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Abstract

In this paper we present a new method to construct a polynomial u(x) ∈
Z[x] which will makeΦk(u(x)) reducible. We construct a finite separable
extension ofQ(ζk), denoted asE. By primitive element theorem, there exists
a primitive elementθ ∈ E such thatE = Q(θ). We represent the primitive
k-th root of unityζk by θ and get a polynomialu(x) ∈ Q[x] from the repre-
sentation. The resultingu(x) will makeΦk(u(x)) factorable.

1 Introduction

In recent years, there has been much interest in pairing-based cryptography. Many
protocols have been proposed such as [5, 15, 6]. In these protocols the following
problem is of great interest: given a small positive integerk, constructing an elliptic
curve over finite fieldFq, denoted byE(Fq), such that#E(Fq), its group order,
has a large enough prime factorr andr dividesqk − 1, but does not divideqi − 1,
0 < i < k. k is calledembedding degreeof E(Fq) andE(Fq) pairing-friendly
curve.

In practical application, the embedding degree ofE(Fq) should be small enough.
Menezes, Okamoto and Vanstone [19] have pointed out that supersingular elliptic
curves have embedding degreek ≤ 6, thus they are suitable for paring-based cryp-
tography. However, the security of the cryptosystem is directly related to embed-
ding degree, but the embedding degree of supersingular elliptic curves is limited
to 6. In order to achieve higher security level, we turn to ordinary elliptic curves.
However Balasubramanian and Koblitz [2] have shown that ordinary elliptic curves
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which have small embedding degree are very rare. Hence we cannot expect to find
elliptic curves with prescribed embedding degree by randomselection.

Miyaji, Nakabayashi and Takano [20] first proposed a method to construct or-
dinary curves of prime order with embedding degreek = 3, 4, 6. Scott, Barreto
[25] extended Miyaji et al’s method and obtained curves of near prime order. A
lot of methods have been proposed to construct curves with arbitrary embedding
degree, such as Barreto, Lynn and Scott [6], Dupont, Enge andMorain [9] and
Brezing, Weng [7].

The factorization ofΦk(u(x)) plays a important role in many methods such as
[20, 7, 4, 10], whereΦk(u(x)) is thek-th cyclotomic polynomial [16] andu(x) ∈
Z[x]. Generally believe thatu(x) ∈ Z[x] such that makesΦk(u(x)) factorable
is rare. The results of Galbraith, McKee and Valença [12] are often used when
k = 5, 8, 10, 12 [4, 10]. In other cases,u(x) is found by computer search.

In this paper we describe a new method to explicitly construct u(x) ∈ Q[x]
such thatΦk(u(x)) splits. By this method, we can find all most all suitableu(x).
The resultingu(x) can be used to search paring-friendly elliptic curves with good
property.

This paper is organized as follows. In Section 2, we describesome prerequi-
sites for our method and use power integral basis to construct suitable polynomials.
In Section 3, we present our method and give some examples. Insection 4, some
applications are presented.

2 Prerequisites and Power integral basis

If E is an extension of fieldF, an elementα of E is said to bealgebraicover F
if there is nonconstant polynomialf ∈ F[x] such thatf(α) = 0. E is said to be
algebraicif every element ofE is algebraic overF.

Definition 1. [1] An irreducible polynomialf ∈ F[x] is separable iff has no
multiple roots.

Definition 2. [1] Let E be an extension ofF and α ∈ E, α is separable overF,
if α is algebraic overF and the minimal polynomial ofα over F is a separable
polynomial. If every element ofE is separable overF, then we say thatE is a
separable extension ofF.

It is well-known that every algebraic extension of a field of characteristic zero
is separable[1].

In this paper we are interested innumber field. A number field is a subfieldL
of C which is a finite extension ofQ. Since every finite extension of a field is an
algebraic extension [1, 16], then every element ofL is algebraic overQ. Because
the characteristic ofL is zero,L is a separable extension ofQ.

In the remainder of this section, we use power integral basisto construct suit-
able polynomials.
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Theorem 1. Let u(x) be a polynomial with rational coefficients. Supposeζk is a
primitive k-th root of unity, if equationu(x) = ζk has a solution inQ(ζk), then
Φk(u(x)) has an irreducible factor of degreeϕ(k).

Proof. Supposeθ ∈ Q(ζk) andu(θ) = ζk, thenΦk(u(θ)) = 0. Let r(x) be the
minimal polynomial ofθ overQ, sor(x)|Φk(u(x)). By the hypothesis,Q(ζk) ⊆
Q(θ). Sinceθ ∈ Q(ζk), we haveQ(θ) ⊆ Q(ζk). HenceQ(ζk) = Q(θ) and
degr(x) = ϕ(k).

Theorem 1 extends the results of Galbraith, McKee and Valenc¸a [12]. From
the theorem we see that if an elementθ ∈ Q(ζk) can be found such thatζk = u(θ),
u(x) ∈ Q[x], thenΦk(u(x)) is factorable.

Definition 3. [23] LetK be a number field andOK is its ring of integers, thenOK

is said to have a power integral basis if there exists an element α of OK such that
OK = Z[α].

If K = Q(ζk), thenOK = Z[ζk] [17].

Definition 4. Supposeα, α̃ ∈ OK , α and α̃ are said to be equivalent ifα =
n ± δ(α̃), δ ∈ Gal(K/Q).

According to Györy [14], up to equivalent, there are only finitely many ele-
ments which generate a power integral basis for any number field.

As K = Q(ζk) is concerned, ifθ 6= ζk generates a power integral basis(i.e.
OK = Z[θ]), thenζk = u(θ), u(x) ∈ Z[x], sinceζk ∈ OK . By Theorem 1,
Φk(u(x)) splits. We used the results of [23, 24, 13] to find elements that generate
a power integral basis forQ(ζk). If k = p or pm, wherep is a prime, we choose
θ = n ± δ(ζk) or θ = n ± δ(η), η = 1

1+ζk

, δ ∈ Gal(Q(ζk)/Q). Otherwise, we
selectθ = n ± δ(ζk) whereδ ∈ Gal(Q(ζk)/Q). The advantage of above method
is thatu(x) has small integral coefficients.

Example 1. Letk = 5, if we chooseθ = 1 + ζ2
k , thenu(x) = x3 − 3x2 + 3x − 1,

Φk(u(x)) = (x4−3x3 +4x2 −2x+1)(x8 −9x7 +35x6 −76x5 +99x4 −76x3 +
30x2 − 4x + 1)

Example 2. Letk = 8, we chooseη = 1
1+ζk

= −1
2x3 + 1

2x2 − 1
2x+ 1

2 , θ = 2− η,

thenu(x) = 2x3 − 8x2 + 14x − 9, Φk(u(x)) = 2(2x4 − 12x3 + 30x2 − 36x +
17)(4x8 − 40x7 + 196x6 − 592x5 + 1194x4 − 1632x3 + 1470x2 − 792x + 193).

It follows from Theorem 1 that the method above can only generateu(x) ∈
Z[x] such thatΦk(u(x)) has an irreducible factor of degreeϕ(k). So there are
some suitable polynomials which can not be generated by above method.

Example 3. Let k = 3, u(x) = 2
9x5 − 7

9x4 + 14
9 x3 − 26

9 x2 + 28
9 x − 2

9 , then
Φ3(u(x)) = 1

81(4x4 −16x3 +33x2 −61x+67)(x6 −3x5 +6x4−11x3 +12x2 +
3x + 1)

It is a problem whether there is a method which can construct all suitable poly-
nomials. We will solve this problem in Section 3.
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3 Primitive Element Theorem

The following theorem extends Theorem 1.

Theorem 2. Letζk be a primitivek-th root of unity andQ(ζk) thek-th cyclotomic
field. ThenΦk(u(x)) splits whereu(x) ∈ Q[x] iff there exists an finite extensionE
of Q such thatζk ∈ E andu(x) = ζk has a solution inE.

Proof. If there exists an extensionE of Q which satisfies above conditions and
u(θ) = ζk, thenΦk(u(θ)) = 0. Let r(x) be the minimal polynomial ofθ over
Q, sor(x)|Φk(u(x)). Conversely, ifΦk(u(x)) is factorable, letr(x) ∈ Q[x] be an
irreducible factor ofΦk(u(x)) andθ be a solution ofr(x) = 0, thenΦk(u(θ)) = 0.
Henceu(θ) is a primitivek-th root of unity, without loss of generality, we assume
u(θ) = ζk. Soζk ∈ E = Q(θ) andE = Q(θ) is an finite extension ofQ.

Corollary 1. Supposeu(x) is a suitable polynomial andθ is a root of equation
u(x) = 0. If f(x) is the minimal polynomial ofθ over Q, thenΦk(g(x)f(x) +
u(x)) is reducible whereg(x) ∈ Q[x].

Proof. Form the hypothesis we haveg(θ)f(θ) + u(θ) = u(θ) = ζk. Theorem 2
implies thatΦk(g(x)f(x) + u(x)) is factorable.

Without loss of generality, we assumeE = Q(θ). If a simple extensionE =
Q(θ) of Q can be found such thatQ(ζk) ⊆ E, then there existsu(x) ∈ Q[x] such
thatu(θ) = ζk. According to Theorem 2,Φk(u(x)) is factorable.

Here we face the problem of generating suchE. We use following theorems to
solve this problem.

Theorem 3. SupposeE = F(α1, · · · , αn), if αi is separable overF, thenE is
separable overF.

Proof. See Ash [1] or Lang [16].

Theorem 4. (Primitive Element Theorem)If E is a finite separable extension ofF,
thenE = F(α) for someα ∈ E.

Proof. See Ash [1] or Lang [16].

We say thatα is a primitive element ofE overF.
Let g(x) be an irreducible polynomial overQ, theng(x) is separable overQ,

since the characteristic ofQ is zero. Supposeβ is a root ofg(x) = 0. Because
Φk(x) is also separable, according to Theorem 3,Q(ζk, β) is finite separable exten-
sion ofQ. By Theorem 4, there existsα ∈ Q(ζk, β) such thatQ(ζk, β) = Q(α).
Soζk = u(α) for someu(x) ∈ Q[x] . According to Theorem 2,Φk(u(x)) is re-
ducible. Determiningα for Q(ζk, β) is known as theprimitive element problem[8].
According to Corollary 1,Φk(g(x)f(x) + u(x)) is splitting, whereg(x) ∈ Q[x]
andf(x) is the minimal polynomial ofα overQ.

Above method can be summarized as:
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Algorithm 1. For a fixed small positive integerk:
1. Random select an irreducible polynomialg(x) overQ.
2. Find a primitive elementα of Q(ζk, β) whereβ is a root of equationg(x) = 0.
3. Representζk byα, getu(x) whereu(x) ∈ Q[x], ζk = u(α).
4. Choose a polynomialg(x) ∈ Q[x], let ũ(x) = g(x)f(x) + u(x) wheref(x) is
the minimal polynomial ofα overQ.

In our algorithm we firstly construct an extension ofQ(ζk)(possibly will be
a trivial extension see example 7 below, but it is rare). Thenwe find a primitive
elementθ of the extension. We useθ to represent the primitivek-th root of unity
ζk and getu(x) from the representation. The polynomialũ(x) we get from the
algorithm will makeΦk(ũ(x)) reducible. One irreducible factorr(x) of Φk(ũ(x)
is the minimal polynomial ofθ overQ. Usuallyθ /∈ Q(ζk).

Using PARI [22], we have following examples.

Example 4. Let k = 3, g(x) = x2 − 3, supposeβ is a root of the equation
x2 − 3 = 0 andα is a primitive element ofQ(ζ3, β), the minimal polynomial of
α over Q is x4 − 2x3 − 3x2 + 4x + 13. We haveu(x) = − 2

15x3 + 1
5x2 − 8

15 ,
Φ3(u(x)) = 1

225(4x2 − 4x + 13)(x4 − 2x3 − 3x2 + 4x + 13)

Example 5. Supposek = 3 and g(x) = x3 − 3x2 + 1, let β be the root of
equationx3 − 3x2 + 1 = 0, we get a primitive elementα of Q(ζ3, β) whose
minimal polynomial overQ is x6 − 9x5 + 30x4 − 47x3 + 45x2 − 30x + 19. Then
u(x) = − 4

57x5 + 31
57x4 − 86

57x3 + 109
57 x2 − 115

57 x + 2
3 , Φk(u(x)) = 1

3249 (16x4 −
104x3 + 233x2 − 235x + 361)(x6 − 9x5 + 30x4 − 47x3 + 45x2 − 30x + 19)

Example 6. Assumek = 4, g(x) = x3 − 3 andβ is a root of equationx3 − 3 = 0,
then the primitive elementα of Q(ζ4, β) found in this example is such that its
minimal polynomial overQ is x6 + 3x4 − 6x3 + 3x2 + 18x + 10. Henceu(x) =
24
179x5 − 27

179x4 + 80
179x3 − 234

179x2 + 201
179x + 273

179 , Φ4(u(x)) = 1
32041 (x6 + 3x4 −

6x3 + 3x2 + 18x + 10)(576x4 − 1296x3 + 2841x2 − 8208x − 10657)

In some cases,Q(α) = Q(ζk).

Theorem 5. Supposed is a squarefree positive integer, then(1) if 2 ∤ d, 4 ∤ k
andd|k, then

√
d ∈ Q(ζk) if d ≡ 1 (mod 4),

√
−d ∈ Q(ζk) if d ≡ 3 (mod 4)

; (2) If 4|k and d|k but 2 ∤ d, then
√

d,
√
−d ∈ Q(ζk) ; (3) if 8|k and d|k then√

d,
√
−d ∈ Q(ζk).

Proof. See Murphy, Fitzpatrick [21].

If g(x) = x2 + d or g(x) = x2 − d andd satisfies above conditions, then
β =

√
d or

√
−d ∈ Q(ζk). HenceQ(ζk, β) = Q(ζk).

Example 7. Letk = 12 andd = 3, supposef(x) = x2 − 3 andf(β) = 0, using
PARI [22], the primitive elementα of Q(ζk, β) we find is such that its minimal
polynomial overQ is x4 − 13x2 + 49. Using themodreversefunction of PARI
[22], we get thatQ(ζk, β) = Q(α) = Q(ζk).
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Theorem 6. All u(x) ∈ Q[x] such thatΦk(u(x)) is reducible can be constructed
by Algorithm 1.

Proof. Supposeu(x) is a suitable polynomial, by Theorem 2, there exists a simple
extensionQ(θ) of Q such thatζk ∈ Q(θ) andu(θ) = ζk. Let f(x) be the minimal
polynomial of θ over Q. Assumeg(x) = f(x) andβ = θ, sinceζk ∈ Q(θ),
we haveQ(ζk, β) = Q(β)(i.e. α = β). If ζk is represented byθ, we getũ(x)
from the representation. Sincẽu(θ) = u(θ) = ζk, f(x)|u(x) − ũ(x) (i.e. u(x) =
ũ(x) + h(x)f(x), whereh(x) ∈ Q[x]).

4 Applications

Brezing-Weng’s method [7] is often used in constructing pairing-friendly curves.
It can be described as follow [11].

Algorithm 2. Fix a integerk and a positive square free integerD:
1. Choose a number fieldK containing

√
−D and a primitivek-th root of unity

ζk.
2. Find an irreducible polynomialr(x) ∈ Z[x] such thatQ[x]/(r(x)) ∼= K.
3. Let t(x) ∈ Q[x] be a polynomial mapping toζk + 1 ∈ K.
4. Lety(x) ∈ Q[x] be a polynomial mapping toζk−1√

−D
∈ K.

5. Let p(x) ∈ Q[x] be given by(t(x)2 + Dy(x)2/4. If p(x) and r(x) represent
primes, then then the triple(t(x), r(x), p(x)) represents a family of curves with
embedding degree k and discriminant D.

We will searchx0 ∈ Z+ such thatr(x0) andp(x0) are primes. Ifx0 is found,
then there exists an elliptic curves over the prime fieldsFp(x0) with embedding
degreek [7].

Our method can be used in step 2 and 3. Lett(x) = u(x) + 1 andr(x) be an
irreducible factor ofΦk(u(x)).

Most of currently constructed pairing curves are those withsmall CM dis-
criminant speciallyD = 3. In [11] the authors have shown that for maximum
security it is necessary to generate curves with variable square-free discriminant.
Our method can be used for this purpose. In the step1 of algorithm 1, we select
polynomials of special formg(x) = x2 + D whereD is a square free positive
integer. In the step4 of algorithm 1, we selectg(x) = 0. Let β be a root for
g(x) = x2+D(i.e.β =

√
−D) andθ a primitive elementθ of the compositum field

of Q(ζk) andQ(β). Hence
√
−D, ζk ∈ Q(θ). If we useθ to represent

√
−D and

ζk, two polynomialsu(x) andδ(x) are got whereu(θ) = ζk andδ(θ) =
√
−D. In

algorithm 2, we select the polynomialt(x) = u(x)+1 which maps toζk +1 ∈ K,
andy(x) = (u(x) − 1)δ(x)−1 which maps toζk−1√

−D
∈ K. Using algorithm 2, we

can construct pairing-friendly curves with discriminant specified. The advantage
of this is that it does not pre-request thatr(x) has special form or we have to do
other operations. It can generate curves with relatively larger discriminant which
is pre-set.
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Example 8. Let k = 5 and g(x) = x2 + 2, using algorithm 1, we getu(x) =
720

13079x7 − 1355
13079x6 + 8016

13079x5 − 10970
13079x4 + 29840

13079x3 − 19940
13079x2 + 14926

13079x + 56
1189 ,

r(x) = x8−2x7+11x6−16x5+39x4−28x3+19x2+6x+11,
√
−2 ≡ 720

13079x7−
1355
13079x6 + 8016

13079x5 − 10970
13079x4 + 29840

13079x3 − 19940
13079x2 + 28005

13079x + 56
1189 (mod r(x)),

y(x) = 360
13079x7− 1355

26158x6+ 4088
13079x5− 5485

13079x4+ 14920
13079x3− 9970

13079x2+ 28005
26158x+ 28

1189
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