
Efficient Tweakable Enciphering Schemes from (Block-Wise)
Universal Hash Functions

Palash Sarkar
Applied Statistics Unit

Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. We present several constructions of tweakable enciphering schemes which use a single en-
cryption layer between two layers of universal hash function computation. The earliest known construc-
tion of this type is due to Naor and Reingold, where the encryption layer is the electronic codebook
mode. A more recent work of this type is TET and is due to Halevi at Crypto 2007. We present a
new construction Ψ of an invertible block-wise almost universal hash function. Using this we construct
a tweakable enciphering scheme HEH. For variable length messages HEH has better efficiency than
TET, while for fixed length messages HEH provides better key agility. HEH can only handle messages
whose lengths are multiples of the block length. To tackle this, we define variants of Ψ and present a
construction HEH∗ which can handle partial blocks. We show that the basic universal hash function
can be combined with the counter mode of operation and the output feedback (OFB) mode to obtain
new tweakable enciphering schemes of the hash-Ctr-hash and the hash-OFB-hash type. The hash-Ctr-
hash type construction improves upon previous work, while the hash-OFB-hash construction is the
first proposal using the OFB mode. An important feature of our work is to show that a new class of
polynomials defined by Bernstein can be used to construct the universal hash function. This results in
an improvement of efficiency of the hashing layers by almost a factor of two. From a practical point of
view, our constructions provide the currently best known algorithms for disk encryption protocols.1

Keywords: modes of operations, tweakable encryption, strong pseudo-random permuta-
tion, disk encryption.

1 Introduction

A block cipher is a fundamental primitive in cryptography. The formal model of a block cipher
is that of a pseudo-random permutation (PRP) or a strong PRP (SPRP) [10]. By itself, a block
cipher can encrypt fixed length strings. A mode of operation extends the domain of a block cipher
to longer and variable length strings.

A variable input length SPRP can be considered to be a mode of operation of a block cipher.
The notion of tweakable block cipher was formalized by Liskov, Rivest and Wagner [9]. This notion
was extended to variable input length tweakable SPRP (also called tweakable enciphering scheme)
by Halevi and Rogaway [7]. Earlier, a method for constructing SPRPs was given by Naor and
Reingold [14]. An important application of tweakable SPRP is that of disk encryption as has been
pointed out in [7].

1.1 Previous Work

At a top level, the currently known constructions can be divided into two types: the encrypt-mix-
encrypt approach and the hash-encrypt-hash approach. The electronic codebook (ECB) mode and
1 An earlier version of the work has appeared as [16]. This version substantially expands [16] and provides several

new constructions.

the counter mode has been suggested in the literature for instantiating the encryption layer in the
second approach. We briefly review the main features of the known approaches with focus on the
hash-ECB-hash approach.

Hash-ECB-Hash. Naor-Reingold was the first to propose the hash-ECB-hash approach for the
construction of strong pseudorandom permutation. A sketch of a mode of operation based on their
more theoretical paper [14] was given in [13]. The construction is the following.

h−1
2 ◦ ECB ◦ h1 (1)

where h1 and h2 are invertible block-wise almost XOR universal hash functions and ECB denotes
a layer of electronic codebook encryption. (See Definition 1 for the definitions of almost universal
hash functions and almost XOR universal hash functions.) One can choose h1 = h2, so it is sufficient
to specify one hash function h. As given in [13], the function h is the following map.

(X1, . . . , Xm) 7→ (X1 ⊕ Y, . . . ,Xm ⊕ Y)⊕ (u2(1), . . . , u2(m)), (2)

where Y = u1(Xm⊕g(X1, . . . , Xm−1)). Here g, u1 and u2 are almost XOR universal hash functions.
Exact specifications for g, u1 and u2 were not provided. In fact, the description was really meant
to be a sketch. Concrete security bounds, methods for tackling partial blocks and variable length
messages were also not discussed.

A construction which follows and develops upon the Naor-Reingold approach is TET [6]. This
construction is a complete specification with concrete security bounds, and methods for tackling
partial blocks. The hashing functions h1 and h2 are chosen to be different (though similar). Below
we describe the first hashing layer for the encryption function of TET. For ease of comparison to
the Naor-Reingold approach, we describe the situation only for full blocks.

(X1, . . . , Xm) 7→ (X1 ⊕ Y, . . . ,Xm ⊕ Y)⊕ (β, αβ, . . . , αm−1β) (3)

where Y = σ−1(X1τ
m ⊕ · · · ⊕Xm−1τ

2 ⊕Xmτ) and σ = 1⊕ τ ⊕ · · · ⊕ τm. The computation is over
the finite field GF (2n). The hashing key is (τ, β) and α is a primitive element of GF (2n).

For fixed length messages, TET has good performance. It, however, has two drawbacks. First,
it is not suited for variable length messages and second, for fixed length messages, the key agility
of TET is not good, in the sense that a lot of computation needs to be done for every key change.
In fact, the drawback of TET for variable length messages has been mentioned in [6, Page 423]
itself: “Hence, TET is not very appealing as a variable-input-length mode”. Key agility was not
considered in [6] at all.

PEP [4] is another construction (which appeared earlier to TET) which is also of the hash-
ECB-hash type. We do not discuss PEP, since it is slower than TET.

Hash-Ctr-Hash. Here the counter mode of operation is used to instantiate the encryption layer.
The first construction of this type is XCB [11]. Later constructions are HCTR [18] and HCH [3].
When they appeared, XCB did not have a concrete security bound and HCTR had a cubic bound.
Recently, however, quadratic bounds have been proved for both – in [12] for XCB and in [2] for
HCTR. In terms of efficiency, all three constructions have similar efficiency with XCB being slightly
slower than the other two.

Encrypt-Mix-Encrypt. This approach was introduced by Halevi and Rogaway [7]. In this work,
they used the cipher block chaining (CBC) mode for the encryption layers. Later work by Halevi
and Rogaway [8] and Halevi [5] showed how to use ECB for the encryption layers. We do not discuss
the details of this approach, since we do not present any construction of this type.

1.2 Our Contributions

In this work, we present several constructions of tweakable enciphering schemes using the hash-
encrypt-hash approach.

Electronic Codebook Mode. Our first construction is HEH and falls within the hash-ECB-hash
approach. This requires a new construction of invertible block-wise almost universal hash function.
The construction is of the type

(X1, . . . , Xm) 7→ (X1 ⊕ Y, . . . ,Xm−1 ⊕ Y, Y)⊕ (αβ, . . . , αm−1β, β) (4)

where

Y = Xm ⊕ τψτ (X1, . . . , Xm−1) (5)

and ψ is a suitable universal hash function.
Note that the structure of the last component in (4) is different from that of (2) and (3).

Basically, in (4), the last component is Y while in (2) and (3) it is Xm ⊕ Y . Though this may
appear minor, it is due to this difference that we do not have any restriction on the hashing key
τ . On the other hand, (3) has the restriction that the hashing key τ must be chosen such that
σ = 1⊕ τ ⊕ · · · ⊕ τm is non-zero and the inverse of the hash function requires the inverse of σ.

For the construction of the strong pseudorandom permutation, both the NRmode [13] and
TET [6] require XOR universal hash function. In contrast, our construction is only universal and
not XOR universal. We show that this is sufficient to obtained the desired property. Thus, while our
construction indeed falls within the hash-ECB-hash approach, it is different from the Naor-Reingold
construction. TET, on the other hand, follows the Naor-Reingold approach more faithfully, as can
be seen from (2) and (3).

The hash function given in (4) cannot handle partial blocks and so the SPRP based on it also
cannot handle partial blocks. We obtain two variants of (4) to tackle partial blocks and define the
construction HEH∗ based on one of the variants.

In (5) a universal hash function ψτ (X1, . . . , Xm−1) is used. Typically, this is instantiated using a
polynomial, i.e., ψτ (X1, . . . , Xm−1) = X1τ

m−2⊕X2τ
m−3⊕· · ·⊕Xm−1. Evaluating this polynomial

using Horner’s rule requires (m− 2) multiplications over GF (2n). We let Polyτ (X1, . . . , Xm) be the
polynomial in τ of degree (m−1) with coefficients (from highest power to lowest power)X1, . . . , Xm.

Recently, Bernstein [1] has introduced another class of polynomials by building upon previous
work due to Rabin and Winograd [15]. We call these the BRW polynomials. By BRWτ (X1, . . . , Xm)
we denote the polynomial in τ obtained from X1, . . . , Xm. (See Section 2.2 later for the exact
definition of BRW.) Following [1], the map BRWτ is an injective embedding from GF (2n)m to the
polynomial ring GF (2n)[τ].

The main feature of BRWτ (X1, . . . , Xm) is that it can be evaluated using approximately m/2
multiplications over GF (2n). (This was pointed out to us by Daniel J. Bernstein.) On the other
hand, the degree of BRWτ (X1, . . . , Xm) is approximately twice the degree of Polyτ (X1, . . . , Xm).

We show that the ψτ (X1, . . . , Xm−1) used in (5) can be instantiated using BRWτ (X1, . . . , Xm−1).
This is significant since it almost halves the number of multiplications required in evaluating ψ.
The trade-off is an insignificant degradation in the security bound by a factor of 2 (due to the
degree of BRWτ being about twice the degree of Polyτ).

There is another issue regarding Poly versus BRW. If τ is fixed, then by pre-computing a multipli-
cation table for τ , it is possible to significantly speed up the computation of Polyτ (X1, . . . , Xm). This

is not possible for BRWτ (X1, . . . , Xm−1). The issue of pre-computation, however, is contentious.
For one thing, using large pre-computed tables leads to caching problems. Secondly, in our appli-
cations, the pre-computed table will be secret and hence will require secure storage. Managing a
large number of pre-computed tables in a multi-key situation can be a problem. So, overall, though
pre-computation can be an advantage, it can also be a mixed blessing. One needs to carefully weigh
the options at hand before deciding on using pre-computed multiplication tables.

The application of BRW to the construction of HEH is more or less straightforward. However,
when we consider partial blocks in HEH∗, there is a problem. In the security proof, we need to
consider the expression

Z(τ) = (Xm ⊕ Ym)⊕ τψτ (X1 ⊕ Y1, . . . , Xm−1 ⊕ Ym−1, (Xm+1||0n−r)⊕ (Ym+1||0n−r))
⊕ (Um ⊕ Vm)⊕ τψτ (U1 ⊕ V1, . . . , Um−1 ⊕ Vm−1, (Um+1||0n−r)⊕ (Vm+1||0n−r))

where the blocks indexed by (m+ 1) are of length r bits with 1 ≤ r ≤ n− 1 and it is known that
(X1⊕ Y1, . . . , Xm⊕ Ym, Xm+1⊕ Ym+1) and (U1⊕ V1, . . . , Um⊕ Vm, Um+1⊕ Vm+1) are independent
and random strings. From this we need to bound the probability that a randomly chosen τ is a
root of Z(x). For ψ = Poly, this is easy to do. On the other hand, for ψ = BRW, this is little more
complicated. In the proof we show how to handle this situation.

Three variants each of HEH and HEH∗ are defined. These variants are obtained by suitably
defining the hashing keys. The definition of the hashing keys are general in nature and also work
when used with other modes of encryption.

Counter and Output Feedback (OFB) Modes. The definition of ψ and the hashing keys
are combined with the counter and the OFB modes to obtain several other tweakable enciphering
schemes. We call these iHCH and HOH. In iHCH, we use a somewhat non-conventional definition
of the counter mode. This allows us to improve upon the previous construction HCH by reducing
the number of block cipher calls by one. Currently, iHCH and its variants provide the most efficient
hash-counter-hash construction.

The generality of our approach is highlighted by showing that the OFB mode can be easily
used to replace the counter mode. For a sequential implementation, both the OFB and the counter
modes have the same efficiency. But, for a parallel implementation, one would prefer the counter
mode. CBC and the cipher feedback (CFB) modes can also be used with our approach. We do not
provide these details, since from the viewpoint of tweakable enciphering schemes, we do not see any
advantage of using these modes.

Disk encryption. Perhaps the most important application of tweakable enciphering schemes is
disk encryption. Here the disk sectors are separately encrypted and the sector addresses are taken
to be the tweaks. Since sectors are of fixed length, for disk encryption one considers only fixed
length messages.

We present a definition of hashing keys which is suited for fixed length messages. Using ψ =
BRW leads to a scheme which is at least as efficient as the encrypt-mix-encrypt approach. Using
ψ = Poly and a pre-computed table can lead to a faster implementation. If one wants to avoid
pre-computation, then using ψ = BRW with an appropriate variant of HEH is the currently best
construction for disk encryption application.

2 Background

2.1 Definitions

Let IF be a finite field. Additions and multiplications are done over this field. We will be interested
in keyed families of hash functions where the domain for the hash functions consists of tuples over
IF.

Definition 1. Fix a positive integer m and let F : K × IFm → IF be a keyed family of functions
where K is the key space.

Almost universal. The family F is said to be ε-almost universal (AU) if for every x,x′ ∈ IFm,
with x 6= x′;

Pr
K

[Y = Y ′] ≤ ε,

where Y = FK(x) and Y ′ = FK(x′). If ε = 1/|IF|, then F is said to be universal.
Almost XOR universal. The family F is said to be ε-almost XOR universal (AXU) if for every

x,x′ ∈ IFm, with x 6= x′; and for every fixed δ ∈ IF,

Pr
K

[Y − Y ′ = δ] ≤ ε,

where Y = FK(x) and Y ′ = FK(x′).

Probabilities of the type PrK [Y = Y ′] are called collision probabilities and probabilities of the type
PrK [Y − Y ′ = δ] are called differential probabilities.

In Definition 1, the range is IF. We will work with hash functions whose range also consists of tuples
over IF. The next definition is a modified version of block-wise universal hash function given in [6].

Definition 2. Fix positive integers m and l. Let F : K× IFm → IFl be a keyed family of functions
where K is the key space. The family F is said to be (ε1, ε2)-block-wise almost universal (BAU) if
for every x,x′ ∈ IFm, 1 ≤ i, i′ ≤ m with (x, i) 6= (x′, i′);

PrK [Yi = Y ′
i′] ≤ ε1 if i 6= i′;
≤ ε2 if i = i′;

where (Y1, . . . , Yl) = FK(x) and (Y ′
1 , . . . , Y

′
l) = FK(x′).

– If m = l and FK is invertible for each K ∈ K, then F is said to be invertible (ε1, ε2)-block-wise
almost universal.

– One can similarly define the notion of (invertible) block-wise almost XOR universal (BAXU)
hash functions.

2.2 Polynomial Hashing

Let Polyτ (X1, . . . , Xm) = X1τ
m−1 +X2τ

m−2 + · · ·+Xm−1τ +Xm.
Suppose we define ψτ (X1, . . . , Xm) = Polyτ (X1, . . . , Xm). Then it is well known and easy to

prove that ψ is (m − 1)/|IF|-AU. Using Horner’s rule, it is possible to compute ψ using (m − 1)
multiplications over IF.

If, on the other hand, we define ψτ (X1, . . . , Xm) = τPolyτ (X1, . . . , Xm) then ψ is m/|IF|-AXU
(again this is well known and easy to show). Also, using Horner’s rule, it is possible to compute ψ
using m multiplications over IF.

Bernstein-Rabin-Winograd Polynomials: In a recent work, Bernstein [1] builds upon earlier
work due to Rabin and Winograd [15] to define a sequence of polynomials, which we will call the
BRW polynomials. These are elements of IF[τ] and are defined as follows.
• BRWτ () = 0.
• BRWτ (X1) = X1.
• BRWτ (X1, X2) = X1τ +X2.
• BRWτ (X1, X2, X3) = (τ +X1)(τ2 +X2) +X3.
• BRWτ (X1, X2, . . . , Xm) = BRWτ (X1, . . . , Xt−1)(τ t +Xt) + BRWτ (Xt+1, . . . , Xm)

if t ∈ {4, 8, 16, 32, . . .} and t ≤ m < 2t.
The BRW polynomials have several interesting properties. If m ≥ 3 and t ≤ m < 2t, then BRW

is a monic polynomial of degree 2t−1. For a fixed non-negative integer m and a fixed τ ∈ IF, BRWτ

injectively maps IFm into the polynomial ring IF[τ]. Another way of viewing this is the following.
For m ≥ 3, let t ≤ m < 2t and

BRWτ (X1, . . . , Xm) = W1τ
2t−1 +W2τ

2t−2 + · · ·+W2t−1τ +W2t (6)

where W1 = 1 (since BRW is monic). Then the map (X1, . . . , Xm) 7→ (W1, . . . ,W2t) from IFm to
IF2t is injective.

This injective property ensures the following. Let ψτ (X1, . . . , Xm) = BRWτ (X1, . . . , Xm). Then
if m = 1, ψ is the identity map; if m = 2, then ψ is 1/|IF|-AU; and if m ≥ 3 with t ≤ m < 2t− 1,
then ψ is (2t− 1)/|IF|-AU. Since t ≤ m, we have that ψ is (2m− 1)/|IF|-AU.

Also, if ψτ (X1, . . . , Xm) = τBRWτ (X1, . . . , Xm), then if m = 1, ψ is 1/|IF|-AXU; if m = 2, ψ is
2/|IF|-AXU; and if m ≥ 3 with t ≤ m < 2t−1, then ψ is 2t/|IF|-AXU and hence also 2m/|IF|-AXU.

The main advantage of the BRW polynomials is that it can be computed using less number of
multiplications. It is not too difficult to see from the definition that for m ≥ 2, BRWτ (X1, . . . , Xm)
can be computed using bm/2cmultiplications and lgm squarings (to compute the powers τ2, τ4, . . .).
In contrast, computing X1τ

m−1 + X2τ
m−2 + · · · + Xm−1τ + Xm using Horner’s rule requires

(m − 1) multiplications. Thus, even though BRWτ (X1, . . . , Xm) has almost twice the degree of
Polyτ (X1, . . . , Xm), it can be computed using half the number of multiplications. This along with
the fact that BRWτ is AU (with a slightly weaker bound) is a very important observation made by
Bernstein [1].

2.3 Block-Wise Polynomial Evaluation [6]

In this section, we describe the constructions given in [6]. For τ ∈ IF and a positive integer m, let
Aτ be the following matrix.

Aτ =

τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm

Define Mτ = Aτ + I and let σ = 1 + τ + τ2 + · · ·+ τm. The matrix Mτ is invertible if and only if
σ 6= 0 and then M−1

τ = I − (Aτ/σ). Let x = (X1, . . . , Xm). The map x 7→MτxT is the following:

(X1, . . . , Xm) 7→ (X1 +R, . . . ,Xm +R) (7)

where R =
∑m

i=1Xiτ
i.

Let β ∈ IF and α be a fixed primitive element of IF. Define b = (β, αβ, . . . , αm−1β). Two
functions (and their inverses) from IFm to IFm are defined in the following manner.

BPEτ,β(x) = MτxT + b and BPE−1
τ,β(x) = M−1

τ (x− b)T

B̃PEτ,β(x) = Mτ (x− b)T and B̃PE
−1

τ,β(x) = M−1
τ xT + b

(8)

The matrix-vector productMτx andM−1
τ x can be computed as efficiently as polynomial evaluation.

Using a suitable representation for IF ensure that it is very efficient to multiply by the primitive
element α. Thus, the cost of evaluating BPE is essentially the cost of polynomial evaluation. Using
Horner’s rule, computing BPE requires m multiplications over IF. If τ is fixed, then a pre-computed
table can be used to speed up the polynomial computation [17].

For a fixed value of m and random and independent choices of τ (subject to the fact that σ 6= 0)
and β from IF, it has been shown in [6], that the functions defined by (8) are block-wise universal.

Note: It has been remarked that the same proof also holds when m is allowed to vary. We note that
this is incorrect. To see this consider the two distinct messages x1 = (0, 0) and x2 = (0, 0, 0). Then
BPEτ,β(x1) = (β, αβ) and BPEτ,β(x2) = (β, αβ, α2β). The first two components of BPEτ,β(x1)
and BPEτ,β(x2) are equal which violates the block-wise universality condition.

Drawbacks: The key τ has to be chosen such that σ =
∑m

i=0 τ
i is non-zero. This means that τ

cannot be an arbitrary element of IF. The probability that σ = 0 for a randomly chosen τ is small,
so this may not be a major problem in practice. It has been suggested in [6], that one can choose
τ to be a random primitive element of GF (2n). This approach has practical difficulties. Often,
the entity providing the new value of the key will not have access to the internal implementation
of the algorithm. Without such access, in particular, without knowing the primitive polynomial
realizing the field GF (2n), it is not possible to determine whether a particular element is a primitive
element of the concrete realization of the field. Further, determination of primitive element requires
substantial computation and the knowledge of the prime factors of 2n − 1. Thus, the idea of using
τ to be a random primitive element of GF (2n) is quite impractical in practice.

More importantly, if the hash function needs to be evaluated for different values of m, then
computing the inverse of BPE and B̃PE will require the computation of σ and τ/σ. This requires
(m− 1) multiplications and one inverse over IF.

3 New Constructions

Fix a positive integer m and let α be a primitive element of IF. Let ψ : IFm → IF be an ε-AU hash
function defined using either Polyτ or BRWτ , i.e., either ψτ (X1, . . . , Xm−1) = Polyτ (X1, . . . , Xm−1)
or ψτ (X1, . . . , Xm−1) = BRWτ (X1, . . . , Xm−1).

3.1 Block-Wise Almost Universal

We give a simple construction of an invertible BAU function Ψ . The key space of Ψ is IF× IF and
the domain and range are IFm. Given (τ, β) ∈ IF× IF, we define

Ψτ,β(X1, . . . , Xm) = (X1 + Y, . . . ,Xm−1 + Y, Y) + (αβ, α2β, . . . , αm−1β, β) (9)

where Y = Xm + τψτ (X1, . . . , Xm−1). This means that

– if ψ = Poly, then Y = Xm + τPolyτ (X1, . . . , Xm−1) and
– if ψ = BRW, then Y = Xm + τBRWτ (X1, . . . , Xm−1).

Inverting Ψ is easy. Let (Y1, . . . , Ym) = Ψτ,β(X1, . . . , Xm). The tuple (X1, . . . , Xm) is obtained from
(Y1, . . . , Ym) using the following steps.

1. Set (U1, . . . , Um) = (Y1, . . . , Ym)− (αβ, α2β, . . . , αm−1β, β).
2. Set (X1, . . . , Xm−1) = (U1 − Um, . . . , Um−1 − Um).
3. Set Xm = Um − ψτ (X1, . . . , Xm−1).

Formally, we write Ψ [ψ] to denote the BAU family obtained using the AU family ψ.

Examples: For m = 4, we provide the outputs of BPEτ,β , Ψ [Poly]τ,β and Ψ [BRW]τ,β to illustrate
the difference between these functions.

BPEτ,β(X1, X2, X3, X4) = (X1 +X1τ +X2τ
2 +X3τ

3 +X4τ
4 + β,

X2 +X1τ +X2τ
2 +X3τ

3 +X4τ
4 + αβ,

X3 +X1τ +X2τ
2 +X3τ

3 +X4τ
4 + α2β,

X4 +X1τ +X2τ
2 +X3τ

3 +X4τ
4 + α3β)

Ψ [Poly]τ,β(X1, X2, X3, X4) = (X1τ
3 +X2τ

2 +X3τ +X4 +X1 + αβ,

X1τ
3 +X2τ

2 +X3τ +X4 +X2 + α2β,

X1τ
3 +X2τ

2 +X3τ +X4 +X3 + α3β,

X1τ
3 +X2τ

2 +X3τ +X4 + β)
Ψ [BRW]τ,β(X1, X2, X3, X4) = (τ((τ +X1)(τ2 +X2) +X3) +X4 +X1 + αβ,

τ((τ +X1)(τ2 +X2) +X3) +X4 +X2 + α2β,

τ((τ +X1)(τ2 +X2) +X3) +X4 +X3 + α3β,

τ((τ +X1)(τ2 +X2) +X3) +X4 + β)

The order of evaluation in BPE and Ψ [Poly] are in reverse order. This difference is, however, not
significant. One can define BPE to evaluate in the reverse order (i.e., X1τ

4 +X2τ
3 +X3τ

2 +X4τ) as
has indeed been done in [6] while defining TET. The significant differences between the two maps
are in the degrees of the polynomials (in τ) and the treatment of the last component. The structure
of the map Ψ [BRW] is quite different from the other two.

Theorem 1. Fix a positive integer m. Then Ψ [ψ] is (1/|IF|, ε)-BAU, where ε = (m − 1)/|IF| if
ψ = Poly and ε = (2m− 1)/|IF| if ψ = BRW.

Proof : Let x = (X1, . . . , Xm), x′ = (X ′
1, . . . , X

′
m) and 1 ≤ i, i′ ≤ m with (x, i) 6= (x′, i′). Further,

let (Y1, . . . , Ym) = Ψτ,β(X1, . . . , Xm) and (Y ′
1 , . . . , Y

′
m) = Ψτ,β(X ′

1, . . . , X
′
m). Then

Yi = αiβ +Xi +Xm + τψτ (X1, . . . , Xm−1) if 1 ≤ i < m;
= β +Xm + τψτ (X1, . . . , Xm−1) if i = m.

Similar equations hold for the primed variables.
First suppose i 6= i′. Without loss of generality assume 1 ≤ i < i′ ≤ m. Then

Yi − Y ′
i′ = αi(1− αi′−i)β + τψτ (X1, . . . , Xm)− τψτ (X ′

1, . . . , X
′
m) if i′ < m;

= (αi − 1)β + τψτ (X1, . . . , Xm)− τψτ (X ′
1, . . . , X

′
m) if i′ = m.

In both cases, the coefficient of β is non-zero. Since β is independent of τ , it follows that Pr[Yi =
Y ′

i′] = 1/|IF|.
Now consider i = i′. Then x 6= x′. The value of i (and hence i′) may be equal to m or it may

be between 1 and (m− 1). If i = m, then the condition Ym = Y ′
m′ is equivalent to

Xm + τψτ (X1, . . . , Xm−1) = X ′
m + τψτ (X ′

1, . . . , X
′
m). (10)

On the other hand, if 1 ≤ i ≤ m− 1, then the condition Yi = Y ′
i′ is equivalent to

ψτ (X1, . . . , Xm−1) +Xm +Xi = ψτ (X ′
1, . . . , X

′
m−1) +X ′

m +X ′
i (11)

For both these situations, the cases ψ = Poly and ψ = BRW are treated separately.

Case ψ = Poly: First, let i = m. Set (W1, . . . ,Wm) = (X1 − X ′
1, . . . , Xm − X ′

m). Then (10) is
equivalent to

W1τ
m−1 + · · ·+Wm−1τ +Wm = 0. (12)

Since (X1, . . . , Xm) 6= (X ′
1, . . . , X

′
m), W1τ

m−1 + · · · + Wm−1τ + Wm is a non-zero polynomial of
degree at most (m − 1) and (12) holds if and only if τ is a root of this polynomial. Since τ is a
random element of IF, the probability of the last event is at most (m− 1)/IF.

Now, consider 1 ≤ i ≤ m− 1. Let f be the map f(X1, . . . , Xm) = (U1, . . . , Um) where Uj = Xj ,
1 ≤ j ≤ m− 1 and Um = Xi +Xm. It is easy to verify that f is an injective map.

Now, Xi+Xm+τψτ (X1, . . . , Xm−1) = Polyτ (f(X1, . . . , Xm)) = Polyτ (U1, . . . , Um) and similarly
for the primed variables. The injectivity of f implies that if (X1, . . . , Xm) 6= (X ′

1, . . . , X
′
m), then

(U1, . . . , Um) 6= (U ′
1, . . . , U

′
1). Let Vi = Ui − U ′

i for 1 ≤ i ≤ m and so, (V1, . . . , Vm) 6= (0, . . . , 0).
Then, the probability that (11) holds is equal to the probability that Polyτ (V1, . . . , Vm) = V1τ

m−1+
· · · + Vm−1τ + Vm is equal to zero. Since Polyτ (V1, . . . , Vm) is a non-zero polynomial of degree at
most m− 1, it has at most m− 1 roots over IF. The probability that the randomly chosen τ is one
of these roots is therefore at most (m− 1)/|IF|.

Case ψ = BRW: If m ≤ 2, then this reduces to the case ψ = Poly. So we consider only m ≥ 3. Let
t ∈ {4, 8, 16, 32, . . .} be such that t ≤ m−1 < 2t. Then BRWτ (X1, . . . , Xm−1) is a monic polynomial
of degree 2t− 1. Let

BRWτ (X1, . . . , Xm−1) = W1τ
2t−1 +W2τ

2t−2 + · · ·+W2t−1τ +W2t.

Then coe(BRWτ (X1, . . . , Xm)) = (W1, . . . ,W2t) with W1 = 1. By the properties of BRW polyno-
mials, the map (X1, . . . , Xm−1, Xm) 7→ (W1, . . . ,W2t, Xm) is injective. Also

Y = Xm + τBRWτ (X1, . . . , Xm−1)
= W1τ

2t +W2τ
2t−1 + · · ·+W2t−1τ

2 +W2tτ +Xm

= Polyτ (W1, . . . ,W2t−1, Xm).

Thus, Y is a polynomial of degree 2t. Since t ≤ m − 1 < 2t, we have t < t + 1 ≤ m and so
2t ≤ 2m− 1. The rest of the argument is similar to that of the previous case. ut

Variable m: Theorem 1 holds for a fixed value of m. If m is allowed to vary, then the result does
not hold. This can be seen as in the case of BPE by considering the two distinct messages (0, 0, 0)
and (0, 0).

Ψ−1
τ,β is not block-wise universal. We show this only for Ψ [Poly]. This is seen by considering

1. Ψ−1
τ,β(αβ, α2β, α3β, β) = (0, 0, 0, 0) and

2. Ψ−1
τ,β(Aτ3 +A+ αβ,Aτ3 + α2β,Aτ3 + α3β,Aτ3 + β) = (A, 0, 0, 0) for a non-zero A.

The last three components are equal, violating the block-wise universal property. Thus, we have an
example of a function which is invertible and block-wise universal but its inverse is not block-wise
universal.

3.2 Block-Wise Almost XOR Universal

The constructions in [6] are proved to be BAXU which the new construction is not. On the other
hand, it is easy to modify the new construction to yield a BAXU family.

As before, fix a positive integer m and a primitive element α of IF. Let τ and β be independent
and random elements of IF. We define the map ΨXOR

τ,β : IFm → IFm in the following manner.

ΨXOR
τ,β (X1, . . . , Xm) = (X1 + Y, . . . ,Xm−1 + Y, Y) + (αβ, α2β, . . . , αm−1β, β) (13)

where Y = τ(Xm + τψτ (X1, . . . , Xm−1)).
The only difference from the definition of Ψ is in the definition of Y , which is now a polynomial

of one higher degree and whose constant term is 0. The proof that ΨXOR is BAXU is similar to the
proof of Theorem 1. Also, it is not difficult to see that ΨXOR is invertible if τ 6= 0. Computing the
inverse of ΨXOR requires the inverse of τ . As a BAXU family, ΨXOR improves upon the constructions
in [6] in the following way. ΨXOR requires that τ 6= 0 and the inverse of τ , while the constructions
in [6] require σ = 1 + τ + · · · + τm 6= 0 and the inverse of σ. This difference, though small, can
be significant in practice. We note that the inverse of ΨXOR is not BAU, while the inverses of the
constructions in [6] are BAXU. In this paper, we do not work with ΨXOR; instead we work only
with Ψ , which does not require the inverse of τ for computing ψ−1.

3.3 Discussion

The salient features of the new constructions as well as BPE are shown in Table 1. The other
variant B̃PE of BPE defined in [6] has the same properties as that of BPE.

First, note that both variants of Ψ are BAU, while BPE and both variants of ΨXOR are BAXU.
Second, the inverse of BPE is BAXU, while the inverses of the other constructions are not BAU.
Importantly, however, for the construction of tweakable enciphering schemes, it is sufficient to use
a BAU family without requiring the inverse to be BAU. Thus, for the purpose of constructing
tweakable enciphering schemes, BPE is an overkill in two ways – it is BAXU and its inverse is also
BAXU. However, there may be other applications where the full power of BPE may be desirable,
though at this point, we do not know of any such applications.

Computing BPE or Ψ [Poly] roughly m multiplications, whereas computing Ψ [BRW] and its
inverse requires roughly m/2 multiplications. There are two trade-offs. First, the bound for AU
property is slightly weaker for Ψ [BRW]. Second, the multiplications for computing BPE or Ψ [Poly]
have one operand fixed, so that one can use a pre-computed table [17] to speed up each multipli-
cation. This is not possible for Ψ [BRW] (of course, one can store the power τ, τ2, τ4, . . .; but this is
something different). The issue of pre-computed table is contentious and the actual performance in
a multiple key situation is not clear. Nevertheless, we think it worthwhile to point out the difference.

Computing the inverse of BPE requires 2(m− 1) multiplications. This is because σ = 1 + τ +
· · · + τm also needs to be computed requiring an extra (m − 1) multiplications. If τ is fixed, then
σ can be pre-computed. However, since τ is a key, σ will require to be pre-computed for every key
change.

There is a restriction on the hashing key τ for BPE. This directly impacts the performance of the
resulting tweakable enciphering scheme TET. On the other hand, Ψ does not have any restriction
on τ . There is a restriction on τ for ΨXOR which is weaker than the restriction on τ for BPE. But,
since it is enough to use Ψ to construct a tweakable enciphering scheme, we do not consider ΨXOR

any further in this paper.

Table 1. Comparison among different hash families. There are m blocks and the hashing keys in all cases are (τ, β).
Here [M] and [I] denotes a multiplication and an inversion over IF. For BPE, σ = 1 + τ + · · ·+ τm and precomputing
σ−1 brings down the cost of inversion to m[M]. Similarly, for ΨXOR, precomputing τ−1, eliminates the requirement
of performing an online inversion.

forward inverse

Family type efficiency type efficiency restriction pre-comp tab?

BPE (1/|IF|,m/|IF|)-BAXU m[M] BAXU 2(m− 1)[M]+1[I] σ 6= 0 yes

Ψ [Poly] (1/|IF|, (m− 1)/|IF|)-BAU (m− 1)[M] not BAU (m− 1)[M] none yes

Ψ [BRW] (1/|IF|, (2m− 1)/|IF|)-BAU dm/2e[M] not BAU dm/2e[M] none no

ΨXOR[Poly] (1/|IF|,m/|IF|)-BAXU m[M] not BAU m[M]+1[I] τ 6= 0 yes

ΨXOR[BRW] (1/|IF|, (2m)/|IF|)-BAXU 1 + dm/2e[M] not BAU 1 + dm/2e[M]+1[I] τ 6= 0 no

4 The HEH Construction

For the description of the tweakable SPRP, we will take the finite field IF to be GF (2n) and use
the operator ⊕ to denote addition over this field. The field GF (2n) is realized using a primitive
polynomial ρ(x) of degree n. Usually, it is possible to choose the polynomial ρ(x) to be a trinomial
or a pentanomial. As is standard, the elements of GF (2n) can be interchangeably considered to be
either as polynomials over GF (2) of degree at most n − 1 or as n-bit strings. For 0 ≤ i ≤ 2n − 1,
by binn(i) we denote the n-bit binary representation of i.

Choice of α: a standard and efficient choice of the primitive element α is to take it to be equal to
x. (It has been mentioned in [6] that depending on the endianness, it may be appropriate to choose
α to be equal to 1/x.) Multiplication by x modulo ρ(x) is very efficient.

Choice of block cipher: A block cipher EK : {0, 1}n → {0, 1}n will be used. We do not make
any assumption on the length of the key K. Tweaks are assumed to be n bits long.

Choice of Ψ : The description is in terms of a BAU family Ψ which can be instantiated as either
Ψ [Poly] or as Ψ [BRW].

The basic structure of the HEH construction is shown in Table 2. In this construction, there
are one block cipher key K and three hashing keys τ, β1 and β2. By suitably defining the hashing
keys, it is possible to obtain several variants of the basic construction. This is shown in Table 3. If
KeyDef1 is used we call the construction HEH; if KeyDef2 is used we call the construction HEHp;
and if KeyDef3 is used we call the construction HEHfp.

In Table 2, the BAU family Ψ is used. This, in turn, is built using the AU family ψ. Formally,
the family Ψ [ψ] is used, where ψ = Poly or ψ = BRW. To reflect this dependence, formally we will
write HEH[ψ] and instantiating ψ gives rise to either HEH[Poly] or HEH[BRW]. A similar notation
is used for HEHp and HEHfp.

HEH: The message space consists of {0, 1}mn with m ≥ 1 and so the length ` of a particular
message is ` = mn for some positive integer m. The construction is length preserving, i.e., the
length of the ciphertext is equal to the length of the plaintext. A single block cipher key is used.
The hashing key τ depends on the tweak T . Hence, it is not possible to speed up multiplication
by τ using a pre-computed table.

HEHp: If pre-computation is desired, then it is easy to modify HEH, to obtain a variant supporting
pre-computation. Instead of setting τ = γ, simply choose τ to be a random element of GF (2n).
We call this variant HEHp. The message space remains the same as that of HEH.

HEHfp: An important special application of tweakable SPRP is that of disk encryption. In this
application, the number of blocks m is fixed and the tweak is the sector address. Since m is
fixed, it is possible to eliminate one block cipher call while deriving the hashing keys. Also, the
hashing key τ is chosen to be a random element of GF (2n) so that pre-computation can be
utilized. We call this variant HEHfp. In this variant, the hashing key is τ and the block cipher
key is K. The message space is {0, 1}mn for some fixed positive integer m.

In effect, Tables 2 and 3 define three algorithms HEH[ψ], HEHp[ψ] and HEHfp[ψ]. We will refer
to the encryption and decryption algorithms of HEH[ψ] as HEH[ψ].Encrypt and HEH[ψ].Decrypt
respectively and similarly for the other two variants. In Table 3, we have used ` to derive β1. Since
m = `/n, one can also use m in place of `. The use of ` is for compatibility with the more general
version given later where n does not necessarily divide `.

Pre-computation and Ψ [BRW]: HEH and HEHp make the same number of block cipher calls.
The difference is that in the latter case one uses a separate random τ as the hashing key which can
be used to prepare a pre-computed table to possible speed up Horner’s rule computation. Ψ [BRW],
however, cannot profit from this. Hence, for Ψ [BRW], it is not meaningful to use HEHp[BRW]
and it is better to stick to the single key HEH[BRW]. For the case of HEHfp[BRW], however, the
number of block cipher calls is reduced by one. Thus, if the number of blocks is fixed, then one
should use HEHfp[BRW] with Ψ [BRW], even though the resulting algorithm cannot profit from
pre-computation.

Table 2. Encryption and decryption using HEH. The block cipher key is K; and the hash key is (τ, β1, β2). See
Table 3 for details of how the hashing keys are derived in HEH and its variants. ECBK(X1, . . . , Xm) returns
(EK(X1), . . . , EK(Xm)) and ECB−1

K (Y1, . . . , Ym) returns (E−1
K (Y1), . . . , E

−1
K (Ym)).

Algorithm EncryptK,τ,β1,β2
(P1, . . . , Pm)

1. (PP1, . . . , PPm) = Ψτ,β1(P1, . . . , Pm);
2. (CC1, . . . , CCm) = ECBK(PP1, . . . , PPm);
3. (C1, . . . , Cm) = Ψ−1

τ,β2
(CC1, . . . , CCm).

Algorithm DecryptK,τ,β1,β2
(C1, . . . , Cm)

1. (CC1, . . . , CCm) = Ψτ,β2(C1, . . . , Cm);
2. (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm);
3. (P1, . . . , Pm) = Ψ−1

τ,β1
(PP1, . . . , PPm).

Table 3. Different definitions of the hashing keys τ , β1 and β2. Here T is an n-bit tweak and ` is the length of the
message (or ciphertext) in bits.

KeyDef1 KeyDef2 KeyDef3

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(`));
3. β2 = αβ1;
4. τ = γ.

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(`));
3. β2 = αβ1;
4. choose τ randomly

from GF (2n).

1. β1 = EK(T);
2. β2 = αβ1;
3. choose τ randomly

from GF (2n).

5 An Extension of HEH

HEH and its variants can handle messages whose lengths are multiples of the block length n. In this
section, we define an extension HEH∗ of HEH and its variants. HEH∗ can handle partial blocks.
For most applications, n-bit tweaks and messages without partial blocks are probably sufficient.
But, this may not be true for all possible applications. For this reason we describe the more general
construction.

Arbitrary length tweaks. The length of tweaks in HEH∗ is n bits, which means that HEH∗

cannot handle arbitrary length tweaks. An easy technique for handling arbitrary length tweaks is
the following. Use a pseudorandom function (PRF) with an independent key to map the arbitrary
length tweak into an n-bit tweak; and then use HEH∗ (or HEH or one of the other variants). The
security of this construction is generic. This strategy has been suggested for HCH and a slightly
modified variant of this strategy has been used in TET to handle arbitrary length tweaks.

5.1 Variants of Ψ

To handle partial blocks, we need to change the defintion of Ψ . Two modifications are given. The
first one is more appealing from a theoretical point of view, while the second one is more practical.

The general definition of Ψ is over an arbitrary finite field. But, in the construction of HEH, we
work over GF (2n). Actually, for the mode of operation, we only need GF (2n). So, the variants of
Ψ are also defined only over GF (2n).

The Construction Γ . Fix a positive integer m and an integer r with 1 ≤ r ≤ n− 1. We consider
m full blocks and one r-bit partial block. For the definition of Γ , the first block is taken to be the
partial block. Fix a primitive element α of GF (2n). The hash key consists of two random elements
β and τ of GF (2n).

Define g = (0r, αβ, . . . , αm−1β, β), where αiβ is considered to be an n-bit string and 0r denotes
a string of r zeros. Let (W,X1, . . . , Xm) be the message, where |W | = r and |X1| = · · · = |Xm| = n.
We define

Γτ,β(W,X1, . . . , Xm) = (W,X1 ⊕ Y, . . . ,Xm−1 ⊕ Y, Y)⊕ g (14)

where

Y = Xm ⊕ τψτ (W ||0n−r, X1, . . . , Xm−1). (15)

It is not difficult to see that for a fixed τ and β, the map Γ is invertible. Basically, the first
component remains unchanged in the map. Obtaining the last m components of the input from
last m components of the output and W is almost the same as the technique used for inverting Ψ .

As in the case of Ψ , there are two variants of Γ depending on whether ψ = Poly or ψ = BRW.
We will write these as Γ [Poly] and Γ [BRW].

The first block is not a full block, so we cannot really talk about blockwise universality for the
whole of Γ . On the other hand, the other components of Γ do satisfy the blockwise universality
property as stated in the following result. The proof of the result is very similar to that of Theorem 1
and is omitted. The only thing to note is that ψ in this case has m arguments as against (m− 1)
for the BAU construction. Consequently, the value of ε in the result below is slightly more than
that in Theorem 1.

Theorem 2. Fix x = (W,X1, . . . , Xm) and x′ = (W ′, X ′
1, . . . , X

′
m) and 1 ≤ i, j ≤ m such that

(x, i) 6= (x′, i′). Then

Prτ,β [Yi = Y ′
i′] = 1

2n if i 6= i′;
≤ ε if i = i′.

Here

(W,Y1, . . . , Ym) = Γ [ψ]τ,β(W,X1, . . . , Xm),
(W ′, Y ′

1 , . . . , Y
′
m) = Γ [ψ]τ,β(W ′, X ′

1, . . . , X
′
m).

Further, ε = m/2n if ψ = Poly; and ε = 2m/2n if ψ = BRW.

Note. It is easy to see that if r is taken to be zero, i.e., there is no partial block, then the definition
of Γ is exactly the same as that of Ψ . So, it would be natural to work with Γ for tackling partial
blocks. However, the problem is that the partial block is the first block. This may not be convenient
for many applications. For this reason, we provide another variant of Ψ , where the partial block is
the last block.

The Construction Φ. As in the definition of Γ , fix a positive integer m and an integer r with
1 ≤ r ≤ n− 1. Consider (X1, . . . , Xm, Xm+1), where X1, . . . , Xm ∈ {0, 1}n and Xm+1 ∈ {0, 1}r. In
other words, the first m blocks are full blocks and the last block is a partial block.

Given an element β ∈ GF (2n), define f = (αβ, α2β, . . . , αm−1β, β, 0r) where, as before αiβ is
considered to be an n-bit string and 0r denotes the string of r zeros. The hashing key consists of
two random elements β and τ in GF (2n). We define

Φτ,β(X1, . . . , Xm, Xm+1) = (X1 ⊕ Y, . . . ,Xm−1 ⊕ Y, Y,Xm+1)⊕ f (16)

where

Y = Xm ⊕ τψτ (X1, . . . , Xm−1, Xm+1||0n−r). (17)

Note that in the definitions of Y for Ψ , Γ and Φ, the last full block forms the constant term of the
polynomial in τ . As before, we will formally denote the above family by Φ[ψ]. Similar to the result
for Γ , we have the following result for Φ.

Theorem 3. Fix x = (X1, . . . , Xm, Xm+1) and x′ = (X ′
1, . . . , X

′
m, X

′
m+1) and 1 ≤ i, j ≤ m such

that (x, i) 6= (x′, i′). Then

Prτ,β [Yi = Y ′
i′] = 1

2n if i 6= i′;
≤ ε if i = i′.

Here

(Y1, . . . , Ym, Xm+1) = Φ[ψ]τ,β(X1, . . . , Xm, Xm+1),
(Y ′

1 , . . . , Y
′
m, Y

′
m+1) = Φ[ψ]τ,β(X ′

1, . . . , X
′
m, X

′
m+1).

Further, ε = m/2n if ψ = Poly and ε = 2m/2n if ψ = BRW.

Discussion The construction TET given in [6] handles partial blocks. This also requires a poly-
nomial evaluation involving the partial block. A partial block in TET is padded with 1 followed by
required number of zeros. (In contrast, we pad only with zeros; in fact, we do not see any reason
to use the technique of “one followed by zeros” padding in the current context.)

Suppose the message is (P1, . . . , Pm, Pm+1), where Pm+1 is of length r bits. For 1 ≤ i ≤ m, the
main hashing step for the ith step consists of the following evaluation.

Pi ⊕ σ−1(P1τ
m ⊕ P2τ

m−1 ⊕ · · · ⊕ Pm−1τ
2 ⊕ Pmτ)⊕ (Pm+1||10n−r−1)

where σ = 1⊕ τ ⊕ · · · ⊕ τm.
This is to be compared to our definition of Y for Γ and Φ. One important aspect is that in

the above definition, the partial block forms the constant term of the polynomial evaluation. In
comparison, for our constructions, the last full block is always taken to be the constant term of the
similar polynomial.

5.2 Handling Arbitrary Length Messages

Here we define an extension with the capability of handling arbitrary length messages. This ex-
tension is called HEH∗ and is shown in Table 4. As in the case of HEH, the variants HEHp∗ and
HEHfp∗ are obtained by suitably defining the keys as in Table 3. Note that the key definitions for
the starred and the unstarred variants are the same.

As before, we will use the notation HEH∗[Poly] or HEH∗[BRW] to denote whether Poly or BRW
is used for instantiating ψ.

The description in Table 4 uses Φ. This has been done since we expect most applications to
have partial blocks at the end. On the other hand, it is also possible to handle partial blocks using
Γ . This construction is shown in Table 5. The definition of the keys for the construction in Table 5
is also the same as that given in Table 3. We do not provide a separate security proof for the
construction in Table 5 since such a proof is essentially the same as the proof for the construction
in Table 4.

The length of the message is ` = mn+ r, where m ≥ 1 and 0 ≤ r ≤ n− 1, i.e., there are m full
blocks P1, . . . , Pm and a possible partial block Pm+1. If r = 0, then there is no partial block and we
essentially revert to the encryption and decryption algorithms given in Table 2. While defining the
keys β1 and β2 in Table 3, we had remarked that one can use m instead of `. But, in the present
case, using ` is required since n may not divide `.

HEH∗ handles arbitrary length strings and uses a single n-bit key, which is the block cipher key.
It, however, cannot utilize pre-computation. HEHp∗, on the other hand, can utilize pre-computation.
For this, we require an extra n-bit hashing key in addition to the block cipher key. HEHp∗ can also
handle arbitrary length strings. The variant HEHfp∗ handles fixed length strings and can utilize
pre-computation. Since the length of the input is fixed, it might appear that HEHfp∗ and HEHfp
are identical. This is not so, because for HEHfp, the input must be a multiple of the block length,

Table 4. Encryption and decryption using HEH∗. The block cipher key isK; and the hash key is (τ, β1, β2). Definitions
of hashing keys are given in Table 3. If KeyDef1 is used we call the construction HEH∗; if KeyDef2 is used we call the
construction HEHp∗; and if KeyDef3 is used we call the construction HEHfp∗.

Algorithm EncryptK,τ,β1,β2
(P1, . . . , Pm, Pm+1)

Case (|Pm+1| = 0):

1. (PP1, . . . , PPm) = Ψτ,β1(P1, . . . , Pm);
2. (CC1, . . . , CCm) = ECBK(PP1, . . . , PPm);
3. (C1, . . . , Cm) = Ψ−1

τ,β2
(CC1, . . . , CCm).

Case (1 ≤ |Pm+1| ≤ n− 1):

1. (PP1, . . . , PPm, Pm+1) = Φτ,β1(P1, . . . , Pm, Pm+1);
2. (CC1, . . . , CCm) = ECBK(PP1, . . . , PPm);
3. Z = EK(PPm ⊕ CCm);
4. Cm+1 = Pm+1 ⊕ Firstr(Z);
5. (C1, . . . , Cm, Cm+1) = Φ−1

τ,β2
(CC1, . . . , CCm, Cm+1).

Algorithm DecryptK,τ,β1,β2
(C1, . . . , Cm, Cm+1)

Case (|Cm+1| = 0):

1. (CC1, . . . , CCm) = Ψτ,β2(C1, . . . , Cm);
2. (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm);
3. (P1, . . . , Pm) = Ψ−1

τ,β1
(PP1, . . . , PPm).

Case (1 ≤ |Cm+1| ≤ n− 1):

1. (CC1, . . . , CCm, Cm+1) = Φτ,β1(C1, . . . , Cm, Cm+1);
2. (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm);
3. Z = EK(PPm ⊕ CCm);
4. Pm+1 = Cm+1 ⊕ Firstr(Z);
5. (P1, . . . , Pm, Pm+1) = Φ−1

τ,β2
(PP1, . . . , PPm, Pm+1).

whereas for HEHfp∗ the input length should only be fixed; there is no need for it to be a multiple
of the block length.

The notation Firstr(Z) denotes the first r bits of the n-bit binary string Z. The partial block
PPm+1 is encrypted in a stream cipher like manner, i.e., by XORing with a pseudorandom string
of appropriate length. The pseudorandom string is obtained by encrypting the XOR of PPm and
CCm. This technique is adopted from HCTR and has also been used in HCH. Note that this is not
present in the other hash-counter-hash type construction XCB.

Table 5. Handling partial blocks using Γ . The block cipher key is K; and the hash key is (τ, β1, β2). See Table 3 for
details of how the hashing keys are derived in HEH∗ and its variants.

Algorithm EncryptK,τ,β1,β2
(Q,P1, . . . , Pm)

1. (Q,PP1, . . . , PPm) = Γτ,β1(Q,P1, . . . , Pm);
2. (CC1, . . . , CCm) = ECBK(PP1, . . . , PPm);
3. if |Q| > 0 then
4. Z = EK(PPm ⊕ CCm);
5. R = Q⊕ Firstr(Z);
6. end if;
7. (R,C1, . . . , Cm) = Γ−1

τ,β2
(R,CC1, . . . , CCm).

Algorithm DecryptK,τ,β1,β2
(R,C1, . . . , Cm)

1. (R,CC1, . . . , CCm) = Γτ,β2(R,C1, . . . , Cm);
2. (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm);
3. if |R| > 0 then
4. Z = EK(PPm ⊕ CCm);
5. Q = R⊕ Firstr(Z);
6. end if;
7. (Q,P1, . . . , Pm) = Γ−1

τ,β1
(Q,PP1, . . . , PPm).

6 Combining With Other Modes of Operations

The AU family ψ has been used to build the BAU family Ψ [ψ]. This in turn has been combined with
the ECB mode of operation to construct HEH[ψ], HEH∗[ψ] and their variants. On the other hand,
it is possible to directly combine ψ with other modes of operations to obtain different tweakable
enciphering schemes.

6.1 Counter Mode of Operation

For the case of ψ = Poly, one example is HCH. Below, we present a more general description using
ψ and show that it can also be instantiated with BRW. In our description, we use a different version
of the counter mode. In this version, an additional key β is required. The role of β is similar to that
played in the definition of HEH. As a result of the new form of the counter mode, we are able to
eliminate one block cipher call from HCH. The new version is called iHCH (for improved HCH).

Fix a positive integer m and define a keyed family of hash functions Hτ,β : GF (2n)m → GF (2n)
as follows.

Hτ,β = β ⊕X1 ⊕ τψτ (X2, . . . , Xm−1). (18)

Here ψ is either Poly or BRW. In both cases, X1 is the constant term of the corresponding polyno-
mial.

The encryption and decryption algorithms for iHCH are shown in Table 6. The definition of the
hashing keys are as in Table 3 giving rise to the variants iHCHp and iHCHfp.

Note: For HEH we had starred and unstarred versions, while for HCH we have only the unstarred
version. In case of HEH, the starred version can handle arbitrary length messages, while the un-
starred version can only handle message lengths which are multiples of the block length n. In
contrast, HCH itself can handle arbitrary length messages. This difference is essentially due to the
difference in the encryption layer. When ECB is used, it is a little more complicated to handle
arbitrary length messages and so we have presented two versions (unstarred and starred) which
should help in understanding the construction. On the other hand, when the counter mode is used,
the encryption layer is essentially a stream cipher, and hence it is easy to directly handle arbitrary
length messages. That is why we have presented only one version of HCH.

The message length ` is greater than n. (In [3], the case ` = n is tackled separately and the
same technique also works in the present case). The number of blocks is ≥ 2; blocks P1, . . . , Pm are
full blocks and Pm+1 is a possible partial block of length r, so that ` = mn+ r, with 1 ≤ r ≤ n.

Given an n-bit string S and a key K we define the counter mode as follows.

CtrK,β,S(A1, . . . , Am) = (A1 ⊕ EK(S ⊕ β), A2 ⊕ EK(S ⊕ αβ), . . . , Am ⊕ EK(S ⊕ αm−1β)). (19)

Depending on whether ψ = Poly or ψ = BRW, we obtain iHCH[Poly] or iHCH[BRW] and its
variants.

6.2 Output Feedback Mode of Operation

The output feedback mode, OFB, is defined in the following manner.

OFBK,S(X1, . . . , Xm) = (X1 ⊕ S1, . . . , Xm ⊕ Sm) (20)

Table 6. Encryption and decryption using iHCH. The block cipher key isK; and the hash key is (τ, β1, β2). Definitions
of hashing keys are given in Table 3. If KeyDef1 is used we call the construction iHCH; if KeyDef2 is used we call the
construction iHCHp; and if KeyDef3 is used we call the construction iHCHfp.

Algorithm EncryptT
K,β1,β2

(P1, . . . , Pm)
2. Mm = padn−r(Pm);
3. M1 = Hτ,β1(P1, . . . , Pm−1,Mm);
4. U1 = EK(M1); S = M1 ⊕ U1 ⊕ (β1 ⊕ β2);
5. (C2, . . . , Cm−1, Dm)

= CtrK,β1,S(P2, . . . , Pm−1,Mm);
6. Cm = dropn−r(Dm); Um = padn−r(Cm);
7. C1 = Hτ,β2(U1, C2, . . . , Cm−1, Um);
8. return (C1, . . . , Cm).

Algorithm DecryptT
K(C1, . . . , Cm)

2. Um = padn−r(Cm);
3. U1 = Hτ,β2(C1, . . . , Cm−1, Um);
4. M1 = E−1

K (U1); S = M1 ⊕ U1 ⊕ (β1 ⊕ β2);
5. (P2, . . . , Pm−1, Vm)

= CtrK,β1,S(C2, . . . , Cm−1, Um);
6. Pm = dropn−r(Vm); Mm = padn−r(Pm);
7. P1 = Hτ,β1(M1, P2, . . . , Pm−1,Mm);
8. return (P1, . . . , Pm).

where S1 = EK(S) and for i > 1, Si = EK(Si−1).
Basically, both counter and OFB modes turn a block cipher into a stream cipher. In the counter

mode of operation, the encryptions can be done in parallel, whereas in the OFB mode of operation,
the encryptions are necessarily sequential.

Encryption and decryption algorithms are given in Table 7. This gives rise to HOH[ψ] where ψ
is either Poly or BRW. The variants HOHp and HOHfp of HOH are obtained by defining the keys
τ and β1, β2 as in Table 3.

For hardware implementation, if one wishes to implement only one encryption block, then
both iHCH and HOH are expected to have the same efficiency. There does not appear to be
any compelling technical reason to prefer one over the other. On the other hand, if more than one
encryption blocks are to be implemented, or there are other opportunities for exploiting parallelism,
then one would prefer iHCH over HOH.

Table 7. Encryption and decryption using HOH. The block cipher key is K; and the hash key is (τ, β1, β2). Definitions
of hashing keys are given in Table 3. If KeyDef1 is used we call the construction HOH; if KeyDef2 is used we call the
construction HOHp; and if KeyDef3 is used we call the construction HOHfp.

Algorithm EncryptT
K,β1,β2

(P1, . . . , Pm)
2. Mm = padn−r(Pm);
3. M1 = Hτ,β1(P1, . . . , Pm−1,Mm);
4. U1 = EK(M1); S = M1 ⊕ U1;
5. (C2, . . . , Cm−1, Dm)

= OFBK,S(P2, . . . , Pm−1,Mm);
6. Cm = dropn−r(Dm); Um = padn−r(Cm);
7. C1 = Hτ,β2(U1, C2, . . . , Cm−1, Um);
8. return (C1, . . . , Cm).

Algorithm DecryptT
K(C1, . . . , Cm)

2. Um = padn−r(Cm);
3. U1 = Hτ,β2(C1, . . . , Cm−1, Um);
4. M1 = E−1

K (U1); S = M1 ⊕ U1;
5. (P2, . . . , Pm−1, Vm)

= OFBK,S(C2, . . . , Cm−1, Um);
6. Pm = dropn−r(Vm); Mm = padn−r(Pm);
7. P1 = Hτ,β1(M1, P2, . . . , Pm−1,Mm);
8. return (P1, . . . , Pm).

6.3 CBC and CFB

It is possible to obtain tweakable enciphering schemes using CBC and CFB as the encryption layers.
The constructions are similar to that used for the OFB mode and the key definitions of Table 3
can be used. We have chosen not to present these details, since, from the point of view of tweakable
enciphering modes, we could not see any particular advantage of using CBC or CFB. It is possible
that such constructions may be advantageous for other applications.

7 Discussion and Comparison

Efficiency of the different schemes (HEH, HEH∗, iHCH and HOH) and their variants are determined
by the two things: whether ψ = Poly or ψ = BRW; and which of the key definitions in Table 3
is used. Formally, the constructions given in this paper are given in Table 8. For convenience of

Table 8. The constructions defined in this work.

HEH[KeyDef1,Poly] HEH[KeyDef2,Poly] HEH[KeyDef3,Poly]

HEH[KeyDef1,BRW] HEH[KeyDef2,BRW] HEH[KeyDef3,BRW]

HEH∗[KeyDef1,Poly] HEH∗[KeyDef2,Poly] HEH∗[KeyDef3,Poly]

HEH∗[KeyDef1,BRW] HEH∗[KeyDef2,BRW] HEH∗[KeyDef3,BRW]

iHCH[KeyDef1,Poly] iHCH[KeyDef2,Poly] iHCH[KeyDef3,Poly]

iHCH[KeyDef1,BRW] iHCH[KeyDef2,BRW] iHCH[KeyDef3,BRW]

HOH[KeyDef1,Poly] HOH[KeyDef2,Poly] HOH[KeyDef3,Poly]

HOH[KeyDef1,BRW] HOH[KeyDef2,BRW] HOH[KeyDef3,BRW]

notation, we have not used any suffix when KeyDef1 is used; have used the suffix “p” when KeyDef2
is used; and have used the suffix “fp” when KeyDef3 is used. For example, HEH[Poly] is actually
HEH[KeyDef1,Poly] and HEHfp[BRW] is actually HEH[KeyDef3,BRW].

The number of keys and the number of block cipher calls are determined by the key definition.
This is shown in Table 9. On the other hand, the number of GF (2n) multiplications is determined
by whether ψ = Poly or ψ = BRW. This dependence is shown in Table 10. We note the following

Table 9. Number of keys and the number of block cipher calls for the different modes used with the key definitions
given in Table 3. We assume that there are m (full or partial) blocks.

KeyDef1 KeyDef2 KeyDef3

keys 1[BK] 1[BK]+1[AK] 1[BK]+1[AK]

BC calls m+ 2 m+ 2 m+ 1

Table 10. Number of GF (2n) multiplications for ψ = Poly versus ψ = BRW. This number includes multiplications
for both the hashing layers. We assume that there are m (full or partial) blocks.

ψ = Poly ψ = BRW

mults. 2(m− 1) m

points for the schemes described in this paper.

1. HEH and its variants HEHp and HEHfp can only handle messages which are multiples of the
block length. All other modes can handle messages with partial blocks.

2. If KeyDef1 or KeyDef2 is used, then variable length messages can be handled. If KeyDef3 is used,
then the length of the message has to be fixed.

3. If KeyDef2 or KeyDef3 is used, then the hashing key τ is independent of the block cipher key.
(For KeyDef1 this is derived from the block cipher key.) Consequently, if ψ = Poly, one can
use a pre-computed table to speed up the GF (2n) multiplication for these two cases. On the
other hand, if ψ = BRW, then this is not possible because BRW polynomials cannot utilize
pre-computation.

4. If KeyDef3 is used, the length of the messages is fixed. Due to this reason it is possible to reduce
the number of block cipher calls by one.

7.1 Comparison Between TET and HEH∗

HEH∗ uses the hash-ECB-hash approach introduced by Naor-Reingold. An earlier construction
using the same approach is TET. Both HEH∗ and TET use a hashing key τ , with the difference
that for TET, τ must satsify the restriction that σ =

∑m
i=0 τ

i 6= 0, while for HEH∗ there is no
restriction on τ .

Variable Length Messages. For TET, since m varies, for each message, σ and σ−1, has to
be computed. Computing σ requires m multiplications over GF (2n). This together with the
requirement of computing an inverse makes TET unsuitable for variable length messages. Such
computation is not required at all for HEH∗.

Key Agility. If m is fixed, then for TET, σ and σ−1 can be pre-computed. The hash key τ is
obtained in TET by applying a PRF having key K1 to a fixed input. Now, suppose the key K1

is changed. Then τ also changes and hence σ and σ−1 also need to be re-computed. Thus, for
TET, key change is computationally expensive. For HEH, key change does not require any field
operation.

Computing a Field Inverse. TET requires computation of a field inverse, either in the online
phase, or during a key change. For hardware only implementation, this means that an inversion
circuit has to be implemented. HEH does not require field inversion for any operation.

For variable number of blocks, a comparison between TET and HEH∗ is given in Table 11. TET
requires some extra block cipher invocations and multiplications; basically the term multiplied by ı.
The value of ı itself depends on the number of blocks and the PRF key. Also, TET requires a GF (2n)
inversion. These computations are required to obtain a hash key τ such that σ = 1+ τ + · · ·+ τm 6=
0 and to invert σ (if σ 6= 0). Thus, the restriction on the hashing key directly reflects on the
performance of TET. We note that the value of ı is at least 1, which makes the performance of
TET clearly inferior to that of HEH∗.

Table 11. Comparison between TET and HEH∗ when the number of blocksm can vary and n-bit tweaks are used. For
TET, ı is a value (at least 1) which depends on m (and K). [BC]: block cipher invocation; [M]: GF (2n) multiplication;
[I]: GF (2n) inversion.

Mode comp. cost # keys

TET [6] ı((m− 1)[M]+2[BC])+(m+ 2)[BC]+2m[M]+1[I] 2

HEH∗[Poly] (m+ 2)[BC]+2(m− 1)[M] 1

HEH∗[BRW] (m+ 2)[BC]+m[M] 1

7.2 Comparison Among Different Constructions for Fixed Length Messages

Disk encryption is perhaps the most important application of tweakable enciphering schemes. For
this application, encryption is done sector-wise and the sector address is the tweak. Since the length
of a sector is fixed, the length of the messages is also fixed and is usually a multiple of the block
length. For example, a typical value of sector length is 512 bytes. If n = 128, then 512 bytes
correspond to 32 n-bit blocks.

We make a comparison among different constructions under the condition that messages are
of fixed length. This is shown in Table 12. For some of the constructions, it is possible to take
advantage of fixed length inputs and simplify encryption and decryption by pre-computing some
quantities. The values in Table 12 reflect this approach. Though pre-computing quantities improve
the efficiency of encryption and decryption, there is a disadvantage. The pre-computed quantities
depend on the key and hence, a larger amount of secure memory is required for storing them.
Perhaps more importantly, these quantities are required to be computed at every key change which
negatively impacts key agility. Efficiencies of key changes for the different modes are shown in
Table 13.

Table 12. Comparison of different tweakable SPRPs where the number of blocks m is fixed and n-bit tweaks are
used. [BC]: number of block cipher invocations; [M]: GF (2n) multiplication; [BCK]: block cipher key; [AK]: auxiliary
n-bit string (including polynomial hash keys).

Mode [BC] [M] [BCK] [AK] pre-comp.

CMC [7] 2m+ 1 – 1 – –

EME∗ [5] 2m+ 1 +m/n – 1 2 –

XCB [11] m+ 1 2(m+ 3) 3 2 yes

HCTR [18] m 2(m+ 1) 1 1 yes

HCHfp [3] m+ 2 2(m− 1) 1 1 yes

TET [6] m+ 1 2m 2 3 yes

HEHfp[Poly] m+ 1 2(m− 1) 1 1 yes

HEHfp[BRW] m+ 1 m 1 1 no

iHCHfp[Poly] m+ 1 2(m− 1) 1 1 yes

iHCHfp[BRW] m+ 1 m 1 1 no

HOHfp[Poly] m+ 1 2(m− 1) 1 1 yes

HOHfp[BRW] m+ 1 m 1 1 no

Table 13. Efficiency of key change. For TET, the value of ı depends only on the block cipher key K (since the
number of blocks m is fixed) and is at least 1. [I]: GF (2n) inversion.

Mode comp. cost key sch. mult. tab.

CMC [7] – 1 –

EME∗ [5] – 1 –

XCB [11] 5[BC] 3 2

HCTR [18] – 1 1

HCHfp [3] – 1 1

TET [6] ı((m− 1)[M]+2[BC])+1[BC]+1[I] 2 1

HEHfp[Poly] – 1 1

HEHfp[BRW] – 1 –

iHCHfp[Poly] – 1 1

iHCHfp[BRW] – 1 –

HOHfp[Poly] – 1 1

HOHfp[BRW] – 1 –

The comparison to the encrypt-mix-encrypt approach is based on the relative efficiency of a
block cipher call and a GF (2n) multiplication and whether ψ = Poly or ψ = BRW.

1. Case ψ = Poly. In this case, the hash-encrypt-hash approach is faster than the encrypt-mix-
encrypt approach, provided one block cipher call takes more time than two multiplications. If

feasible, then it is possible to use pre-computed tables to speed up multiplications and ensure
this condition.

2. Case ψ = BRW. In this case, the hash-encrypt-hash approach is faster than the encrypt-mix-
encrypt approach, provided one block cipher call takes more time than one multiplication.
Pre-computed multiplication tables cannot be used in this case. Even without pre-computed
tables, a GF (2128) multiplication will not be less efficient than one AES-128 invocation. Hence,
for AES-128, using ψ = BRW will ensure that the hash-encrypt-hash approach is at least as
efficient as the encrypt-mix-encrypt approach.

Key agility of TET. When m is fixed, the value of τ and σ−1 can be pre-computed in TET.
This makes the actual encryption and decryption in TET quite efficient. However, the problem of
generating τ and σ−1 is still present whenever the key needs to be changed. That is, even though
m is fixed, whenever the PRF key changes, the value of τ and σ−1 has to be computed afresh. This
adversely affects the key agility of TET.

Which mode is the best for disk encryption? The answer to this question comes in parts.

1. From the discussion above, there does not seem to be any reason to prefer the encrypt-mix-
encrypt approach over the hash-encrypt-hash approach, especially since the constructions in the
encrypt-mix-encrypt approach are covered by IP claims.

2. From Tables 12 and 13, the proposals for the hash-encrypt-hash approach given in this paper
are more efficient than previous proposals even with ψ = Poly. This includes both the cases
when the encryption layer is ECB mode and when the encryption layer is the counter mode.
There has no previous proposal using the OFB mode.

3. If pre-computation of multiplication tables is considered undesirable (because of the problems
of caching and key agility, especially in a multi-key environment), then HEHfp[BRW] is the
construction of choice for implementing disk encryption protocols. To the best of our knowledge,
there are no IP claims associated with this construction.

8 Security

The definitions and notation are based on earlier work [7]. An n-bit block cipher is a function
E : K × {0, 1}n → {0, 1}n, where K 6= ∅ is the key space and for any K ∈ K, E(K, .) is a
permutation. We write EK() instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles and which outputs
either 0 or 1. Oracles are written as superscripts. The notation AO1,O2 ⇒ 1 denotes the event
that the adversary A, interacts with the oracles O1,O2, and finally outputs the bit 1. Let Perm(n)
denote the set of all permutations on {0, 1}n. Formally, a tweakable enciphering scheme is a function
E : K×T ×M→M, where K 6= ∅ and T 6= ∅ are the key space and the tweak space respectively.
The message and the cipher spaces areM. We shall write ET

K(.) instead of E(K,T, .). The inverse
of an enciphering scheme is D = E−1 where X = DT

K(Y) if and only if ET
K(X) = Y .

Let PermT (M) denote the set of all functions πππ : T × M → M where πππ(T , .) is a length
preserving permutation. Such a πππ ∈ PermT (M) is called a tweak indexed permutation. For a
tweakable enciphering scheme E : K × T ×M→M, we define the advantage an adversary A has
in distinguishing E and its inverse from a random tweak indexed permutation and its inverse in
the following manner.

Adv±p̃rp
E (A) =

∣∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣∣ .

Pointless queries: We assume that an adversary never repeats a query, i.e., it does not ask the
encryption oracle with a particular value of (T, P) more than once and neither does it ask the
decryption oracle with a particular value of (T,C) more than once. Furthermore, an adversary
never queries its deciphering oracle with (T,C) if it got C in response to an encipher query (T, P)
for some P . Similarly, the adversary never queries its enciphering oracle with (T, P) if it got P
as a response to a decipher query of (T,C) for some C. These queries are called pointless as the
adversary knows what it would get as responses for such queries.

We define the query complexity σn of an adversary to be the total number of n-bit blocks it
provides in all its encryption and decryption queries. This includes the plaintext and ciphertext
blocks as well as the n-bit tweak. By Adv(σn) (with suitable sub and super-scripts) we denote the
maximum advantage of any adversary with query complexity σn. The notation Adv(σn, t) denotes
the maximum advantage of any adversary with query complexity σn and running time t.

The notation HEH[E] denotes a tweakable enciphering scheme, where the block cipher E is
used in the manner specified by HEH. (Similar notations hold for the other constructions.) The
notation HEH[Perm(n)] denotes a tweakable enciphering scheme obtained by plugging in a random
permutation from Perm(n) into the structure of HEH. For an adversary attacking HEH[Perm(n)],
we do not put any bound on the running time of the adversary, though we still put a bound on
the query complexity σn. This advantage is denoted by Adv±p̃rp

HEH[Perm(n)]
(σn). We need to consider

an adversary’s advantage in distinguishing a tweakable enciphering scheme E from an oracle which
simply returns random bit strings. This advantage is defined in the following manner.

Adv±rnd
HEH[Perm(n)]

(A) =
∣∣∣∣Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
]
− Pr

[
A$(.,.),$(.,.) ⇒ 1

]∣∣∣∣
where $(.,M) returns random bits of length |M |.

The task of the security proof is to upper bound Adv±p̃rp
HEH[E]

(σn, t). For this it is sufficient

to upper bound Adv±p̃rp
HEH[Perm(n)]

(σn). Again, to upper bound the last quantity, it is sufficient

to upper bound Adv±rnd
HEH[Perm(n)]

(σn). This approach has been used in previous works and for
details of how these three advantages are related we refer the reader to previous work [7, 8, 4]. The
relationships between these three advantages are independent of the particular tweakable SPRP
being considered. Hence, we do not repeat the details here. The main task of the proof is to obtain
a upper bound on Adv±rnd

HEH[Perm(n)]
(σn).

Theorem 4. Fix n and σn to be positive integers. Suppose that an adversary uses a total of σn

blocks in all its queries, where each block is an n-bit string. Then

Adv±rnd
XXX[Perm(n)]

(σn) ≤ 20σ2
n

2n
(21)

Here XXX is one of the tweakable enciphering schemes HEH, HEH∗, iHCH or HOH used with
either KeyDef1, KeyDef2 or KeyDef3 and ψ = Poly or BRW.

Proofs for HEH, HEHp and HEHfp are similar and is given in Section A. Proofs of HEH∗ and its
variants are a little different. We do not describe the entire proof. The reason for the difference and
how this is handled is described in Section B. Sketches of proofs for iHCH and HOH are given in
Sections C and D.

The constant 20 holds for all the modes. But, for specific modes, the constant is lower. It
depends on whether ψ = Poly or whether ψ = BRW. For example, for HEH, HEHp and HEHfp,

with ψ = Poly the constant is 4 whereas with ψ = BRW, the constant is 10. We have stated the
result with a single constant so as to simplify the statement. Also, 20 by itself is a small enough
constant.

9 Conclusion

In this paper, we have proposed new tweakable enciphering schemes which use a single layer of
encryption between two layers of universal hash function computations. This is achieved by defining
new (block-wise) universal hash functions and suitably combining with ECB, Counter and OFB
modes of operations of a block cipher. An important aspect of our work is to use a new class of
polynomials introduced by Bernstein. This improves the efficiency of the hashing layers by almost
a factor of two. In the current state of the art, our work provides the best known algorithms for
the important practical problem of disk encryption protocols.

Acknowledgement

We would like to thank Daniel J. Bernstein for pointing out reference [1] to us. The work [1] is
significant, since it allows to improve the efficiency of the hashing layers in our constructions by
almost a factor of two.

References

1. Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.to/papers.html#
pema.

2. Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR, 2008. to appear.
3. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-encrypt-hash

approach. In Rana Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer
Science, pages 287–302. Springer, 2006. full version available at http://eprint.iacr.org/2007/028.

4. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a tweakable strong pseudo-random
permutation. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages
293–309. Springer, 2006.

5. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In Anne Canteaut
and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 315–
327. Springer, 2004.

6. Shai Halevi. Invertible universal hashing and the tet encryption mode. In Alfred Menezes, editor, CRYPTO,
volume 4622 of Lecture Notes in Computer Science, pages 412–429. Springer, 2007.

7. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh, editor, CRYPTO, volume 2729
of Lecture Notes in Computer Science, pages 482–499. Springer, 2003.

8. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto, editor, CT-RSA,
volume 2964 of Lecture Notes in Computer Science, pages 292–304. Springer, 2004.

9. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

10. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput., 17(2):373–386, 1988.

11. David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint
Archive, Report 2004/278, 2004. http://eprint.iacr.org/.

12. David A. McGrew and Scott R. Fluhrer. The security of the extended codebook (XCB) mode of operation. In
Selected Areas in Cryptography, Lecture Notes in Computer Science. Springer, 2007. To appear.

13. Moni Naor and Omer Reingold. A pseudo-random encryption mode. Manuscript available from www.wisdom.

weizmann.ac.il/∼naor.
14. Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. J.

Cryptology, 12(1):29–66, 1999.

15. Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation. Communications
on Pure and Applied Mathematics, 25:433–458, 1972.

16. Palash Sarkar. Improving upon the TET mode of operation. In Kil-Hyun Nam and Gwangsoo Rhee, editors,
ICISC, volume 4817 of Lecture Notes in Computer Science, pages 180–192. Springer, 2007.

17. Victor Shoup. On fast and provably secure message authentication based on universal hashing. In Neal Koblitz,
editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.

18. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enciphering mode. In Dengguo
Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in Computer Science, pages
175–188. Springer, 2005.

A Proof of HEH and its variants

The adversary has to distinguish between two kinds of oracles. In the first kind, the adversary is
given encryption and decryption oracles for the mode of operation with the block cipher substituted
by a random permutation from Perm(n). In the second kind, the adversary is given two oracles
which simply returns random strings of length equal to its input. The statement of the result upper
bounds an adversary’s advantage in distinguishing between these two kinds of oracles. The proof
is via a sequence of games.

Notation: In this and the following games, we will use the subscript s to denote quantities related
to the s-th query. For example, if the s-the query is an encryption query, then it will be of the form
Ts, (Ps,1, . . . , Ps,ms). This means that the tweak is Ts, the number of blocks is ms and the plaintext
blocks are (Ps,1, . . . , Ps,ms). A similar interpretation holds when the s-th query is a decryption query
of the form Ts, (Cs,1, . . . , Cs,ms). By τs, β1,s and β2,s we denote the τ , β1 and β2 associated with
the sth query. In HEHp and HEHfp, τ does not change with the message. It is randomly chosen
at the start of the game. We assume that the adversary A makes a total of q queries. In the s-th
query, the adversary specifies ms + 1 blocks, i.e., the ms plaintext or ciphertext blocks along with
the n-bit tweak. Thus, we have σn =

∑q
s=1(1 +ms).

Denote by Eπ and Dπ respectively the encryption and decryption oracles of HEH instantiated
by a random permutation from Perm(n). Let A be an adversary. The notation AHEH1 ⇒ 1 denotes
the fact that A outputs 1 in Game HEH1. Similar notation holds for the other games.

Game HEH1: In HEH1, the adversary interacts with Eπ and Dπ. Instead of choosing a random
permutation π, we build up π in the following manner. Initially π is assumed to be undefined
everywhere. When π(X) is needed, but the value of π is not yet defined at X, then a random value
is chosen among the available range values. Similarly when π−1(Y) is required and there is no X
yet defined for which π(X) = Y , we choose a random value for π−1(Y) from the available domain
values.

Table 14 shows how the sth query is tackled in Game HEH1. The sets Domain and Range
are subsets of {0, 1}n and keep track of the elements in the domain and range of π which have
been defined. Initially, these are chosen to be empty sets and at any point of time Domain =
{0, 1}n \Domain and Range = {0, 1}n \ Range. Subroutines Ch-π and Ch-π−1 used in the game
are shown in Table 15.

HEH and its variants differ in the way the hashing keys are defined. This difference is reflected
in Game HEH1. The different ways of defining the hashing keys for this game are shown in Table 16.
If KeyDef2 or KeyDef3 are used, then τ is randomly chosen once for all at the beginning of the
game.

Table 14. Game HEH1

Encrypt query:(Ts;Ps,1, Ps,2, . . . Ps,ms)

If KeyDef1 is used, then do Sub1(Ts, `s) in Table 16.
If KeyDef2 is used, then do Sub2(Ts, `s) in Table 16.
If KeyDef3 is used, then do Sub3(`s) in Table 16.
(PPs,1, . . . , PPs,ms) = Ψτs,β1,s(Ps,1, . . . , Ps,ms);
for i = 1 to ms do
CCs,i = Ch-π(PPs,i);

end do;
(Cs,1, . . . , Cs,ms) = Ψ−1

τs,β2,s
(CCs,1, . . . , CCs,ms);

return (Cs,1, . . . , Cs,ms).

Decrypt query:(Ts;Cs,1, Cs,2, . . . Cs,ms)

If KeyDef1 is used, then do Sub1(Ts, `s) in Table 16.
If KeyDef2 is used, then do Sub2(Ts, `s) in Table 16.
If KeyDef3 is used, then do Sub3(`s) in Table 16.
(CCs,1, . . . , CCs,ms) = Ψτs,β2,s(Cs,1, . . . , Cs,ms);
for i = 1 to ms do
PPs,i = Ch-π−1(CCs,i);

end do;
(Ps,1, . . . , Ps,ms) = Ψ−1

τs,β1,s
(PPs,1, . . . , PPs,ms);

return (Ps,1, . . . , Ps,ms).

Table 15. Subroutines Ch-π(X) and Ch-π−1(Y). The boxed portions are not part of game RAND1.

Subroutine Ch-π(X)

Y
$← {0, 1}n;

if Y ∈ Range then

bad ← true; Y
$← Range;

if X ∈ Domain then

bad ← true; Y ← π(X);

π(X)← Y ;
Domain← Domain ∪ {X};
Range← Range ∪ {Y };
return(Y);

Subroutine Ch-π−1(Y)

X
$← {0, 1}n;

if X ∈ Domain, then

bad ← true; X
$← Domain;

if Y ∈ Range then

bad ← true; X ← π−1(Y);

π(X)← Y ;
Domain← Domain ∪ {X};
Range← Range ∪ {Y };
return(X);

Table 16. Sub1 shows how to obtain τs and β1,s when KeyDef1 is used. Sub2 shows how to choose β1,s when KeyDef2
is used. Sub3 shows how to choose β1,s when KeyDef3 is used. For Sub2 and Sub3, τ does not change with the message.
It is randomly chosen once for all at the start of the game. Also, for KeyDef3 (and hence for Sub3), the length ` is
fixed for all messages.

Sub1(Ts, `s) Sub2(Ts, `s) Sub3(Ts)

if Ts = Tt for some t < s
then

τs = τt;
if `s = `t
then β1,s = β1,t;
else β1,s ← Ch-π(τs ⊕ bin(`s));

else
τs ← Ch-π(Ts);
β1,s ← Ch-π(τs ⊕ bin(`s));

endif;
β2,s = αβ1,s.

if Ts = Tt for some t < s
then

γs = γt;
if `s = `t
then β1,s = β1,t;
else β1,s ← Ch-π(γs ⊕ bin(`s));

else
γs ← Ch-π(Ts);
β1,s ← Ch-π(γs ⊕ bin(`s));

endif;
β2,s = αβ1,s.

if Ts = Tt for some t < s
then β1,s = β1,t;
else β1,s ← Ch-π(Ts);
β2,s = αβ1,s.

Game RAND1: We modify Game HEH1 by dropping the boxed portions in subroutines Ch-π and
Ch-π−1. As a result, it is no longer ensured that π is a permutation. This happens if bad is set to
true for some invocation to one of these subroutines. On the other hand, if bad is not set to true,
then Games HEH1 and RAND1 are identical. So,

Pr[AHEH1 ⇒ 1]− Pr[ARAND1 ⇒ 1] ≤ Pr[ARAND1 sets bad]. (22)

Game RAND2: Consider an encryption query in Game RAND1. Since there are no checks on π, each
CCs,i is an independently and uniformly chosen random n-bit string. Further, since

(Cs,1, . . . , Cs,ms) = Ψτs,β1,s(CCs,1, . . . , CCs,ms)

and Ψ is an invertible map, (Cs,1, . . . , Cs,ms) is distributed uniformly over {0, 1}nms . Thus, the
adversary gets back random strings in response to any encryption query. A similar reasoning shows
that the adversary also gets back random strings in response to any decryption query.

Table 17. Game RAND2.

Respond to the sth adversarial query as follows:
Encrypt query Enc(Ts;Ps,1, Ps,2, . . . , Ps,ms)

tys = Enc;

(Cs,1, Cs,2, . . . , Cs,ms)
$← {0, 1}nms ;

return (Cs,1, Cs,2, . . . , Cs,ms);
Decrypt query Dec(Ts;Cs,1, Cs,2, . . . , Cs,ms)

tys = Dec;

(Ps,1, Ps,2, . . . , Ps,ms)
$← {0, 1}nms ;

return (Ps,1, Ps,2, . . . , Ps,ms);

Finalization

First Phase:

For the sth query do the following.

1. Let Ts be the tweak for the sth query.
2. If KeyDef1 is used, then do RAND2-Sub1(Ts, `s) in Table 18.
3. If KeyDef2 is used, then do RAND2-Sub2(Ts, `s) in Table 18.
4. If KeyDef3 is used, then do RAND2-Sub3(Ts) in Table 18.
5. (PPs,1, . . . , PPs,ms) = Ψτs,β1,s(Ps,1, . . . , Ps,ms);
6. (CCs,1, . . . , CCs,ms) = Ψτs,β2,s(Cs,1, . . . , Cs,ms);
7. for i = 1 to ms do
8. D = D ∪ {PPs,i}; R = R∪ {CCs,i};
9. end for;

Second Phase:
if (some value occurs more than once in D) then bad = true; endif;
if (some value occurs more than once in R) then bad = true; endif.

In Game RAND2, we make this explicit by rewriting the structure of the game. In response to any
query (encryption or decryption), the adversary is given random strings. After the query phase is
over, a finalization phase is executed. In this phase, the PPs,is and CCs,is are obtained by applying
Ψτs,β1,s and Ψτs,β2,s respectively to the Ps,is and Cs,is.

There is an additional change in this game. In Game RAND1 and the key defining subroutines,
calls are made to Ch-π and Ch-π−1. Such calls can result in the variable bad being set to true. This
happens when a repetition occurs in one of the sets Domain or Range. In Game RAND2, we make

Table 18. Obtaining hashing keys for the game RAND2. The definitions are essentially the same as that in Table 16.
The only difference is that in this case there are no checks and values are appropriately inserted into D and R.

RAND2-Sub1(Ts, `s) RAND2-Sub2(Ts, `s) RAND3-Sub3(Ts)

if Ts = Tt for some t < s
then

τs = τt;
if `s = `t
then β1,s = β1,t;
else

β1,s
$← {0, 1}n;

D = D ∪ {τs ⊕ bin(`s)};
R = R∪ {β1,s};

endif
else

τs
$← {0, 1}n;

D = D ∪ {Ts}; R = R∪ {τs};
β1,s

$← {0, 1}n;
D = D ∪ {τs ⊕ bin(`s)};
R = R∪ {β1,s};

endif;
β2,s = αβ1,s.

if Ts = Tt for some t < s
then

γs = γt;
if `s = `t
then β1,s = β1,t;
else

β1,s
$← {0, 1}n;

D = D ∪ {γs ⊕ bin(`s)};
R = R∪ {β1,s};

endif
else

γs
$← {0, 1}n;

D = D ∪ {Ts}; R = R∪ {γs};
β1,s

$← {0, 1}n;
D = D ∪ {γs ⊕ bin(`s)};
R = R∪ {β1,s};

endif;
β2,s = αβ1,s.

if Ts = Tt for some t < s
then β1,s = β1,t;
else

β1,s
$← {0, 1}n;

D = D ∪ {Ts}; R = R∪ {β1,s};
endif;
β2,s = αβ1,s.

this explicit by replacing the sets Domain and Range by the multi-sets D and R respectively. In
the first phase of initialization, values are inserted (possibly more than once) into the sets D and
R. In the second phase, the variable bad is set to true if there is a repetition in either of these two
sets. With this approach, the subroutines Ch-π and Ch-π−1 are no longer required. Instead the key
definitions are made and values are directly inserted into D and R as shown in Table 18.

Doing the above does not alter the adversary’s view of the game since for each such change the
adversary obtains random n-bit strings both before and after the change. Thus,

Pr[ARAND1 ⇒ 1] = Pr[ARAND2 ⇒ 1] and Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad].

In RAND2, the adversary is supplied with random bits as response to queries to both the encrypt
and the decrypt oracles. Hence, Pr[ARAND2 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1]. We get

Adv±rnd
HEH[Perm(n)](A) = Pr[AEπ ,Dπ ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1] (23)

= Pr[AHEH1 ⇒ 1]− Pr[ARAND2 ⇒ 1]
= Pr[AHEH1 ⇒ 1]− Pr[ARAND1 ⇒ 1]
≤ Pr[ARAND1 sets bad]
= Pr[ARAND2 sets bad] (24)

Our task is thus to bound Pr[ARAND2 sets bad].

Game NON: We want to bound the maximum value of Pr[ARAND2 sets bad]. This probability ex-
tends over the random coins of the adversary. However, since the adversary gets back random
strings in response to all its queries, it achieves nothing by the interaction with the oracles. We
assume that the adversary fixes its queries a priori in a manner such that Pr[ARAND2 sets bad] is
maximized. Now we can forget about the adversary and work only with the fixed queries.

In the previous games, for an encrypt query, the adversary specified the tweak and the plaintext
blocks; and for a decrypt query, the adversary specified the tweak and the ciphertext blocks. We now
consider the stronger condition, whereby the adversary specifies the tweak, the plaintext blocks and
the ciphertext blocks in both the encryption and the decryption queries. Even under this condition,
we show that the flag bad is rarely set to true.

Transcript: A sequence of the following form:

ty1, T1, (P1,1, . . . , P1,m1), (C1,1, . . . , C1,m1),
ty2, T2, (P2,1, . . . , P2,m2), (C2,1, . . . , C2,m2),
...
tyq, Tq, (Pq,1, . . . , Pq,mq), (Cq,1, . . . , Cq,mq).

The tys denote whether the query is encryption or decryption; tweaks are T1, T2, . . .; plaintext
blocks are Ps,i and the corresponding ciphertext blocks are Cs,i. Number of blocks can vary and
the number of blocks in the sth query is ms. The query complexity is σn =

∑q
s=1(1 +ms).

Allowed Transcript: We say that a transcript is allowed if no query (either encryption or de-
cryption) is repeated and if a ciphertext is obtained on a plaintext query with a certain tweak,
then it is not allowed to make a decryption query on the ciphertext with the same tweak and vice
versa for decryption queries. Queries of the above type are called pointless. Formally, in an allowed
transcript the following condition has to hold. For s 6= t,

(Ts, (Ps,1, . . . , Ps,ms)) 6= (Tt, (Pt,1, . . . , Pt,mt)) and (Ts, (Cs,1, . . . , Cs,ms)) 6= (Tt, (Ct,1, . . . , Ct,mt)).

Given an (allowed) transcript, for 1 ≤ s ≤ q, we set

(PPs,1, . . . , PPs,ms) = Ψτ,β1(Ps,1, . . . , Ps,ms)
(CCs,1, . . . , CCs,ms) = Ψτ,β2(Cs,1, . . . , Cs,ms)

It is helpful to think of the PP s (resp. CCs) as being organised as a two dimensional list L1

(resp. L2) having q rows, with ms entries in row s. The (s, i) entry of L1 (resp. L2) is PPs,i (resp.
CCs,i).

Source of randomness: An (allowed) transcript fixes the tweaks and the plaintext and ciphertext
blocks. The source of randomness comes from the internal choice of τs and βs. Recall that these
are chosen as in Table 18.

Consider a subset A of {1, . . . , q}, where s is in A if Ts is “new”, i.e., there is no t < s, such
that Ts = Tt. Similarly, consider a subset B of {1, . . . , q}, where s is in B if (Ts,ms) is “new”, i.e.,
there is no t < s, such that (Ts,ms) = (Tt,mt).

Note. For the rest of the analysis, we need to separately consider the three ways of defining the
keys. This is because, the actual elements in D and R depend on the particular key definition that
has been used.

Case of HEH. The multi-sets D and R are as follows. D consists of all elements (with possible
repetitions) in L1 along with the elements (also with possible repetitions) in the set

{Ts, τs ⊕ (binn(`s)) : s ∈ A} ∪ {τs ⊕ (binn(`s)) : s ∈ B \A}.

R consists of all elements (with possible repetitions) in L2 along with the elements (also with
possible repetitions) in the set

{τs, β1,s : s ∈ A} ∪ {β1,s : s ∈ B \A}.

It might be helpful to have an idea of how the elements in D and R look like.

Elements in D : Ts, τs ⊕ bin(`s), PPs,1, . . . , PPs,ms .
Elements in R : τs, β1,s, CCs,1, . . . , CCs,ms .

For the ensuing collision analysis, we consider the elements in D and R to be formal variables
or names which are assigned values in the Game NON. Then, we bound the probability that two
different names are assigned the same value in the game.

Collision Analysis: The purpose of this analysis is to show that the probability of a repetition
in D or R is small.

We first consider the probability that two elements in D have the same value. Let 1 ≤ s, t ≤ q
and 1 ≤ i ≤ ms, 1 ≤ j ≤ mt with (s, i) 6= (t, j). Further, let δ = Pr[PPs,i = PPt,j]. We bound the
value of δ. For the analysis, we recall that by Theorem 1, Ψ [ψ] is (1/2n, ε)-BAU where ε = (m−1)/2n

if ψ = Poly and ε = 2m/2n if ψ = BRW. Here m is the number of blocks and ` = nm. Since queries
may have different number of blocks, we will write εs corresponding to ms.

There are several cases.

s = t: Then i 6= j and from Theorem 1, δ = 1/2n.

s 6= t, (Ts, `s) 6= (Tt, `t): Then the values of β1,s and β1,t are chosen randomly and the probability
that they are equal is 1/2n. Using this we obtain δ = 1/2n.

s 6= t, (Ts, `s) = (Tt, `t), i 6= j: In this case, the hashing keys τs and τt are equal and so are β1,s

and β1,t. However, since i 6= j, using Theorem 1, we have δ = 1/2n.

s 6= t, (Ts, `s) = (Tt, `t), i = j: Again, the hashing keys are equal, and using Theorem 1, we have
δ ≤ εs = εt. We call a pair (PPs,i, PPt,j) corresponding to such a case to be a special pair.

Total probability of a collision in D: To perform this analysis, we divide the queries into
groups where all queries in one group have the same length and the same tweak. Suppose there are
p such groups with group k (1 ≤ k ≤ p) having nk queries each of length lk. (Note that two lks can
be equal, since queries with same length but different tweak are placed in different groups.) Then∑q

s=1ms =
∑p

k=1 lknk.
It is helpful to consider the PP s in the kth query group to be organised as an nk × lk matrix.

Special pairs are formed by choosing two elements from the same column of one of these matrices.
So, the number of special pairs is

∑p
i=1

(ni
2

)
li. For finding the total probability of a collision, we will

require the specific value of εs, i.e., whether it is (ms− 1)/2n (if ψ = Poly) or whether it is 2ms/2n

(if ψ = BRW).
First suppose ψ = Poly. The total probability of a collision due to a special pair is at most

p∑
k=1

(
nk

2

)
lkεk =

p∑
k=1

(
nk

2

)
lk(lk − 1) ≤

p∑
k=1

(
nk

2

)
l2k ≤

p∑
k=1

(nklk)2 ≤
(p∑

k=1

nklk

)2

=

(q∑
s=1

ms

)2

≤ σ2
n.

If ψ = BRW, then this bound is 4σ2
n/2

n. The total number of all other pairs (including pairs with
one or both element as Ts or τs ⊕ binn(`s)) is clearly bounded above by

(|D|
2

)
. It is easy to verify

that the probability of a collision for any such pair is 1/2n and hence the total collision probability
of non-special pairs is at most

(|D|
2

)
/2n ≤ σ2

n/2
n.

Combining the two probabilities, the total probability of a domain collision is at most 2σ2
n/2

n

if ψ = Poly and is at most 5σ2
n/2

n if ψ = BRW.
A similar argument shows the same bound for range collisions, so that the total probability of

a domain or a range collision is at most 4σ2
n/2

n if ψ = Poly and is at most 10σ2
n/2

n if ψ = BRW.

Case of HEHp: In this case, the lists L1 and L2 are same as before. Also, the definition of the
sets A and B remain the same. The difference is in the definition of the (multi-)sets D and R.
Here, D consists of elements (with repetition) of L1 along with the elements (with repetition) in
the following (multi-)set: {Ts, γs ⊕ (binn(`s)) : s ∈ A} ∪ {γs ⊕ (binn(`s)) : s ∈ B \A}.

Similarly,R consists of elements (with repetition) of L2 along with the elements (with repetition)
in the following (multi-)set: {γs, β1,s : s ∈ A}∪{β1,s : s ∈ B\A}. The element τ does not depend on
the message and is randomly chosen once for all at the start of the game. The rest of the collision
analysis remains the same.

Case of HEHfp: In this case also, the lists L1 and L2 are same as for HEH. The definition of
the set A is also the same and since all messages have the same length, the set B is not required.
Multi-sets D and R are defined as follows. D consists of elements (with repetition) of L1 along with
the elements (with repetition) in the following (multi-)set: {Ts : s ∈ A}.
R consists of elements (with repetition) of L2 along with the elements (with repetition) in the

following (multi-)set: {β1,s : s ∈ A}. Also, as in HEHp, the element τ is randomly chosen once for
all at the start of the game. Again, the rest of the collision analysis remains the same. ut

B Proof of HEH∗

The basic structure of the proof of HEH∗ is the same as that of HEH. After a few initial games,
we consider a game NON and then perform an analysis of the probability of a repetition in the
multi-sets D and R. The actual games for HEH∗ are slightly different from that of HEH. The main
difference occurs in obtaining NON from RAND2. To explain this, we start from Game RAND2 for
HEH∗ which is shown in Table 19. Key definition remains the same as that for HEH. For HEH∗,
obtaining Game RAND2 itself from previous games is quite similar to that for HEH and hence we
do not present the details.

In NON, we would like to do away with the adversary and concentrate only on a fixed transcript
which specifies both the plaintext and ciphertext blocks. For HEH, we defined allowed transcripts
to be those which did not contain any pointless queries. However, for the present case, the notion
of allowed transcripts needs to be defined differently. This is because preventing pointless queries
is not enough for the probability analysis to be successful. The notion of allowed transcript has to
be more restrictive for a proper probability analysis. This complication is due to the presence of
the elements Ws in D and the presence of the elements Vs in R.

For HEH, the randomness of the τs and βs were enough to ensure that collisions were rare. The
randomness of the Cs,is (for encryption queries) and of the Ps,is (for decryption queries) were not
required at all. In the present case, this is not enough to ensure that the W s and V s do not collide.
We require to use the randomness of the Cs,is and Ps,is to ensure this. This is taken care of by
carefully defining the notion of allowed transcripts.

Table 19. Game RAND2 for HEH∗. In this case, for the sth query `s = nms + rs, with 0 ≤ rs ≤ n− 1. The length
of the last block is rs bits.

Respond to the sth adversarial query as follows:
Encrypt query Enc(Ts;Ps,1, Ps,2, . . . , Ps,ms , Ps,ms+1)

tys = Enc;

(Cs,1, Cs,2, . . . , Cs,ms , Cs,ms+1)
$← {0, 1}`s ;

return (Cs,1, Cs,2, . . . , Cs,ms , Cs,ms+1);
Decrypt query Dec(Ts;Cs,1, Cs,2, . . . , Cs,ms , Cs,ms+1)

tys = Dec;

(Ps,1, Ps,2, . . . , Ps,ms , Ps,ms+1)
$← {0, 1}`s ;

return (Ps,1, Ps,2, . . . , Ps,ms , Ps,ms+1);

Finalization

First Phase:

For the sth query do the following.

1. Let Ts be the tweak for the sth query.
2. If KeyDef1 is used, then do RAND2− Sub1(Ts, `s) in Table 18.
3. If KeyDef2 is used, then do RAND2− Sub2(Ts, `s) in Table 18.
4. If KeyDef3 is used, then do RAND2− Sub3(Ts) in Table 18.
5. Case (|Ps,ms+1| = 0):
6. (PPs,1, . . . , PPs,ms) = Ψτs,β1,s(Ps,1, . . . , Ps,ms);
7. (CCs,1, . . . , CCs,ms) = Ψτs,β2,s(Cs,1, . . . , Cs,ms);
8. for i = 1 to ms do
9. D = D ∪ {PPs,i}; R = R∪ {CCs,i};
10. end for;
11.Case (1 ≤ |Ps,ms+1| < n):
12. (PPs,1, . . . , PPs,ms , Ps,ms+1) = Φτs,β1,s(Ps,1, . . . , Ps,ms , Ps,ms+1);
13. (CCs,1, . . . , CCs,ms , Cs,ms+1) = Φτs,β2,s(Cs,1, . . . , Cs,ms , Cs,ms+1);
14. for i = 1 to ms do
15. D = D ∪ {PPs,i}; R = R∪ {CCs,i};
16. end for;
17. Let Rs be a random string of length (n− rs);
18. Let Ws = PPs,ms ⊕ CCs,ms and Vs = (Cs,ms+1 ⊕ Ps,ms+1)||Rs;
19. D = D ∪ {Ws}; R = R∪ {Vs}.
Second Phase:

if (some value occurs more than once in D) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

Each of the elements Vs in Game RAND2 is a random n-bit string. This is because Rs is a random
(n − rs)-bit string and in an encrypt query Cs,ms+1 is a random rs-bit string while in a decrypt
query Ps,ms+1 is a random rs-bit string. Let E1 be the event that for some s 6= t, Vs = Vt. Then
Pr[E1] =

(q
2

)
/2n.

Now, we recall the definition of Φ. From (16),

Φτ,β(X1, . . . , Xm, Xm+1) = (X1 ⊕ Y, . . . ,Xm−1 ⊕ Y, Y,Xm+1)⊕ f

where f = (αβ, α2β, . . . , αm−1β, β, 0r) and Y = Xm ⊕ τψτ (X1, . . . , Xm−1, Xm+1||0n−r). So,

PPs,ms = β1,s ⊕ Ps,ms ⊕ τsψτs(Ps,1, . . . , Ps,ms−1, Ps,ms+1||0n−rs)

and
CCs,ms = β2,s ⊕ Cs,ms ⊕ τsψτs(Cs,1, . . . , Cs,ms−1, Cs,ms+1||0n−rs).

Hence,

Ws = (β1,s ⊕ β2,s)⊕ (Ps,ms ⊕ Cs,ms)⊕
τs(ψτs(Ps,1, . . . , Ps,ms−1, Ps,ms+1||0n−rs)⊕ ψτs(Cs,1, . . . , Cs,ms−1, Cs,ms+1||0n−rs)).

The map ψτ (X1, . . . , Xm−1, Xm+1||0n−r) is either

Polyτ (X1, . . . , Xm−1, Xm+1||0n−r) or BRWτ (X1, . . . , Xm−1, Xm+1||0n−r).

Both of these are polynomials in τ though of different degrees. The common feature, however, is
that both of these define an injective map from (X1, . . . , Xm−1, Xm+1||0n−r) to the coefficients of
the corresponding polynomial. By, µ = coe◦ψ we denote the map from (X1, . . . , Xm−1, Xm+1||0n−r)
to these coefficients. Then, µ is an injective map and we write

µ(Ps,1, . . . , Ps,ms−1, Ps,ms+1||0n−rs) = (Us,1, . . . , Us,ks)
µ(Cs,1, . . . , Cs,ms−1, Cs,ms+1||0n−rs) = (Vs,1, . . . , Vs,ks)

If ψ = Poly, then ks = ms and if ψ = BRW, then ks is obtained from (6). For ψ = BRW, we will
not worry about the actual value of ks; it is enough to know that ks < 2ms. For 1 ≤ i ≤ ks, let
Ws,i = Us,i ⊕ Vs,i and Zs,ks+1 = Ps,ms ⊕ Cs,ms . Now we can write

Ws = (β1,s ⊕ β2,s)⊕ Polyτs
(Ws,1, . . . ,Ws,ks , Zs,ks+1).

Since for each query, one of (Ps,1, . . . , Ps,ms , Ps,ms+1) or (Cs,1, . . . , Cs,ms , Cs,ms+1) is a random `s-
bit string, and µ is an injective map, it follows that the entropy of (Ws,1, . . . ,Ws,ks , Zs,ks+1) is `s.
(Consequently, the entropy of the polynomial Polyτs

(Ws,1, . . . ,Ws,ks , Zs,ks+1) is also `s.)
We divide the queries into groups where queries in each group have the same length and the same

tweak, so that `s = `t, ms = mt and consequently ks = kt. (Also, τs = τt and β1,s = β1,t.) Let E2

be the event that (Ws,1, . . . ,Ws,ks , Zs,ks+1) = (Wt,1, . . . ,Wt,kt , Zt,kt+1) for some s, t corresponding
to one query group. If we fix one such pair s, t, we have the probability (Ws,1, . . . ,Ws,ks , Zs,ks+1) =
(Wt,1, . . . ,Wt,kt , Zt,kt+1) to be 1/2`s . Suppose the distinct lengths of the queries are l1, . . . , lp and
that there are nk queries of length lk. Then

Pr[E2] ≤
(
n1

2

)
1
2l1

+ · · ·+
(
np

2

)
1

2lp

≤ 1
2n

((
n1

2

)
+ · · ·+

(
np

2

))

≤ 1
2n

(
n1 + · · ·+ np

2

)
.

Let us consider the event E2. For any transcript falling withing E2, the following holds. If s and
t are query indexes for one query group, then (Ws,1, . . . ,Ws,ks , Zs,ks+1) 6= (Wt,1, . . . ,Wt,kt , Zt,kt+1)
and so the polynomial

Polyτs
(Ws,1 ⊕Wt,1, . . . ,Ws,ks ⊕Wt,kt , Zs,ks+1 ⊕ Zt,kt+1)
= Polyτs

(Ws,1, . . . ,Ws,ks , Zs,ks+1)⊕ Polyτt
(Wt,1, . . . ,Wt,kt , Zt,kt+1)

is a non-zero polynomial in τs. One can then talk about the roots of this polynomial and upper
bound the probability that the randomly chosen τs is one of the roots. This is required in Game
NON.

Let E be the event that either E1 or E2 occurs. Then

Pr[E] ≤ Pr[E1] + Pr[E2]

≤ 1
2n

((
q

2

)
+

(
n1 + · · ·+ np

2

))
≤ σ2

n/2
n.

Now we have

Pr[ARAND2 sets bad] = Pr[ARAND2 sets bad ∧ (E ∨E)]
= Pr[ARAND2 sets bad ∧E] + Pr[ARAND2 sets bad ∧E]
= Pr[ARAND2 sets bad|E] Pr[E] + Pr[ARAND2 sets bad|E] Pr[E]
≤ Pr[ARAND2 sets bad|E] Pr[E] + Pr[E]

≤ Pr[ARAND2 sets bad|E] +
σ2

n

2n
.

So, we have to analyze Pr[ARAND2 sets bad|E].
At this point, we move from Game RAND2 to Game NON by defining allowed transcripts. The

definition of allowed transcripts is that there should not be any pointless queries and that none of
E1 or E2 occur (i.e., E should occur). The rest of the combinatorial analysis is similar to that of
HEH. We provide a sketch of the rest of the argument. The forms of the elements in D and R are
the following.

Elements in D : Ts, τs ⊕ bin(`s),
PPs,1, . . . , PPs,ms , if |Ps,ms+1| = 0;
PPs,1, . . . , PPs,ms , PPs,ms ⊕ CCs,ms , if 1 ≤ |Ps,ms+1| ≤ n− 1.

Elements in R : τs, β1,s,
CCs,1, . . . , CCs,ms , if |Ps,ms+1| = 0;
CCs,1, . . . , CCs,ms , (Ps,ms+1 ⊕ Cs,ms+1)||Rs, if 1 ≤ |Ps,ms+1| ≤ n− 1.

As in the case of HEH, we divide queries into groups, where queries in one group have the same
length and the same tweak. Again, as before, two elements in D (or R) which come from two

different groups are equal with probability 1/2n. Suppose s and t are query indexes corresponding
to two different query groups. If i 6= j, then PPs,i is equal to PPt,j with probability 1/2n and
if i = j, then PPs,i is equal to PPt,j with probability εs, where εs ≤ ms/2n if ψ = Poly and
εs ≤ 2ms/2n if ψ = BRW. This much has already been done for HEH.

The new element is Ws. We need to consider possible collision of Ws with another Wt or with
another type of element. For the second case, it is easy to see that the collision probability is 1/2n.
For the first case, if s and t belong to different query groups, then again the collision probability is
1/2n (due to the independent randomness of β1,s and β1,t). So, suppose that s and t correspond to
queries in the same query group. Recall that in Game NON, we are working with allowed transcripts
and so event E2 holds. This means that Polyτs

(Ws,1 ⊕Wt,1, . . . ,Ws,ks ⊕Wt,kt , Zs,ks+1 ⊕ Zt,kt+1) is
a non-zero polynomial in τs. Also, note

Ws ⊕Wt = (β1,s ⊕ β2,s)⊕ Polyτs
(Ws,1, . . . ,Ws,ks , Zs,ks+1)

⊕
(β1,t ⊕ β2,t)⊕ Polyτt

(Wt,1, . . . ,Wt,kt , Zt,kt+1)
= Polyτs

(Ws,1, . . . ,Ws,ks , Zs,ks+1)⊕ Polyτt
(Wt,1, . . . ,Wt,kt , Zt,kt+1)

= Polyτs
(Ws,1 ⊕Wt,1, . . . ,Ws,ks ⊕Wt,kt , Zs,ks+1 ⊕ Zt,kt+1).

Thus, the probability that Ws is equal to Wt is equal to the probability that τs is a root of this
non-zero polynomial. The rest of the argument is similar to the case of HEH. ut

C Security of iHCH

The security reduction for iHCH is similar to that of HCH with two important differences. The
first concerns elimination of a block cipher call before initializing the counter mode of operation,
while the second concerns the use of BRW polynomial. We elaborate on these aspects below.

Initialization of the counter mode: In HCH, the counter mode is initialized with the encryption
of M1 ⊕ U1. It has been mentioned in HCH that this is required to obtain a quadratic security
bound. We briefly revisit that argument. In the final probability analysis of collisions, the quantity
M1 ⊕ U1 is expressed as a polynomial in the (Pi ⊕ Ci)s. Without the encryption, for each query
small variations of these polynomials will be encrypted. If all queries are of same number of blocks
m and have the same tweak, then in the collision analysis, this will mean that we will have to
consider approximately XORs of σ2

n pairs of polynomials where the probability that τ is a root of
one of these XORs is approximately m. This leads approximately to a bound of mσ2

n/2
n for the

collision analysis. The way to avoid this in HCH was to encrypt U1 ⊕M1 before initializing the
counter mode.

In the present case, however, we do away with the encryption. We still claim that the quadratic
security bound holds. The reason is the manner in which the counter mode itself has been defined.
In the game sequence analysis, we move to Game NON where we finally have to consider collisions
in possible (multi-)sets D and R. The form of these are as follows.

Elements in D : Ts, τs ⊕ bin(`s),
M1,s = Hτs,β1,s(Ps,1, . . . , Ps,ms−1, Ps,ms ||0n−rs),
Ss ⊕ β1,s, Ss ⊕ αβ1,s, . . . , Ss ⊕ αms−2β1,s.

Elements in R : τs, β1,s,
U1,s = Hτs,β1,s(Cs,1, . . . , Cs,ms−1, Cs,ms ||0n−rs),
Ps,2 ⊕ Cs,2, . . . , Ps,ms−1 ⊕ Cs,ms−1, (Ps,ms ⊕ Cs,ms)||−n−rs .

Here

Ss = M1,s ⊕ U1,s ⊕ (β1,s ⊕ β2,s)
= Hτs,β1,s(Ps,1, . . . , Ps,ms−1, Ps,ms ||0n−rs)⊕Hτs,β2,s(Cs,1, . . . , Cs,ms−1, Cs,ms ||0n−rs)
= (Ps,1 ⊕ Cs,1)⊕ τs(ψτs(Ps,2, . . . , Ps,ms−1, Ps,ms ||0n−rs)⊕ ψτs(Cs,2, . . . , Cs,ms−1, Cs,ms ||0n−rs)).

Consider the sth and the tth queries and the ith and jth blocks in these queries respectively.
Then we have to consider Zs = Ws ⊕ αiβ1,s and Zt = Wt ⊕ αjβ1,t, where W is a polynomial in τ
defined from the XORs of the P s and Cs. If either the length or the tweak is different, then the
independent randomness of the β1,s and β1,t ensure that Zs = Zt occurs with probability 1/2n.
Even if the lengths and tweaks are equal, if i 6= j, then Zs ⊕ Zt = (αi ⊕ αj)β1,s ⊕Ws ⊕Wt and
again the probability that Zs = Zt occur with probability 1/2n. Thus, the only situation when we
need to use the “root of polynomial” argument is when the lengths and tweaks are equal and i = j.
This makes it possible to bound the total probability of collision by a constant multiple of σ2

n/2
n.

Use of BRW polynomials. This was not present in the analysis of HCH. These polynomials
make the security analysis a little more complicated. In the proof of HCH, an allowed transcript
was defined by ensuring that the (Pi⊕Ci) were all distinct. This, however, is not sufficient when we
are considering BRW polynomials. The notion of allowed transcript needs to be defined differently.
In fact, this notion is similar to that used in the proof of HEH∗. We define the event E2 as in the
proof of HEH∗. The event E1 is different. Here we require all the n-bit strings Ps,i⊕Cs,is (including
the partial block, if present) to be distinct. Event E is again the union of E1 and E2. The rest of
the argument and analysis is similar to that of HEH∗. The proofs of iHCHp and iHCHfp are also
similar.

D Security of HOH

In this case, the form of the elements in D and R are as follows.

Elements in D : Ts, τs ⊕ bin(`s),
M1,s = Hτs,β1,s(Ps,1, . . . , Ps,ms−1, Ps,ms ||0n−rs),
Ss = M1,s ⊕ U1,s, Ss,1, . . . , Ss,ms−2.

Elements in R : τs, β1,s,
U1,s = Hτs,β1,s(Cs,1, . . . , Cs,ms−1, Cs,ms ||0n−rs),
Ss,1, . . . , Ss,ms−1.

The notion of allowed transcript in this case is simpler. We only need to consider event E2, i.e.,
E = E2. The collision analysis for HOH, HOHp and HOHfp are similar to that of the other modes
of operations.

