for 3 measurements can be found in Table 5. The system
is solvable with a probability of 0.698 within 22 days or with a probability of
0.419 within 4.24 hours or with a probability of 0.072 within several minutes.

Table 5. Solving combined equation systems

Measurements 3 3 3

Success prob. 0.072 0.419 0.698

Run time 98.31 sec 4.24 hours 22.03 days

Memory limit, MB 500 500 500

h, number of chains guessed 0 1 2

5 Conclusion

This paper extends the known side-channel collision attacks on AES by treating
generalized collisions within several rounds instead of searching for collisions in
the first or last round only. This idea combined with algebraic techniques such
as Gröbner bases provides significant advantages both in terms of measurements
and post-processing complexity.

If byte collisions are detectable, the complete AES key can be recovered with
3 measurements with a probability of 0.42 and 4.24 PC hours post-processing,
with 4 measurements with a probability of 0.82 in several seconds of offline
computations or with 5 measurements with success probability close to 1 and
several seconds post-processing. This is to be compared to 40 measurements with
some non-negligible post-processing for a success probability > 0.5 in [8] or to 6
measurements with approx. 237.15 offline computations and a success probability
of 0.85 and 5 measurements with 245.5 offline computations and a probability of
0.55 in [3].

References

1. Alex Biryukov, Andrey Bogdanov, Dmitry Khovratovich, and Timo Kasper. Col-
lision Attacks on Alpha-MAC and Other AES-based MACs. In CHES’07, LNCS.
Springer-Verlag, 2007.

2. Alex Biryukov and Dmitry Khovratovich. Two new techniques of side-channel
cryptanalysis. In CHES 2007, volume 4727 of LNCS. Springer-Verlag, 2007.

3. Andrey Bogdanov. Improved Collision Attacks on AES. In The 14th Annual Work-
shop on Selected Areas in Cryptography (SAC 2007), Ottawa, Ontario, Canada,
LNCS. Springer-Verlag, 2007.

4. Carlos Cid, Sean Murphy, and Matthew Robshaw. Algebraic Aspects of the Ad-
vanced Encryption Standard. Springer-Verlag, 2006.

5. J.-C. Faugère. A New Efficient Algorithm For Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139(1):6188, June 1999.

6. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
CRYPTO’99, LNCS, pages 388–397. Springer-Verlag, 1999.

7. Hervé Ledig, Frédéric Muller, and Frédéric Valette. Enhancing Collision Attacks.
In CHES’04, volume 3156 of LNCS, pages 176–190. Springer, 2004.

8. Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A Collision-
Attack on AES: Combining Side-Channel and Differential Attack. In CHES’04,
volume 3156 of LNCS, pages 163–175. Springer, 2004.

9. Kai Schramm, Thomas J. Wollinger, and Christof Paar. A New Class of Collision
Attacks and Its Application to DES. In FSE’03, volume 2887 of LNCS, pages
206–222. Springer, 2003.

10. Andreas Wiemers. Collision Attacks for Comp128 on Smartcards. ECC-Brainpool
Workshop on Side-Channel Attacks on Cryptographic Algorithms, Bonn, Germany,
December 2001.

A Details about the Computational Platform for

Experiments

We implemented all our attacks in Magma V2.13-10 (including the AES algo-
rithm itself as well as its random inputs) running on a dual-core AMD Opteron
processor with 1 MB cache and clocked at 2613.39 MHz under Linux. We used
only one execution thread of the Opteron processor and not more than 1 GB
of RAM. Thus, it is claimed that the performance figures of our attacks on a
standard PC with a single-thread processor and 1 GB RAM are comparable to
those given in this paper.

B On the Practical Applicability of Collision Attacks

To make the reliable detection of byte collisions in S-boxes within AES possible,
a number of conditions have to be fulfilled:

– All instances of the AES S-box have to share the same implementation: This
condition is quite natural and is automatically fulfilled if the S-box is imple-
mented as a separate routine, which is frequently the case on 8-bit embedded
microcontrollers.

– The attacker has to precisely know when the S-boxes are executed: This is
automatically fulfilled if the implementation is known to the attacker. Oth-
erwise, the analysis of the timing behaviour can be performed prior to the
attack using SPA. During this phase the attacker needs to know neither
inputs/outputs to the cipher nor the used keys.

– Measurements of high accuracy are required: The usage of averaging tech-
niques increases the signal-to-noise ratio and the probability of collision de-
tection. Averaging within one trace requires a high sampling rate of the
measurement device. If several traces are averaged, multiple measurements
for each of the inputs are needed.

– Lengthy power traces have to be stored: As the power consumption of S-boxes
in several AES rounds is analyzed in linear and algebraic collision attacks,
more points have to be stored for each algorithm run. This condition can be
fulfilled by long memory scopes.

The practical feasibility of collision attacks for AES was shown in [1] for a
PIC16F687 microcontroller and in [8] for an i8051-type controller. To detect a
collision, the attacker compares the corresponding power curves using e.g. the
least-square method.

	Algebraic Side-Channel Collision Attacks on AES
	Andrey Bogdanov and Andrey Pyshkin

