
Generic Attacks for the Xor of k Random
Permutations

Jacques Patarin
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Abstract. Xoring the output of k permutations, k ≥ 2 is a very simple
way to construct pseudo-random functions (PRF) from pseudo-random
permutations (PRP). Moreover such construction has many applications
in cryptography (see [2–5] for example). Therefore it is interesting both
from a theoretical and from a practical point of view, to get precise
security results for this construction. In this paper, we will describe the
best attacks that we have found on the Xor of k random n-bit to n-
bit permutations. When k = 2, we will get an attack of computational
complexity O(2n). This result was already stated in [2]. On the contrary,
for k ≥ 3, our analysis is new. We will see that the best known attacks
require much more than 2n computations when not all of the 2n outputs
are given, or when the function is changed on a few points. We obtain
like this a new and very simple design that can be very useful when a
security larger than 2n is wanted, for example when n is very small.
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1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudoran-
dom functions (PRF) named “Luby-Rackoff backwards” was first considered in
[3]. This problem is obvious if we are interested in an assymptotical security
model (since a PRP is then a PRF), but not if we are interested in achieving
more optimal and concrete security bounds. More precisely, the loss of security
when regarding a PRP as a PRF comes from the “birthday attack” which can
distinguish a random permutation from a random function of n bits to n bits,
in 2

n
2 operations and 2

n
2 queries. In [5] (Theorem 2 p.474), it has been proved

that the Xor of k PRP gives a PRF with security at least in O(2
k
k+1n). (For

k = 2 this gives O(2
2
3n)). Moreover in [2], it has been proved that the Xor of

two PRP gives a PRF with security at least in O(2n/n
2
3 ) and at most in O(2n),

which is much better than the birthday bound in O(2
n
2 ). Similarly in [8], it has

been proved that in fact the security is at least in (and therefore exactly in)
O(2n) for this problem to distinguish the Xor of two PRP from a PRF . An



interesting question is “Can we hope to get even better bound than O(2n) with
more than two Xor, particularly if not all the 2n inputs/outputs are given to the
cryptanalysis ?” In this paper, we will study this question. Let Fk denote the
Xor of k random permutations. Let Gk denote the function Fk except on a few
secret (or public) points xi where G(xi) is random (for example it can be only
the point 0). We will distinguish 4 kinds of attack scenarios:

1. The adversary has access to the full codebook of Fk, i.e. exactly all the 2n

pairs of function input and function output.

2. The adversary has access to almost, but not all, the entire codebook of Fk,
i.e. to m pairs with m ' 2n and m < 2n.

3. The adversary wants to attack Gk (instead of Fk) and he has access to the
full codebook of Gk.
Moreover, in these scenarios 2 and 3 we will also assume that the adversary
has access to a generator of such functions Fk (or Gk), i.e. has access to µ
such functions and he wants to distinguish these µ functions from µ random
independent functions.

4. Finally, in scenario 4, we will be as in scenario 2 except that:
a. The adversary has access to only one function Fk (not a generator).
b. We look in this scenario 4 for the best Advantage that the adversary can
get even if this mathematical value is � 1 (and therefore cannot be used to
distinguish).

To analyze these scenarios, we will introduce what we call “stable” attacks and
“unstable” attacks. An attack will be called “stable” if the attack is still valid
with a similar complexity when a few points of the functions are changed to truly
random values. We will present the best “stable” and “unstable” attacks that we
have found on the Xor of k functions, k ≥ 2 when we study a generator of such
functions (not only one such function). We will see that in Scenario 1, the best
security bound is indeed in O(2n), but in Scenario 2 and 3, the best attacks have
an even greater complexity. So it gives candidate schemes to build PRF from
PRP in a still very simple way and with potentially even better security. Since
building PRF from PRP has many applications (see [2–4]), we think that these
results are really interesting both from theoretical and from practical point of
view.

The paper is organised as follows. We will analyse Scenario 1 in section
2, Scenario 2 in section 3 and 4, Scenario 3 in section 5 and Scenario 4 in
sections 6 and 7. Then we will analyse the case where the k Xor are done on
only one permutation (instead of k independant permutations) in section 8.
Some other variants and open problems are presented in section 9. Finally, the
results obtained are summarized in section 10. We have decided to present in
Appendices the computation of all the mean values and standard deviations
needed.



2 Scenario 1 on f1⊕f2⊕ . . .⊕fk with O(2n) computations

Notations: In all this paper we will denote In = {0, 1}n. Fn will be the set of
all applications from In to In, and Bn the set of all permutations from In to
In. So |In| = 2n, |Fn| = 2n·2

n

, and |Bn| = (2n)!. x ∈R A will mean that x is
randomly chosen in A, with a uniform distribution.

Aim: In this section we want to distinguish f ⊕ g, with f, g ∈R Bn from
h ∈R Fn.

Attack. We analyze a function G, we want to know if G = f⊕g, f, g ∈R Bn,
or if G = h, h ∈R Fn. If we have access to all the 2n values G(x), then we can
compute T = ⊕2n

i=1G(i). If G = f ⊕ g, then with probability 1, we have T = 0.
(Proof: If f is a permutation we have ⊕2n

i=1f(i) = ⊕2n

i=1i = 0 and similarly
⊕2n

i=1g(i) = 0, so ⊕2n

i=1f(i) ⊕ g(i) = 0). If G = h, h ∈R Fn, then we have T = 0
with probability 1

2n . Therefore, by computing T , we can distinguish f⊕g from h
with a very good probability. This attack is in O(2n) computations, with O(2n)
input/output values.

Aim with k ≥ 3: We want to distinguish f1 ⊕ f2 ⊕ . . .⊕ fk,
with f1, f2, . . . , fk ∈R Bn from h ∈R Fn.

h
f1 f2 · · · fk

Fig. 1. Our attack distinguish between a function and the xor of k permutations

Attack. We use exactly the same attack: by computing T , we can distinguish
f1 ⊕ f2 ⊕ . . .⊕ fk from h with a very good probability. This attack is in O(2n)
computations, with O(2n) input/output values.

Therefore, it seems that 2n is the best security result that we can get with k
Xor of permutations, for all k. However we can notice that if instead of having
f1 ⊕ f2 ⊕ . . .⊕ fk, we use a function G such that G = f1 ⊕ f2 ⊕ . . .⊕ fk except
on a few points (or even except only on 0), and on these few points the output
of G is truly random, then the above attack fails. We will say that this attack is
“unstable”. More precisely, we will define “stable” attacks as follows:

Definition We want to distinguish a function G of Fn (generated by a func-
tion generator) from truly random functions f ∈R Fn with an attack A. Let
P (n) be a polynomial in n and x1, . . . xφ be φ points randomly chosen in In with
φ ≤ P (n). Let Φ = {x1, . . . xφ}. Let G′ = G on all the points of Fn − Φ and
G′(xi) be truly random on all xi ∈ Φ. Then if for each such sets Φ the attack A
is polynomial (in n) against G′, we will say that this attack is stable on G.

Remark: It is possible to store a few random points with O(n) random bits,
i.e. polynomial in n, but to store a random function of Fn, we need n ·2n random



bits, i.e. not polynomial in n. To avoid an “unstable” attack on G, we have to
change the design of G only on a few points. However to avoid a “stable” attack
on G, the design of G must be deeply changed.

3 Scenario 2 on f ⊕ g with O(22n) computations

Aim: we want to distinguish a generator A of functions f ⊕ g, with f, g ∈R Bn,
from a generator B of functions h, with h ∈R Fn; i.e. we can have access to
more than one test function G, these G functions are generated from A or from
B and we have to distinguish these two cases with a non negligible probability.
Moreover for each G function, we have access to all the inputs/outputs, except
a few points. (Or alternatively, from generator A, G = f ⊕ g except on a few
points).

Attack. We will count the number N of collisions on the functions G. There-
fore if we have access to m inputs/outputs for G, G(xi) = yi for 1 ≤ i ≤ m, N
is the number of (i, j), 1 ≤ i < j ≤ m such that G(xi) = G(xj). (In our attack
we will generally choose m ' 2n but we will not need m = 2n.)

Case of random functions. We know that for a random function of Fn,

we have E(N) = m(m−1)
2·2n and σ(N) = O( m√

2n
) where E(N) denotes the mean

value of N , and σ(N) denotes the standard deviation of N . (See Appendix A
for the proof of these results). Therefore, for a generator with µ such functions,

E(N) =
µ ·m(m− 1)

2 · 2n
and σ(N) = O(

√
µ ·m
√

2n
)

(Since if X1, . . . , Xn are n independent events with E(Xi) = E and σ(Xi) = σ,
we have E(X1 + . . .+Xn) = nE and σ(X1 + . . . Xn) =

√
nσ. Here the generator

generates independent functions h1, . . . hn).
Case of f ⊕ g. We know that if G = f ⊕ g, with f, g ∈R Bn, we have

E(N) =
m(m− 1)

2
· 1

2n − 1
and σ(N) = O(

m√
2n

), (see Appendix B for the

proof of these results). Therefore, for a generator with µ such functions,

E(N) =
µ ·m(m− 1)

2
· 1

2n − 1

(This shows that we have in average slightly more collisions with f⊕g than with
h), and

σ(N) = O(

√
µm
√

2n
)

From Bienayme-Tchebichev theorem we know that we will be able to distinguish
h from f ⊕ g with a good probability when

σ(N)h << |E(N)h − E(N)f⊕g|

and
σ(N)f⊕g << |E(N)h − E(N)f⊕g|



(This is a sufficient condition to distinguish h from f ⊕ g.)
Here these conditions give:

√
µm
√

2n
<<

µ ·m(m− 1)

2 · 22n

For m ' 2n, this gives: µ ≥ 2n and the complexity of this attack is in O(µ ·m)
computations, i.e. in O(22n).

Conclusion: This is a “stable attack” on f ⊕ g with O(22n) computations
(see section 5 to see why this attack is “stable”).

Remark: This is the best “stable” generic attack on f ⊕ g that we have
found.

4 Scenario 2 on f1 ⊕ f2 ⊕ . . . ⊕ fk with O(2(2k−2)n)
computations

Aim: we want to distinguish a generator A of functions f1 ⊕ f2 ⊕ . . .⊕ fk, with
f1, . . . fk ∈R Bn from a generator B of functions h ∈R Fn. We assume that we
have access to m inputs/outputs values for each function G, with m 6= 2n (but
m ' 2n if we want), i.e. we look for a stable attack (the attack will still be valid
if a few inputs/outputs of G are changed).

Remark: Section 3 was a special case of section 4 with k = 2.
Attack. We will count the number N of collisions on all the functions G.

Therefore, if we have access to m inputs/outputs for each function G, N is the
number of (i, j), i < j, such that: G(xi) = G(xj).

Case of random functions. We have seen in Section 3 (and in Appendix
B) that for a random function of Fn, we have:

E(N) =
m(m− 1)

2 · 2n
and σ(N) = O(

m√
2n

)

Therefore, for a generator with µ such functions,

E(N) =
µ ·m(m− 1)

2 · 2n
and σ(N) = O(

√
µ ·m
√

2n
)

Case of f1 ⊕ f2 ⊕ . . . ⊕ fk. We know that if G = f1 ⊕ f2 ⊕ . . . ⊕ fk, with
f1, f2, . . . fk ∈R Bn, we have

E(N) =
m(m− 1)

2
· 1

2n
[
1 +

(−1)k

(2n − 1)k−1
]

and σ(N) = O( m√
2n

), (Proof: see Appendix C). Therefore, for a generator with

µ such functions,

E(N) =
µ ·m(m− 1)

2
· 1

2n
[
1 +

(−1)k

(2n − 1)k−1
]

and σ(N) = O(

√
µm
√

2n
)



From Bienayme-Tchebichev theorem we know that we will be able to distinguish
h from f1 ⊕ f2 ⊕ . . .⊕ fk with a good probability when

σ(N)h << |E(N)h − E(N)f1⊕...⊕fk |

and
σ(N)f1⊕...⊕fk << |E(N)h − E(N)f1⊕...⊕fk |

(This is a sufficient condition to distinguish h from f1 ⊕ . . .⊕ fk).
Here these conditions give:

√
µm
√

2n
<<

µ ·m2

2kn

For m ' 2n, this gives: µ ≥ 2(2k−3)n and therefore the complexity of this attack
is in O(µ ·m) computations, i.e. in O(2(2k−2)n).

5 Analysis of Scenario 3

Let G∗ be perfectly random on ϕ points, and G∗(x) = f1(x)⊕f2(x)⊕ . . .⊕fk(x),
with f1, . . . , fk ∈R Bn, on the 2n − ϕ other points. Let φ be the set of the ϕ
special points. Let assume that we know G∗ on m points xi, such that ϕ′ of
these point are in Φ and m − ϕ′ are not in Φ, ϕ′ ≤ ϕ. Let N be the number of
collisions G∗(xi) = G∗(xj), with i < j. We have: N = N1 +N2 +N3 with

N1= number of collisions with xi /∈ φ and xj /∈ φ, i < j.
N2= number of collisions with xi /∈ φ and xj ∈ φ, i < j.
N3= number of collisions with xi ∈ φ and xj ∈ φ, i < j.
We have E(N) = E(N1) +E(N2) +E(N3). From Theorem 1 of Appendix C,

we have:

E(N1) =
(m− ϕ′)(m− ϕ′ − 1)

2
· 1

2n
[1 +

(−1)k

(2n − 2)k−1
]

Moreover, E(N2) = ϕ′(m−ϕ′)
2n and E(N3) = ϕ′(ϕ′−1)

2·2n . Therefore

E(N) =
m(m− 1)

2
· 1

2n
+

(m− ϕ′)(m− ϕ′ − 1)

2
· 1

2n
(−1)k

(2n − 1)k−1

So if m ' 2n and ϕ << 2n, we have ϕ′ << 2n and

|E(N)G∗ − E(N)f∈RFn | '
1

2 · (2n − 1)k−2

Therefore this attack by counting N for G∗ will work with the same complexity
as the attack by counting N on f1(x)⊕ f2(x)⊕ . . .⊕ fk(x) as long as ϕ << 2n,
so we say that this attack is “stable”. (This also means that “scenario 3” and
“scenario 2” have the same conplexity).



6 Scenario 4: Best Known Advantage on a single f ⊕ g
with m < 2n

Let h be the single function of Fn that we want to study. h can be h ∈R Fn, or
h can be h = f ⊕ g with f, g ∈R Bn. We assume that we know h on m points xi:
h(xi) = yi, ∀i, 1 ≤ i ≤ m. Let N be the number of collisions on these m points,
i.e. N is the number of (i, j), 1 ≤ i < j ≤ m such that: yi = yj .
First case: m�

√
2n. Let φ be this attack:

• if N = 0 then φ outputs 0.
• if N 6= 0 (i.e. N ≥ 1) then φ outputs 1.
Let p1 = Prh∈RFn(φ(h) = 1), and p∗1 = Prf,g∈RBn(φ(f ⊕ g) = 1). If m�

√
2n,

p1 ' m(m−1)
2.2n , and p∗1 '

m(m−1)
2.2n (1+ 1

2n ) (cf Appendix B). Therefore, if m�
√

2n,

Adv(φ) = |p1−p∗1| '
m(m−1)
2.22n . This shows that if m�

√
2n, the Advantage, Advm

to distinguish h ∈R Fn from f ⊕ g, f, g ∈R Bn is at least in O(m(m−1)
22n ). (This

value is � 1 and therefore too small to distinguish).
Remark. When m = 1, m = 2 and m = 3, the exact values for Advm are given
in [9]. More precisely in [9], it is shown that Adv1 = 0, Adv2 = 1

2n(2n−1) '
1

22n ,

Adv3 = 1
22n ( 3.22n−12.2n+4

(2n−1)(2n−2) ) ' 3
22n .

Second case:
√

2n � m� 2n. Let Ψ be this attack:
• if N ≥ m(m−1)

2.2n , then Ψ outputs 1.

• if N < m(m−1)
2.2n , then Ψ outputs 0.

(Ψ is a “2-point” attack). If (f, g) ∈R Bn we have E(N) = m(m−1)
2.(2n−1) '

m(m−1)
2.2n (1+

1
2n ) and σ(N) ' m√

2
√
2n

(cf Appendix B). If
√

2n � m � 2n, then the distri-

bution of N is similar to the Gaussian distribution of density 1√
2πσ

e−
(x−E(N))2

2σ2 .

Therefore we have: Adv(Ψ) = O(∆E(N)
σ ), Adv(Ψ) = O( m

2
3n
2

). This shows that if
√

2n � m� 2n, the Advantage to distinguish h ∈R Fn from f ⊕ g, f, g ∈R Bn
is at least O( m

2
3n
2

). (This value is � 1, this is why in scenarios 2 and 3 we used

a generator of functions).

7 Scenario 4: Best Known Advantage on f1⊕ f2⊕ . . .⊕ fk
with m < 2n

First case: m �
√

2n. Let φ be the attack φ seen in section 6. Let p1 =
Prh∈RFn(φ(h) = 1) as in section 6. let p∗1(k) = Prf1,...,fk∈RBn(φ(f1 ⊕ f2 ⊕
. . . fk) = 1). If m �

√
2n, p1 ' m(m−1)

2.2n and p∗1(k) ' m(m−1)
2.2n (1 + (−1)k

(2n−1)k−1 ) (cf

Appendix C). Therefore if m �
√

2n, Adv(φ) = |p1 − p∗1(k)| ' m(m−1)
2.2kn

. This

shows that if m �
√

2n, the Advantage, Advm to distinguish h ∈R Fn from

f1 ⊕ f2 ⊕ . . .⊕ fk, f1, . . . , fk ∈R Bn, is at least O(m(m−1)
2kn

).

Second case:
√

2n � m� 2n. Let Ψ be the attack Ψ seen in section 6. If h ∈R
Fn we have E(N) = m(m−1)

2.2n . If f1, . . . , fk ∈R Bn we have E(N) = m(m−1)
2.2n (1 +



(−1)k
(2n−1)k−1 ) and σ(N) ' m√

2
√
2n

(cf Appendix C). If
√

2n � m� 2n, then the dis-

tribution of N is similar to the Gaussian distribution of density 1√
2πσ

e−
(x−E(N))2

2σ2 .

Therefore we have: Adv(Ψ) = O(∆E(N)
σ ), Adv(Ψ) = O( m

2(k−
1
2
)n

). This shows that

if
√

2n � m � 2n, the Advantage to distinguish h ∈R Fn from f ⊕ . . . ⊕ fk,
f, . . . , fk ∈R Bn is at least O( m

2(k−
1
2
)n

). (This value is� 1, this is why in scenarios

2 and 3 we used a generator of functions).

8 A simple variant of the schemes with only one
permutation

Variant with 2 Xor
Instead of G = f1⊕f2, f1, f2 ∈R Bn, we can study G′(x) = f(x‖0)⊕f(x‖1),

with f ∈R Bn and x ∈ In−1. This variant was already introduced in [2]. There
are many common results between G and G′ but also a few differences. It is
possible to prove that our attacks (stable and unstable) on G are also valid on
G′ with similar properties. The (unstable) attack of Section 2 in O(2n) is also
valid for G′, since ⊕2n

x=1G
′(x) = ⊕2n

i=1i = 0, and the number of collisions for the
(stable) attacks of Section 3 will be similar for G and G′.

A specific attack on G′

There is however a specific attack on G′ that do not exist on G since ∀x ∈
In, G

′(x) 6= 0. Therefore, if we know m outputs yi of G, we can test if ∀i, 1 ≤ i ≤
m, yi 6= 0 (#). The probability of this event is 1 on G′ and (1− 1

2n )m ' e−
m
2n

on f ∈R Fn. Therefore if m
2n is not close to 0, we can distinguish f ∈R Fn from G′

with a good probability. We will call A this attack. Like the attack on ⊕2n

i=1G(i),
this attack A requires O(2n) queries and O(2n) computations. (This attack was
already described in [2].) However unlike the attack on ⊕2n

i=1G(i), this attack A
does not requires m = 2n, but only to have m

2n not close to 0.
Stability of the attack
Let G′φ be the function G′,except on φ randomly and secretly chosen points

xi, and on these points G′φ is perfectly random. The probability of (#) is 1 on

G′, is (1 − 1
2n )φ ' e

φ
2n ' 1 − φ

2n on G′φ and is ' e−
m
2n on f ∈R Fn. Therefore,

if φ is ≤ P (n) and if m ' 2n, with p(n) a polynomial in n, the probability of
(#) is about 1 on G′φ, and is about 1

e on f ∈R Fn, so this attack A is still able
to distinguish G′φ from f ∈R Fn. Therefore A is ”stable” with our definition of
”stable”.

Variant with ≥ 3 Xor
With 3 Xor, instead ofG(x) = (f1⊕f2⊕f3)(x), if x 6= 0, with f1, f2, f3 ∈R Bn,

and G(0) random, we can study G′(x) = f(x‖00)⊕ f(x‖01)⊕ f(x‖10), if x 6= 0,
with f ∈R Bn and x ∈ In−2, G′(0) random. Now G′(x) can have the value 0,
and as with f ⊕ g⊕h, f, g, h ∈ Bn with this design the best known attacks have
complexity greater than O(2n). More generally, with k Xor, instead of using k
random permutations of Bn, we can use only one. From a theoretical point of
view the analysis, attacks and results will be similar if the number of Xor is ≥ 3



(cf Appendices D and E), but from a practical point of view these variants may
be sometime a bit better since they use only one random permutation of Bn.

9 Other variants and open problems

Let assume, for example, that we want to build a pseudo-random function of Fn
from two random permutations of Bn. We have

|Bn|2 =
(
(2n)!

)2 ' ((2n)
2n · e−2

n√
2π · 2n

)2 ' 22n·2
n

e−2·2
n

(2π · 2n)

Here we use Stirling formula and |Fn| = (2n)
2n

= 2n·2
n

. So |Bn|2 ≥ |Fn| and
therefore, from an information theoretic point of view, we may imagine to trans-
form a random element of B2

n in a pseudo-random element of Fn with a security
bound much better than O(2n). In fact, if we have a very small probability that
the transformation fails, i.e. gives no element of Fn, then we may even hope to
get a perfectly random element of Fn when the construction works.

Remark. A similar problem arise when we want to transform for example a
perfectly random integer x of [1, 11] into a perfectly random integer y of [1, 2].
We can decide that if x ∈ {1, 2, 3, 4, 5} then y = 1, and if x ∈ {6, 7, 8, 9, 10} then
y = 2, and if x = 11, then no output y is given. Then when an output y is given,
y is perfectly random in [1, 2].

It may be interesting to design a similar transformation from B2
n to Fn, i.e.

with a high probability the construction will give an output, and when it gives an
output, this output will be a perfectly random element of Fn. However, we want
to perform only O(n) operations (or polynomial in n) to get the output (as (f1⊕
g2)(x) where only 2 operations are needed), not O(2n). Therefore, this problem
may have no solution. However, it may exist some designs with better security
results than our constructions with the same number of operations. In any case,
it is an interesting and open question to evaluate the best possible designs when
only O(n) (or a polynomial in n) operations are possible to evaluate G(x). Of
course another open question is: Are our generic attacks the best possible attacks
on our constructions (with k Xor and a few random points)?

10 Summary of the results

– k denotes the number of Xor: f1 ⊕ f2 ⊕ . . .⊕ fk.
– In “scenario 1” we present the number of computations required in a CPA-2

(Adaptive chosen plaintext attack) to distinguish f1 ⊕ f2 ⊕ . . . ⊕ fk (with
f1, . . . , fk ∈R Bn) from a truly random function h ∈R Fn when the ad-
versary has access to the full codebook. This number is proved to be at
least in O(2n/n

2
3 ) (security results of [2]) at least in O(2n) (security results

of [8]), and at most in O(2n) (“unstable” attack of Section 2) when all the
2n inputs/outputs are given), and therefore exactly in O(2n).

– “Scenario 2” is like “scenario 1” except that we have access tom input/output
pairs, with m ' 2n but m < 2n, and that we use a generator of such func-
tions.



Table 1. Best known attacks for the Xor of k permutations

k Scenario 1 Scenario 2 and 3 Scenario 4, m�
√

2n Scenario 4,
√

2n � m� 2n

2 2n ≤ 22n Adv ≥ O(m(m−1)

22n
) Adv ≥ O( m

2
3n
2

)

3 2n ≤ 24n Adv ≥ O(m(m−1)

23n
) Adv ≥ O( m

2
5n
2

)

4 2n ≤ 26n Adv ≥ O(m(m−1)

24n
) Adv ≥ O( m

2
7n
2

)

k 2n ≤ 2(2k−2)n Adv ≥ O(m(m−1)

2kn
) Adv ≥ O( m

2
(k− 1

2
)n

)

– In “scenario 3” we present the number of computations required in a CPA-
2 (Adaptive chosen plaintext attack) to distinguish G from a truly random
function h ∈R Fn whereG is equal to f1⊕f2⊕. . .⊕fk (with f1, . . . , fk ∈R Bn)
on all the points except on a few points xi where G(xi) is random. (For ex-
ample it can be only on the point 0). Moreover, we use a generator of such
functions G.
“≤” denotes the fact that we give here the best known attack. We see that
in scenarios 2 and 3 the number of computations can be much larger than
in scenario 1.Therefore the design of G can be very efficient in some appli-
cations.

– In Scenario 4 we present the best Advantage that we have found when we
try to attack in CPA-2 a single f1 ⊕ f2 ⊕ . . . ⊕ fk with m queries, (not a
generator), with

√
2n � m� 2n. (These values for Adv are always� 1, this

is why in Scenarios 2 and 3 we needed more than one function to distinguish).
“≥” denotes the fact that we give here the best known advantage, but better
Advantage may exist.

With the variant of section 8 (i.e. with only one permutation), the results
obtained are the same as for f1 ⊕ f2 ⊕ . . .⊕ fk except for k = 2.

Table 2. Best known attacks for the variant of section 8 (i.e. k Xor on only one
permutation).

k Scenario 1 Scenario 2 and 3 Scenario 4, m�
√

2n Scenario 4,
√

2n � m� 2n

2 2n 2n Adv ≥ O( m
2n

) Adv ≥ O( m
2n

)

3 2n ≤ 24n Adv ≥ O(m(m−1)

23n
) Adv ≥ O( m

2
5n
2

)

4 2n ≤ 26n Adv ≥ O(m(m−1)

24n
) Adv ≥ O( m

2
7n
2

)

k 2n ≤ 2(2k−2)n Adv ≥ O(m(m−1)

2kn
) Adv ≥ O( m

2
(k− 1

2
)n

)



11 Conclusion

In this paper, we have designed new schemes to build PRF from PRP. On these
schemes we use k Xor instead of two, on all the points except a few, and on
these few points, we have a truly random output. On these new schemes, we
have shown that the best known generic attacks have a complexity much larger
than O(2n). Therefore these schemes might be very useful when we want to
generate random functions from random permutations with a small value of n
and a high security (security in 280 for example and n < 80).
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Appendices



A Mean value and standard deviation of collisions on
random functions

Aim. Let f be a random function from In to In. We assume that we know f
on m distinct points xi: ∀i, 1 ≤ i ≤ m, f(xi) = yi. Let N be the number of
collisions on these values yi. We want to evaluate E(N) (the mean value of N
when f ∈R Fn) and σ(N) (the standard deviation of N whenf ∈R Fn).

Computation of E(N). Let δi j = 1⇔ f(xi) = f(xj) and δi j = 0⇔ δi j 6=
1. We have N =

∑
i<j δi j . Therefore, E(N) =

∑
i<j E(δi j). Moreover

E(δi j) = Pr i6=j
f∈RBn

(
f(xi) = f(xj)

)
=

1

2n

Therefore E(N) = m(m−1)
2·2n .

Computation of σ(N).

V (N) = V
(∑
i<j

δi j
)

=
∑
i<j

V (δi j) +
∑

i<j, k<l,
(i,j)6=(k,l)

Cov(δi j , δk l)

where Cov(δi j , δk l) denotes the covariance of (δi j , δk l):

Cov(δi j , δk l) = E(δi j · δk l)− E(δi j)E(δk l)

We have:

V (δi j) = E(δ2i j)− E(δi j)
2 =

1

2n
− 1

22n

We now have to evaluate E(δi j · δk l).
Case 1: i, j, k, l are pairwise distinct. Then

E(δi j · δk l) = Prf∈RBn
(
f(xi) = f(xj) and f(xk) = f(xl)

)
=

1

22n

Case 2: In i, j, k, l, we have exactly 3 distinct values. For example i = k.
Then

E(δi j · δk l) = Prf∈RBn
(
f(xi) = f(xj) = f(xl)

)
=

1

22n

Therefore all the covariance are 0 and we have:

V (N) =
m(m− 1)

2

( 1

2n
− 1

22n
)

and σ(N) =
√
V (N) = O(

m√
2n

)

B Mean value and standard deviation of collisions on
f ⊕ g, f, g ∈R Bn

Aim. Let G = f⊕g, with f, g ∈R Bn. We assume that we know G on m distinct
points xi: ∀i, 1 ≤ i ≤ m, G(xi) = yi. Let N be the number of collisions on these
m values yi. We want to evaluate E(N) (the mean value of N when f, g ∈R Bn)
and σ(N) (the standard deviation of N when f, g ∈R Bn).



Computation of E(N). Let δi j = 1⇔ G(xi) = G(xj) and δi j = 0⇔ δi j 6=
1. We have N =

∑
i<j δi j . Therefore, E(N) =

∑
i<j E(δi j). Moreover

E(δi j) = Pr i6=j,
f,g∈RBn

(
g(xi)⊕ g(xj) = f(xi)⊕ f(xj)

)
When f is fixed, f ∈ Bn, f(xi)⊕ f(xj) is a value different from 0. Therefore the
probability when g ∈R Bn that g(xi) ⊕ g(xj) = f(xi) ⊕ f(xj) is exactly 1

2n−1 .
So

E(δi j) =
1

2n − 1
and E(N) =

m(m− 1)

2
· 1

2n − 1

Computation of σ(N).

V (N) = V
(∑
i<j

δi j
)

=
∑
i<j

V (δi j) +
∑

i<j, k<l
(i,j)6=(k,l)

Cov(δi j , δk l) (∗)

where Cov(δi j , δk l) denotes the covariance of (δi j , δk l):

Cov(δi j , δk l) = E(δi j · δk l)− E(δi j)E(δk l)

We have:

V (δi j) = E(δ2i j)− E(δi j)
2 =

1

2n − 1
− 1

(2n − 1)2

We now have to evaluate E(δi j · δk l)
Case 1: i, j, k, l are pairwise distinct. Then

E(δi j · δk l) = Prf,g∈RBn

(
g(xi)⊕ g(xj) = f(xi)⊕ f(xj)
g(xk)⊕ g(xl) = f(xk)⊕ f(xl)

)
When f(xi), f(xj), f(xk), f(xl), g(xj), g(xl) are fixed, g(xi) and g(xk) are fixed
with

g(xi) = g(xj)⊕ f(xi)⊕ f(xj) and g(xk) = g(xl)⊕ f(xk)⊕ f(xl)

(and these conditions may be compatible or not with g being a permutation). If
we did not have these two equalities, for g(xi) we would have (2n − 2) possibil-
ities (g(xi) /∈ {g(xj), g(xl)}), and for g(xk) we would have (2n − 3) possibilities
(g(xk) /∈ {g(xi), g(xj), g(xl)}. So,

E(δi j · δk l) ≤
1

(2n − 2)(2n − 3)

Therefore

E(δi j · δk l)− E(δi j)E(δk l) ≤
1

(2n − 2)(2n − 3)
− 1

(2n − 1)2

≤ 3 · 2n

(2n − 1)2(2n − 2)(2n − 3)
≤ O(

1

23n
)



Case 2: in i, j, k, l, we have exactly 3 distinct values. For example i = k.
Then

E(δi j · δk l) = Prf,g∈Bn(f(xi)⊕ g(xi) = f(xj)⊕ g(xj) = f(xl)⊕ g(xl))

When f(xi), f(xj), f(xl), g(xi) are fixed, g(xj) and g(xl) are fixed with{
g(xj) = f(xi)⊕ g(xi)⊕ f(xj)
g(xl) = f(xi)⊕ g(xi)⊕ f(xl)

(and these conditions may be compatible or not with g being a permutation). If
we did not have these two equalities, for g(xj) we would have (2n−1) possibilities
(g(xj) 6= g(xi)) and for g(xl), we would have (2n − 2) possibilities (g(xl) /∈
{g(xi), g(xj)}). So

E(δi j · δk l) ≤
1

(2n − 1)(2n − 2)

Therefore

E(δi j · δk l)− E(δi j)E(δk l) ≤
1

(2n − 1)(2n − 2)
− 1

(2n − 1)2

≤ 1

(2n − 1)2(2n − 2)
≤ O(

1

23n
)

So from (∗) we get

V (N) ≤ m(m− 1)

2

( 1

2n − 1
− 1

(2n − 1)2
)

+O(
m4

23n
)

So

V (N) ≤ O(
m2

2n
) +O(

m4

23n
)

Since m ≤ 2n, V (N) ≤ O(m
2

2n ) and therefore σ(N) ≤ O( m√
2n

).

C Mean value and standard deviation of collisions on
f1 ⊕ f2 ⊕ . . .⊕ fk

Theorem 1 Let G = f1⊕ f2⊕ . . .⊕ fk, f, g ∈R Bn, with f1, f2, . . . , , fk ∈R Bn.
Let assume that we know G on m distinct points xi: ∀i, 1 ≤ i ≤ m, G(xi) = yi.
Let Nk be the number of collisions on these m points: Nk = the number of (i, j),
1 ≤ i < j ≤ m such that yi = yj. Then

E(Nk) =
m(m− 1)

2
· 1

2n
[
1 +

(−1)k

(2n − 1)k−1
]

where E(Nk) denotes the mean value of Nk when f1, f2, . . . , fk are randomly
chosen in Bn.



To prove this theorem we will first need a lemma.

Lemma 1. If xi 6= xj, we have

if ϕ 6= 0, P rf∈Bn
(
f(xi)⊕ f(xj) = ϕ) =

1

2n − 1

and if ϕ = 0, P rf∈Bn
(
f(xi)⊕ f(xj) = ϕ) = 0

Proof of Lemma 1
If ϕ = 0, f(xi) 6= f(xj) since f is a permutation. If ϕ 6= 0, when f(xi) is fixed,
f(xj) is fixed to the value of ϕ⊕f(xi), so instead of having 2n−1 possible values
for f(xj) we have one when f(xi) is fixed.

Proof of Theorem 1
Let δi j = 1⇔ G(xi) = G(xj) and δi j = 0⇔ δi j 6= 1. We have Nk =

∑
i<j δ

k
i j ,

so E(Nk) =
∑
i<j E(δki j). We will compute E(δki j) by induction on k.

E(δki j) = Prf1,...,fk∈RBn
[
f1(xi)⊕ . . .⊕ fk(xi) = f1(xj)⊕ . . .⊕ fk(xj)

]
So from Lemma 1 above,

E(δki j) =
1

2n − 1
Prf1,...,fk−1∈RBn

[
f1(xi)⊕. . .⊕fk−1(xi) 6= f1(xj)⊕. . .⊕fk−1(xj)

]
E(δki j) =

1

2n − 1

[
1− E(δk−1i j )

]
(∗)

If k = 1 we have E(δ1i j) = Prf1∈Bn(f1(xi) = f1(xj)) = 0 (∗∗) (since f1 is
a permutation and xi 6= xj). Now from (∗) and (∗∗) we get immediately by
induction on k that

E(δki j) =
1

2n
[
1 +

(−1)k

(2n − 1)k−1
]

and therefore,

E(Nk) =
m(m− 1)

2
E(δki j) =

m(m− 1)

2
· 1

2n
[
1 +

(−1)k

(2n − 1)k−1
]

as claimed. Moreover the standard deviation can be computed exactly as in
Appendix B, or alternatively by using the fact that G = f1 ⊕ f2 ⊕ ψ where ψ is
a function independant of f1 ⊕ f2. We get the same result: σ(Nk) ≤ O( m√

2n
).

Remark. This result is not surprising: by Xoring k permutations, k ≥ 3
instead of 2, we expect to obtain a better or at least as good pseudorandom
permutation. Since we have seen that σ(N) for k = 2 and σ(N) for a random
function are less than or equal to O( m√

2n
), it is natural that for k ≥ 3 we also

have the same result σ(N) ≤ O( m√
2n

).



D Mean value of collisions on f(x‖α)⊕ f(x‖β), f ∈R Bn

Let G′(x) = f(x‖α)⊕ f(x‖β), f ∈R Bn, with α 6= β. We assume that we know
G′ on m distinct points xi: ∀i, 1 ≤ i ≤ m, G′(xi) = yi. Let N be the number
of collisions on these m values yi. We want to evaluate E(N), the mean value
of N when f ∈R Bn. Let δij = 1 ⇔ G′(xi) = G′(xj) and δij = 0 ⇔ δij 6= 1.
We have N =

∑
i<j δij . Therefore E(N) =

∑
i<j E(δij). Moreover E(δij) =

Prf∈RBn(f(xi‖α)⊕f(xi‖β)⊕f(xj‖α) = f(xj‖β)). So E(δij) = Prf∈RBn(f(a)⊕
f(b) ⊕ f(c) = f(d)) where a, b, c, d are pairwise distinct. When f(a), f(b) and
f(b) are fixed, then f(d) can have any value /∈ {f(a), f(b), f(c)} with probability
exactly 1

2n−3 (and f(d) ∈ {f(a), f(b), f(c)} with probability 0). Moreover f(a)⊕
f(b)⊕f(c) ∈ {f(a), f(b), f(c)} is not possible since f is a permutation. Therefore

E(δij) = 1
2n−3 and E(N) = m(m−1)

2.(2n−3) '
m(m−1)

2.2n (1 + 3
2n ).

E Mean value of collisions on
f(x‖α1)⊕ . . .⊕ f(x‖αk), f ∈R Bn

Let G′k(x) = f(x‖α1) ⊕ . . . ⊕ f(x‖αk), f ∈R Bn, with α1, α2, . . . αk pairwise
distinct. We assume that we know G′k on m distinct points xi: ∀i, 1 ≤ i ≤
m, G′k(xi) = yi. Let Nk be the number of collisions on these m values yi. We
want to evaluate E(Nk), the mean value of N when f ∈R Bn. Let δij = 1 ⇔
G′k(xi) = G′k(xj) and δij = 0 ⇔ δij 6= 1. We have Nk =

∑
i<j δij . Therefore

E(Nk) =
∑
i<j E(δij). Let pk = E(δij) = Prf∈RBn(f(xi‖α1)⊕ . . .⊕ f(xi‖αk) =

f(xj‖α1)⊕ . . .⊕f(xj‖αk)) = Prf∈RBn(f(a1)⊕f(a2)⊕ . . .⊕f(a2k−1) = f(a2k))
where a1, a2, . . . , a2k are pairwise distinct. When f(a1), . . . f(a2k−1) are fixed,
then f(a2k) can have any value /∈ {f(a1), . . . , f(a2k−1)} with probability exactly

1
2n−(2k−1) (and f(a2k) ∈ {f(a1), . . . , f(a2k−1)} with probability 0). Therefore

we have: pk = (1 − (2k − 1)pk−1). 1
2n−(2k−1) (∗) (since ∀i, 1 ≤ i ≤ 2k − 1 we

have the probability exactly 1−pk−1 that f(a1)⊕ f(a2)⊕ . . . f(a2k−1) = f(ai)).
For example, from p1 = 0 (since f is a bijection), we get from (∗): p2 = 1

2n−3
(as already found in Appendix D), and then p3 = (1 − 5p2). 1

2n−5 = 1
2n (1 −

15
22n−8.2n+15 ). More generally, from (∗) and p2 = 1

2n−3 , we get easily by induction
that:
pk = 1

2n

[
1 + (−1)k.3.5.7...(2k−1)

2(k−1)n(1− 3
2n )(1− 5

2n )...(1− 2k−1
2n )

]
. Therefore E(Nk) = m(m−1)

2 pk =

m(m−1)
2.2n

[
1 +O( 1

2(k−1)n )
]
, with O( 1

2(k−1)n ) = (−1)k.3.5.7...(2k−1)
2(k−1)n(1− 3

2n )(1− 5
2n )...(1− 2k−1

2n )
.


