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CRYPTOSYSTEM TO NON-ABELIAN GROUPS II

AYAN MAHALANOBIS

Abstract. In this paper I study the MOR cryptosystem using the spe-

cial linear group over finite fields. At our current state of knowledge,

I show that the MOR cryptosystem is more secure than the ElGamal

cryptosystem over finite fields.

1. Introduction

The MOR cryptosystem is a generalization of the ElGamal cryptosystem,
where the discrete logarithm problem works in the automorphism group of
a group G, instead of the group G itself. The framework for the MOR
cryptosystem was first proposed in Crypto2001 by Paeng et al. [16]. Ma-
halanobis [13] used the group of unitriangular matrices for the MOR cryp-
tosystem. That effort was successful, the MOR cryptosystem over the group
of unitriangular matrices became as secure as the ElGamal over finite fields.
That work was negatively criticized. Since there is more work involved in
implementing matrix operations (matrix multiplication), the MOR cryp-
tosystem over the group of unitriangular matrices has no future, and is thus
unpublishable.

In this paper I offer another MOR cryptosystem, this time I use the group
of unimodular matrices. More precisely I use SL(d, q), the special linear
group over the finite field Fq of matrices of degree d. Since the automor-
phisms for the special linear group and the projective special linear group are
the same and so is the structure of their automorphism groups, everything
I say about the special linear group can be said about the projective special
linear group too.

In the MOR cryptosystem thus produced, I am working with matrices
of degree d over Fq. To encrypt(decrypt) a plaintext(ciphertext) one works
over the field Fq. To break this cryptosystem one has to solve a discrete
logarithm problem in finite extensions of Fqd . For a large enough d this
provides a considerable security advantage. This is the central idea I am
trying to “market” in this paper.
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There are significant challenges in implementation of this cryptosystem.
Implementing matrix multiplication is hard. Though we have not reached
the optimum speed for that [5], it might always stay harder than multipli-
cation in a finite field. So one needs to find an optimum strategy to present
the automorphisms and the underlying group for the MOR cryptosystem,
see Section 8 for more details.

At the end I provide parameters for the proposed MOR cryptosystem. I
suspect that the parameters are conservative and the degree of the matrix is
unnecessarily big. I tried to show that for the chosen parameters, the MOR
cryptosystem is almost as good as the ElGamal cryptosystem over elliptic
curves (in terms of security); the golden standard in public key cryptography.
I suspect that for most practical purposes, the degree of the matrix can be
chosen even smaller.

I personally feel that the MOR cryptosystem is a gold mine for cryptog-
raphy. There are definitely groups out there for which the cryptosystem is
secure. There are two kinds of automorphisms for a group G, one that acts
by conjugation and the other that does not. In this paper I refer to them
as A and B respectively. For SL(d, q) the size of B became very small and
so we had to rely on the the automorphisms from A only. However, if we
can find groups where B is large, then those groups might provide us with a
secure MOR cryptosystem; in which the security can not be reduced to the
discrete logarithm problem in a finite field.

Acknowledgements. I learnt a lot from stimulating conversations with
Colva Roney-Dougal, Steve Linton, Vladimir Shpilrain, Robert Gilman and
William Kantor. A part of this paper was written when I was visiting the
Center for Interdisciplinary Research in Computational Algebra, University
of St Andrews.

2. The MOR cryptosystem

I shall give a bare-bone description of the MOR cryptosystem [16], see
also [15]. A description and a critical analysis of the MOR cryptosystem is
also in [13] and the references there.

2.1. Description of the MOR cryptosystem. Let G = 〈g1, g2, . . . , gτ 〉,
τ ∈ N be a finite group and φ a non-trivial automorphism of G. Alice’s keys
are as follows:

Public Key: {φ(gi)}τi=1 and {φm(gi)}τi=1, m ∈ N.
Private Key: m.
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Encryption.

a: To send a message (plaintext) a ∈ G Bob computes φr and φmr for
a random r ∈ N.

b: The ciphertext is ({φr(gi)}τi=1 , φ
mr(a)).

Decryption.

a: Alice knows m, so if she receives the ciphertext (φr, φmr(a)), she
computes φmr from φr and then φ−mr and then from φmr(a) com-
putes a.

Alice can compute φ−mr two ways; if she has the information necessary to
find out the order of the automorphism φ then she can use the identity
φt−1 = φ−1 whenever φt = 1. Also, she can find out the order of some
subgroup in which φ belongs and use the same identity. However, smaller
the subgroup, more efficient the decryption algorithm.

Let G = 〈g〉 be a finite cyclic group of order n written additively; then
one can define φ : g 7→ kg for some k ∈ N. In this case φm : g 7→ kmg; since
g is a public information, the public information of φ and φm is identical to
the public information of k mod n and km mod n. So the discrete loga-
rithm problem in the automorphism group of G, i.e., given φ and φm find
m reduces to given k mod n and km mod n find m. This is the discrete
logarithm problem [22, Chapter 6]. This clearly shows that the MOR cryp-
tosystem as defined above is a straight forward generalization of the ElGamal
cryptosystem [22, Cryptosystem 6.1] from a cyclic group to a non-abelian
group.

3. The unimodular group of degree d over Fq

The group SL(d, q) is the set of all matrices of degree d with determinant
1. It is well known that SL(d, q) is a normal subgroup of GL(d, q) the group
of non-singular matrices of degree d over Fq. In this article I consider Fq to
be a finite extension of the ground field Zp of degree γ where γ ≥ 1.

Definition 1. For distinct ordered pair (i, j) I define a matrix unit ei,j as a
matrix of degree d, such that, all entries in ei,j are 0, except the intersection
of the ith row and the jth column; which is 1 (the identity in the field Fq).
Matrices of the form 1+λei,j , λ ∈ F×q , are called the elementary matrices or
elementary transvections. Here 1 is the identity matrix of degree d. I shall
abuse the notation a little bit and use 1 for the identity of the field and the
matrix group simultaneously.

It is known that the group SL(d, q) is generated by elementary transvec-
tions. The fundamental relations for the elementary transvections are the
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relations in the field and the ones stated below:

[1 + λei,j , 1 + µek,l] =


1 + λµei,l if j = k, i 6= l

1− λµek,j if i = l, j 6= k

1 otherwise
(1)

(1 + λei,j) (1 + µei,j) = 1 + (λ+ µ) ei,j(2)

(1 + λei,j)
−1 = (1− λei,j)(3)

(1 + λei,j)
k = 1 + kλei,j k ∈ N(4)

where λ, µ ∈ Fq.

4. Automorphisms of the unimodular group over Fq

It is well known that the automorphisms of SL(d, q) are the following [4,
7, 21]:

Diagonal Automorphism: This is conjugation by a non-scalar diag-
onal matrix. Notice that: since diagonal matrices are not of deter-
minant 1, the diagonal matrices are not in SL(d, q). So a diagonal
automorphism is not an inner automorphism.

Inner Automorphism: This is the most well known automorphism
of a non-abelian group G, defined by x 7→ g−1xg for g ∈ G.

Graph Automorphism: The graph automorphism induces the map
A 7→

(
A−1

)T , A ∈ SL(d, q). Clearly, graph automorphisms are
involutions, i.e., of order two and are not inner automorphisms.

Field Automorphism: This automorphisms is the action of a field
automorphism of the underlying field to the individual entries of a
matrix.

In this section I am interested in a special class of inner automorphisms,
“permutation automorphisms”. For a permutation automorphism the con-
jugator g in the inner automorphism is a permutation matrix. It is well
known that for a permutation matrix P , det(P ) = ±1 and P−1 = P T . The
permutation matrix is constructed by taking the identity matrix 1 and then
exchanging the row based on some permutation α. If the permutation α is
even then the determinant of P is 1 otherwise it is −1. Note that if the
determinant is −1 then conjugation by that permutation matrix is not an
inner automorphism but it is close to being one and I will treat it like an
inner automorphism in this paper.
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4.0.1. Effect of a permutation automorphism on an elementary transvec-
tions. If A is an elementary transvection, i.e., A = 1 + λei,j and P be a
permutation matrix, then P−1AP = 1 + λeα−1(i),α−1(j).

4.0.2. Effect of a diagonal automorphism on an elementary transvection.
Let D = [w1, w2, . . . , wn] be a diagonal matrix. If A = 1 + λei,j then
D−1AD = 1 + (w−1

i λwj)ei,j . Let us fix a (i, j) such that 1 ≤ i, j ≤ n,
then look at the root subgroup 〈1 + λei,j〉, λ ∈ Fq. This subgroup is clearly
isomorphic to F+

q .
Assume for a moment that I am using the MOR cryptosystem as described

in Section 2.1 with G as the root subgroup defined above and φ as a diagonal
automorphism. Then clearly for some k ∈ F×q .

φ : 1 + ei,j 7→ 1 + kei,j

φm : 1 + ei,j 7→ 1 + kmei,j .

Clearly we see that this MOR cryptosystem is identical to the ElGamal
cryptosystem over finite fields. Since SL(d, q) is generated by elementary
transvections, I claim that using the diagonal automorphisms of the special
linear groups over finite fields, the MOR cryptosystem is identical to the
ElGamal cryptosystem over finite fields. I will further assume that if we
compose a diagonal automorphism with a different automorphism then the
security of the MOR cryptosystem can not get any worse than that with the
diagonal automorphism.

4.0.3. The effect of the graph automorphism on an elementary transvection.
It is easy to see from the definition of the graph automorphism that if
A = 1 + λei,j then

(
A−1

)T = 1− λej,i.

4.0.4. The effect of field automorphisms on an elementary transvections. It
is well known that the field automorphisms form a cyclic group generated
by the Frobenius automorphism of the field Fq, given by λ 7→ λp, where p is
the characteristic of the field Fq. Then the action of field automorphism on
an elementary transvection is 1 + λei,j 7→ 1 + λp

i
ei,j where 1 ≤ i < γ.

5. MOR with monomial automorphisms

Assume for a moment that I am only using the composition of a diago-
nal and a inner automorphism of SL(d, q), i.e., I am using MOR (Section
2.1) where φ = φ1 ◦ φ2 where φ1 is a diagonal automorphism and φ2 is a
permutation automorphism. Then clearly φ is a monomial automorphism,
conjugation by a monomial matrix. The diagonal automorphism φ1 changes
1 + ei,j to 1 + λi,jei,j for some λi,j ∈ F×q . Note that the λi,j depends on the
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diagonal automorphism and once the diagonal automorphism is fixed λi,j is
also fixed for a particular (i, j). Then the permutation automorphism φ2

changes 1 + λi,jei,j to 1 + λi,jeβ(i),β(j) where β = α−1. Here α is the permu-
tation that gives rise to the permutation matrix P , used in the permutation
automorphism.

I now look at the action of the exponentiation of the automorphism φ =
φ1 ◦ φ2 on the elementary transvection 1 + ei,j . Notice that if

(5) φ : 1 + ei,j
diagonal−−−−−→ 1 + λi,jei,j

permutation−−−−−−−→ 1 + λi,jeβ(i),β(j),

then

(6) φm : 1 + ei,j −−−−→ 1 +
m∏
l=0

λβl(i)βl(j)eβm(i),βm(j)

Now let us assume that the order of β, ◦(β) = ν then

φν : 1 + ei,j 7→ 1 +
ν∏
l=0

λβl(i)βl(j)ei,j .

This shows that there is clearly a cycle formed and if ν < m, then this re-
duces the discrete logarithm problem in 〈φ〉 to a discrete logarithm problem
in the finite field Fq. Though it is well known that in the symmetric group
Sn, acting on n points, one can get elements with very high order. In our
problem I am actually interested in the length of the orbit formed by the
action of a cyclic subgroup of Sn, generated by β, on the set of distinct
ordered pair of {1, 2, . . . , n}. It is known that these orbits are quite small.

Since the permutation β is easy to find from the public information φ and
φm, unless the degree of the matrix d is astronomically big we do not have
any chance for a MOR cryptosystem which is more secure than that of the
ElGamal cryptosystem over finite fields.

Since the conjugacy problem is easy in GL(d, q), from the public informa-
tion of φ1 and φ2 one can compute the conjugator monomial matrices for
φ1 and φ2 modulo an element of the center of GL(d, q). I shall come back
to this topic later (Section 7.2) in more details.

6. Structure of the automorphism group of SL(d, q)

Let us start with a theorem describing the structure of the automorphism
group of SL(d, q). Let A be the group of automorphisms generated by the
diagonal and the inner automorphisms and B be the group generated by
the graph and the field automorphisms. Recall that the center of the group
GL(d, q) is the set of all scalar matrices λ1 where λ ∈ F×q and 1 is the
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identity matrix of degree d. I shall denote the center of GL(d, q) by Z and

the projective general linear group
GL(d, q)

Z
by PGL(d, q).

A brief warning about the notation. To increase readability of the text,
from now on, the image of a under f will be denoted either by af or by f(a).
Also, I might denote the conjugation of X by A as XA.

Theorem 6.1. The group A is isomorphic to PGL(d, q) and Aut(SL(d, q))
is a semidirect product of A with B.

Proof. From [2, Theorem 2.12] we know that any element in GL(d, q) is
generated by the set consisting of all invertible diagonal matrices and all
transvections. Note that Alperin and Bell [2] calls the invertible scalar
matrices as diagonal matrices. Then we can define a map z : GL(d, q) → A
defined by z(A) maps X 7→ XA, clearly z is an epimorphism and Ker(z) =
Z. From first isomorphism theorem we have that PGL(d, q) ∼= A.

We are left to show that Aut(SL(d, q)) is a semidirect product ofA with B.
To prove this we need to show that A is a normal subgroup of Aut (SL(d, q))
and Aut(SL(d, q)) = AB. Notice that any f ∈ B is an automorphism of
GL(d, q). With this in mind we see that for A ∈ GL(d, q) and X ∈ SL(d, q)

XfAf−1
= f

(
A−1f−1(X)A

)
= f(A)−1Xf(A) = Xf(A).

This proves that A is a normal subgroup of Aut(SL(d, q)). Now notice

that for any f ∈ B, A−1XfA =
(
(A−1)f

−1
XAf

−1
)f

, where A ∈ GL(d, q).
This proves that we can move elements of B to the right of the product of
automorphisms. This proves our theorem. •

Now notice that the order ofA is actually big, it is q
n(n−1)

2 (qn−1) · · · (q−2)
but the order of B is small. The group B is the direct product of the graph
and field automorphisms. The order of B is 2γ where γ is the degree for the
extension Fq over the ground field. Let γ1 = 2γ.

Let φ and φm be as in Section 2.1, then from the previous theorem φ =
Aψ1 and φm = A′ψ2, where A,A′ ∈ A and ψ1, ψ2 ∈ B. I shall consider A ∈ A
as the conjugator as well, this is clearly the case because A ∼= PGL(d, q).

Now if φ = Aψ1, then φm = AAψ1 · · ·Aψ
m−2
1 Aψ

m−1
1 ψm1 . In this case

AAψ1 · · ·Aψ
m−2
1 Aψ

m−1
1 ∈ A and ψm1 ∈ B.

Now if γ1 < m and since the order of ψ1 divides γ1, there are r1 and r2
such that m− 1 = k1γ1 + r1, where 0 ≤ r1 < γ1 and r2 = m mod γ1. Then
AAψ1 · · ·Aψ

m−1
1 ψm1 = Ak11 AA

ψ1 · · ·Aψ
r1
1 ψr21 , where A1 = AAψ1 · · ·Aψ

γ1−1
1 .

From the information of φ and φm we then have the information of ψ1

and ψr21 . For all practical purposes of implementing this cryptosystem, the
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degree of the field extension cannot be too large, in this case one can do a
exhaustive search on the cosets of A and find out ψ1 and ψr21 and do another
exhaustive search to solve the discrete logarithm problem in ψ1 and find the
r2. The information of r2 gives us a vital information about the secret key
m. This is clearly unacceptable. So the only way out of this situation is not
to use automorphisms from B.

Then for X ∈ SL(d, q) the automorphisms φ and φm as in Section 2.1 is
given by

φ = A−1XA for some A ∈ A(7)

φm = A′−1XA′ for some A′ ∈ A(8)

Now notice that in the description of the MOR protocol we presented the
automorphisms as action on generators and furthermore a set of generators
for SL(d, q) are the elementary transvections.

In this case from the public information of φ and φm one can find A and
A′. This problem is known to be easy in GL(d, q) and is often refereed to
as the special conjugacy problem [15,16]. However, notice that A and A′ are
not unique. If A and A′ satisfy the above equations then so will Az and A′z′

for any z, z′ ∈ Z.
We just saw that the only way to build a secure MOR cryptosystem

using SL(d, q) is using automorphisms from A. Henceforth, whenever we
are talking about the MOR cryptosystem in this paper we mean that we are
using the group SL(d, q) and the automorphisms from A.

7. Security of the proposed MOR cryptosystem

This paper is primarily focused with the discrete logarithm problem in the
automorphism group of a non-abelian group. There are two kinds of attack
on the discrete logarithm problem over finite fields. One is the generic
attack, this attack uses a black box group algorithm and the other is an
index calculus attack.

Since the black box group algorithms work in any group, they will work
in the automorphism group too, see [11, Theorem 1]. We have no way to
prevent that. On the other hand, these generic attacks are of exponential
time complexity and so is of the least concern.

The biggest computational threat to any cryptosystem using the discrete
logarithm problem is the subexponential attack like the index calculus at-
tack [19]. It is often argued [10,20] that there is no index calculus algorithm
for the elliptic curve cryptosystem that has subexponential time complexity.
This fact is presented often to promote elliptic curve cryptosystem over a
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finite field cryptosystem [10]. So, the best we can hope from the present
MOR cryptosystem is that the there is no index calculus attack or the index
calculus attack becomes exponential. There are three issues with a MOR
cryptosystem:

7.1. Membership Problem. I refer back to Equations 7 and 8. We know
that solving conjugacy problem (special conjugacy problem) is easy in GL(d, q)
but the solution is not unique. So, if I fix A then to solve the discrete loga-
rithm problem, I need to find Am. This means that I must find that A′ for
which A′ ∈ 〈A〉. This means we have to perform a membership test for all
elements of the form λA′, λ ∈ F×q in a cyclic subgroup generated by 〈A〉.

It is known [11, Theorem 1] that for generic attacks the membership
problem does not add much to the complexity. This fact actually follows
from the fact that we can get around the membership problem by moving
to PGL(d, q). However, the characteristic polynomial is not invariant in the
equivalence classes of GL(d, q) that are the elements of PGL(d, q). There is
no obvious way (Menezes-Wu [14] algorithm does not work) to reduce the
discrete logarithm problem in PGL(d, q) to some finite field and so there are
no known index calculus algorithms.

7.2. Inner automorphisms as matrices. As it turns out the only way
that a secure MOR cryptosystem might work for the unimodular group
is through conjugation of matrices from A. This MOR cryptosystem can
be seen as working with inner automorphisms of GL(d, q). It is well known
that the inner automorphisms work linearly on the d2-dimensional algebra of
matrices of degree d over Fq. For a fixed basis, any linear operator on a vector
space can be represented as a matrix. So, the discrete logarithm problem
on 〈φ〉 (Section 2.1) is now reduced to the discrete logarithm problem in
GL(d2, q)1. The question is, how easy is it to solve this discrete logarithm
problem?

The best algorithm for solving the discrete logarithm problem in GL(d, q)
was given by Menezes et al. [14]. In this case the authors show that for
X,Y ∈ GL(d, q), such that, X l = Y , l ∈ N; we can solve the discrete
logarithm problem if χ(x) the characteristic polynomial of X factors into
irreducible polynomials of small degree. If the characteristic polynomial
is irreducible then the discrete logarithm problem in 〈X〉 reduces to the
discrete logarithm problem in Fqd . However even if χ(x) is irreducible over

1I am making an optimistic assumption that the reduction can be actually carried out.

The reason I say that is, the automorphisms are presented as action on generators of

SL(d, q). However, I do not know any basis for the matrix algebra that belong to SL(d, q).
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Fq, it might be reducible over some extension of Fq of degree smaller than
that of the d.

So now I want to maximize the degree of the extension, up to which the
characteristic polynomial remains irreducible. For this a corollary comes in
handy:

Corollary 7.1. An irreducible polynomial over Fq of degree n remains ir-
reducible over Fqk if and only if k and n are relatively prime.

Proof. See [17, Corollary 3.47]. •

In our case I am working in GL(d2, q). So the characteristic polynomial
has degree d2. It is easy to see that if d is prime and the characteristic
polynomial is irreducible then the extension of the lowest degree in which the
characteristic polynomial will turn reducible is Fqd . Then the characteristic
polynomial factors into d irreducible polynomials [17, Theorem 3.46]. Then
we can create the splitting fields of these irreducible factors and work the
Menezes-Wu algorithms in each of these splitting field.

The expected asymptotic complexity of the index calculus algorithm in
Fqk is exp

(
(c+ o(1))(log qk)

1
3 (log log qk)

2
3

)
, where c is a constant, see [19]

and [10, Section 4]. If the degree of the extension, k, is greater than log2 q

then the asymptotic time complexity of the index calculus algorithm is expo-
nential. In our case that means if d > log2 q then the asymptotic complexity
of the index calculus algorithm becomes exponential.

However to use the Menezes-Wu algorithm there is a lot of work to be
done. Principal ones are as follows:

z: Implement Fqd and work in Fqd . This is a much larger field than Fq.
y: Factor a polynomial of very large degree over Fqd .
x: Find the splitting field of d irreducible polynomials.

These steps are not counted in any index calculus algorithm, but one has to
perform them to run the Menezes-Wu algorithm.

Taking all these steps together we conjecture that if d ≈ log q, then this
cryptosystem should provide exponential security. There are two cryptosys-
tems to compare with – the ElGamal cryptosystem over a finite field and the
ElGamal cryptosystem over the elliptic curves. Both of these cryptosystems
use the discrete logarithm problem, and the discrete logarithm problem in
an automorphism group is our principal object of study.

If we choose that d > log2 q then this MOR cryptosystems becomes as
secure as the ElGamal over the elliptic curve groups because then the index
calculus algorithm becomes exponential; otherwise we can not guarantee.
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But on the other hand in the proposed MOR cryptosystem encryption and
decryption works on Fq and breaking the cryptosystem depends on solving a
discrete logarithm problem on finite extensions of Fqd . Since, implementing
the index calculus attack becomes harder as the field gets bigger, it is clear
that if we take d to be a prime and d ≈ log q, then the MOR cryptosystem is
much more secure than the ElGamal cryptosystem over Fq and we conjecture
it to be as secure as the ElGamal cryptosystem over the elliptic curve groups.
I shall go in details about choice of parameters in Section 8.2.

7.3. Central Attack. The center Z of GL(d, q) is of the order q− 1. Then
from the public information of φ and φm (Section 2.1), where φ and φm

are presented as action on some set of generators of SL(d, q); one can find
the A and Amz, where A ∈ A and z ∈ Z. Then we can compute Aq−1

and (Amz)q−1 =
(
Aq−1

)m. Then the discrete logarithm problem in 〈φ〉
transforms into the discrete logarithm problem in Aq−1. However, we notice
that the maximum order of an element in GL(d, q) is qd− 1. Also note that
q − 1 divides qd − 1. Then one can find an element A ∈ A such that the
order of A in GL(d, q) is q − 1, then the above attack is useless.

8. Implementation of this MOR cryptosystem

The cryptosystem we have in mind is the MOR cryptosystem (Section
2.1), the non-abelian group is SL(d, q) and the automorphisms are the auto-
morphisms from A. In this implementation the most important thing will be
the presentation of φ and φm. We decided earlier that the presentation will
be the action of the automorphisms on a set of generators {g1, g2, . . . , gτ}.
Now we can write φ(gi) as a word in the generators g1, g2, . . . , gτ or we can
write the product of the generators as a matrix. We choose the later, there
are two reasons for that:

w: This will contain the growth in the length of the word, especially
while computing the powers of φ. That will stop any length based
attack.

v: This will add to the diffusion.

The set of generators for SL(d, q) that we have in mind is the elemen-
tary transvections. It is easy to go back and forth as words in elementary
transvections and matrices.

A big question is how to compute large powers of φ efficiently? This is not
the object of study for this paper and we will be brief on this topic. Since
computing the power of an automorphism is in the heart of encryption and
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decryption for this and any MOR cryptosystem, I can not possibly over-
emphasis the importance of this line of research.

Since a set of generators are elementary transvections, computing the
power of φ can be done using only words in elementary transvections and
the image of the automorphism on these elementary transvections. This
can be done very efficiently. However, we have decided to write φm(gi) as
matrices. So, while computing the power of φ, one might have to go back
and forth between words and matrices. The objective of this exercise is
to reduce the amount of matrix multiplication in computing the power of
φ. Also, one can use the relations among the elementary transvections to
shorten the length of the word. There are quite a few options available.

We explore one of them in more details. Assume that we are computing
the φm using the square and multiply algorithm [22, Algorithm 5.5]. In this
algorithm one needs to multiply two group elements, in our case it is compos-
ing two automorphisms. So, I want to find out the worst-case complexity for
multiplying two automorphisms. I further assume that the automorphism
is given as the image of (1 + ei,j), i 6= j, i, j ∈ {1, 2, . . . , d}, the image is
one d × d matrix. So for sake of notational convenience I assume that we
are squaring φ, where φ is given by the action on elementary transvections.
As is customary we assume that the field addition is free and we count the
number of field multiplications necessary to do the computation.

Let’s start with the matrix M such that M = φ (1 + ei,j), I shall use row
operations to write M as product of elementary transvections. We count
each row operation as d field multiplications and there are utmost d2 row
operation. So in the worst case after d3 many field multiplication we have
written M as a product of elementary transvection. At most there are d2

many elementary transvections in the product2.
Using the relation in Equation 2, we split each transvection into product

of elementary transvection over the ground field. So now there are γd2

elementary transvections over the ground field, for each of which the image
under φ is known. Then the image under φ is computed and then and
then there are (p − 1)γd4 elementary transvection. The question is how to
compute the matrix corresponding to that? I propose the following:

There are utmost (p − 1)γd4 elementary transvections in the product of
φ(M). Make d equally spaced partition of the product of φ(M). Then each
one of these partitions can have utmost (p−1)γd3 elementary transvections.
Now we multiply the (p − 1)γd3 elementary transvections to get d many

2Some small examples computed by the author using GAP [9] suggests that in practice

this number is much smaller.
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matrices and them multiply these d many matrices to get the final matrix
corresponding to φ2 (1 + ei,j). Now we multiply the (p − 1)γd3 elementary
transvections linearly, one after the other, and use the relations in Equations
1 and 2 . Notice that one of the components in this multiplication is an
elementary transvection. So every multiplication can take utmost d many
field multiplication. So the total complexity of multiplying (p− 1)γd3 many
elementary transvections is (p − 1)γd4. Since different partitions can be
multiplied in parallel we assume that the worst-case complexity is (p−1)γd4

field multiplications.
Now we have to multiply the d many matrices thus obtained. We assume

that we use a straight line program to compute the product. Assuming that
matrix multiplication can be done in d3 field multiplication, we see that this
also requires d4 field multiplications. Since we can compute φ2 (1 + ei,j) in
parallel for different i and j, we claim that we can multiply two automor-
phisms with worst-case complexity (p− 1)γd4 + d4 field multiplications.

8.1. Parameters for the cryptosystem. We realized that if the conju-
gator A in φ (Equation 7) is a monomial matrix then that prevents the
formation of a discrete logarithm problem in the λ of a elementary transvec-
tion 1 + λei,j . We need the inner automorphism so that the attack due to
small cycle size of the permutation in the monomial matrix can be avoided.
So we have to take the automorphism as conjugation by A ∈ GL(d, q). Fur-
thermore to avoid the central attack the A should be of order q − 1 and
the characteristic polynomial out of φ represented as a matrix in GL

(
d2, q

)
should be irreducible.

The size of d and q is an open question. With the limited amount of
knowledge we have about this cryptosystem we can only make a preliminary
attempt to encourage further research. The current standard for security
in the public key cryptography is 80-bit security. This means that the best
known attack to the cryptosystem should take at least 280 steps.

The best known attack on the discrete logarithm problem in the matrices
A and A′ (Equations 7 and 8) is the generic square root attack. So we have
to ensure that to find m from A and A′ one needs at least 280 steps. For an
attack algorithm we assume that computing in Fq and in GL(d, q) takes the
same amount of time. Then from the central attack it follows that the field
should be of size 2160. So there are two choices for q, take q to be a prime
of the order 2160, i.e., a 160 bit prime; or take Fq = F2160 . From our earlier
analysis we know that the d should be a prime.

A similar situation arises with the discrete logarithm problem over the
group of an elliptic curve over a finite field. The MOV attack reduces the
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discrete logarithm problem in the group of the elliptic curve over Fq to a
discrete logarithm problem in F×

qk for some integer k. This is of concern in
the implementation of the elliptic curve cryptosystem, because if k is too
small then there is an subexponential attack on the elliptic curve discrete
logarithm problem. On the other hand the size of the group is almost as big
as the field. To prevent the square root attack the size of the field has to be
considerably higher. Once you assume that the field is of appropriate size
(2160), small k provides adequate security. Unfortunately, our case is quite
similar. Though GL(d, q) can have elements of very high order, due to the
central attack the only kind of element we can use are of order q− 1. So we
have to take the field Fq large to prevent generic attacks.

Koblitz et al. [10, Section 5.2] mentions that in practice k ≈ 20 is enough
for security. If we buy their argument, then it would seem that one can
choose d to be a prime around 20. We suspect that one might be able to
go even smaller, in our MOR cryptosystem, Menezes-Wu algorithm reduces
the discrete logarithm problem in a finite extension of Fqd , not Fqd itself.

So we propose d = 13, and q is as described earlier. Then we see that
the if q = 2160, then we are talking about a discrete logarithm problem in
the extension of F22080 . This clearly surpasses every standard for discrete
logarithm problem over finite fields. At this size of the field, it does not
matter if the index-calculus is exponential or sub-exponential. It is simply
not doable.

8.2. Generators for the cryptosystem. The question we raise in this
section is, are their better generators than the elementary transvections in
SL(d, q)? We saw that if we use the elementary transvections for a prime field
then one needs (d2 − d) elementary transvections and (d2 − d)γ elementary
transvections for Fq where q = pγ .

This is one of the major problems in the implementation of this cryptosys-
tem. If d is 25 (say) and we are using a prime field then we need 2 × 600
matrices of size 25 × 25 for the public key. Similar will be the case for the
ciphertext.

We now try to solve this problem. In this MOR cryptosystem (Section
2.1), generators play a major role. There are some properties of the gener-
ators that help; two of them are:

i: There should be an efficient algorithm to solve the word problem in
these generators.

ii: Less the number of generators of the group, better is the cryptosys-
tem.
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Albert and Thompson [1] provides us with two generators for SL(d, q).
They are

C = 1 + αed−1,2 + ed,1

D = (−1)d
(
e1,2 − e2,3 +

d∑
i=3

ei,i+1

)
where α is a primitive element of Fq. It is clear from the proof of [1, Lemma
1] that to solve the word problem in these generators one has to solve the
discrete logarithm problem in Fq. This is clearly not useful for our cause. So
we adapt the generators and extend it to show that for these generators one
can compute the elementary transvections. Since the number of generators
is 2γ, this gives us an advantage for the presentation of the public key and
the ciphertext over elementary transvections. However, I know of no efficient
algorithm to solve the word problem in these generators. If we can find one
such algorithm then it can be argued that this cryptosystem would become
more economical(efficient).

We now look at Fq as a γ-dimensional vector space over Fp and use the
fact that Fq is an elementary abelian p-group of rank γ. We will generate
SL(d, p) for the prime p and then use the relations in Equation 2 to generate
SL(d, q). This is exactly the way one deals with the elementary transvections
when working with a proper field extension.

We now prove a theorem which is an adaptation of [1, Lemma 1]. We use
the convention used by Albert and Thomson,

ei,j = ed+i,j = ei,d+j .

The proof of this lemma is practically identical with the proof of [1, Lemma
1]. We include a short proof for the convenience of the reader and some of
the formulas we produce in the proof are useful for implementation.

Theorem 8.1. Let

C = 1 + ed−1,2 + ed,1 and D = (−1)d
(
e1,2 − e2,3 +

d∑
i=3

ei,i+1

)
be elements of SL(d, p) where d ≥ 5. Then C and D generates SL(d, p).

Proof. Let G0 be the subgroup of SL(d, q) generated by C and D. We will
now write down a few formulas, which follows from direct computation. For
2 ≤ k ≤ d− 2 we have

D−1 = (−1)d
(
e2,1 − e3,2 +

d∑
i=3

ei+1,i

)
(9)

C1 = D−1CD = 1− ed,3 + e1,2(10)
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CC1C
−1C−1

1 = 1 + ed,2(11)

Dk = (−1)dk
(
−e1,1+k − e2,2+k +

d∑
i=3

ei,i+k

)
(12)

D−k = (−1)dk
(
−e1+k,1 − e2+k,2 +

d∑
i=3

ei+k,i

)
(13)

Ck = D−kCDk = 1− ek−1,k+2 − ek,k+1(14)

C−1
k = 1 + ek−1,k+2 + ek,k+1(15)

(1 + ed,k)Ck (1− ed,k)C−1
k = 1− ed,k+1(16)

From Equation (11) we see that 1 + ed,2 belongs to G0 and then we use
mathematical induction on k and Equation (16) proves that 1 + ed,k ∈ G0

for k = 2, . . . , d − 1. Also D−2 (1 + ed,d−1)D2 = 1 + e2,1 ∈ G0. Further-
more [1 + ed,2, 1 + e2,1] = 1 + ed,1. This proves that 1 + ed,k ∈ G0 for
k = 1, 2, . . . , d− 1. Then we can use the relations in SL(d, p) to prove that
1 + ei,j ∈ G0 for i, j ∈ {1, 2, . . . , d} and i 6= j. This proves the theorem. •

The proof of the theorem is constructive. It gives us a way to compute
the elementary transvections from these generators of Albert and Thomson;
one can use them effectively to publish the public key. There will be some
precomputation involved to change the action of φ from these generators to
elementary transvections.

9. Conclusions

In this paper I studied the MOR cryptosystem for the special linear group
over finite fields. Cryptography is primarily driven by applicability. So it is
natural to ask, how efficiently can one implement this MOR cryptosystem?
How secure is the cryptosystem? I talked in details on both these issues
in Sections 8 and 7 respectively. These are often hard questions to answer
from a preliminary and often naive investigation. The worst case complexity
is often far off from the actual cost of computation and security in itself is
a very elusive concept. We now offer some realistic expectations on the
computational cost of this MOR cryptosystem when q = 2γ .

From the small experiments we did, it seems reasonable to assume that a
randomly chosen element of SL(d, q) is generated by approximately d elemen-
tary transvections, not d2 elementary transvections. This story is also cor-
roborated by the proof of the previous theorem, where we show that SL(d, q)
is generated by all transvections of the form 1+ed,k, k = 1, 2, . . . , d−1. Then
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we need to compute the image of these d elementary transvections under the
automorphism φ. For that we need to split each elementary transvections
into product of elementary transvections over the ground field using Equa-
tion 2. Then in the worst case we now have γd elementary transvections.
But since in any random binary string of length γ on average there are ut-
most

γ

2
ones. So a more realistic expectation of the number of transvections

is
γ

2
d. Using the same expectation as before the image of these transvections

under φ will be a string of
γ

2
d2 elementary transvections. Now if we use a

straight line program, i.e., use the elementary transvections to multiply the
one next to it to form the matrix, then the worst case complexity will be

γ

2
d3

field multiplication. However, in reality that complexity will be something
like

γ

2
dλ where 2 < λ ≤ 3. So it is safe to assume that in practice λ will be

around 2.5.
With all this understanding we can say that if q is a field of characteristic

2 and degree γ, then composition of two automorphisms require around

d2 +
γ

2
d2.5

field multiplications.
Now notice that if I was working with a finite field Fqd then the naive

product of two non-zero field element costs around d2 field multiplications.
We are quite close to that. Moreover the security we get is discrete logarithm
problem in a finite extension Fqd . This provides us with considerable security
advantage than discrete logarithm problem in F×

qd .
Lastly, I recommend that the plaintext should be an elementary transvec-

tion. It is known that trace and determinant is invariant under matrix con-
jugation. So the trace or the determinant can give out information about
the plaintext. However, if it is an elementary transvection then the trace is
always d and the determinant 1.
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