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Abstract

We study an adaptive variant of oblivious transfer in which a sender has N messages, of which
a receiver can adaptively choose to receive k one-after-the-other, in such a way that (a) the sender
learns nothing about the receiver’s selections, and (b) the receiver only learns about the k requested
messages. We propose two practical protocols for this primitive that achieve a stronger security
notion than previous schemes with comparable efficiency. In particular, by requiring full simulata-
bility for both sender and receiver security, our notion prohibits a subtle selective-failure attack not
addressed by the security notions achieved by previous practical schemes.

Our first protocol is a very efficient generic construction from unique blind signatures in the
random oracle model. The second construction does not assume random oracles, but achieves
remarkable efficiency with only a constant number of group elements sent during each transfer.
This second construction uses novel techniques for building efficient simulatable protocols.

1 Introduction

The oblivious transfer (OT) primitive, introduced by Rabin [Rab81], and extended by Even, Goldreich,
and Lempel [EGL85] and Brassard, Crépeau and Robert [BCR87] is deceptively simple: there is a
sender S with messages M1, . . . ,MN and a receiver R with a selection value σ ∈ {1, . . . , N}. The
receiver wishes to retrieve Mσ from S in such a way that (1) the sender does not “learn” anything
about the receiver’s choice σ and (2) the receiver “learns” only Mσ and nothing about any other
message Mi for i 6= σ. Part of the allure of OT is that it is complete, i.e., if OT can be realized,
virtually any secure multiparty computation can be [GMW87, CK90].

In this paper, we consider an adaptive version of oblivious transfer in which the sender and receiver
first run an initialization phase during which the sender commits to a “database” containing her
messages. Later on, the sender and receiver interact up to k times allowing the receiver to retrieve
up to k messages of its choice from the sender’s database. Notice here that we specifically model
the situation in which the receiver’s selection in the ith phase can depend on the messages retrieved
in the prior i − 1 phases. This type of adaptive OT problem is central to a variety of practical
problems such as patent searches, treasure hunting, location-based services, oblivious search, and
medical databases [NP99b].

The practicality of this adaptive OT problem also drives the need for efficient solutions to it. Ideally,
a protocol should only require communication linear in N and the security parameter κ during the
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initialization phase (so that the sender commits to the N messages), and an amount of communication
of O(max(κ, log N)) during each transfer phase (so that the receiver can use cryptography and encode
the index of his choice).1 In the race to achieve these efficiency parameters, however, we must also
not overlook—or worse, settle for less-than-ideal security properties.

1.1 Security Definitions of Oblivious Transfer

An important contribution of this work is that it achieves a stronger simulation-based security notion
at very little cost with respect to existing schemes that achieve weaker notions. We briefly summarize
the various security notions for OT presented in the literature, and how our notion extends them.

Honest-but-curious model. In this model, all parties are assumed to follow the protocol honestly.
Security guarantees that after the protocol completes, a curious participant cannot analyze the tran-
script of the protocol to learn anything else. Any protocol in the honest-but-curious model can be
transformed into fully-simulatable protocols, albeit at the cost of adding complexity assumptions and
requiring costly general zero-knowledge proofs for each protocol step.

Half-simulation. This notion, introduced by Naor and Pinkas [NP05], considers malicious senders
and receivers, but handles their security separately. Receiver security is defined by requiring that the
sender’s view of the protocol when the receiver chooses index σ is indistinguishable from a view of
the protocol when the receiver chooses σ′. Sender security, on the other hand, involves a stronger
notion. The requirement follows the real-world/ideal-world paradigm and guarantees that any mali-
cious receiver in the real world can be mapped to a receiver in an idealized game in which the OT
is implemented by a trusted party. Usually, this requires that receivers are efficiently “simulatable,”
thus we refer to this notion as half-simulation.

The Problem of Selective Failure. We argue that the definition of half-simulation described
above does not imply all properties that one may expect from an adaptive k-out-ot-of-n OT. Notice
that a cheating sender can always make the current transfer fail by sending bogus messages. However,
we would not expect him to be able to cause failure based on some property of the receiver’s selection.
Of course, the sender can also prevent the receiver from retrieving Mσ by replacing it with a random
value during the initialization phase. But again, the sender should not be able to make this decision
anew at each transfer phase. For example, the sender should not be able to make the first transfer
fail for σ = 1 but succeed for σ ∈ {2, . . . , N}, and to make the second transfer fail for σ = 2 but
succeed for σ ∈ {1, 3, . . . , N}. The receiver could publicly complain whenever a transfer fails, but by
doing so it gives up the privacy of its query. Causing transfers to fail may on the long term harm the
sender’s business, but relying on such arguments to dismiss the problem is terribly naive. A desperate
patent search database may choose to make faster money by selling a company’s recent queries to
competitors than by continuing to run its service.

We refer to this issue as the selective-failure problem. To see why it is not covered by the half-
simulation notion described above, it suffices to observe that the notion of receiver security only hides

the message received by the receiver from the cheating sender’s view. A scheme that is vulnerable
to selective-failure attacks does not give the cheating sender any additional advantage in breaking
the receiver’s privacy, and may therefore be secure under such a notion. (This illustrates the classic
argument from work in secure multiparty computation that achieving just privacy is not enough; both
privacy and correctness must be achieved simultaneously.) In fact, the schemes of [NP05] are secure
under half-simulation, yet vulnerable to selective-failure attacks. In an earlier version [NP99b], the

1In practice, we assume that κ > log(N)—so that the protocol can encode the receiver’s selection—but otherwise
that κ is chosen purely for the sake of security. In this sense, O(κ) is both conceptually and practically different than
O(polylog(N)).
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same authors recognize this problem and remark that it can be fixed, but do not give formal support
of their claim. A main contribution of this work is to show that it can be done without major sacrifices
in efficiency.

Simulatable OT. The security notion that we consider employs the real-world/ideal-world paradigm
for both receiver and sender security. We extend the functionality of the trusted party such that at
each transfer, the sender inputs a bit b indicating whether it wants the transfer to succeed or fail.
This models the capability of a sender in the real world to make the transfer fail by sending bogus
messages, but does not enable it to do so based on the receiver’s input σ. Moreover, for security we
require indistinguishability of the combined outputs of the sender and the receiver, rather than only
of the output of the dishonest party. The output of the honest receiver is assumed to consist of all
the messages Mσ1

, . . . ,Mσk
that it received. This security notion excludes selective-failure attacks in

the real world, because the ideal-world sender is unable to perform such attacks, which will lead to
noticeable differences in the receiver’s output in the real and ideal world.

Finally, we observe that simulatable oblivious transfer is used as a primitive to build many other
cryptographic protocols [Gol04]. By building an efficient OT protocol with such simulation, we take
the first steps at realizing many other interesting cryptographic protocols.

1.2 Construction Overview

Our random-oracle protocol. Our first construction is a black-box construction using any
unique blind signature scheme. By unique, we mean that for all public keys and messages there exists
at most one valid signature. First, the sender generates a key pair (pk , sk) for the blind signature
scheme, and “commits” to each message in its database by xor-ing the message Mi with H(i, si),
where si is the unique signature of the message i under pk . Intuitively, we’re using si as a key to
unlock the message Mi. To retrieve the “key” to a message Mi, the sender and receiver engage in
the blind signature protocol for message i. By the unforgeability of the signature scheme, a malicious
receiver will be unable to unlock more than k such messages. By the blindness of the scheme, the
sender learns nothing about which messages have been requested.

The random oracle serves four purposes. First, it serves as a one-time pad to perfectly hide the
messages. Second, it allows a simulator to extract the sender’s original messages from the commitments
so that we can prove receiver-security. Third, in the proof of sender-security, it allows the simulator
to both extract the receiver’s choice and, via programming the random oracle, to make the receiver
open the commitment to an arbitrary message. Finally, it allows us to extract forgeries of the blind
signature scheme from a malicious receiver who is able to break sender-security.

Our standard-model protocol. There are three main ideas behind the standard protocol in §4.
At a very high level, just as in the random oracle protocol, the sender uses a unique signature of i
as a key to encrypt Mi in the initialization phase. However, unlike the random-oracle protocol, we
observe here that we only need a blind signature scheme which allows signatures on a small, a-priori

fixed message space {1, . . . , N}.
The second idea concerns the fact that after engaging in the blind-signing protocol, a receiver can

easily check whether the sender has sent the correct response during the transfer phase by verifying
the signature it received. While seemingly a feature, this property becomes a problem during the
simulation of a malicious receiver. Namely, the simulator must commit to N random values during
the initialize phase, and later during the transfer phase, open any one of these values to an arbitrary
value (the correct message Mi received from the trusted party during simulation). In the random
oracle model, this is possible via programming the random oracle. In the standard model, a typical
solution would be to use a trapdoor commitment. However, a standard trapdoor commitment is
unlikely to work here because most of these require the opener to send the actual committed value
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when it opens the commitment. This is not possible in our OT setting since the sender does not know
which commitment is being opened.

Our solution is to modify the “blind-signing” protocol so that, instead of returning a signature
to the user, a one-way function (a bilinear pairing in our case) of the signature is returned. To
protect against a malicious sender, the sender then proves in zero-knowledge that the value returned
is computed correctly. In the security proof, we will return a random value to the receiver and fake
the zero-knowledge proof.

The final idea behind our construction concerns a malicious receiver who may use an invalid input
to the “blind-signature protocol” in order to, say, retrieve a signature on a value outside of {1, . . . , N}.
This is a real concern, since such an attack potentially allows a malicious receiver to learn the product
Mi ·Mj which violates the security notion. In order to prevent such cheating, we require the receiver
to prove in zero-knowledge that (a) it knows the input it is requesting a signature for, and (b) that the
input is valid for the protocol. While this is conceptually simple, the problem is that the size of such
a theorem statement, and therefore the time and communication complexity of such a zero-knowledge
proof, could potentially be linear in N . For our stated efficiency goals, we need a proof of constant size.
To solve this final problem, we observe that the input to the blind signature process is a small set—i.e.,
only has N possible values. Thus, the sender can sign all N possible input messages (using a different
signing key x) to the blind signature protocol and publish them in the initialization phase. During
the transfer phase, the receiver blinds one of these inputs and then gives a zero-knowledge proof of
knowledge that it knows a signature of this blinded input value. Following the work of Camenisch and
Lysyanskaya [CL04], there are very efficient proofs for such statements which are constant size.

Finally, in order to support receiver security, the sender provides a proof of knowledge of the
“commitment key” used to commit to its input message. This key can thus be extracted from the
proof of knowledge and use it to compute messages to send to the trusted party.

1.3 Related Work

The concept of oblivious transfer was proposed by Rabin [Rab81] (but considered earlier by Wies-
ner [Wie83]) and further generalized to one-out-of-two OT (OT

2
1) by Even, Goldreich and Lem-

pel [EGL85] and one-out-of-N OT (OT
N
1 ) by Brassard, Crépeau and Robert [BCR87]. A complete

history of the work on OT is beyond our scope. In particular, here we do not mention constructions of
OT which are based on generic zero-knowlege techniques or setup assumptions. See Goldreich [Gol04]
for more details.

Bellare and Micali [BM90] presented practical implementations of OT
2
1 under the honest-but-

curious notion and later Naor and Pinkas [NP01] did the same under the half-simulation definition.
Brassard et al. [BCR87] showed how to implement OT

N
1 using N applications of a OT

2
1 protocol.

Under half-simulation, Naor and Pinkas [NP99a] gave a more efficient construction requiring only
log N OT

2
1 executions. Several direct 2-message OT

N
1 protocols (also under half-simulation) have

been proposed in various works [NP01, AIR01, Kal05].

The first adaptive k-out-of-N oblivious transfer (OT
N
k×1) protocol was proposed by Naor and

Pinkas [NP99b]. Their scheme is secure under half-simulation and involves O(log N) invocations of a
OT

2
1 protocol during the transfer stage. Using optimistic parameters, this translates into a protocol

with O(log N) rounds and at least O(k log N) communication complexity during the transfer phase.

The same authors also propose a protocol requiring 2 invocations of a OT

√
N

1 protocol. Laur and
Lipmaa [LL06] build an OT

N
k×1 in which k must be a constant. Their security notion specifically

tolerates selective-failure, and the efficiency of their construction depends on the efficiency of the
fully-simulatable OT

N
1 and the equivocable (i.e., trapdoor) list commitment scheme which are used

as primitives.
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In the random oracle model, Ogata and Kurosawa [OK04] and Chu and Tzeng [CT05] propose two
efficient OT

N
k×1 schemes satisfying half-simulation which require O(k) computation and communication

during the transfer stage. Our first generic OT
N
k×1 construction based on unique blind signatures covers

both schemes as special cases, offers full simulation-security, and fixes minor technical problems to
prevent certain attacks. Prior to our work, Malkhi and Sella [MS03] observed a relation between OT
and blind signatures, but did not give a generic transformation between the two. They present a direct
OT

N
1 protocol (also in the random oracle model) based on Chaum’s blind signatures [Cha88]. Their

scheme could be seen as a OT
N
k×1 protocol as well, but it has communication complexity O(κN) in

the transfer phase. Their scheme is not an instantiation of our generic construction.

OT
N
k×1 can always be achieved by publishing commitments to the N data items, and executing k

OT
N
1 protocols on the N pieces of opening information. This solution incurs costs of O(κN) in each

transfer phase.

Naor and Pinkas [NP05] demonstrate a way to transform a singe-server private-information re-
trieval scheme (PIR) into an oblivious transfer scheme with sublinear-in-N communication complexity.
This transformation is in the half-simulation model and the dozen or so constructions of OT from PIR
seem to also be in this model. Moreover, there are no adaptive PIR schemes known.

2 Definitions

If k ∈ N, then 1k is the string consisting of k ones. The empty string is denoted ε. If A is a

randomized algorithm, then y
$
← A(x) denotes the assignment to y of the output of A on input x when

run with fresh random coins. Unless noted, all algorithms are probabilistic polynomial-time (PPT)
and we implicitly assume they take an extra parameter 1κ in their input. A function ν : N→ [0, 1] is
negligible if for all c ∈ N there exists a κc ∈ N such that ν(κ) < κ−c for all κ > κc.

2.1 Blind Signatures

A blind signature scheme BS is a tuple of PPT algorithms (Kg,Sign,User,Vf). The signer generates a

key pair via the key generation algorithm (pk , sk)
$
← Kg(1κ). To obtain a signature on a message m,

the user and signer engage in an interactive signing protocol dictated by the User(pk ,m) and Sign(sk)
algorithms. At the end of the protocol, the User algorithm returns a signature s or ⊥ to indicate
rejection. The verification algorithm Vf(pk ,m, s) returns 1 if the signature is deemed valid and 0
otherwise. Correctness requires that Vf(pk ,m, s) = 1 for all (pk , sk ) output by the Kg algorithm, for
all m ∈ {0, 1}∗ and for all signatures output by User(pk ,m) after interacting with Sign(sk). We say
that BS is unique [GO92] if for each public key pk ∈ {0, 1}∗ and each message m ∈ {0, 1}∗ there exists
at most one signature s ∈ {0, 1}∗ such that Vf(pk ,m, s) = 1.

The security of blind signatures is twofold. On the one hand, one-more unforgeability [PS96]
requires that no adversary can output n + 1 valid message-signature pairs after being given the public
key as input and after at most n interactions with a signing oracle. We say that BS is unforgeable if
no PPT adversary has non-negligible probability of winning this game.

Blindness, on the other hand, requires that the signer cannot tell apart the message it is signing.
The notion was first formalized by Juels et al. [JLO97], and was later strengthened to dishonest-

key blindness [ANN06, Oka06] which allows the signer to choose the public key maliciously. In this
work, we further strengthen the definition to selective-failure blindness. Intuitively, it prevents a
cheating signer from making the user algorithm fail depending on the message that is being signed.
This property seems important in practice, yet is not implied by any of the existing definitions. For
example, consider a voting protocol where an administrator issues blind signatures on the voters’
votes [FOO93]. If the scheme is not selective-failure blind, the administrator could for example let
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the protocol fail for votes for John Kerry, but let it proceed normally for votes for George W. Bush.
Affected Kerry voters could complain, but by doing so they give up the privacy of their vote.

Selective-failure blindness is defined through the following game. The adversary first outputs a
public key pk and two messages m0,m1. It is then given black-box access to two instances of the
user algorithm, the first implementing User(pk ,mb) and the second implementing User(pk ,m1−b) for

a random bit b
$
← {0, 1}. Eventually, these algorithms produce local output sb and s1−b, respectively.

If sb 6= ⊥ and s1−b 6= ⊥, then the adversary is given the pair (s0, s1); if sb = ⊥ and s1−b 6= ⊥, then it is
given (⊥, ε); if sb 6= ⊥ and s1−b = ⊥, then it is given (ε,⊥); and if sb = s1−b = ⊥ it is given (⊥,⊥). (It
is here that our definition is stronger than the existing ones: in the existing definition, the adversary
is simply given ⊥ if either algorithm fails.) The adversary then guesses the bit b. The scheme BS is
said to be selective-failure blind if no PPT adversary has a non-negligible advantage in winning the
above game.

2.2 Simulatable Adaptive Oblivious Transfer

An adaptive k-out-of-N oblivious transfer scheme OT
N
k×1 is a tuple of four PPT algorithms (SI,RI,

ST,RT). During the initialization phase, the sender and receiver perform an interactive protocol
where the sender runs the SI algorithm on input messages M1, . . . ,MN , while the receiver runs the RI

algorithm without input. At the end of the initialization protocol, the SI and RI algorithm produce as
local outputs state information S0 and R0, respectively. During the i-th transfer, 1 ≤ i ≤ k, the sender
and receiver engage in a selection protocol dictated by the ST and RT algorithms. The sender runs
ST(Si−1) to obtain updated state information Si, while the receiver runs the RT(Ri−1, σi) algorithm
on input state information Ri−1 and the index σi of the message it wishes to receive, to obtain
updated state information Ri and the retrieved message M ′

σi
. Correctness requires that M ′

σi
= Mσi

for all messages M1, . . . ,MN , for all selections σ1, . . . , σk ∈ {1, . . . , N} and for all coin tosses of the
algorithms.

To capture security of an OT
N
k×1 scheme, we employ the real-world/ideal-world paradigm. Below,

we describe a real experiment in which the parties run the protocol, while in the ideal experiment
the functionality is implemented through a trusted third party. For the sake of simplicity, we do not
explicitly include auxiliary inputs to the parties. This can be done, and indeed must be done for
sequential composition of the primitive, and our protocols achieve this notion as well.

Real experiment. We first explain the experiment for arbitrary sender and receiver algorithms Ŝ

and R̂. The experiment Real
Ŝ,R̂

(N, k,M1, . . . ,MN , σ1, . . . , σk) proceeds as follows. Ŝ is given messages

(M1, . . . ,MN ) as input and interacts with R̂ without input. In their first run, Ŝ and R̂ produce
initial states S0 and R0 respectively. Next, the sender and receiver engage in k interactions. In

the i-th interaction for 1 ≤ i ≤ k, the sender and receiver interact by running Si
$
← Ŝ(Si−1) and

(Ri,M
′
σi

)
$
← R̂(Ri−1, σi), where σi ∈ {1, . . . , N} is a message index. Both algorithms update their

states to Si and Ri, respectively. Note that M ′
σi

may be different from Mσi
when either participant

cheats. At the end of the k-th interaction, sender and receiver output strings Sk and Rk respectively.
The output of the Real

Ŝ,R̂
experiment is the tuple (Sk,Rk).

For an OT
N
k×1 scheme (SI,ST,RI,RT), define the honest sender S algorithm as the algorithm that

runs SI(M1, . . . ,MN ) in the initialization phase, runs ST in all following interactions, and always
outputs Sk = ε as its final output. Define the honest receiver R as the algorithm which runs RI in
the initialization phase, runs RT(Ri−1, σi) and in the i-th interaction, and returns the list of received
messages Rk = (M ′

σ1
, . . . ,M ′

σk
) as its final output.

Ideal experiment. In experiment Ideal
Ŝ′,R̂′(N, k,M1, . . . ,MN , σ1, . . . , σk), the (possibly cheating)

sender algorithm Ŝ′(M1, . . . ,MN ) generates messages M ′
1, . . . ,M

′
N and hands these to the trusted party
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T. In each of the k transfer phases, T receives a bit bi from the sender Ŝ′ and an index σ′
i from the

(possibly cheating) receiver R̂′(σi). If bi = 1 and σ′
i ∈ {1, . . . , N}, then T hands M ′

σ′
i

to the receiver;

otherwise, it hands ⊥ to the receiver. At the end of the k-th transfer, Ŝ′ and R̂′ output a string Sk

and Rk; the output of the experiment is the pair (Sk,Rk).
As above, define the ideal sender S′(M1, . . . ,MN ) as the algorithm that sends messages M1, . . . ,MN

to the trusted party in the initialization phase, sends bi = 1 in all transfer phases, and outputs Sk = ε
as its final state. Define the honest ideal receiver R′ as the algorithm that at each transfer submits
the real selection index σi to the trusted party, and that outputs the list of all received messages
Rk = (M ′

σ1
, . . . ,M ′

σk
) as its final state.

Note that the sender’s bit bi models its ability to make the current transfer fail. However, the
sender’s decision to do so is independent of the index σ′

i that is being queried by the receiver. This
captures the strongest notion of “coherence” as envisaged by [LL06], and excludes schemes like [NP99b]
that allow the sender to cause selective failure.

Sender security. We say that OT
N
k×1 is sender-secure if for any PPT real-world cheating receiver

R̂ there exists a PPT ideal-world receiver R̂′ such that for any polynomial Nm(κ), any N ∈
{1, . . . , Nm(κ)}, any k ∈ {1, . . . , N}, any messages M1, . . . ,MN , and any indices σ1, . . . , σk ∈
{1, . . . , N}, the advantage of any PPT distinguisher in distinguishing the distributions

Real
S,R̂

(N, k,M1, . . . ,MN , σ1, . . . , σk) and Ideal
S′,R̂′(N, k,M1, . . . ,MN , σ1, . . . , σk)

is negligible in κ.

Receiver security. We say that OT
N
k×1 is receiver-secure if for any PPT real-world cheating sender

Ŝ there exists a PPT ideal-world sender Ŝ′ such that for any polynomial Nm(κ), any N ∈
{1, . . . , Nm(κ)}, any k ∈ {1, . . . , N}, any messages M1, . . . ,MN , and any indices σ1, . . . , σk ∈
{1, . . . , N}, the advantage of any PPT distinguisher in distinguishing the distributions

Real
Ŝ,R

(N, k,M1, . . . ,MN , σ1, . . . , σk) and Ideal
Ŝ′,R′(N, k,M1, . . . ,MN , σ1, . . . , σk)

is negligible in κ.

3 A Generic Construction in the Random Oracle Model

In this section, we describe a generic yet very efficient way of constructing adaptive k-out-of-N OT
schemes from unique blind signature schemes, and prove its security in the random oracle model.

3.1 The Construction

To any unique blind signature scheme BS = (Kg,Sign,User,Vf), we associate the OT
N
k×1 scheme as

depicted in Figure 1. The security of the oblivious transfer scheme follows from that of the blind
signature scheme. In particular, Theorem 3.1 states that sender security is implied by the one-more
unforgeability of BS , while Theorem 3.2 states that receiver security follows from the selective-failure
blindness of BS . Note that correctness follows from the uniqueness of BS .

Theorem 3.1 If the blind signature scheme BS is unforgeable, then the OT
N
k×1 depicted in Figure 1

is sender-secure in the random oracle model.

Proof: For any real-world cheating receiver R̂, consider the ideal-world receiver R̂′ that works as

follows. R̂′ generates a fresh key pair (pk , sk)
$
← Kg for the blind signature scheme BS and chooses
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Initialization

SI(M1, . . . ,MN ) : RI :

(pk , sk)
$
← Kg(1κ)

For i = 1 . . . N
si ← Sign(sk , i)

Ci ← H(i, si)⊕Mi
pk ,C1, . . . ,CN

✲ R0 ← (pk ,C1, . . . ,CN )
S0 ← sk ; Output S0 Output R0

Transfer

ST(Si−1) : RT(Ri−1, σi) :

Parse Si−1 as sk Parse Ri−1 as (pk ,C1, . . . ,CN )

Run protocol Sign(sk ) ✲✛ Run protocol si
$
← User(pk , σi)

If Vf(pk , σi, si) = 0 then Mσi
← ⊥

Else M ′
σi
← Cσi

⊕H(σi, si)
Output Si = Si−1 Output (Ri = Ri−1,M

′
σi

)

Figure 1: A construction of OT
N
k×1 using a random oracle H and any unique blind signature scheme

BS = (Kg,Sign,User,Vf).

random strings C1, . . . ,CN
$
← {0, 1}ℓ. It then feeds the string (pk ,C1, . . . ,CN ) as input to R̂ to obtain

initial state R0.

During the transfer phase, when R̂ engages in a transfer protocol, R̂′ simulates the honest sender by
executing the blind signature protocol as prescribed by Sign(sk). To answer random oracle queries, R̂′

maintains an initially empty associative array HT[·] and a counter ctr . When R̂ performs a random
oracle query H(x), R̂′ responds with HT[x], or proceeds as follows if this entry is undefined:

If x = (i, s) and Vf(pk , i, s) = 1 and i ∈ [1, N ] then
ctr ← ctr + 1 ; If ctr > k then abort
Obtain Mi from the ideal functionality
HT[x]← Mi ⊕ Ci

else HT[x]
$
← {0, 1}ℓ .

When eventually R̂ outputs its final state Rk, R̂′ halts with the same output Rk. The running time
t′ of R̂′ is that of R̂ plus the time of a key generation, k signing interactions and up to qH signature
verifications. It is clear that if R̂′ does not abort, then R̂′ provides R̂ with a perfect simulation of the
Real

S,R̂
(N, k,M1, . . . ,Mk, σ1, . . . , σk) experiment, so no distinguisher D has advantage greater than

zero in distinguishing Real
S,R̂

from Ideal
S′,R̂′ .

We now show that if there exists an algorithm R̂ that causes R̂′ to abort with non-negligible probability,
then there exists a forger F with non-negligible advantage in breaking BS . Algorithm F simulates the
environment of R̂ in a similar way as R̂′, except that (1) it relays messages between its signing oracle
and R̂ to simulate transfer queries, and (2) rather than aborting when ctr > k, it outputs all k + 1
valid message-signature pairs (i, s) that R̂ submitted to the random oracle. Since R̂ can engage in at
most k transfer protocols, R̂′ outputs k + 1 valid signatures after at most k signature queries, and
hence wins the one-more unforgeability game.
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Theorem 3.2 If the blind signature scheme BS is selective-failure blind, then the OT
N
k×1 scheme

depicted in Figure 1 is receiver-secure in the random oracle model.

Proof: We have to show that for any real-world cheating sender Ŝ, there exists an ideal-world sender
Ŝ′ whose output is indistinguishable from that of Ŝ. Consider the ideal-world sender Ŝ′ that on input
(M1, . . . ,MN ) runs Ŝ(M1, . . . ,MN ), simulating its random oracle queries by returning random values.
Let (pk , C1, . . . , CN ) be the outgoing message produced by Ŝ during the initialization phase. For all
random oracle queries H(i, s) with 1 ≤ i ≤ N made by Ŝ, Ŝ′ checks whether Vf(pk , i, s) = 1. If so,
then it sets M ′

i ← Ci⊕H(i, s). For all 1 ≤ j ≤ N such that M ′
j has not been defined by this procedure,

it assigns a random value M ′
j

$
← {0, 1}ℓ. Algorithm Ŝ′ submits (M ′

1, . . . ,M
′
N ) to the trusted party.

To subsequently handle the k transfers, Ŝ′ sets R0 ← (pk ,C1, . . . ,CN ) and at the i-th transfer simulates
the environment of Ŝ by running Ri ← RT(Ri−1, 1), i.e., by always running the honest receiver that
queries for the message with index one. Remember that Ŝ′ is not given the selection indices (σ1, . . . , σk)
as input, so it cannot run RT on the real index σi. If the output of RT is ⊥, then Ŝ′ sends bi = 0 to
the trusted party, indicating that this query should be aborted; otherwise, it sends bi = 1. Random
oracle queries of the form H(i, s) with 1 ≤ i ≤ N and Vf(pk , i, s) = 1 in this phase are answered with
Ci ⊕M ′

i ; all other random oracle queries are answered with random values. At the end of the k-th

query, Ŝ outputs its final state Sk; the ideal sender Ŝ′ outputs the same string Sk.

We use a hybrid proof to analyze the advantage of an algorithm D in distinguishing between Real
Ŝ,R

and Ideal
Ŝ′,R′ . For 0 ≤ i ≤ k, let Ŝ′

i be an algorithm that simulates the environment of Ŝ in a similar

way as Ŝ′, but that uses Ri
$
← RT(Ri−1, 1) for the first i transfers, and that uses Ri

$
← RT(Ri−1, σi) for

the remaining k−i transfers. Let the output of experiment Game-i contain the final states of Ŝ′
i and of

the honest ideal-world receiver R′(σ1, . . . , σk) after interacting with each other through a trusted party
T as in the ideal experiment. It is easy to see that Game-0 = Real

Ŝ,R
and that Game-k = Ideal

Ŝ′,R′.
If there exists an algorithm D that distinguishes between Real

Ŝ,R
and Ideal

Ŝ′,R′ with non-negligible
advantage ǫ, then there must exist an index 0 ≤ i ≤ k such that D distinguishes between Game-i and
Game-(i + 1) with probability at least ǫ/k.

Given this distinguisher D, we show how to construct an adversary A against the selective-failure
blindness of BS . Algorithm A runs Ŝ, answering random oracle queries and extracting messages
M1, . . . ,MN in the same way as described for Ŝ′. It simulates the j-th transfer for 1 ≤ j ≤ i using
RT(·, 1), setting M ′

j = Mσj
if the transfer succeeds, and setting M ′

j = ⊥ if it doesn’t. For the
(i + 1)-st transfer A uses its first user oracle to simulate the receiver. More particularly, it outputs
pk ,m0 = σi,m1 = 1 as the public key and messages on which it wishes to be challenged, and relays
messages between Ŝ and its first oracle that implements User(pk ,mb) for some hidden value b ∈ {0, 1}.
With the second oracle, that implements User(pk ,m1−b), it interacts in an arbitrary way (most likely
causing it to fail) until it receives signatures (s0, s1). If s0 = ⊥ then it sets M ′

i+1 = ⊥, otherwise it sets
M ′

i+1 = Mσi+1
. For the remaining transfers i + 2 ≤ j ≤ k, it uses RT(·, σj) to simulate the receiver,

setting M ′
j = Mσj

if the transfer succeeds and M ′
j = ⊥ if it doesn’t. When Ŝ outputs its final state Sk,

A feeds the tuple (Sk, (M
′
1, . . . ,M

′
k)) to D. One can check that if b = 0 then this tuple is distributed

according to Game-i, while if b = 1 then it is distributed according to Game-(i + 1). Algorithm A

therefore can therefore use D’s output to win the blindness game with advantage at least ǫ/k.

3.2 Instantiations

Of all the existing blind signature schemes in the literature, we were only able to discover two that are
unique, namely the schemes by Chaum [Cha88, BNPS03] and Boldyreva [Bol03]. Both are efficient
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two-round schemes, yielding round-optimal adaptive oblivious transfer protocols.

The instantiation of our generic construction with Chaum’s blind signature scheme coincides with
the direct OT scheme of Ogata-Kurosawa [OK04]. However, special precautions must be taken to
ensure that Chaum’s scheme is selective-failure blind. For example, the sender must use a prime
exponent e greater than the modulus n [ANN06], or must provide a non-interactive proof that
gcd(e, n) = 1 [CPP06].2 The authors of [OK04] overlooked this need, leading to easy attacks on
the receiver security of their protocol. For example, a cheating sender could choose e = 2 and distin-
guish between transfers for σi and σ′

i for which H(σi) is a square modulo n and H(σ′
i) is not.

When instantiated with Boldyreva’s blind signature scheme [Bol03] based on pairings, our generic
construction coincides with the direct OT scheme of Chu-Tzeng [CT05]. A similar issue concerning
the dishonest-key blindness of the scheme arises here, but was also overlooked. The sender could for
example choose the group to be of non-prime order and break the receiver’s security in a similar way
as demonstrated above for the scheme of [OK04]. One can strengthen Boldyreva’s blind signature
scheme to provide selective-failure blindness by letting the user algorithm check that the group is of
prime order and that the generator is of full order.

3.3 Oblivious Keyword Search

Oblivious keyword search [CGN98, OK04] is a generalization of oblivious transfer where messages are
indexed by keywords rather than by consecutive numbers. The sender owns a database of message-
keyword pairs (M1, w1), . . . , (MN , wN ). (We can assume without loss of generality that every keyword
appears at most once.) At each transfer, the receiver chooses a keyword w, and receives Mi if w = wi

for some 1 ≤ i ≤ N , or receives ⊥ otherwise. The receiver does not learn any other information about
the database, and the sender does not learn anything about the receiver’s selection w.

The oblivious transfer protocol of Figure 1 can be easily modified into an oblivious keyword search
protocol by signing keywords instead of index numbers, i.e., by taking si ← Sign(sk , wi). Messages are
encrypted as Ci ← H(wi, si) ⊕ 02κ‖Mi. In the transfer phase, the receiver obtains a blind signature
s on keyword w, and for all 1 ≤ i ≤ N computes Ci ⊕H(w, s) until the first 2κ bits of the obtained
bitstring are all zeroes. Instantiating our generic construction with Chaum’s blind signatures yields
the oblivious keyword search scheme due to Ogata-Kurosawa [OK04], instantiating with Boldyreva’s
blind signature scheme yields a new oblivious keyword search scheme based on the one-more CDH
assumption.

The reason for padding messages with 2κ zeroes instead of κ is the following. Suppose messages are
padded with ℓ zeroes to detect correct decryption. If a cheating sender can come up with w, s,w′, s′

so that the first ℓ bits of H(w, s) and H(w′, s′) are the same, then the same ciphertext C will decrypt
correctly under both w and w′. In the proof of receiver security, the ideal-world sender can then no
longer extract a unique decryption of C, because there are now two different possibilities. We therefore
need finding collisions on the first ℓ bits of the hash output to be hard, so by the birthday paradox
we need ℓ = 2κ to obtain O(2κ) security.

4 Simulatable Adaptive OT in the Standard Model

4.1 Preliminaries

Computational assumptions. Our protocol presented in this section requires bilinear groups and

2Anna Lysyanskaya suggested to let the receiver send e to the sender. This solution is much more efficient than the
previous two, but would require re-proving the security of the OT

N
k×1 scheme since it is no longer an instance of our

generic construction.
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associated hardness assumptions. Let Pg be a pairing group generator that on input 1κ outputs
descriptions of multiplicative groups G1, GT of prime order p where |p| = κ. Let G

∗
1 = G1 \{1} and let

g ∈ G
∗
1. The generated groups are such that there exists an admissible bilinear map e : G1×G1 → GT,

meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) 6= 1; and (3) the bilinear
map is efficiently computable.

Definition 4.1 [Strong Diffie-Hellman Assumption [BB04]] We say that the ℓ-SDH assumption asso-

ciated to a pairing generator Pg holds if for all PPT adversaries A, the probability that A(g, gx, . . . , gxℓ
)

where (G1, GT)
$
← Pg(1κ), g

$
← G

∗
1 and x

$
← Zp, outputs a pair (c, g1/(x+c)) where c ∈ Zp is negligible

in κ.

Definition 4.2 [Power Decisional Diffie-Hellman Assumption] We say that the ℓ-PDDH assumption

associated to Pg holds if for all PPT adversaries A, the probability that A on input (g, gx, gx2

, . . . , gxℓ
,

H) where (G1, GT)
$
← Pg(1κ), g

$
← G

∗
1, x

$
← Zp, H

$
← GT, distinguishes the vector T = (Hx,Hx2

, . . . ,

Hxℓ
) from a random vector T

$
← G

ℓ
T is negligible in κ.

Evidence of the hardness of this new problem is presented in Appendix C.

Boneh-Boyen signatures. We use the following slight modification of the weakly-secure signature
scheme by Boneh and Boyen [BB04]. The scheme uses a pairing generator Pg as defined above.

The signer’s secret key is x
$
← Zp, the corresponding public key is (g, y = gx) where g is a random

generator of G1. The signature on a message m is s ← g1/(x+m); verification is done by checking
that e(s, y · gm ) = e(g, g). This scheme is similar to the Dodis and Yampolskiy verifiable random
function [DY05].

Security under weak chosen-message attack is defined through the following game. The adversary
begins by outputting ℓ messages m1, . . . ,mℓ. The challenger generates a fresh key pair and gives the
public key to the adversary, together with signatures s1, . . . , sℓ on m1, . . . ,mℓ. The adversary wins if it
succeeds in outputting a valid signature s on a message m 6∈ {m1, . . . ,mℓ}. The scheme is said to be
unforgeable under weak chosen-message attack if no PPT adversary A has non-negligible probability
of winning this game. An easy adaptation of the proof of [BB04] can be used to show that this scheme
is unforgeable under weak chosen-message attack if the (ℓ + 1)-SDH assumption holds. The proof is
provided in Appendix A for completeness.

Zero-knowledge proofs and Σ-protocols. We use definitions from [BG92, CDM00]. A pair of
interacting algorithms (P,V) is a proof of knowledge (PoK) for a relation R = {(α, β)} ⊆ {0, 1}∗ ×
{0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for all (α, β) ∈ R, V(α) accepts a conversation with P(β)
with probability 1; and (2) there exists an expected polynomial-time algorithm E, called the knowledge

extractor, such that if a cheating prover P̂ has probability ǫ of convincing V to accept α, then E, when
given rewindable black-box access to P̂, outputs a witness β for α with probability ǫ− κ.

A proof system (P,V) is perfect zero-knowledge if there exists a PPT algorithm Sim, called the
simulator, such that for any polynomial-time cheating verifier V̂ and for any (α, β) ∈ R, the output

of V̂(α) after interacting with P(β) and the output of SimV̂(α)(α) are identically distributed.
A Σ-protocol is a proof system (P,V) where the conversation is of the form (a, c, z), where a

and z are are computed by P, and c is a challenge chosen at random by V. The verifier accepts if
φ(α, a, c, z) = 1 for some efficiently computable predicate φ. Given two accepting conversations (a, c, z)
and (a, c′, z′) for c 6= c′, one can efficiently compute a witness β. Moreover, there exists a polynomial-
time simulator Sim that on input α and a random string c outputs an accepting conversation (a, c, z)
for α that is perfectly indistinguishable from a real conversation between P(β) and V(α).

For a relation R = {(α, β)} with Σ-protocol (P,V), the commitment relation R′ = {(α, a), (c, z)}
holds if φ(α, a, c, z) = 1. If both R and R′ have Σ-protocols, then Cramer et al. [CDM00] show how
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Initialization

SI(1
κ,M1, . . . ,MN ) : RI(1

κ) :

(G1, GT)
$

← Pg(1κ)

g, h
$

← G∗

1 ; H ← e(g, h)

x
$

← Zp ; y ← gx ; pk ← (g, H, y)
For i = 1, . . . , N do

Ai ← g1/(x+i)

Bi ← e(h, Ai) ·Mi

Ci ← (Ai, Bi)
pk , C1, . . . , CN

✲

S0 ← (h, pk ) PoK{(h) : H = e(g, h)}
✲ R0 ← (pk ,C1, . . . ,CN )

Transfer

ST(Si−1) : RT(Ri−1, σi) :

v
$

← Zp ; V ← (Aσi
)v

V
✛

PoK {(σi, v) : e(V, y) = e(V, g)−σie(g, g)v}
✛

W ← e(h, V ) W
✲

PoM {(h) : H = e(g, h) ∧W = e(h, V )}
✲

Si = Si−1 M ← Bσi
/(W 1/v)

Ri = Ri−1

Figure 2: Our OT
N
k×1 protocol in the standard model associated to pairing generator Pg. We use

notation by Camenisch and Stadler [CS97] for the zero-knowledge protocols. They can all be done
efficiently (in four rounds and O(κ) communication) by using the transformation of [CDM00]. The
protocols are given in detail in Appendix B.

to construct a four-move perfect zero-knowledge PoK for R with knowledge error κ = 1/|C|, where C
is the space from which the challenge c is drawn.

4.2 The Protocol

Our protocol in the standard model is depicted in Figure 2. All zero-knowledge proofs can be performed
efficiently in four rounds and with O(κ) communication using the transformation of [CDM00]. The
detailed protocols are provided in Appendix B. We assume that the messages Mi are elements of the
target group GT.3 The protocol is easily seen to be correct by observing that W = e(h,Aσi

)v, so
therefore Bσi

/W 1/v = Mσi
.

We now provide some intuition into the protocol. Each pair (Ai, Bi) can be seen as an ElGamal
encryption [ElG85] in GT of Mi under public key H. But instead of using random elements from GT

as the first component, our protocol uses verifiably random [DY05] values Ai = g1/(x+i). It is this
verifiability that during the transfer phase allows the sender to check that the receiver is indeed asking
for the decryption key for one particular ciphertext, and not for some combination of ciphertexts.

The relation of this protocol to blind signatures is not as explicit as in our random-oracle con-
struction, but it could still be seen as being underlain by a somewhat “limited” blind signature

3This is a standard assumption we borrow from the literature on Identity-Based Encryption. The target group is
usually a subgroup of a larger prime field. Thus, depending on implementation, it may be necessary to “hash” the data
messages into this subgroup. Alternatively, one can extract a random pad from the element in the target group and use
⊕ to encrypt the message.

12



scheme. Namely, consider the scheme with public key (g,H, y,A1, . . . , AN ) and corresponding secret
key α = logg h = loge(g,g) H, where the signature of a message M ∈ {1, . . . , N} is given by s = (AM )α.
The signing protocol would be a variation on the transfer phase of our OT scheme where the user is
given W = V α rather than W = e(h, V ). Verification is done by checking that e(s, ygM ) = H. The
scheme has the obvious disadvantage that the public key is linear in the size of the message space; we
therefore do not further study its properties here.

4.3 Security

Receiver security. We demonstrate the receiver security of our scheme by proving the stronger
property of unconditional statistical indistinguishability. Briefly, the ideal-world sender can extract h
from the proof of knowledge in the initialization phase, allowing it to decrypt the messages to send
to the trusted party. During the transfer phase, it plays the role of an honest receiver and asks for a
randomly selected index. If the real-world sender succeeds in the final proof of membership (PoM) of
the well-formedness of W , then the ideal sender sends b = 1 to its trusted-party T to indicate continue.

Notice how the sender’s response W is simultaneously determined by the initialization phase,
unpredictable by the receiver during the transfer phase, but yet verifiable once it has been received
(albeit, via a zero-knowledge proof). Intuitively, these three properties prevent the selective-failure
attack.

Theorem 4.3 The OT
N
k×1 protocol in Figure 2 is statistically receiver-secure.

Proof: We show that for every real-world cheating sender Ŝ there exists an ideal-world cheating
sender Ŝ′ such that no distinguisher D, regardless of its running time, has non-negligible probability to
distinguish the distributions Real

Ŝ,R
(N, k,M1, . . . ,MN , σ1, . . . , σk) and Ideal

Ŝ′,R′(N, k,M1, . . . ,MN ,

σ1, . . . , σk). We do so by considering a sequence of distributions Game-0, . . . ,Game-3 such that for
some Ŝ′ that we construct, Game-0 = Real

Ŝ,R
and Game-3 = Ideal

Ŝ′,R′ , and by demonstrating
the statistical difference in the distribution for each game transition. Below, we use the shorthand
notation

Pr [Game-i ] = Pr
[

D(X) = 1 : X
$
← Game-i

]
.

Game-0 : This is the distribution corresponding to Real
Ŝ,R

, i.e., the game where the cheating sender

Ŝ is run against an honest receiver R that queries for index σi in the i-th transfer. Obviously,

Pr [Game-0 ] = Pr
[

D(X) = 1 : X
$
← Real

Ŝ,R

]
.

Game-1 : In this game the extractor E1 for the first proof of knowledge is used to extract from Ŝ

the element h such that e(g, h) = H. If the extractor fails, then the output of Game-1 is ⊥;
otherwise, the execution of Ŝ continues as in the previous game, interacting with R(σ1), . . . ,R(σk).
The difference between the two output distributions is given by the knowledge error of the PoK,
i.e.,

Pr [Game-1 ]− Pr [Game-0 ] ≤
1

p
.

Game-2 : This game is identical to the previous one, except that during the transfer phase the value
V sent by the receiver is replaced by picking a random v′ and sending V ′ ← Av

1. The witness
(v′, 1) is used during the second PoK. Since V and V ′ are both uniformly distributed over G1,
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and by the perfect witness-indistinguishability of the PoK (implied by the perfect zero-knowledge
property), we have that

Pr [Game-2 ] = Pr [Game-1 ].

Game-3 : In this game, we introduce an ideal-world sender Ŝ′ which incorporates the steps from
the previous game. Algorithm Ŝ′ uses E1 to extract h from Ŝ, decrypts M ∗

i as Bi/e(h,Ai) for
i = 1, . . . , N and submits M ∗

1 , . . . ,M ∗
N to the trusted party T. As in Game-2, during the

transfer phase, Ŝ′ feeds V ′ $
← Av′

1 to Ŝ and uses (v′, 1) as a witness in the PoK. It plays the

role of the verifier in the final PoM of W . If Ŝ convinces Ŝ′ that W is correctly formed, then Ŝ′

sends 1 to the trusted party, otherwise it sends 0. When Ŝ outputs its final state Sk, Ŝ′ outputs
Sk as well.

One can syntactically see that

Pr [Game-3 ] = Pr [Game-2 ] = Pr
[

D(X) = 1 : X
$
← Ideal

Ŝ′,R′

]
.

Summing up, we have that the advantage of the distinguisher D is given by

Pr
[

D(X) = 1 : X
$
← Ideal

Ŝ′,R′

]
− Pr

[
D(X) = 1 : X

$
← Real

Ŝ,R

]
≤

1

p
.

Sender security. The following theorem states the sender-security of our second construction.

Theorem 4.4 If the (N + 1)-SDH assumption and the (N + 1)-PDDH assumptions associated to Pg

hold, then the OT
N
k×1 protocol depicted in Figure 2 is sender-secure.

Proof: Given a real cheating receiver R̂, we construct an ideal-world cheating receiver R̂′ such that
no algorithm D can distinguish between the distributions Real

S,R̂
(N, k,M1, . . . ,MN , σ1, . . . , σk) and

Ideal
S′,R̂′(N, k,M1, . . . ,MN , σ1, . . . , σk). We again do so by considering a sequence of hybrid distribu-

tions and investigate the differences between successive ones.

Game-0 : This is the distribution corresponding to R̂ being run in interaction with the honest sender
S(M1, . . . ,MN ). Obviously, we have that

Pr [Game-0 ] = Pr
[

D(X) = 1 : X
$
← Real

S,R̂

]
.

Game-1 : This game differs from the previous one in that at each transfer the extractor E2 of the
second PoK is used to extract from R̂ the witness (σ′

i, v). If the extraction fails, Game-1
outputs ⊥. Because the PoK is perfect zero-knowledge, the difference on the distribution with
the previous game is statistical (i.e., independent of the distinguisher’s running time) and given
by k times the knowledge error, or

Pr [Game-1 ]− Pr [Game-0 ] ≤
k

p
.

Note that the time required to execute these k extractions is k times the time of doing a single ex-
traction, because the transfer protocols can only run sequentially, rather than concurrently. One
would have to resort to concurrent zero-knowledge protocols [DNS04] to remove this restriction.
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Game-2 : This game is identical to the previous one, except that Game-2 returns ⊥ if the extracted
value σ′

i 6∈ {1, . . . , N} during any of the transfers. One can see that in this case s = V 1/v is a
forged Boneh-Boyen signature on message σ′

i. The difference between Game-1 and Game-2 is
bounded by the following claim, which we prove below:

Claim 4.5 If the (N + 1)-SDH assumption associated to Pg holds, then

Pr [Game-2 ]− Pr [Game-1 ]

is negligible.

Game-3 : In this game the PoK of h in the initialization phase is replaced with a simulated proof
using Sim1, the value W returned in each transfer phase is computed as W ← (Bσi

/Mσi
)v, and

the final PoM in the transfer phase is replaced by a simulated proof using Sim3. Note that
now the simulation of the transfer phase no longer requires knowledge of h. However, all of the
simulated proofs are proofs of true statements and the change in the computation of W is purely
conceptional. Thus by the perfect zero-knowledge property, we have that

Pr [Game-3 ] = Pr [Game-2 ] .

Game-4 : Now the values B1, . . . , BN sent to R̂ in the initialization phase are replaced with random
elements from GT. Now at this point, the second proof in the previous game is a simulated
proof of a false statement. Intuitively, if these changes enable a distinguisher D to separate the
experiments, then one can solve an instance of the PDDH problem. This is captured in the
following claim:

Claim 4.6 If the (N + 1)-PDDH assumption associated to Pg holds, then

Pr [Game-4 ]− Pr [Game-3 ]

is negligible.

The ideal-world receiver R̂′ can be defined as follows. It performs all of the changes to the experiments
described in Game-4 except that at the time of transfer, after having extracted the value of σ′

i from

R̂, it queries the trusted party T on index σ′
i to obtain message Mσ′

i
. It then uses this message to

compute W . Syntactically, we have that

Pr
[

D(X) = 1 : X
$
← Ideal

S′,R̂′

]
= Pr [Game-4 ] .

Summing up the above equations and inequalities yields that

Pr
[

D(X) = 1 : X
$
← Ideal

S′,R̂′

]
− Pr

[
D(X) = 1 : X

$
← Real

S,R̂

]

is negligible. The running time of R̂′ is that of R̂ plus that of O(N2) exponentiations, k extractions
and k proof simulations, so is polynomial in the security parameter.

It remains to prove the claims used in the proof above.

Proof of Claim 4.5: We prove the claim by constructing an adversary A that breaks the unforge-
ability under weak chosen-message attack of the modified Boneh-Boyen signature scheme. By the
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security proof given in Appendix A, this directly gives rise to an expected polynomial-time adversary
with non-negligible advantage in solving the (N + 1)-SDH problem.

Given a cheating receiver R̂ for that distinguishes between Game-1 and Game-2, consider the forger
A that outputs messages m1 = 1, . . . ,mN = N , and on input a public key y and signatures A1, . . . , AN

runs the honest sender algorithm using these values for h and A1, . . . , AN . At each transfer it uses E2

to extract from R̂ values (σi, v) such that e(V, y) = e(V, g)−σie(g, g)v . (This extraction is guaranteed
to succeed since we already eliminated failed extractions in the transition from Game-0 to Game-1.)
When σ′

i 6∈ {1, . . . , N} then A outputs s← V 1/v as its forgery on message M = σ′
i. The forger A wins

whenever it extracts a value σ′
i 6∈ {1, . . . , N} from Ŝ. Its running time is that of R̂ plus k times the

running time of a single extraction, so polynomial in the security parameter.

Proof of Claim 4.6: Given an algorithm D with non-negligible probability in distinguishing Game-2
and Game-3, consider the following algorithm A for the PDDH problem for ℓ = N + 1. On input
(u, ux, . . . , uxN+1

, V ) and a vector (T1, . . . , TN+1), A proceeds as follows. For ease of notation, let
T0 = V . Let f be the polynomial defined as f(X) =

∏N
i=1(X + i) =

∑N
i=0 ciX

i. Then A sets

g ← uf(x) =
∏N

i=0(u
xi

)ci and y ← gx =
∏N

i=0(u
xi+1

)ci . If fi is the polynomial defined by fi(X) =

f(X)/(X+i) =
∑N−1

j=0 ci,jX
j , then A can also compute the values Ai = g1/(x+i) as Ai ←

∏N−1
j=0 (uxj

)ci,j .

It then sets H ← V f(x) =
∏N

i=0 T ci

i , and computes Bi = H1/(x+i) as Bi ←
∏N−1

j=0 T
ci,j

i , and continues

the simulation of R̂’s environment as in Game-3 and Game-4, i.e., at each transfer extracting (σi, v),
computing W ← (Bσi

/Mσi
) and simulating the PoM. When R̂ outputs its final state Rk, algorithm A

runs b
$
← D(ε,Rk) and outputs b.

In the case that Ti = V xi

one can see that the environment that A created for Ŝ is exactly that of
Game-3. In the case that T1, . . . , TN are random elements of GT, then one can easily see that this
environment is exactly that of Game-4. Therefore, if D has non-negligible advantage in distinguishing
the outputs of Game-3 and Game-4, then A has non-negligible advantage in solving the (N + 1)-
PDDH problem. The running time of A is at most that of the distinguisher D plus that of O(N2)
exponentiations, of k + 1 simulated proofs, and of k extractions.
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A Proof of Modified Boneh-Boyen Signatures

Given a forger F breaking the weak chosen-message security of the signature scheme described in
Section 4.1, consider the following algorithm A solving the (ℓ+1)-SDH problem. When given as input

values g, gx, gx2

, . . . , gxℓ+1

, algorithm A runs F until it outputs messages m1, . . . ,mℓ. If x = mi for
some 1 ≤ i ≤ ℓ then A can trivially solve the (ℓ + 1)-SDH problem. Consider the polynomial f(X) =∏ℓ

i=1(X + mi) =
∑ℓ

i=0 αiX
i. Algorithm A computes g′ ← gf(x) =

∏ℓ
i=0 (gxi

)
αi

and y ← gxf(x) =∏ℓ
i=0 (gxi+1

)
αi

. It feeds (g′, y) as the public key to F. To compute the signatures for m1, . . . ,mℓ,

consider for each 1 ≤ i ≤ ℓ the polynomial fi(X) = f(X)/(X + mi) =
∏

j 6=i(X + mj) =
∑ℓ−1

j=0 βjX
j.

Then A can compute the signature as si ← gfi(x) =
∏ℓ−1

j=0 (gxj
)
βj

.

Eventually, F outputs a message-signature pair (m, s) so that m 6∈ {m1, . . . ,mℓ} and e(s, y·(g′)m) =
e(g′, g′). If m = −x then A can trivially solve the (ℓ + 1)-SDH problem. Otherwise, since g′ = gf(x)
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and y = gxf(x) we have that
s = (g′)1/(x+m) = gf(x)/(x+m) .

Let γ(X) =
∑ℓ−1

i=0 γiX
i be the polynomial such that f(X) = (X + m) · γ(X) + γ∗ for some γ∗ ∈ Zp.

We have that s = gγ(x) · gγ∗/(x+m), so that when A computes

w←
(
s /

∏ℓ−1
i=0(gxi

)
γi

)1/γ∗

we have that w = g1/(x+m). Algorithm A outputs (m, w) as its solution to the (ℓ + 1)-SDH problem.
The advantage of A in solving the (ℓ + 1)-SDH problem is equal to that of F in breaking the weak
security of the signature scheme.

B Proof of Knowledge Protocols

Cramer, Damg̊ard, and MacKenzie [CDM00] present a framework for constructing four-round perfect
zero-knowledge proofs of knowledge for a special class of languages that have efficient Σ-protocols—
which in particular, includes the three discrete-log-based languages used in our protocol. Two remark-
able properties of their construction are that it is unconditional, i.e., the protocol does not require
any additional computational assumptions, and that the extraction error is exponentially small.

The CDM construction for a relationship R = {(α, β)} uses both a sigma protocol for R as well as
a sigma protocol for the commitment relationship R′ = {((α, a), (c, z))}. Informally, this commitment
relationship includes all pairs (α, a) for which there exists a witness (c, z) such that (a, c, z) is an
accepting sigma-protocol transcript on the instance α. (It is called the commitment relationship since
(α, a) can be viewed as a commitment to c when the committer does not know β.) Given a proof
system (P,V) (and a corresponding simulator Sim) for R and a protocol (P′,V′) (and a corresponding
simulator Sim′) for R′, the CDM construction works as follows: in the first phase, the verifier commits
to a challenge e by running the simulator Sim(α, e) to generate a pair (a, e, z) and sending (α, a) to the
prover. The verifier then runs the sigma protocol P′((α, a), (e, z)) with the prover who runs V′(α, a)
in order to prove knowledge of a witness of instance (α, a) for the R′ relation. Then the prover uses
the standard “OR-Σ-protocol” POR to prove that it either knows a witness β for α in R, or a witness
(e, z) for (α, a) in R′. The special relationship between R and R′ enables them to prove all of the
incredible properties of this protocol. By merging rounds, this construction can be shortened to four
rounds.

For the special case of knowledge of a discrete logarithm, Cramer, Damg̊ard, and MacKenzie offer
a specially optimized proof which we include below for completeness. We then give the Σ-protocols
for R and R′ for the two other languages for which we need proofs of knowledge.

B.1 Proof of Knowledge of a Pairing Preimage

Rather than giving the full zero-knowledge protocol, we give the Σ-protocols for the relation R and
its commitment relation R′. The CDM construction can be applied to turn these components into a
perfectly zero-knowledge proof system.

Σ-protocol for PoK{(h) : H = e(g, h)}

Common Input: Group parameters for G1 = 〈g〉 and GT, instance H ∈ GT.

Prover’s Input: h ∈ G1 s.t. H = e(g, h).

P
a
−→ V : Prover picks r

$
← G1 and sends a = e(g, r).
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P
c
←− V : Verifier sends a random challenge c

$
← Zp.

P
z
−→ V : Prover sends z ← r · h−c.

V : Verifier checks that a
?
= e(g, z) ·Hc.

Σ-protocol for Commitment Relationship

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (H,a) ∈ G
2
T.

Prover’s Input: (c, z) ∈ Zp ×G1 such that a = e(g, z) ·Hc.

P
a′

−→ V : Prover picks r1
$
← Zp, r2

$
← G1 and sends a′ ← Hr1 · e(g, r2).

P
c′
←− V : Verifier sends a random challenge c′

$
← Zp.

P
z′1,z′2−→ V : Prover sends z′1 ← r1 − cc′ mod p, z′2 ← r2 · z

c′ mod p.

V : Verifier checks that a′ = Hz′1 · e(g, z′2)a
c′ .

B.2 Components for the Second Proof of Knowledge

Σ-protocol for PoK{(σ, v) : e(V, y) = e(V, g)−σe(g, g)v}

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V, y) ∈ G
2
1.

Prover’s Input: σ ∈ {1, . . . , N}, v ∈ Zp s.t. e(V, y) = e(V, g)−σe(g, g)v .

P
a
−→ V : Prover picks r1, r2

$
← Zp and sends a← e(V, g)−r1e(g, g)r2 .

P
c
←− V : Verifier sends a random challenge c

$
← Zp.

P
z1,z2
−→ V : Prover sends z1 ← r1 − σc mod p and z2 ← r2 − vc mod p.

V : Verifier checks that

a
?
= e(V, y)c · e(V, g)−z1 · e(g, g)z2 . (1)

Σ-protocol for Commitment Relationship

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V, y, a) ∈ G
2
1 ×GT.

Prover’s Input: (c, (z1, z2)) ∈ Zp × Z
2
p such that Equation (1) holds.

P
a′

−→ V : Prover picks r1, r2, r3
$
← Zp and sends a′ = e(V, y)r1 · e(V, g)−r2 · e(g, g)r3 .

P
c′
←− V : Verifier sends a random challenge c′

$
← Zp.

P
z′1,z′2,z′3−→ V : Prover sends z′1 ← r1 − cc′ mod p, z′2 ← r2 − z1c

′ mod p and z′3 ← r3 − z2c
′ mod p.

V : Verifier checks that a′
?
= ac′ · e(V, y)z

′
1 · e(V, g)−z′2 · e(g, g)z

′
3 .
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B.3 Components for the Third Proof of Membership

Although the third proof is a proof of membership, we use the same construction for the (stronger)
proof of knowledge.

Σ-protocol for PoM{(h) : H = e(g, h) ∧W = e(h, V )}

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V,H,W ) ∈ G1 ×G
2
T.

Prover’s Input: h ∈ G1 such that H = e(g, h) and W = e(h, V ).

P
a1,a2
−→ V : Prover chooses r

$
← G1 and sends a1 ← e(g, r) and a2 ← e(r, V ).

P
c
←− V : Verifier sends a random challenge c

$
← Zp.

P
z
−→ V : Prover sends z ← r · h−c.

V : Verifier checks
a1

?
= e(g, z) ·Hc and a2

?
= e(z, V ) ·W c . (2)

Sigma protocol for Commitment Relationship

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V,H,W, a1, a2) ∈ G1 ×G
4
T,

Prover’s Input: (c, z) ∈ Zp ×G1 such that Equation (2) holds.

P
a′
1,a′

2−→ V : Prover picks r1
$
← Zp and r2

$
← G1, and sends a′1 ← e(g, r2) ·H

r1 and a′2 ← e(r2, V ) ·W r1.

P
c′
←− V : Verifier sends a random challenge c′

$
← Zp.

P
z′1,z′2−→ V : Prover sends z′1 ← r1 − cc′ mod p and z′2 ← r2 · z

−c′ .

V : Verifier checks that a′1
?
= e(g, z′2) ·H

z′1 · ac′
1 and a′2

?
= e(z′2, V ) ·Hz′1 · ac′

2 .

C PDDH in Generic Groups

We build confidence in our new PDDH assumption by showing its hardness in generic bilinear
groups [Sho97]. In fact, we give a computational lower bound for a new problem that we call the
Vector General Diffie-Hellman Exponent (VGDHE) problem, and that contains the PDDH problem
as a special case. The VGDHE problem is an extension of the General Diffie-Hellman Exponent prob-
lem introduced by Boneh, Boyen and Goh [BBG05] where the adversary has to distinguish a vector
of group elements from random, rather than a single element. Our proof in the generic group model
is very similar to that of [BBG05], but is included here for completeness.

Let p be the prime group order and let n ∈ N. Let P,Q,F ⊂ Zp[X1, . . . ,Xn] be sets of poly-
nomials in variables X1, . . . ,Xn. For g ∈ G1 and x1, . . . , xn ∈ Zp let gP (x1,...,xn) denote the vector(
gp1(x1,...,xn), . . . , gp|P |(x1,...,xn)

)
∈ G

|P |
1 where P = {p1, . . . , p|P |}. The vectors e(g, g)Q(x1 ,...,xn) and

e(g, g)F (x1 ,...,xn) are defined analogously. Algorithm A has advantage ǫ in solving the (P,Q,F )-VGDHE
problem in (G1, GT) if

∣∣∣ Pr
[
A

(
gP (x1,...,xn) , e(g, g)Q(x1 ,...,xn) , e(g, g)F (x1 ,...,xn) , T

)
= 1

]

− Pr
[
A

(
gP (x1,...,xn) , e(g, g)Q(x1 ,...,xn) , T , e(g, g)F (x1 ,...,xn)

)
= 1

]∣∣∣ > ǫ ,

22



where the probability is taken over the random choices of g
$
← G1, x1, . . . , xn

$
← Zp, and T

$
← G

|F |
T .

We extend the independence definition of [BBG05] to the case that |F | > 1.

Definition C.1 Let P,Q,F ⊂ Zp[X1, . . . ,Xn] be sets of polynomials such that P = {p1, . . . , p|P |},
Q = {q1, . . . , q|Q|}, F = {f1, . . . , f|F |}. We say that F is independent of P,Q if there does not exist

a non-trivial (i.e., not all zeroes) assignment for the coefficients {ai,j}
|P |
i,j=1, {bi}

|Q|
i=1, {ci}

|F |
i=1 ∈ Zp such

that
|P |∑

i=1

ai,jpipj +

|Q|∑

i=1

biqi +

|F |∑

i=1

cifi = 0 mod p .

The degree of a term cXd1

1 · · ·X
dn
n is d = d1 + . . . + dn; the degree of a polynomial p ∈ Zp[X1, . . . ,Xn]

is the maximum of the degrees of all its terms; and the degree deg(P ) of a set of polynomials P ⊂
Zp[X1, . . . ,Xn] is the maximum of the degrees of all its elements.

In the generic group model, an adversary A sees group elements only through an encoding as unique
random strings. Let χ : Zp → {0, 1}

ℓ be a function that maps x ∈ Zp to the string representation χ(x)
of gx ∈ G1. Likewise, let ξ : Zp → {0, 1}

ℓ be such that ξ(x) is the string representation of e(g, g)x.
The adversary has access to oracles for computing the group operations in G1 and GT, and for the
pairing e : G1 ×G1 → GT.

Theorem C.2 Let P,Q,F ⊂ Zp[X1, . . . ,Xn] as defined above with dP = deg(P ), dQ = deg(Q), and
dF = deg(F ). If A makes a total of q queries to its oracles, then its advantage in solving the VGDHE
problem is at most

ǫ ≤
(|P |+ |Q|+ 2|F |+ q)2 · d

p
,

where d = max(2dP , dQ, dF , 1).

Proof: Consider the algorithm B that provides an execution environment for A as follows. It maintains
two lists of pairs

L1 = {(pi, χi) : i = 1, . . . , l1} , LT = {(qi, ξi) : i = 1, . . . , lT} ,

Initially, L1 contains |P | pairs (pi, χi) where {p1, . . . , p|P |} = P and χ1, . . . , χ|P | are unique random
ℓ-bit strings. The list LT contains polynomials not only in the n variables X1, . . . ,Xn, but also
in 2|F | additional variables Y0,1, . . . , Y0,|F |, Y1,1, . . . , Y1,|F |. Initially it contains the |Q| + 2|F | pairs
(qi, ξi) where {q1, . . . , q|Q|} = Q, where q|Q|+i = Y0,i for 1 ≤ i ≤ |F |, and where q|Q|+|F |+i = Y1,i for
1 ≤ i ≤ |F |. Here also, the ξi are unique random ℓ-bit strings. At any point in the game we will have
that l1 + lT ≤ |P |+ |Q|+ 2|F |+ q, where q is the number of A’s oracle queries.

We assume that A only queries its oracles with element representations that were either part of its
input or that it obtained through previous oracle queries. This is reasonable because its probability of
“predicting” an element encoding can be made arbitrarily small by increasing ℓ. Algorithm B responds
to A’s oracle queries as follows.

Multiplication in G1. On query (χi, χj), B looks up the pairs (pi, χi), (pj , χj) ∈ L1. If there exists
a pair (pk, χk) ∈ L1 such that pi + pj = pk mod p, then B returns χk. Otherwise, it increases l1

and adds a pair (pl1, χl1) to L1 where pl1 = pi + pj mod p and χl1
$
← {0, 1}ℓ \ {χ1, . . . , χl1−1}.

Multiplication in GT. These queries are treated analogously, but using list LT instead of L1.
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Pairing. On query (χi, χj), B looks up the pairs (pi, χi), (pj , χj) ∈ L1. If there exists a pair (qk, ξk) ∈
LT such that pi · pj = qk mod p, then B returns ξk. Otherwise, it increases lT and adds a pair

(qlT , ξlT) to LT where qlT = pi · pj mod p and ξlT
$
← {0, 1}ℓ \ {ξ1, . . . , ξlT−1}.

After q such queries, A outputs a bit b′. Now B chooses b
$
← {0, 1} and sets Y1−b,i ← fi(X1, . . . ,Xn)

for 1 ≤ i ≤ |F |. Let bad1 be the event that after this assignment L1 contains distinct pairs
(pi∗ , χi∗), (pj∗ , χj∗) such that pi∗ = pj∗ mod p, or distinct pairs (qi∗ , ξi∗), (qj∗ , ξj∗) ∈ LT such that
qi∗ = qj∗ mod p. The first is clearly impossible because of the way B handles multiplication queries
in G1 and because pi∗ , pj∗ do not contain any terms in Yi,j. The second also turns out to be im-
possible, but this requires a bit more explanation. From the way that B handles pairing queries and
multiplication queries in GT one can see that qi∗ − qj∗ can be written as

|P |∑

i,j=1

ai,jpi,j +

|Q|∑

i=1

biqi +

|F |∑

i=1

cifi +

|F |∑

i=1

diYb,i

for some constants ai,j , bi, ci, di. For this polynomial to be identically zero, it has to hold that

|P |∑

i,j=1

ai,jpipj +

|Q|∑

i=1

biqi +

|F |∑

i=1

cifi = 0 mod p

because neither of {pi}
|P |
i=1, {qi}

|Q|
i=1, or {fi}

|F |
i=1 has terms in Yb,j. This however contradicts the inde-

pendence of F of P,Q.

Next, B chooses x1, . . . , xn, yb,1, . . . , yb,|F |
$
← Zp. Let bad2 denote the event that this choice causes at

least one “collision” in L1 or LT, meaning that

pi∗(x1, . . . , xn)− pj∗(x1, . . . , xn) = 0 mod p (3)

for some 1 ≤ i∗ < j∗ ≤ l1, or that

qi∗(x1, . . . , xn, yb,1, . . . , yb,|F |)− qj∗(x1, . . . , xn, yb,1, . . . , yb,|F |) = 0 mod p (4)

for some 1 ≤ i∗ < j∗ ≤ lT. Here, we rewrote equations qi as polynomials in X1, . . . ,Xn, Yb,1, . . . , Yb,|F |
after the assignment of Y1−b,i ← fi(X1, . . . ,Xn). If bad2 occurs, then B’s simulation of A’s environment
is incorrect, because it returned two different encodings χi∗ , χj∗ (or ξi∗ , ξj∗) for the same element. We
therefore have to bound the probability that bad2 occurs.

We already argued that neither of Equations (3) or (4) is the zero polynomial, so the probability of
hitting a root when choosing a random assignment is bounded from above by the Schwartz-Zippel
theorem [Sch80] by the degree of the polynomial divided by p. For Equation (3) the degree is at most
dP , while for Equation (4) it is at most d = max(2dP , dQ, dF , 1), so the probability of hitting a root
for any of the equations is at most

Pr [bad2 ] ≤

(
l1
2

)
dP

p
+

(
lT
2

)
d

p

≤
(|P |+ |Q|+ 2|F | + q)2 · d

2p
.

Above, we used the facts that dP ≤ d, that l1 + lT ≤ |P |+ |Q|+ 2|F |+ q, that
(a+b

2

)
≤

(a
2

)
+

(b
2

)
, and

that
(
a
2

)
≤ a2

2 .

24



If event bad2 does not occur, then B’s simulation of A’s environment is perfect. It is clear that in this
case the probability that b′ = b is 1/2, since b was chosen only after A output b′. We therefore have
that

Pr
[
b′ = 1 : b = 1

]
= Pr

[
b′ = 1 : b = 1 ∧ ¬bad2

]
· Pr [¬bad2 ]

+ Pr
[
b′ = 1 : b = 1 ∧ bad2

]
· Pr [bad2 ]

≤ Pr
[
b′ = 1 : b = 1 ∧ ¬bad2

]
+ Pr [bad2 ]

≤
1

2
+

(|P |+ |Q|+ 2|F |+ q)2 · d

2p
.

Likewise, we have that

Pr
[
b′ = 1 : b = 0

]
= 1− Pr

[
b′ = 0 : b = 0

]

≥
1

2
−

(|P |+ |Q|+ 2|F | + q)2 · d

2p
,

so the advantage of A is bounded by

∣∣Pr
[
b′ = 1 : b = 1

]
− Pr

[
b′ = 1 : b = 0

]∣∣ ≤ (|P |+ |Q|+ 2|F |+ q)2 · d

p

from which the theorem follows.
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