On Collisions of Hash Functions Turbo SHA-2

Vlastimil Klima

Prague, Czech Republic http://cryptography.hyperlink.cz v.klima@volny.cz

Abstract. In this paper we don't examine security of Turbo SHA-2 completely; we only show new collision attacks on it, with smaller complexity than it was considered by Turbo SHA-2 authors. In [1] they consider Turbo SHA-224/256r and Turbo SHA-384/512-r with variable number of rounds r from 1 to 8. The authors of [1] show collision attack on Turbo SHA-256-1 with one round which has the complexity of 2^{64} . For other r from 2 to 8 they don't find better attack than with the complexity of 2¹²⁸. Similarly, for Turbo SHA-512 they find only collision attack on Turbo SHA-512-1 with one round which has the complexity of 2^{128} . For r from 2 to 8 they don't find better attack than with the complexity of 2^{256} . In this paper we show collision attack on SHA-256-*r* for r = 1, 2, ..., 8with the complexity of 2^{16r}. We also show collision attack on Turbo SHA-512-r for r = 1, 2, ..., 8 with the complexity of 2^{32r} . It follows that the only one remaining candidate from the hash family Turbo SHA is Turbo SHA-256 (and Turbo SHA-512) with 8 rounds. The original security reserve of 6 round has been lost.

Keywords: Turbo SHA-2, collision attack.

1 Introduction

In the following we will deal with Turbo SHA-256-r, because all proofs for Turbo SHA-512-r differ only in the length of the word (32 or 64 bits). We start with notation, then present Lemma 1 and main Theorem 1. The conclusion contains consequence of the theorem.

2 Notation

We can see the original definition of Turbo SHA-2 on Fig. 1 [1]. The definition of Turbo SHA-2-r is on Fig. 2. We enumerate the variables a, h by the number of round. For the simplicity we assume only one message block. Thus we assume the final hash value without addition of the constant $H^{(0)}$ in Step 5 of the original description. In the Step 3 we denote the addition of the constant $H^{(0)}$ by variables $W_{31}^+ := a[0] = W_{31} + H^{(0)}_{00}, W_{30}^+ := b[0] = W_{30} + H^{(0)}_{11}, ..., W_{24}^+ := h[0] = W_{24} + H^{(0)}_{72}.$

Further, let us denote

$$W_t^{\sim} := (W_t \oplus W_{t+16}) + (W_{t+4} \oplus W_{t+24}) + (W_{t+8} \oplus W_{t+20}) + W_{t+12}, t = 0, \dots, 7.$$

For i = 1 to N: 1. Message expansion part for obtaining additional sixteen 32-bit (64-bit) words: $\begin{cases} M_t^{(i)}, & 0 \leq t \leq 15 \\ W_{t-16} + \sigma_0(W_{t-15}) + W_{t-14} + \sigma_1(W_{t-13}) + W_{t-12} + \sigma_0(W_{t-11}) + W_{t-10} + \sigma_1(W_{t-9}) + \\ + W_{t-8} + W_{t-7} + \sigma_0(W_{t-6}) + W_{t-5} + \sigma_1(W_{t-4}) + W_{t-3} + \sigma_1(W_{t-2}) + \sigma_0(W_{t-1}) + \\ + P_{t-16}^{(i-1)}, & 16 \leq t \leq 31 \end{cases}$ $W_t = \langle$ 2. Set the *i*th intermediate double pipe value $P^{(i)}$: $P_t^{(i)} = W_t + W_{t+16}$. $0 \le t \le 15$ 3. Initialize eight working variables a, b, c, d, e, f, g and h with the (i-1)th hash value and the values of W₃₁, W₃₀, W₂₉, W₂₈, W₂₇, W₂₆, W₂₅, W₂₄: $\begin{array}{ll} a = H_0^{(i-1)} + W_{31}, & b = H_1^{(i-1)} + W_{30}, & c = H_2^{(i-1)} + W_{20}, & d = H_3^{(i-1)} + W_{28}, \\ e = H_4^{(i-1)} + W_{27}, & f = H_8^{(i-1)} + W_{26}, & g = H_6^{(i-1)} + W_{25}, & h = H_7^{(i-1)} + W_{24} \end{array}$ 4. For t=0 to 7 { $T_1 = h + \sum_1 (e) + Ch(e, f, g) + (W_t \oplus W_{t+16}) + (W_{t+4} \oplus W_{t+24}) + (W_{t+8} \oplus W_{t+20}) + W_{t+12} \\ T_2 = \sum_0 (a) + Maj(a, b, c)$ h = gg = ff = e $e = d + T_1$ d = cc = bb = a $a = T_1 + T_2$ } 5. Compute the i^{th} intermediate hash value $H^{(i)}$: $\begin{array}{ll} H_0^{(i)}=a+H_0^{(i-1)}, & H_1^{(i)}=b+H_1^{(i-1)}, & H_2^{(i)}=c+H_2^{(i-1)}, & H_3^{(i)}=d+H_3^{(i-1)}, \\ H_4^{(i)}=e+H_4^{(i-1)}, & H_5^{(i)}=f+H_5^{(i-1)}, & H_6^{(i)}=g+H_6^{(i-1)}, & H_7^{(i)}=h+H_7^{(i-1)}, \end{array}$

Fig. 1: Turbo SHA-2 [1]

For Turbo SHA-*r* we have

Step 3: $a[0] = W_{31}^{+}, b[0] = W_{30}^{+}, c[0] = W_{29}^{+}, d[0] = W_{28}^{+}, e[0] = W_{27}^{+}, f[0] = W_{26}^{+}, g[0] = W_{2$ $W_{25}^{+}, h[0] = W_{24}^{+}.$ Step 4: For t = 1 to rł $T_1[t] = h[t-1] + \Sigma_1(e[t-1]) + Ch(e[t-1], f[t-1], g[t-1]) + W_{t-1}$ $T_{2}[t] = \Sigma_{0}(a[t-1]) + Maj(a[t-1], b[t-1], c[t-1])$ h[t] = g[t-1]g[t] = f[t-1]f[t] = e[t-1] $e[t] = d[t-1] + T_1[t-1]$ d[t] = c[t-1]c[t] = b[t-1]b[t] = a[t-1] $a[t] = T_1[t-1] + T_2[t-1]$ }

We can see the values of working variables (a, b, c, d, e, f, g, h) in appropriate rounds in Tab. 1.

t	а	b	С	d	е	f	g	h
0	W_{31}^{+}	W_{30}^{+}	W_{29}^{+}	W_{28}^{+}	W_{27}^{+}	W_{26}^{+}	W_{25}^{+}	W_{24}^{+}
1	<i>a</i> [1]	W_{31}^{+}	W_{30}^{+}	W_{29}^{+}	<i>e</i> [1]	W_{27}^{+}	W_{26}^{+}	W_{25}^{+}
2	<i>a</i> [2]	<i>a</i> [1]	W_{31}^{+}	W_{30}^{+}	<i>e</i> [2]	<i>e</i> [1]	W_{27}^{+}	W_{26}^{+}
3	<i>a</i> [3]	<i>a</i> [2]	a[1]	W_{31}^{+}	<i>e</i> [3]	<i>e</i> [2]	<i>e</i> [1]	W_{27}^{+}
4	<i>a</i> [4]	<i>a</i> [3]	<i>a</i> [2]	a[1]	<i>e</i> [4]	<i>e</i> [3]	<i>e</i> [2]	<i>e</i> [1]
5	<i>a</i> [5]	<i>a</i> [4]	<i>a</i> [3]	a[2]	<i>e</i> [5]	<i>e</i> [4]	<i>e</i> [3]	<i>e</i> [2]
6	<i>a</i> [6]	<i>a</i> [5]	<i>a</i> [4]	<i>a</i> [3]	<i>e</i> [6]	<i>e</i> [5]	<i>e</i> [4]	<i>e</i> [3]
7	<i>a</i> [7]	<i>a</i> [6]	<i>a</i> [5]	<i>a</i> [4]	<i>e</i> [7]	<i>e</i> [6]	<i>e</i> [5]	<i>e</i> [4]
8	<i>a</i> [8]	<i>a</i> [7]	<i>a</i> [6]	<i>a</i> [5]	<i>e</i> [8]	<i>e</i> [7]	<i>e</i> [6]	<i>e</i> [5]

Tab.1: Working variables (a, b, c, d, e, f, g, h) in appropriate rounds

Lemma 1

Finding a collision in Turbo SHA-256-r is equivalent to finding of 2 different messages for which the values of registers in the second and the third column in Tab. 2 are equal.

	Ти	urbo SHA-r collision	
r	fixed values (chosen randomly)	collision by birthday paradox	free values (chosen randomly)
1	W ₃₁ , 30, 29, 28, 27, 26, 25	$T_{1}[1]$	$W_{24, 23, \dots, 16}$
2	W ₃₁ , 30, 29, 28, 27, 26	$T_1[1], T_1[2]$	$W_{25, 24, \dots, 16}$
3	W _{31, 30, 29, 28, 27}	$T_1[1], T_1[2], T_1[3]$	$W_{26, 25, \dots, 16}$
4	W ₃₁ , 30, 29, 28	$T_1[1], T_1[2], T_1[3], T_1[4]$	$W_{27, 26, \dots, 16}$
5	W _{31, 30, 29}	$T_1[1], T_1[2], T_1[3], T_1[4], T_1[5]$	$W_{28, 27, \dots, 16}$
6	$W_{31, 30}$	$a[1], T_1[2], T_1[3], T_1[4], T_1[5], T_1[6]$	W _{29, 28,, 16}
7	<i>W</i> ₃₁	$a[1], a[2], T_1[3], T_1[4], T_1[5], T_1[6], T_1[7]$	W _{30, 29,, 16}
8		$a[1], a[2], a[3], T_1[4], T_1[5], T_1[6], T_1[7], T_1[8]$	<i>W</i> _{31, 30,, 16}

Tab. 2: Collision of Turbo SHA-r

Proof

The case of r = 1After the first round we have $T_1[1] = W_{24}^+ + \Sigma_1(W_{27}^+) + Ch(W_{27}^+, W_{26}^+, W_{25}^+) + W_0^ T_2[1] = \Sigma_0(W_{31}^+) + Maj(W_{31}^+, W_{30}^+, W_{29}^+)$ $e[1] = W_{28}^+ + T_1[1]$ $a[1] = T_1[1] + T_2[1]$ Hach value consists of values in the row t = 1 of the Table

Hash value consists of values in the row t = 1 of the Table 1. The collision means that two different messages have these values the same:

<i>a</i> [1]	W_{31}^{+}	W_{30}^{+}	W_{29}^{+}	<i>e</i> [1]	W_{27}^{+}	W_{26}^{+}	W_{25}^{+}
--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------

It means that the value $T_2[1]$ also collides, because it uses primarily colliding values

 W_{31} , W_{30} , W_{29} . From collision of a[1] and $T_2[1]$ follows that $T_1[1]$ collides too. From collision of e[1] and $T_1[1]$ follows that W_{28} collides too.

From collision of the hash value follows collision of the values W_{31} , W_{30} , W_{29} , W_{28} , W_{27} , W_{26} , W_{25} and $T_1[1]$. We can easily see that the reverse implication holds too.

The case of r = 2After the second round we have $T_1[1] = W_{24}^+ + \Sigma_1(W_{27}^+) + Ch(W_{27}^+, W_{26}^+, W_{25}^+) + W_0^ T_2[1] = \Sigma_0(W_{31}^+) + Maj(W_{31}^+, W_{30}^+, W_{29}^+)$

$$e[1] = W_{28}^{+} + T_{1}[1]$$

$$a[1] = T_{1}[1] + T_{2}[1]$$

$$T_{1}[2] = W_{25}^{+} + \Sigma_{1}(e[1]) + Ch(e[1], W_{27}^{+}, W_{26}^{+}) + W_{1}^{\sim}$$

$$T_{2}[2] = \Sigma_{0}(a[1]) + Maj(a[1], W_{31}^{+}, W_{30}^{+})$$

$$e[2] = W_{29}^{+} + T_{1}[2]$$

$$a[2] = T_{1}[2] + T_{2}[2]$$

Hash value consist of values in the row t = 2 of the Table 1. The collision means that two different messages have these values the same:

<i>a</i> [2]	<i>a</i> [1]	W_{31}^{+}	W_{30}^{+}	<i>e</i> [2]	<i>e</i> [1]	W_{27}^{+}	W_{26}^{+}

It means that the value $T_2[2]$ also collides, because it uses primarily colliding values.

From collision of a[2] and $T_2[2]$ follows that $T_1[2]$ collides too.

From collision of e[2] and $T_1[2]$ follows that W_{29} collides too.

From collision of W_{29} follows that $T_2[1]$ collides. From collision of a[1] and $T_2[1]$ follows that $T_1[1]$ collides.

From collision of e[1] and $T_1[1]$ follows that W_{28} collides.

From collision of the hash value follows collision of the values W_{31} , W_{30} , W_{29} , W_{28} , W_{27} , W_{26} and $T_1[1]$, $T_1[2]$. We can easily see that the reverse implication holds too.

The case of
$$r = 3$$

After the third round we have
 $T_1[1] = W_{24}^+ + \Sigma_1(W_{27}^+) + Ch(W_{27}^+, W_{26}^+, W_{25}^+) + W_0^{\sim}$
 $T_2[1] = \Sigma_0(W_{31}^+) + Maj(W_{31}^+, W_{30}^+, W_{29}^+)$
 $e[1] = W_{28}^+ + T_1[1]$
 $a[1] = T_1[1] + T_2[1]$
 $T_1[2] = W_{25}^+ + \Sigma_1(e[1]) + Ch(e[1], W_{27}^+, W_{26}^+) + W_1^{\sim}$
 $T_2[2] = \Sigma_0(a[1]) + Maj(a[1], W_{31}^+, W_{30}^+)$
 $e[2] = W_{29}^+ + T_1[2]$
 $a[2] = T_1[2] + T_2[2]$
 $T_1[3] = W_{26}^+ + \Sigma_1(e[2]) + Ch(e[2], e[1], W_{27}^+) + W_2^{\sim}$

$$T_{2}[3] = \Sigma_{0}(a[2]) + Maj(a[2], a[1], W_{31}^{+})$$

$$e[3] = W_{30}^{+} + T_{1}[3]$$

$$a[3] = T_{1}[3] + T_{2}[3]$$

Hash value consists of values in the row t = 3 of the Table 1. The collision means that two different messages have these values the same:

$a[3]$ $a[2]$ $a[1]$ w_{31} $e[3]$ $e[2]$ $e[1]$ w_{27}	<i>a</i> [3]	<i>a</i> [2]	a[1]	W_{31}^{+}	<i>e</i> [3]	<i>e</i> [2]	<i>e</i> [1]	W_{27}^{+}
---	--------------	--------------	------	--------------	--------------	--------------	--------------	--------------

It means that the value $T_2[3]$ also collides, because it uses primarily colliding values.

From collision of a[3] and $T_2[3]$ follows that $T_1[3]$ collides too.

From collision of e[3] follows that W_{30} collides too.

From collision of W_{30} follows that $T_2[2]$ collides. From collision of a[2] and $T_2[2]$ follows that $T_1[2]$ collides too.

From collision of e[2] and $T_1[2]$ follows that W_{29} collides too.

From collision of W_{29} follows that $T_2[1]$ collides. From collision of a[1] and $T_2[1]$ follows that $T_1[1]$ collides.

From collision of e[1] and $T_1[1]$ follows that W_{28} collides too.

From collision of the hash value also follows collision of the values W_{31} , W_{30} , W_{29} , W_{28} , W_{27} and $T_1[1]$, $T_1[2]$ and $T_1[3]$. We can easily see that the reverse implication holds too.

The case of r = 4

After the fourth round we have $T_1[1] = W_{24}^+ + \Sigma_1(W_{27}^+) + Ch(W_{27}^+, W_{26}^+, W_{25}^+) + W_0^ T_2[1] = \Sigma_0(W_{31}^+) + Maj(W_{31}^+, W_{30}^+, W_{29}^+)$ $e[1] = W_{28}^+ + T_1[1]$ $a[1] = T_1[1] + T_2[1]$

 $T_{1}[2] = W_{25}^{+} + \Sigma_{1}(e[1]) + Ch(e[1], W_{27}^{+}, W_{26}^{+}) + W_{1}^{\sim}$ $T_{2}[2] = \Sigma_{0}(a[1]) + Maj(a[1], W_{31}^{+}, W_{30}^{+})$ $e[2] = W_{29}^{+} + T_{1}[2]$ $a[2] = T_{1}[2] + T_{2}[2]$

 $T_1[3] = W_{26}^+ + \Sigma_1(e[2]) + Ch(e[2], e[1], W_{27}^+) + W_2^ T_2[3] = \Sigma_0(a[2]) + Maj(a[2], a[1], W_{31}^+)$ $e[3] = W_{30}^{+} + T_{1}[3]$ $a[3] = T_{1}[3] + T_{2}[3]$ $T_{1}[4] = W_{27}^{+} + \Sigma_{1}(e[3]) + Ch(e[3], e[2], e[1]) + W_{3}^{\sim}$ $T_{2}[4] = \Sigma_{0}(a[3]) + Maj(a[3], a[2], a[1])$ $e[4] = W_{31}^{+} + T_{1}[4]$ $a[4] = T_{1}[4] + T_{2}[4]$

Hash value consists of values in the row t = 4 of the Table 1. The collision means that two different messages have these values the same:

a[4]	<i>a</i> [3]	a[2]	a[1]	e[4]	<i>e</i> [3]	e[2]	e[1]

It means that the value $T_2[4]$ also collides, because it uses primarily colliding values. From collision of a[4] and $T_2[4]$ follows that $T_1[4]$ collides.

From collision of e[4] follows that W_{31} collides.

From collision of W_{31} follows that $T_2[3]$ collides. From collision of a[3] and $T_2[3]$ follows that $T_1[3]$ collides.

From collision of e[3] and $T_1[3]$ follows that W_{30} collides.

From collision of W_{30} follows that $T_2[2]$ collides. From collision of a[2] and $T_2[2]$ follows that $T_1[2]$ collides.

From collision of e[2] and $T_1[2]$ follows that W_{29} collides.

From collision of W_{29} follows that $T_2[1]$ collides. From collision of a[1] and $T_2[1]$ follows that $T_1[1]$ collides.

From collision of e[1] and $T_1[1]$, follows that W_{28} collides.

From collision of the hash value also follows collision of the values W_{31} , W_{30} , W_{29} , W_{28} and $T_1[1]$, $T_1[2]$, $T_1[3]$ and $T_1[4]$. We can easily see that the reverse implication holds too.

The case of r = 5

After the fifth round we have $T_{1}[1] = W_{24}^{+} + \Sigma_{1}(W_{27}^{+}) + Ch(W_{27}^{+}, W_{26}^{+}, W_{25}^{+}) + W_{0}^{\sim}$ $T_{2}[1] = \Sigma_{0}(W_{31}^{+}) + Maj(W_{31}^{+}, W_{30}^{+}, W_{29}^{+})$ $e[1] = W_{28}^{+} + T_{1}[1]$ $a[1] = T_{1}[1] + T_{2}[1]$ $T_{1}[2] = W_{25}^{+} + \Sigma_{1}(e[1]) + Ch(e[1], W_{27}^{+}, W_{26}^{+}) + W_{1}^{\sim}$ $T_{2}[2] = \Sigma_{0}(a[1]) + Maj(a[1], W_{31}^{+}, W_{30}^{+})$ $e[2] = W_{29}^{+} + T_{1}[2]$

$$a[2] = T_{1}[2] + T_{2}[2]$$

$$T_{1}[3] = W_{26}^{+} + \Sigma_{1}(e[2]) + Ch(e[2], e[1], W_{27}^{+}) + W_{2}^{\sim}$$

$$T_{2}[3] = \Sigma_{0}(a[2]) + Maj(a[2], a[1], W_{31}^{+})$$

$$e[3] = W_{30}^{+} + T_{1}[3]$$

$$a[3] = T_{1}[3] + T_{2}[3]$$

$$T_{1}[4] = W_{27}^{+} + \Sigma_{1}(e[3]) + Ch(e[3], e[2], e[1]) + W_{3}^{\sim}$$

$$T_{2}[4] = \Sigma_{0}(a[3]) + Maj(a[3], a[2], a[1])$$

$$e[4] = W_{31}^{+} + T_{1}[4]$$

$$a[4] = T_{1}[4] + T_{2}[4]$$

$$T_{1}[5] = e[1] + \Sigma_{1}(e[4]) + Ch(e[4], e[3], e[2]) + W_{4}^{\sim}$$

$$T_{2}[5] = \Sigma_{0}(a[4]) + Maj(a[4], a[3], a[2])$$

$$e[5] = a[1] + T_{1}[5]$$

$$a[5] = T_{1}[5] + T_{2}[5]$$

Hash value consists of values in the row t = 5 of the Table 1. The collision means that two different messages have these values the same:

<i>a</i> [5]	<i>a</i> [4]	<i>a</i> [3]	a[2]	<i>e</i> [5]	e[4]	<i>e</i> [3]	e[2]
--------------	--------------	--------------	------	--------------	------	--------------	------

It means that the value $T_2[5]$ also collides, because it uses primarily colliding values.

From collision of $T_2[5]$ and a[5] follows that $T_1[5]$ collides.

From collision of $T_1[5]$ and e[5] follows that a[1] collides.

From collision of a[1] follows that $T_2[4]$ collides. From collision of $T_2[4]$ and a[4] and follows that $T_1[4]$ collides.

From collision of $T_1[4]$ and e[4] follows that W_{31} collides.

From collision of W_{31} follows that $T_2[3]$ collides. From collision of a[3] and $T_2[3]$ follows that $T_1[3]$ collides.

From collision of e[3] and $T_1[3]$ follows that W_{30} collides.

From collision of W_{30} follows that $T_2[2]$ collides. From collision of a[2] and $T_2[2]$ follows that $T_1[2]$ collides.

From collision of e[2] and $T_1[2]$ follows that W_{29} collides.

From collision of the hash value follows collision of the values W_{31} , W_{30} , W_{29} and a[1], $T_1[2]$, $T_1[3]$, $T_1[4]$ and $T_1[5]$. We can easily see that the reverse implication holds too.

The case of r = 6After the sixth round we have $T_1[1] = W_{24}^+ + \Sigma_1(W_{27}^+) + Ch(W_{27}^+, W_{26}^+, W_{25}^+) + W_0^{\sim}$ $T_{2}[1] = \Sigma_{0}(W_{31}^{+}) + Maj(W_{31}^{+}, W_{30}^{+}, W_{29}^{+})$ $e[1] = W_{28}^+ + T_1[1]$ $a[1] = T_1[1] + T_2[1]$ $T_1[2] = W_{25}^+ + \Sigma_1(e[1]) + Ch(e[1], W_{27}^+, W_{26}^+) + W_1^ T_2[2] = \Sigma_0(a[1]) + Maj(a[1], W_{31}^+, W_{30}^+)$ $e[2] = W_{29}^+ + T_1[2]$ $a[2] = T_1[2] + T_2[2]$ $T_1[3] = W_{26}^+ + \Sigma_1(e[2]) + Ch(e[2], e[1], W_{27}^+) + W_2^ T_2[3] = \Sigma_0(a[2]) + Maj(a[2], a[1], W_{31}^+)$ $e[3] = W_{30}^+ + T_1[3]$ $a[3] = T_1[3] + T_2[3]$ $T_1[4] = W_{27}^+ + \Sigma_1(e[3]) + Ch(e[3], e[2], e[1]) + W_3^{\sim}$ $T_{2}[4] = \Sigma_{0}(a[3]) + Maj(a[3], a[2], a[1])$ $e[4] = W_{31}^+ + T_1[4]$ $a[4] = T_1[4] + T_2[4]$ $T_1[5] = e[1] + \Sigma_1(e[4]) + Ch(e[4], e[3], e[2]) + W_4^{\sim}$ $T_2[5] = \Sigma_0(a[4]) + Maj(a[4], a[3], a[2])$ $e[5] = a[1] + T_1[5]$ $a[5] = T_1[5] + T_2[5]$ $T_1[6] = e[2] + \Sigma_1(e[5]) + Ch(e[5], e[4], e[3]) + W_5^{\sim}$ $T_{2}[6] = \Sigma_{0}(a[5]) + Maj(a[5], a[4], a[3])$ $e[6] = a[2] + T_1[6]$ $a[6] = T_1[6] + T_2[6]$

Hash value consists of values in the row t = 6 of the Table 1. The collision means that two different messages have these values the same:

a[6] $a[5]$ $a[4]$ $A[3]$ $e[6]$	e[5] e[4] e[3]
It means that the value $T_2[6]$ also collides, because it	uses primarily colliding
values.	
From collision of $T_2[6]$ and $a[6]$ follows that $T_1[6]$ c	ollides.
From collision of $T_1[6]$ and $e[6]$ follows that $a[2]$ co	llides.
From collision of $a[2]$ follows that $T_2[5]$ collides. Fr	om collision of $T_2[5]$ and $a[5]$
follows that $T_1[5]$ collides.	
From collision of $T_1[5]$ and $e[5]$ follows that $a[1]$ co	llides.
From collision of $a[1]$ follows that $T_2[4]$ collides. Fr	om collision of $T_2[4]$ and $a[4]$
follows that $T_1[4]$ collides.	
From collision of $e[4]$ and $T_1[4]$ follows that W_{31} co	llides.
From collision of W_{31} follows that $T_2[3]$ collides. From collision of W_{31} follows that $T_2[3]$ collides.	om collision of $T_2[3]$ and $a[3]$
follows that $T_1[3]$ collides.	

From collision of e[3] and $T_1[3]$ follows that W_{30} collides.

From collision of the hash value also follows collision of the values W_{31} , W_{30} and a[1], a[2], $T_1[3]$, $T_1[4]$, $T_1[5]$ and $T_1[6]$. We can easily see that the reverse implication holds too.

The case of r = 7

After the seventh round we have $T_{1}[1] = W_{24}^{+} + \Sigma_{1}(W_{27}^{+}) + Ch(W_{27}^{+}, W_{26}^{+}, W_{25}^{+}) + W_{0}^{\sim}$ $T_{2}[1] = \Sigma_{0}(W_{31}^{+}) + Maj(W_{31}^{+}, W_{30}^{+}, W_{29}^{+})$ $e[1] = W_{28}^{+} + T_{1}[1]$ $a[1] = T_{1}[1] + T_{2}[1]$ $T_{1}[2] = W_{25}^{+} + \Sigma_{1}(e[1]) + Ch(e[1], W_{27}^{+}, W_{26}^{+}) + W_{1}^{\sim}$ $T_{2}[2] = \Sigma_{0}(a[1]) + Maj(a[1], W_{31}^{+}, W_{30}^{+})$ $e[2] = W_{29}^{+} + T_{1}[2]$ $a[2] = T_{1}[2] + T_{2}[2]$ $T_{1}[3] = W_{26}^{+} + \Sigma_{1}(e[2]) + Ch(e[2], e[1], W_{27}^{+}) + W_{2}^{\sim}$ $T_{2}[3] = \Sigma_{0}(a[2]) + Maj(a[2], a[1], W_{31}^{+})$ $e[3] = W_{30}^{+} + T_{1}[3]$ $a[3] = T_{1}[3] + T_{2}[3]$

$$\begin{split} T_{1}[4] &= W_{27}^{+} + \Sigma_{1}(e[3]) + Ch(e[3], e[2], e[1]) + W_{3}^{\sim} \\ T_{2}[4] &= \Sigma_{0}(a[3]) + Maj(a[3], a[2], a[1]) \\ e[4] &= W_{31}^{+} + T_{1}[4] \\ a[4] &= T_{1}[4] + T_{2}[4] \\ T_{1}[5] &= e[1] + \Sigma_{1}(e[4]) + Ch(e[4], e[3], e[2]) + W_{4}^{\sim} \\ T_{2}[5] &= \Sigma_{0}(a[4]) + Maj(a[4], a[3], a[2]) \\ e[5] &= a[1] + T_{1}[5] \\ a[5] &= T_{1}[5] + T_{2}[5] \\ T_{1}[6] &= e[2] + \Sigma_{1}(e[5]) + Ch(e[5], e[4], e[3]) + W_{5}^{\sim} \\ T_{2}[6] &= \Sigma_{0}(a[5]) + Maj(a[5], a[4], a[3]) \\ e[6] &= a[2] + T_{1}[6] \\ a[6] &= T_{1}[6] + T_{2}[6] \\ T_{1}[7] &= e[3] + \Sigma_{1}(e[6]) + Ch(e[6], e[5], e[4]) + W_{6}^{\sim} \\ T_{2}[7] &= \Sigma_{0}(a[6]) + Maj(a[6], a[5], a[4]) \\ e[7] &= a[3] + T_{1}[7] \\ a[7] &= T_{1}[7] + T_{2}[7] \\ \end{split}$$

Hash value consists of values in the row t = 7 of the Table 1. The collision means that two different messages have these values the same:

a[7]	<i>a</i> [6]	a[5]	a[4]	<i>e</i> [7]	<i>e</i> [6]	<i>e</i> [5]	<i>e</i> [4]

It means that the value $T_2[7]$ also collides, because it uses primarily colliding values.

From collision of $T_2[7]$ and a[7] follows that $T_1[7]$ collides.

From collision of $T_1[7]$ and e[7] follows that a[3] collides.

From collision of a[3] follows that $T_2[6]$ collides. From collision of $T_2[6]$ and a[6] follows that $T_1[6]$ collides.

From collision of $T_1[6]$ and e[6] follows that a[2] collides.

From collision of a[2] follows that $T_2[5]$ collides. From collision of $T_2[5]$ and a[5] follows that $T_1[5]$ collides.

From collision of e[5] and $T_1[5]$ follows that a[1] collides.

From collision of a[1] follows that $T_2[4]$ collides. From collision of $T_2[4]$ and a[4] follows that $T_1[4]$ collides.

From collision of $T_1[4]$ and e[4] follows that W_{31} collides.

From collision of the hash value follows collision of the values W_{31} and a[1], a[2], a[3], $T_1[4]$, $T_1[5]$, $T_1[6]$ and $T_1[7]$. We can easily see that the reverse implication holds too.

```
The case of r = 8
After the 8th round we have
T_1[1] = W_{24}^+ + \Sigma_1(W_{27}^+) + Ch(W_{27}^+, W_{26}^+, W_{25}^+) + W_0^-
T_{2}[1] = \Sigma_{0}(W_{31}^{+}) + Maj(W_{31}^{+}, W_{30}^{+}, W_{29}^{+})
e[1] = W_{28}^+ + T_1[1]
a[1] = T_1[1] + T_2[1]
T_1[2] = W_{25}^+ + \Sigma_1(e[1]) + Ch(e[1], W_{27}^+, W_{26}^+) + W_1^-
T_2[2] = \Sigma_0(a[1]) + Maj(a[1], W_{31}^+, W_{30}^+)
e[2] = W_{29}^+ + T_1[2]
a[2] = T_1[2] + T_2[2]
T_1[3] = W_{26}^+ + \Sigma_1(e[2]) + Ch(e[2], e[1], W_{27}^+) + W_2^-
T_2[3] = \Sigma_0(a[2]) + Maj(a[2], a[1], W_{31}^+)
e[3] = W_{30}^{+} + T_1[3]
a[3] = T_1[3] + T_2[3]
T_1[4] = W_{27}^+ + \Sigma_1(e[3]) + Ch(e[3], e[2], e[1]) + W_3^{\sim}
T_{2}[4] = \Sigma_{0}(a[3]) + Maj(a[3], a[2], a[1])
e[4] = W_{31}^+ + T_1[4]
a[4] = T_1[4] + T_2[4]
T_1[5] = e[1] + \Sigma_1(e[4]) + Ch(e[4], e[3], e[2]) + W_4^{\sim}
T_{2}[5] = \Sigma_{0}(a[4]) + Maj(a[4], a[3], a[2])
e[5] = a[1] + T_1[5]
a[5] = T_1[5] + T_2[5]
T_1[6] = e[2] + \Sigma_1(e[5]) + Ch(e[5], e[4], e[3]) + W_5^{\sim}
T_{2}[6] = \Sigma_{0}(a[5]) + Maj(a[5], a[4], a[3])
```

 $e[6] = a[2] + T_1[6]$ $a[6] = T_1[6] + T_2[6]$ $T_1[7] = e[3] + \Sigma_1(e[6]) + Ch(e[6], e[5], e[4]) + W_6^{\sim}$ $T_2[7] = \Sigma_0(a[6]) + Maj(a[6], a[5], a[4])$ $e[7] = a[3] + T_1[7]$ $a[7] = T_1[7] + T_2[7]$ $T_1[8] = e[4] + \Sigma_1(e[7]) + Ch(e[7], e[6], e[5]) + W_7^{\sim}$ $T_2[8] = \Sigma_0(a[7]) + Maj(a[7], a[6], a[5])$ $e[8] = a[4] + T_1[8]$ $a[8] = T_1[8] + T_2[8]$

Hash value consists of values in the row t = 8 of the Table 1. The collision means that two different messages have these values the same:

a[8] $a[7]$ $a[6]$ $a[5]$ $e[8]$ $e[7]$ $e[6]$ $e[5]$		a[8]	a[7]	<i>a</i> [6]	a[5]	<i>e</i> [8]	<i>e</i> [7]	<i>e</i> [6]	<i>e</i> [5]
---	--	------	------	--------------	------	--------------	--------------	--------------	--------------

It means that the value $T_2[8]$ also collides, because it uses primarily colliding values.

From collision of $T_2[8]$ and a[8] follows that $T_1[8]$ collides.

From collision of $T_1[8]$ and e[8] follows that a[4] collides.

From collision of a[4] and a[7] follows that $T_1[7]$ collides.

From collision of $T_1[7]$ and e[7] follows that a[3] collides.

From collision of a[3] follows that $T_2[6]$ collides. From collision of $T_2[6]$ and a[6] follows that $T_1[6]$ collides.

From collision of $T_1[6]$ and e[6] follows that a[2] collides.

From collision of a[2] follows that $T_2[5]$ collides. From collision of $T_2[5]$ and a[5] follows that $T_1[5]$ collides.

From collision of e[5] and $T_1[5]$ follows that a[1] collides.

From collision of a[1] follows that $T_2[4]$ collides. From collision of $T_2[4]$ and a[4] follows that $T_1[4]$ collides.

From collision of the hash value follows collision of the values a[1], a[2], a[3], a[4], $T_1[4]$, $T_1[5]$, $T_1[6]$, $T_1[7]$ and $T_1[8]$. We can easily see that the reverse implication holds too. QED.

Theorem 1

- (i) The complexity of finding a collision of Turbo SHA-256-*r* is maximally of the order 2^{16r} for r = 1, ..., 8.
- (ii) The complexity of finding a collision of Turbo SHA-512-*r* is maximally of the order 2^{32r} for r = 1, ..., 8.

Furthermore, we can partially choose the colliding hash value for r = 1, 2 and 3.

Proof. The proof of Theorem 1 is very similar for all values of r. We find Turbo SHA-r collision using the row r of Tab.2, Lemma 1 and the following algorithm:

- 1. Set randomly values of variables in the second column of Tab.2 (for instance for r = 2 we randomly set values of $W_{31}, ..., W_{26}$)
- 2. For i = 1 to 2^{16r} do
 - {
- a) choose randomly set of values of variables in the forth column (for instance for r = 2 randomly set values of $W_{25}, ..., W_{16}$)
- b) from $W_{31}, ..., W_{16}$ compute $W_{15}, ..., W_0$ (it is bijective transformation, [1])
- c) from W_{31} , ..., W_{16} and W_{15} ,..., W_0 compute the values of variables in the third column and store them in the set *S* (for instance for r = 2 we compute and store set of values $(T_1[1], T_1[2])$ in *S*)
- 3. Using birthday paradox find a collision in the set S

Because we have r (32-bit) variables in the third column, we need to choose approximately $2^{32*r/2}$ values in the Step 2 to have a good chance to find a collision in the set S^1 . We always have at minimum r words in the fourth column, so the attack is possible.

Conclusion

In this paper we don't examine security of Turbo SHA-2 completely, we only show new collision attacks on it, with smaller complexity than it was considered by Turbo SHA-2 authors [1]. From Theorem 1 follows that the only remaining candidates from the hash family Turbo SHA-2 are Turbo SHA-256 and Turbo SHA-512 with full 8

¹ Let us note that we can assume that variables in the third column in Tab. 2 are statistically independent random variables. For instance in case of r = 8 we can express a[1], a[2] and a[3] in terms of $T_1[1]$, $T_1[2]$ and $T_1[3]$. Furthermore, $T_1[1]$, $T_1[2]$, $T_1[3]$, $T_1[4]$, $T_1[5]$, $T_1[6]$, $T_1[7]$, $T_1[8]$ depend on different variables $W_t^- = (W_t \oplus W_{t+16}) + (W_{t+4} \oplus W_{t+24}) + (W_{t+8} \oplus W_{t+20}) + W_{t+12}, t = 0,...,7$, what means dependence on different variables from the set $\{W_{31}, ..., W_{16}\}$ and different variables from the set $\{W_{15},..., W_0\}$. Because we choose variables in the fourth column randomly and independently, we can also expect that a[1], a[2], a[3], $T_1[4]$, $T_1[5]$, $T_1[6]$, $T_1[6]$, $T_1[7]$, $T_1[8]$ behave as independent random variables.

rounds. The original security reserve of 6 round has been lost. There is an open question how to increase security of the proposal.

Acknowledgement

We would like to thank Daniel Joščák for insightful comments on a preliminary draft of the paper. It helped us to improve the clarity of the paper.

References

 Gligoroski D., Knapskog S. J.: Turbo SHA-2, IACR ePrint archive <u>Report 2007/403</u>, October 2007, http://eprint.iacr.org/2007/403.pdf.