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Abstract

In this paper we present a new method to construct a polyrdartia €
Z[z] which will make @, (u(x)) reducible. We construct a finite separable
extension ofY((x ), denoted a&. By primitive element theorem, there exists
a primitive element € E such thaff = Q(¢). We represent the primitive
k-th root of unity(;, by 6 and get a polynomial(z) € Q[z] from the repre-
sentation. The resulting(z) will make & (u(zx)) factorable.

1 Introduction

In recent years, there has been much interest in pairingdbaryptography. Many
protocols have been proposed such as [5, 15, 6]. In thesecpistthe following
problem is of great interest: given a small positive intdgaronstructing an elliptic
curve over finite fieldrF,, denoted byE/(FF,), such that#E(F,), its group order,
has a large enough prime factoandr dividesq” — 1, but does not divide’ — 1,
0 < i < k. kis calledembedding degreef E(FF,) and E(F,) pairing-friendly
curve

In practical application, the embedding degre¢f,) should be small enough.
Menezes, Okamoto and Vanstone [19] have pointed out thatsingular elliptic
curves have embedding degreeC 6, thus they are suitable for paring-based cryp-
tography. However, the security of the cryptosystem isadiyerelated to embed-
ding degree, but the embedding degree of supersingulatielturves is limited
to 6. In order to achieve higher security level, we turn torady elliptic curves.
However Balasubramanian and Koblitz [2] have shown thaharg elliptic curves
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which have small embedding degree are very rare. Hence waotaxpect to find
elliptic curves with prescribed embedding degree by randelection.

Miyaji, Nakabayashi and Takano [20] first proposed a metloocbhstruct or-
dinary curves of prime order with embedding degtee- 3,4,6. Scott, Barreto
[25] extended Miyaji et al's method and obtained curves @rrime order. A
lot of methods have been proposed to construct curves wiitray embedding
degree, such as Barreto, Lynn and Scott [6], Dupont, EngeMuorain [9] and
Brezing, Weng [7].

The factorization ofb (u(z)) plays a important role in many methods such as
[20, 7, 4, 10], whereb, (u(x)) is thek-th cyclotomic polynomial [16] and(z) €
Z|z]. Generally believe that(x) € Z[z] such that make®; (u(z)) factorable
is rare. The results of Galbraith, McKee and Valenca [12] aften used when
k =5,8,10,12 [4, 10]. In other cases,(x) is found by computer search.

In this paper we describe a new method to explicitly constife) € Q|x]
such thai (u(x)) splits. By this method, we can find all most all suitabler).
The resultingu(x) can be used to search paring-friendly elliptic curves wibdy
property.

This paper is organized as follows. In Section 2, we desiliee prerequi-
sites for our method and use power integral basis to consuitable polynomials.
In Section 3, we present our method and give some example®ction 4, some
applications are presented.

2 Prerequisites and Power integral basis

If E is an extension of field, an element: of E is said to bealgebraic over F
if there is nonconstant polynomigl € F[z] such thatf(a) = 0. E is said to be
algebraicif every element off is algebraic oveF.

Definition 1. [1] An irreducible polynomialf € F[z] is separable iff has no
multiple roots.

Definition 2. [1] LetE be an extension df anda € E, « is separable ovel,

if « is algebraic overF and the minimal polynomial ok overF is a separable
polynomial. If every element @ is separable oveif, then we say thaE is a

separable extension @f.

It is well-known that every algebraic extension of a field baracteristic zero
is separable[1].

In this paper we are interestednmber field A number field is a subfield
of C which is a finite extension df). Since every finite extension of a field is an
algebraic extension [1, 16], then every elemenL.a$ algebraic ovef). Because
the characteristic of. is zero,L is a separable extension ©Qf

In the remainder of this section, we use power integral kast®nstruct suit-
able polynomials.



Theorem 1. Letu(x) be a polynomial with rational coefficients. Suppdges a
primitive k-th root of unity, if equationu(x) = (; has a solution inQ(¢x), then
@, (u(x)) has an irreducible factor of degreg(k).

Proof. Suppose € Q((x) andu(f) = (x, then®,(u(f)) = 0. Letr(z) be the
minimal polynomial of6 overQ, sor(z)|®x(u(x)). By the hypothesisQ((x) C
Q(0). Sinced € Q(¢k), we haveQ(f) C Q(¢x). HenceQ(¢x) = Q(0) and
degr(z) = p(k). O

Theorem 1 extends the results of Galbraith, McKee and Val¢h2]. From
the theorem we see that if an elemért Q((j) can be found such thgf = u(6),
u(z) € Q[z], then®y(u(z)) is factorable.

Definition 3. [23] Let K be a number field an@x is its ring of integers, the®
is said to have a power integral basis if there exists an efemef Oy such that
Ok = Z]a].

If K = Q(¢), thenOx = Z[¢i] [17].

Definition 4. Supposey, @ € Ok, « and & are said to be equivalent it =
n+d(a),d € Gal(K/Q).

According to Gyory [14], up to equivalent, there are onlhitély many ele-
ments which generate a power integral basis for any numbdr fie

As K = Q((x) is concerned, iP # (i generates a power integral basis(i.e.
Or = Z[0)), then¢, = u(h), u(x) € Z[x], since(; € Ok. By Theorem 1,
O (u(zx)) splits. We used the results of [23, 24, 13] to find elementsdhaerate
a power integral basis fd@((x). If £ = p or p™, wherep is a prime, we choose
0 =n=+08(G)ord =n+d(n),n= e 0 € Gal(Q(G)/Q). Otherwise, we
selectd = n + 6(¢x) whered € Gal(Q(¢x)/Q). The advantage of above method
is thatu(x) has small integral coefficients.

Example 1. Letk = 5, if we choos® = 1 + (7, thenu(z) = 2% — 32% 4+ 3z — 1,
Oy (u(r)) = (z* — 323 +42% — 22+ 1) (28 — 927 + 3525 — 7625 + 992* — 7623 +
3002 — 4x + 1)
Example 2. Letk = 8, we choose) = e = —§2° + Ja? — fz 43,0 = 2—n,
thenu(z) = 223 — 822 + 14w — 9, @y (u(x)) = 2(22* — 1223 + 3022 — 362 +
17) (428 — 4027 + 19625 — 5922° + 11942 — 163223 + 147022 — 7922 + 193).
It follows from Theorem 1 that the method above can only gateer(x) €
Z[z] such that®(u(z)) has an irreducible factor of degregk). So there are
some suitable polynomials which can not be generated byeatm@thod.
Example 3. Letk = 3, u(x) = %x‘:’ - g:rfl + %563 - %ZEQ + %x - %, then
P3(u(z)) = g7 (4t — 1627 4 332% — 61z + 67)(2° — 32° + 62* — 112° + 1222 +
3z +1)

Itis a problem whether there is a method which can constilstigable poly-
nomials. We will solve this problem in Section 3.
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3 Primitive Element Theorem

The following theorem extends Theorem 1.

Theorem 2. Let(; be a primitivek-th root of unity andQ((y) the k-th cyclotomic
field. Then®(u(x)) splits whereu(x) € Qlx] iff there exists an finite extensidih
of Q such that(;, € E andu(x) = (i has a solution irkE.

Proof. If there exists an extensiofi of Q which satisfies above conditions and
u(@) = (g, then®p(u(f)) = 0. Letr(x) be the minimal polynomial of over
Q, sor(x)| Pk (u(x)). Conversely, ifP,(u(z)) is factorable, let(z) € Q[z] be an
irreducible factor ofb, (u(x)) andé be a solution of-(z) = 0, then® (u(6)) = 0.
Henceu(#) is a primitive k-th root of unity, without loss of generality, we assume
u(f) = (k. S0, € E = Q(0) andE = Q(0) is an finite extension o). O

Corollary 1. Suppose.(z) is a suitable polynomial and is a root of equation
u(x) = 0. If f(z) is the minimal polynomial of overQ, then®,(g(z)f(z) +
u(z)) is reducible wherg(x) € Q[z].

Proof. Form the hypothesis we havgd) f(0) + u(0) = u(d) = (x. Theorem 2
implies that®y (g(x) f(z) + u(z)) is factorable. O

Without loss of generality, we assurfie= Q(0). If a simple extensioft =
Q(0) of Q can be found such th&((;) C E, then there exista(z) € Q[z] such
thatu(0) = (x. According to Theorem 2p(u(x)) is factorable.

Here we face the problem of generating siichVe use following theorems to
solve this problem.

Theorem 3. SupposéE = F(ay,--- ,ay), if a; is separable ovelf, thenE is
separable oveF.

Proof. See Ash [1] or Lang [16]. O

Theorem 4. (Primitive Element Theoremj E is a finite separable extensionIbf
thenE = F(«) for somex € E.

Proof. See Ash [1] or Lang [16]. O

We say thaty is a primitive element oE overF.

Let g(x) be an irreducible polynomial ovép, theng(z) is separable ove@,
since the characteristic @ is zero. Supposg is a root ofg(z) = 0. Because
. (z) is also separable, according to Theorem@8;y, ) is finite separable exten-
sion of Q. By Theorem 4, there exists € Q((x, 5) such thatQ((x, ) = Q(«).
S0, = u(a) for someu(zr) € Q[z] . According to Theorem 2P (u(x)) is re-
ducible. Determining for Q((x, 3) is known as the@rimitive element probler8].
According to Corollary 1@ (g(z) f(x) + u(z)) is splitting, whereg(z) € Q[x]
and f(z) is the minimal polynomial oéx overQ.

Above method can be summarized as:



Algorithm 1. For a fixed small positive integé.

1. Random select an irreducible polynomigl:) overQ.

2. Find a primitive element of Q({x, 3) where/ is a root of equatiory(z) = 0.
3. Represent;, by a, getu(z) whereu(z) € Q[z], (i = u(«).

4. Choose a polynomigj(x) € Q[z], letu(z) = g(x)f(x) + u(z) wheref(x) is
the minimal polynomial oft over@Q.

In our algorithm we firstly construct an extension @f¢y)(possibly will be
a trivial extension see example 7 below, but it is rare). Twenfind a primitive
elementd of the extension. We uggto represent the primitivé-th root of unity
(x and getu(x) from the representation. The polynomiglx) we get from the
algorithm will make®y(a(z)) reducible. One irreducible factefz) of & (u(x)
is the minimal polynomial of overQ. Usuallyd ¢ Q((x).

Using PARI [22], we have following examples.

Example 4. Letk = 3, g(z) = 22 — 3, supposes is a root of the equation
r? — 3 = 0 and « is a primitive element of (3, 3), the minimal polynomial of
aoverQis zt — 223 — 32% + 4z + 13. We haveu(z) = — 223 + $22 — &,
®3(u(z)) = 5= (42% — 4z + 13) (2 — 223 — 322 + 4 + 13)

Example 5. Supposek = 3 and g(z) = 2® — 322 + 1, let 8 be the root of
equationz® — 322 + 1 = 0, we get a primitive element of Q((3, 3) whose
minimal polynomial ove€) is 26 — 92° + 302* — 4723 4 4522 — 30z + 19. Then
u(z) = —%x‘:’ + %x‘l — %x?’ + %562 — %Sﬂ + %, D (u(x)) = ﬁ(l(j:ﬂ4 —
10423 + 23322 — 2352 + 361) (2% — 92° + 302 — 4723 + 4522 — 30z + 19)

Example 6. Assumé: = 4, g(z) = 2® — 3 and 3 is a root of equation:® — 3 = 0,
then the primitive element of Q({4, 3) found in this example is such that its
minimal polynomial ovef) is % + 3z* — 62 + 322 + 18z + 10. Henceu(z) =
24 5 27 .4, 80 .3 _ 2342 201 273 _ 1 (.6 4
179 2° — Tog T + g T° — TgT” 4+ 7T + Trg, Pa(u(x)) = 55557 (2° 4 32 —
623 + 322 + 18z + 10)(576x* — 129623 + 284122 — 8208z — 10657)

In some casef)(a) = Q(Cx).

Theorem 5. Supposel is a squarefree positive integer, théh) if 2 + d, 4 1 k
andd|k, thenv/d € Q(¢;) if d = 1 (mod 4), v—d € Q({) if d = 3 (mod 4)
: (2) If 4]k and d|k but2 1 d, thenv/d,v/—d € Q(() ; (3) if 8|k and d|k then
Vd, vV=d € Q(¢r)-

Proof. See Murphy, Fitzpatrick [21]. O

If g(x) = 22 + d or g(x) = 2? — d andd satisfies above conditions, then

B =Vdorv—deQ(¢). HenceQ((r, B) = Q(&).

Example 7. Letk = 12 andd = 3, supposef (z) = 22 — 3 and f(3) = 0, using
PARI [22], the primitive elementv of Q((x, ) we find is such that its minimal
polynomial overQ is z* — 1322 + 49. Using themodreversdunction of PARI

[22], we get thatQ(k, ) = Q(ar) = Q(Ck)-
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Theorem 6. All u(z) € Q[z] such that®,(u(z)) is reducible can be constructed
by Algorithm 1.

Proof. Suppose:(x) is a suitable polynomial, by Theorem 2, there exists a simple
extensionQ(é) of Q such that);, € Q(#) andu(f) = (x. Let f(x) be the minimal
polynomial of§ over Q. Assumeg(z) = f(x) ands = 6, since(, € Q(0)
we haveQ({x, ) = Q(B)(.e. o = ). If (x is represented by, we getu(z
from the representation. Siné€0) = u(6) = (x, f(x)|u(z) — a(x) (i.e. u(x)
w(z) + h(z)f(x), whereh(z) € Q|x]).

~—

Ol

4  Applications

Brezing-Weng's method [7] is often used in constructingipgifriendly curves.
It can be described as follow [11].

Algorithm 2. Fix a integerk and a positive square free integér.

1. Choose a number field containingy/—D and a primitivek-th root of unity
Ch-

2. Find an irreducible polynomiat(x) € Z[z] such thatQ[z]/(r(z)) = K.

3. Lett(z) € Q[z] be a polynomial mapping tQ, + 1 € K.

4. Lety(z) € Q[z] be a polynomial mapping té\/% € K.

5. Letp(x) € Q[z] be given by(t(x)? + Dy(x)?/4. If p(x) andr(x) represent
primes, then then the tripl&(z), r(z),p(z)) represents a family of curves with
embedding degree k and discriminant D.

We will searchz € Z* such that(zo) andp(x() are primes. Ifrg is found,
then there exists an elliptic curves over the prime fiélgs, ) with embedding
degreek [7].

Our method can be used in step 2 and 3. d(e) = u(z) + 1 andr(z) be an
irreducible factor ofb (u(x)).

Most of currently constructed pairing curves are those witiall CM dis-
criminant speciallyD = 3. In [11] the authors have shown that for maximum
security it is necessary to generate curves with variablarsgfree discriminant.
Our method can be used for this purpose. In the $tepalgorithm 1, we select
polynomials of special forng(x) = 22 + D where D is a square free positive
integer. In the steg of algorithm 1, we selecy(x) = 0. Let 3 be a root for
g(z) = 22+ D(i.e 8 = v/—D) andd a primitive elemené of the compositum field
of Q(¢x) andQ(3). Hencey/—D, (i, € Q(6). If we used to represent/—D and
Ck, two polynomialsu(x) andd(x) are got wherew(6) = ¢, andé(9) = /—D. In
algorithm 2, we select the polynomidl:) = u(x)+ 1 which mapsta; + 1 € K,
andy(z) = (u(z) — 1)6(z)~! which maps tof/kT’_ll) e K. Using algorithm 2, we
can construct pairing-friendly curves with discriminapesified. The advantage
of this is that it does not pre-request thét:) has special form or we have to do
other operations. It can generate curves with relativelgeladiscriminant which
is pre-set.



Example 8. Letk = 5 andg(z) = 22 + 2, using algorithm 1, we gei(x) =
720 7 1355 .6 , 8016 .5 109704 , 29840 .3 _ 19940 .2 , 14926 56
3079% — 13079% T 13079 — Ts079% T 13079%° — T3079¢ T 130795”2‘" 1189°

r(z) = a® =207+ 112% — 1625+ 3921 — 282° + 1927+ 62+ 11, /=2 = {2027 —

o e+ T0re” — Thmm @ + T ® — T d + Taord + 1ig (mod (@),
() = 300 7 185567y 4088 57 5485 ;4 14920, 570070 ;57 28005, 4 28
Y\T) = 13079 26158 13079 13079 13079 13079 261587 T 1189
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