
New State Reovery Attak on RC4

Alexander Maximov and Dmitry Khovratovih

Laboratory of Algorithmis, Cryptology and Seurity

University of Luxembourg

6, rue Rihard Coudenhove-Kalergi, L-1359 Luxembourg

Alexander.Maximov�erisson.om, Dmitry.Khovratovih�uni.lu

Abstrat. The stream ipher RC4 was designed by R. Rivest in 1987,

and it has a very simple and elegant struture. It is probably the most

deployed ipher on the Earth.

In this paper we analyse the lass RC4-N of RC4-like stream iphers,

where N is the modulus of operations, as well as the length of inter-

nal arrays. Our new attak is a state reovery attak whih aepts the

keystream of a ertain length, and reovers the internal state. For the

original RC4-256, our attak has total omplexity of around 2241
opera-

tions, whereas the best previous attak needs 2779
of time. Moreover, we

show that if the seret key is of length N bits or longer, the new attak

works faster than an exhaustive searh. The algorithm of the attak was

implemented and veri�ed on small ases.

Keywords: RC4, state reovery attak, key reovery attak.

1 Introdution

RC4 [Sh96℄ is a stream ipher designed by Ron Rivest in 1987, and sine then it

has been implemented in many various software appliations to ensure privay

in ommuniation. It is, perhaps, the most widely deployed stream ipher and

its most ommon appliation is to protet Internet tra� in the SSL protool.

Moreover, it has been implemented in Mirosoft Lotus, Orale Seure SQL, et.

The design of RC4 was kept seret until 1994 when it was anonymously leaked

to the members of the Cypherpunk ommunity. A bit later the orretness of

the algorithm was on�rmed.

In this paper we study a family RC4-N of RC4 like stream iphers, where N
is the modulus of operations. The internal state of RC4 is two registers i, j ∈ ZN

and a permutation S of all elements of ZN . Thus, RC4 has a huge state of

log2(N
2N !) bits. For the original version, when N = 256, the size of the state is

≈ 1700 bits. This makes any time-memory trade-o� attaks impratial. RC4-

256 uses a variable length key from 1 to 256 bytes for its initialisation.

The initialisation proedure of RC4 has been thoroughly analysed in a large

number of various papers, see e.g. [MS01,Man01,PP04℄. These results show that

the initialisation of RC4 is weak, and the seret key an be reovered with a small

portion of data/time. Beause of these attaks, RC4 an be regarded as broken.

However, if one would tweak the initialisation proedure, the ipher beomes

seure again.

The simpliity of the keystream generating algorithm of RC4 has attrated

many ryptanalysis e�orts. In most analyses the senario assumes that keystream

of some length is given, and either a distinguishing ([Gol97,FM00,Max05,Man05℄)

or a state reovery ([KMP

+
98℄) attak is of interest. A state reovery attak an

be used to determine the atual seurity level of a ipher, if the initial internal

state is onsidered as a seret key. The �rst state reovery attak was proposed

by Knudsen et al in 1998 [KMP

+
98℄. This had a omputational omplexity of

2779
. Some minor improvements were found in other literature, e.g. [MT98℄, but

still, there is no attak even lose to 2700
. One interesting attempt to improve the

analysis was reently done in [Man05℄. Although that attak is only a potential

one, the pretending time omplexity laimed was around 2290
.

In this paper we propose a new state reovery attak on RC4-N . For the

original design RC4-256 the total time omplexity of the attak is less than 2241
,

requiring keystream of a similar length. This means that there is no additional

gain in using a seret key longer than 30 bytes. We also show that in general if the

seret key is of length N bits or longer the new attak is faster than exhaustive

key searh.

The idea of the new attak is as follows. The algorithm searhes for a

plae in the keystream where the probability of a spei� internal state, ompli-

ant with a hosen pattern, is high. Afterwards, the new state reovery algorithm

is used together with a small portion of data (around 2N output words) in order

to reover the internal state of the ipher in an iterative manner. This algorithm

has been implemented and veri�ed for small values of N , it has determined the

orret internal state in every simulation run. The suess rate of the full attak

is shown to be at least 98%. For large values of N , where simulations were

impossible, an upper bound for the average omplexity of the attak is derived

and alulated.

This paper is organized as follows. In Setion 2 the new iterative state re-

overy algorithm is desribed in detail. Afterwards, Setion 3 introdues various

properties of a pattern that are needed for the reovering algorithm. An e�etive

searhing algorithm to �nd suh patterns is also proposed in Appendix B (due to

the page limitation and larity of presentation). Setion 4 desribes several teh-

niques to detet spei� states by observing the keystream, and also introdues

additional properties of a pattern needed for detetion purposes. Theoretial

analysis of the state reovery algorithm and derivation of its omplexity fun-

tions are performed in Appendix C. All piees of the attak are then ombined in

Setion 5. Finally, we perform a set of simulations of the attak, summarize the

results and onlude in Setion 6. The paper ends with suggestions for further

improvements and open problems in Setion 7.

1.1 Notations

All internal variables of RC4 are over the ring ZN , where N is the size of the

ring. To speify a partiular instane of the ipher we denote it by RC4-N . Thus,

the original design is RC4-256. Whenever appliable, + and − are performed in

modulo N . At any time t the notation at denotes the value of a variable a at time

t. The keystream is denoted by z = (z1, z2, . . .), where zi is a value 0 ≤ zi < N .

In all tables probabilities and omplexities will be given in a logarithmial form

with base 2.

1.2 Desription of the Keystream Generator RC4-N

The new attak targets the keystream generation phase of RC4 and, thus, the

initialisation proedure will not be desribed. We refer to, e.g., [Sh96℄ for a full

desription of RC4. After the initialisation proedure, the keystream generation

algorithm of RC4 begins. Its desription is given in Figure 1.

Internal variables:

i, j � integers in ZN

S[0 . . . N − 1] � a permutation of integers 0 . . . N − 1
S[·] is initialised with the seret key

The keystream generator RC4-N

i = j = 0
Loop until we get enough symbols over ZN∣

∣
∣
∣
∣
∣
∣
∣

(A) i = i+ 1
(B) j = j + S[i]
(C) swap(S[i], S[j])
(D) zt = S[S[i] + S[j]]

Fig. 1. The keystream generation algorithm of RC4-N .

2 New State Reovery Algorithm

2.1 Previous Analysis: Knudsen's Attak

In [KMP

+
98℄ Knudsen et al. have presented a basi reursive algorithm to reover

the internal state of RC4. It starts at some point t in the keystream z given k
known ells of the permutation St, whih helps the reursion to anel unlikely

branhes. The idea of the algorithm is simple. At every time t we have four

unknowns:

jt, St[it], St[jt], S−1
t [zt]. (1)

One an simply simulate the pseudo random generation algorithm and, when ne-

essary, guess these unknown values in order to ontinue the simulation. The re-

ursion steps bakward when a ontradition is reahed due to previously wrong

guesses. Additionally, it an be assumed that some k values are a priori known

(guessed, given, or derived somehow), and this may redue the omplexity of

the attak signi�antly. An important note is that the known k values should

be loated in a short window of the �working area� of the keystream, otherwise

they annot help to anel hopeless branhes.

The preise omplexity of the attak was alulated in [KMP

+
98℄, and several

tables for various values of N and k were given in Appendies D.1 and D.2

of [Man01℄. As an example, the omplete state reovery attak on RC4-256

would require time around 2779
.

2.2 Our Algorithm for State Reovery

In this setion we propose an improved version of the state reovery algorithm.

Assume that, at some time t in a window of length w + 1 of the keystream z,
all the values jt, jt+1, jt+2, . . . , jt+w are known. This means that for w steps the

values St+1[it+1], . . . , Si+w[it+w] are known as well, sine they are derived as

St+1[it+1] = jt+1 − jt, ∀t.
(2)

Consequently, w equations of the following kind an be olleted:

S−1
k [zk] = Sk[ik] + Sk[jk], k = t + 1, . . . , t + w, (3)

where only two variables are unknown,

S−1
k [zk], Sk[jk], (4)

instead of four in Knudsen's attak, see (1). Let the set of onseutive w equations

of the form (3) be alled a window of length w.
Sine all js in the window are known, then all swaps done during these w

steps are known as well. This makes it possible to map the positions of the

internal state St at any time t to the positions of some hosen ground state St0

at some ground time t0 in the window. For simpliity, let us set t0 = 0.
Our new state reovery algorithm is a reursive algorithm, shown in Figure 2.

It starts with a olletion of w equations, and attempts to solve them. A single

equation is alled solved or proessed if its orresponding unknowns (4) have been

expliitly derived or guessed. During the proess, the window will dynamially

inrease and derease. When the length of the window w is long enough (say,

w = 2N), and all equations are solved, the ground state S0 is likely to be fully

reovered.

Now we give a more detailed desription of the di�erent parts of the algo-

rithm.

Iterative Reovering (IR) Blok The Iterative Reovering blok reeives a

number a of ative equations (not yet proessed) in the window of length w
as input, and tries to derive the values of St[jt]s and S−1

t [zt]s. To do that, the

IR blok goes through two steps iteratively, until no more new derivations are

possible. If all previous guesses were orret, then all newly derived values (ells

of the ground state) will be orret with probability 1. Otherwise, when the IR

blok �nds a ontradition the reursion steps bakward. The two steps are as

follows.

Iterative
Recovering

Window
Expansion

Find and Guess the
Maximum Clique

Contradiction?

Are all
equations in the window

solved?

Are new
equations available?

Guess One S[i]

no

no

yes

yes

no

recursion
backward

recursion
forward

recursion
forward

1.

4.

3.

2.

yes

Fig. 2. New state reovery algorithm.

A. Assume that, for one of the ative equations its output symbol zt is already

alloated somewhere in the ground state. I.e., the value S−1
t [zt] is known,

and the seond unknown St[jt] an expliitly be derived using (3).

A ontradition arises if (a) St[jt] is already alloated and it is not equal to

the derived value; (b) the derived value already exists in some other ell.

B. Already alloated values may give the value of St[jt] in another equation.

Consequently, a new value S−1
t [zt] an be derived via (3), whih might pos-

sibly ause a ontradition.

Find and Guess the Maximum Clique (MC) Blok If no more ative

equations an expliitely be solved, S−1
t [zt] for one t has to be guessed. The

Find and Guess the Maximum Clique blok analyses given ative equations,

and hooses the element that gives the maximum number of new derivations in

onseutive reursive alls of the IR blok. This element is then guessed.

The analysis is very simple. Let a ative equations be verties vt in a graph

representation. Two verties vt′ and vt′′ are onneted if zt′ = zt′′ and/or St′ [jt′]
and St′′ [jt′′] refer (like pointers) to the same ell of the ground state. Guessing

any unknown variable in any onneted subgraph solves all equations involved

in that subgraph. Therefore, let us all these subgraphs liques. The MC blok

searhes for a maximum lique, and then guess one S−1
t [zt] for one of the equa-

tions belonging to the lique. Afterwards, the IR blok is alled reursively.

Window Expansion (WE) Blok Obviously, the more equations we have the

faster the algorithm works. Therefore, a new equation is added to the system

as soon as the missing value S[i] in the beginning or in the end of the window

is derived. The Window Expansion blok heks for this event and dynamially

extends the window. Sometimes several equations are added at one, espeially

on the leafs of the reursion.

Guess One S[i] (GSi) Blok If there are no ative equations but the ground

state S0 is not yet fully determined, the window is then expanded by a diret

guess of S[i], in front or in bak of the window. Then the WE, IR and MC bloks

ontinue to work as usual. Additional heuristis an be applied for hoosing whih

side of the window to be expanded for a larger suess.

Appendix A provides an example that shows the steps of the outlined algo-

rithm.

3 Preomputations: Finding Good Patterns

The algorithm presented in the previous setion is used in the full state reovery

attak as a part of it. Every time when the algorithm is running at some point

of the keystream, its e�etiveness depends on ertain properties of the urrent

internal state. Although these properties are not visible for the intruder, she may

have a good guess about plaes in the keystream where the internal state has

good properties (see Setion 4), and apply the state reovery algorithm only at

those plaes.

In this setion we will de�ne patterns (see De�nition 1), they determine

huge sets of internal states with ommon properties. If, for instane, a pattern

has a large window then this ertainly helps dereasing the omplexity of the

algorithm. However, the probability that the internal state is ompliant with a

ertain pattern dereases with the number of onditions put on the pattern.

In this setion we disuss properties of patterns that in�uene on the om-

plexity of the attak, and also study their availability. We have also developed

an e�ient algorithm for �nding these paterns, and it is loated in Appendix B.

3.1 Generative States

Let us start with the following de�nition

De�nition 1 (d-order pattern). A d-order pattern is a tuple

A = {i, j, P, V }, i, j ∈ ZN ,
(5)

where P and V are two vetors from Z
d
N with pairwise distint elements. At a

time t the internal state is said to be ompliant with A if it = i, jt = j, and
d ells of the state St with indies from P ontain orresponding values from

V . ⊓⊔
The example in Figure 4 in Appendix A illustrates how a 5-order pattern

allows to reeive a window of length 15. However, the higher the order, the less

the probability of suh a onstraint to happen. Thus, we are interested in �nding

a low order pattern whih generates a long window.

De�nition 2 (w-generative pattern). A pattern A is alled w-generative
if for any internal state ompliant with A the next w lokings allow to derive w
equations of the form (3), i.e., onseutive w + 1 values of js are known. ⊓⊔

Table 1 demonstrates a 4-order 7-generative pattern A={-7,-8,{-6, -5, -4,
0}, {6, -1, 2, -2}}, that supports the above de�nitions. Eight equations involve

symbols of the keystream zt+1, . . . , zt+8 assoiated with a ertain time t. We say

that the keystream is true if the internal state at time t is ompliant with the

pattern, otherwise we say the keystream is random.

Let another pattern B be derived from A as

B = A + τ = {i + τ, j + τ, P + τ, V },
(6)

for some �shift� τ . The pattern B is likely to be w-generative as well. This

happens when the properties of A are independent of N , whih is the usual ase.

it jt S[i] S[j] S[i] + S[j] zt −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−7 −8 � � � � 6 −1 2 x1 x2 x3 −2 x4 x5 x6 x7 x8

−6 −2 6 x2 6 + x2 ∗ x2 −1 2 x1 6 x3 −2 x4 x5 x6 x7 x8

−5 −3 −1 x1 −1 + x1 ∗ x2 x1 2 −1 6 x3 −2 x4 x5 x6 x7 x8

−4 −1 2 x3 2 + x3 ∗ x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−3 −2 −1 6 5 x8 x2 x1 x3 6 −1 2 −2 x4 x5 x6 x7 x8

−2 −3 −1 6 5 x8 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−1 −1 2 2 4 x7 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

0 −3 −2 −1 −3 −2 x2 x1 x3 −2 6 2 −1 x4 x5 x6 x7 x8

1 ∗ x4 ∗ ∗ ∗

Table 1. An example of a 4-order 7-generative pattern.

3.2 Availability

We have done a set of simulations in order to �nd maximum w-generative d-order
patterns, denoted by M

d
. The results are given in Table 7(a) in Appendix D.

Searhing for a high order pattern is a hallenging task sine the omputational

omplexity grows exponentially with d. The best result ahieved in our work is

a 14-order 76-generative pattern M14.

Real values from our simulations Approximated values

d = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

wmax = 6 10 15 21 27 31 37 42 50 55 61 68 76 82 88 94 100 106 112 118

Table 2. Dependeny of the maximum w from d, simulated and approximated values.

Table 2 shows the dependeny of a maximum ahievable generativeness wmax

from the order d. We an note that this dependeny is almost linear, and it

onverges to wmax = 6d + λ as d → ∞. We make the following onjeture.

Conjeture 1. The rate of

wmax

d ≈ 6 as d → ∞.

1 ⊓⊔
That onjeture allows us to make a predition about ertain parameters

for patterns with large d. These ould not be found due to a very high pre-

omputation omplexity, but they are needed to analyse the attak for large N
(N = 128, 256 in Table 3). However, given those parameters, d and w, we an

derive theoretial omplexities of the attak on average. This has been done in

Appendix C.

An e�ient searh algorithm for patterns with desired properties is given in

Appendix B.

4 Detetion of Patterns in the Keystream

In the previous setion we have studied properties of a pattern that are desirable

for the state reovery algorithm to work fast and e�ient. We have also shown

(in Appendix B) how these patterns an be found, and introdued an e�ient

searhing algorithm.

In this setion we show how the internal state of RC4, ompliant to a hosen

pattern, an be deteted by observing the keystream. If the detetion is very

good, then the state reovery algorithm might only have to be exeuted one, at

the right loation in the keystream.

The detetion mehanism itself an be trivial (no detetion at all), in whih

ase the algorithm has to be run at every position of the keystream. On the

other hand, a good detetion may require a deep analysis of the keystream,

where spei� properties of the pattern an be used e�iently.

4.1 First Level of Analysis

The internal state of RC4 ompliant to a d-order pattern A an be regarded as

an internal event with probability

Pr{Eint} = N−d−1. (7)

When the internal event ours, there ould exist an external event Eext ob-

served in the keystream, and assoiated with the pattern A, i.e., Pr{Eext|Eint} =
1. Applying Bayes' law we an derive the detetion probability Pdet of the pattern

A in the keystream as

Pdet = Pr{Eint|Eext} =
Pr{Eint}
Pr{Eext}

. (8)

1

Indeed, the �jump� of wmax as d inrements by one is the sequene Γ={4, 5, 6, 6, 4,

6, 5, 8, 5, 6, 7, 8, . . .}. Obviously, for small d this �jump� is small, and it is notable

that the �jump� inreases for larger d. In our simulations heuristis were used (see

Setion B) when searhing patterns for d ≥ 6. This means that our �jumps� in the

sequene Γ ould possibly be larger if an optimal searhing tehnique is applied,

sine our heuristi annot guarantee that we get a pattern with the longest window.

This suggests that the ratio w → 6d as d→ ∞ seems quite a fair onjeture.

Our goal in this setion is to study possible external events with high Pdet in

order to inrease the detetion of the pattern.

De�nition 3 (l-de�nitive pattern). A w-generative pattern A is alled l-
de�nitive if there are exatly l out of w equations with determined S[j]s. ⊓⊔

It means that in l equations S[i] + S[j] are known. If, additionally, z′ =
S[S[i]+S[j]] is also known, then the orret value of zt = z′ at the right position
t of the keystream z detets the ase �the state at time t is possibly ompliant

to the pattern�. Otherwise, when zt 6= z′, it says that �the state at time t annot
be ompliant to the pattern�.

For detetion purposes a large l (up to d) is important. From our experiments

we found that, however, a large l an be ahieved via a slight redution of the

parameter w. This leads us to one more onjeture.

Conjeture 2. For any d and w = wmax − λ there exist a pattern with l = d,
where λ is relatively small

2

. ⊓⊔

In the following de�nition we introdue other properties of a patter that are

important for its good detetion via the keystream.

De�nition 4 (bα, bβ, bγ-
α,β,γ

preditive pattern). Let us have an l-de�nitive
pattern A and onsider only those equations where S[j]s are determined. Then,

the pattern A is alled bα-
α
preditive if for bα of the l equations S[S[i] + S[j]]

is determined. For the remaining l − bα equations two additional de�nitions are

as follows. The pattern A is alled bβ-
β
preditive if for bβ pairs of the l − bα

equations the unknowns S[S[i]+S[j]]s must be the same. The set of bβ pairs must

be of full rank. The pattern A is alled bγ-
γ
preditive if the l − bα equations

ontain exatly bγ di�erent variables of S[S[i] + S[j]]. ⊓⊔

These types of preditiveness are other properties of a pattern visible in the

keystream. For example, it is not only neessary to searh for known z′ values (bα

of suh), but one an also require that ertain pairs of the keystream symbols (bβ

of suh) are equal zt′ = zt′′ , whih also helps to detet the pattern signi�antly.

The parameter bα is usually quite moderate and to have it larger than 15

is quite di�ult. However, the other riteria are more �exible and an be large.

These new parameters follow the onstraint

bα + bβ + bγ = l ≤ d.
(9)

Consider the remaining w− l equations of the pattern A where S[j]s are not
determined. Let at time instanes t1 and t2 one pair of these equations be suh

2

Table 6(a) in Appendix D ontains patterns Xs with l = d where w is still large,

whih supports the above onjeture. Indeed, Table 4 in Appendix B shows how

the number of available patterns grows when relaxing the ondition put on w. I.e.,

a slight redution of w inreases the hane of �nding a pattern with d = l. This

makes the onjeture fair.

that the S[i] values and the S[j] pointers are equal. If the distane ∆t = t2 − t1
is small, it is likely that the output z1 is the same as z2. The probability of this

event is

Pr{z1 = z2|∆t} >

(

1 − ∆t

N

)

·
(

1 − 1

N

)∆t

≈ exp

(

−2∆t

N

)

. (10)

De�nition 5 (bθ-
θ
preditive pattern). A pattern A is alled bθ-

θ
preditive

if the number of suh pairs (desribed above) is bθ. Let the time distanes of these

pairs be ∆1, . . . , ∆bθ
, then the umulative distane is the sum Πθ = Σi∆i ⊓⊔

These four types of preditiveness are diret external events for a pattern.

One should observe the keystream and searh for ertain bα symbols, hek

another bβ and bθ pairs of symbols that they are equal, and also hek that a

group of bγ symbols are di�erent from the values of V and from eah other.

Thus, we have

Pr{Eext} = N−bα−bβ−bθ ·
[

(N − d)!

N bγ (N − d − bγ)!

]

Pr{Eint} ≈ N−d−1 · e−2Πθ/N .

(11)

The example in Table 1 is a 4-de�nitive bα = 1, bβ = 1, bγ = 2, bθ = 0-
preditive pattern. For detetion one has to test that zt+6 = −2, zt+3 = zt+4, and

zt+4, zt+5 are di�erent from the initial values at V and zt+4 6= zt+5. I.e., when,

for example, N = 64, the detetion probability is 64−5 ÷ (64−2 · 60 · 59/642) ≈
64−2.96 3

.

4.2 Seond Level of Analysis

In fat, the �rst level of analysis allows to detet a pattern with probability at

most N−1
(beause j is not detetable), whereas with the seond level of analysis

it an be 1. Let us introdue a tehnique that we all a hain of patterns.

De�nition 6 (hain of patterns A → B, distane, intersetion). Let us
have two patterns A = {ia, ja, Pa, Va} and B = {ib, jb, Pb, Vb}. An event when

two patterns appear in the keystream within the shortest possible time distane

σ is alled hain of patterns, and is denoted as A → B if B appears after A.

The hain distane σ between two patterns A and B is the shortest possible

time between A's ending and B's beginning of their windows, i.e.,

σ = ib − (ia + wa) mod N.
(12)

The intersetion of A and B is the number ξ of positions in A that are

reused in B. These positions must not appear as S[i] during σ lokings while

the hain distane between A and B is approahed. ⊓⊔
3

Sine

γ
-preditiveness has a minor in�uene on detetion, we skip this parameter in

future alulations.

For example, let A = {0, 0, {1, 3, 5, 6, 7, 8, 22, 23}, {2, 8,−3,−2, 1, 7, 4,−9}}
andB = {34, 34, {35, 36, 37, 38, 39, 44, 48, 52}, {8,−2, 1, 2, 4,−5, 5, 3}}. After wa =
30 lokings the �rst pattern beomes A′ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{−3,−9, 7, 8,−2, 1, 2, 4}}. Obviously, the last ξ = 5 positions an be reused in

B, and after σ = 4 lokings a new pattern B (wb = 34) an appear if jt+34 = jb.

The probability that the hain A → B appears is N−9 · N−4
, multiplied by the

probability that 5 elements from A′
stay at the same loations during the next 4

lokings. This is muh larger than the trivial N−9 ·N−9
. Thus, a more general

theorem an be stated.

Theorem 1 (hain probability). The probability of a hain A → B to appear

is

PA→B = Pr{Eint} ≈ N−(da+db+2−ξ) · e−2(Πθa+Πθb)/N · e−ξ. (13)

Proof. In [Man01℄ it has been shown that ξ elements stay in plae during N
lokings with an approximate probability e−ξ

. The remaining part omes from

an assumption that the internal state is random, from where the proof follows.

⊓⊔

Obviously, the probability of the external event for the hain is

Pr{Eext} = N−(bαa+bβa+bθa)−(bαb+bβb+bθb), (14)

whih an be smaller than Pr{Eint} (see Y4
in Table 6 in Appendix D), onfusing

the equation (8). This happens sine Pr{Eext} is alulated assuming that the

keystream is random. However, in RC4 only a portion of the observed external

probability spae an appear (whih is another soure for a distinguishing attak,

but it is out of sope of this paper). Therefore, in the ase when Pr{Eext} <
Pr{Eint} we simply assume that the detetion probability is 1.

Table 6 in Appendix D presents a few examples with a good trade-o� (based

on our intuition) between w and detetability for various d. Sine the omputa-

tion time for searhing suh patterns with multiple desired properties is really

huge, only a few examples for small d were given. However, we believe that for

large d it is possible to detet suh patterns with a high probability, up to 1,

applying the two proposed levels of analysis.

5 Complete State Reovery Attak on RC4

5.1 Attak Senario and Total Complexity

Reall pattern detetion tehniques from Setion 4. In the attak senario an

adversary analyses the keystream at every time t, and applies the state reovery

algorithm if the desired internal event (pattern) is deteted. In all ases exept

one the reovering algorithm deals with a random keystream.

Proposition 1 (Total Attak Complexities). Let the detetion probability

be Pdet, then the total time CT and data CD omplexities of the attak are

CT = Pr{Eint}−1 + (P−1
det

− 1) · CRand + 1 · CTrue,

CD = Pr{Eint}−1.
(15)

⊓⊔

5.2 Suess Rate of the Attak

The omplexities CTrue and CRandom are upper bounds for the average time the

algorithm requires. It means that for some ases it ould take more time than

these bounds. In order to guarantee the upper bound of the total (not aver-

age) time omplexity one an terminate the algorithm after, for example, Cthr

operations. In this ase the suess rate of the attak an be determined.

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

PSfrag replaements

k

P
r{
C

T
r
u
e

=
2

k
}

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

PSfrag replaements

k

P
r{
C

T
r
u
e
<

2
k
}

Fig. 3. Probability density (left) and umulative (right) funtions of the time CTrue in

logarithmial form (k = log2 CTrue). The senario is N = 64,M
8
and 2000 samples.

Figure 3 shows density and umulative funtions for the time omplexity

of an example attak senario. It shows that around 98% of all simulations of

the attak have time smaller than the average 229.28
(vertial line). When the

keystream is random the termination makes the average time bound CRandom even

smaller, sine the random ase is likely to be repeated very many times and the

seond term in (15) an only derease.

The plots in Figure 3 also show that even if the termination of the algorithm

is done on the level Cthr =
√

CTrue (≈ 215
), the suess rate of the attak is still

very high. I.e., the state reovery algorithm on RC4-64 an be done in time 215

with suess probability 35%! If a similar situation happens for large N (e.g.,

N = 256), then the full time omplexity an be signi�antly dereased (perhaps,

down to a square root of the estimated average omplexity), and the suess

probability an still be very large.

6 Simulation Results and Conlusions

We have seleted a set of test ases with various parameters and patters, and

derived total data and time omplexities of the new attak. Table 3 presents the

results of this work. For example, when N = 64, the total omplexity of the new

attak is upper bounded by 260
, if the pattern X9 is used. This is muh faster

than, for example, Knudsen's attak, whih omplexity for this ase is 2132.6
.

Even if d = 9 elements of the state are known, Knudsen's attak needs 298.1
of

time, whih is still muh higher. The omplexity of a potential attak reently

disussed by I. Mantin in [Man05℄

4

is also higher. As it was shown in Setion 5.2,

the suess rate of the new attak is at least 98%.

N N = 64 N = 100 N = 128 N = 160 N = 200 N = 256
Cases I II III IV V VI VII VIII IX X XI XII XIII

Desriptions of the ases (⋆ � are hypothetial ases)

Pattern M
8
Y

8
X

9
X

11
M

13
M

14
⋆ M

14
⋆ M

14
⋆ M

14
⋆

d 8 8 9 11 13 14 17 14 18 14 23 14 29

w 37 29 41 49 68 76 92 76 102 76 132 76 168

l 6 6 5 11 9 10 10 10 10 10 14 10 17

bα 0 4 4 9 0 0 10 0 11 0 10 0 11

bβ 1 1 0 0 2 2 0 2 0 2 2 2 4

bγ 5 1 1 2 7 8 0 8 0 8 2 8 2

bθ 0 0 2 0 2 2 0 2 7 2 4 2 12

Πθ 0 0 4 0 4 4 0 4 � 4 � 4 �

Internal/external/detetion probabilities

Pint -54.0 -65.8 -60.0 -79.7 -93.0 -105.0 -112.0 -109.8 -139.1 -114.7 -183.5 -120.0 -240.0

Pext -6.0 -60.0 -36.0 -59.8 -26.6 -28.0 -70.0 -29.3 -131.8 -30.6 -122.3 -32.0 -216.0

Pdet -48.0 -5.8 -24.0 -19.9 -66.4 -77.0 -42.0 -80.5 -7.3 -84.1 -61.2 -88.0 -24.0

Complexities of the state reovery algorithm

when the keystream is true/random

Theor. 20.5 58.2 22.8 107.8 10.0 71.3 71.7 191.1 131.7 317.4 121.3 507.4 217.1

C
R
a
n
d

Attun. 15.5 57.8 � 107.5 � 66.3 � 179.2 � 302.6 � 491.8 �

Theor. 35.0 64.9 30.9 120.4 34.5 94.7 102.0 213.0 138.2 335.6 157.5 519.6 225.4

Attun. 30.3 57.6 � 108.3 31.8 85.5 � 185.1 � 309.9 � 501.8 �

C
T
r
u
e

Real 29.3 � � � 29.1 � � � � � � � �

Total data/time omplexity, and the omparison

with previous attaks

CK(0) 132.6 236.6 324.8 431.4 572.0 779.7

K

n

u

d

-

s

e

n

'

s

CK(d) 101.7 101.7 98.1 189.3 181.0 261.3 256.9 364.6 346.1 501.9 458.2 705.9 629.3

Mantin's po-

tential attak

73 114 147 186 243 290

CD 54.0 65.8 60.0 79.7 93.0 105.0 112.0 109.8 139.1 114.7 183.4 120.0 240.0

O

u

r

a

t

t

a

k

CT 63.5 63.4 60.0 127.4 93.1 143.4 113.7 271.7 140.4 386.7 184.0 579.8 241.7

Table 3. Simulation results and omparisons with previous attaks.

4

Mantin detets a large number of bytes of the state, and then applies Knudsen's

attak given those bytes. However, to make these knowns to redue the omplexity

of Knudsen's attak they must be loated in a short window all together, and this

is not the ase. This fat is on�rmed in [Man05℄ (Setion �State Reovery Attak�).

Table 3 also ontains intermediate probabilities and omplexities for the at-

tak, inluding theoretial (∆ = 0) and attuned (∆ = 2) values for CRand and

CTrue. When it was possible, the real attak on a true keystream was simulated

(real omplexities for CTrue are shown in itali). In these simulations the omplete

state of RC4 was suessfully reovered for every randomly generated keystream

ompliant with the orresponding pattern.

For larger N , patterns of a high order are needed to reeive an attak of low

omplexity. The largest pattern that we ould �nd in this work is M
14
, and this

was applied to attak RC4-N with N = 128, 160, 200, 256. These attak senarios
are those that we have in our hands already. However, the omplexities reeived

are not optimal, but they are still lower than in Knudsen's attak. Conjeture 1

and also disussions in Setion 4 make it possible to approximate the parameters

of a hypothetial pattern that is likely to exist (⋆ � patterns). To be seure, we

relate d and w as w = 6d−6, with a on�dene gap of 6 positions. The remaining

parameters were hosen moderate as well. As the result, we obtained an attak

on RC4-256 with the (upper bounded) total omplexity of 2241.7
, and this is the

best state reovery attak known at the moment.

In general, we have noted the following tendeny. For RC4-N with a seret

key of length N bits or longer, the new attak an reover the internal state

muh faster than an exhaustive searh. This observation an also be seen from

the results in Table 3.

As the last point of the disussions we note that the key reovery attak an

be easily onverted from a state reovery attak. There are several papers dealing

with reovering the seret key from a known internal state [MS01,Man01,PM07℄.

However, this part works muh faster than urrently known state reovery at-

taks, and, therefore, we just refer to these papers without giving details.

7 Further Improvements and Open Problems

Pattern detetion improvements. With a hain of patterns desribed in Setion 4

one ould reah a good detetion. However, not only forward diretion of hain-

ing an be onsidered, but also bakward one. Additionally, there is a possibility

to analyse longer sequenes of patterns in order to have a good detetability. An-

other idea is to use unusual reylable patterns in a similar manner as in [Man05℄.

The di�erene is that these patterns are both reylable and have a long window.

For example, A = {0,−4, {6, 4, 1, 5, 3}, {0, 1, 7,−2,−1}}.
State reovery algorithm improvement. The GSi blok an hoose the orner

(left or right) of the window to be extended by an additional heuristi analysis of

the urrent situation during the proess. Another improvement is ahieved if the

MC blok ould speulatively run the reursion for additional 1-3 extra forward

steps for every possible guess, and, afterwards, make suh a guess for whih the

number of sub branhes is the minimum. The average time of the attak for this

strategy is redued.

Derivation and statistis. Our investigation showed that the derived theoret-

ial upper bound gives a muh larger omplexity than the one reeived from the

real simulations of the attak. Obviously, a better analysis of the algorithm's

omplexity is needed. This would allow a more aurate estimation of the total

omplexity, and it might improve the omplexities in Table 3 signi�antly. An-

other interesting problem is to determine the density funtion of the reovering

algorithm, likewise in Figure 3. This may allow us to derease the omplexity in

square root times, maintaining a high suess rate.

Other open problems. The searh for patterns of a higher order with long

windows is another hallenging open question. We have shown that there are

hains of patterns with short distanes. The �rst pattern is used for the reover-

ing algorithm, and the seond one is for detetion. However, another interesting

question is whether or not the seond pattern an also be used in the reovering

algorithm.

We believe that the outlined open problems have a huge potential for reduing

the omplexity of the attak on RC4. Perhaps, very soon we will be witnessing

an attak of omplexity lower than 2128
on the full RC4-256.

Aknowledgements

We thank Martin Hell and also anonymous reviewers for their signi�ant editorial

omments.

Referenes

[FM00℄ S. R. Fluhrer and D. A. MGrew. Statistial analysis of the alleged RC4

keystream generator. In B. Shneier, editor, Fast Software Enryption 2000,

volume 1978 of Leture Notes in Computer Siene, pages 19�30. Springer-

Verlag, 2000.

[Gol97℄ J. Dj. Goli¢. Linear statistial weakness of alleged RC4 keystream generator.

In W. Fumy, editor, Advanes in Cryptology�EUROCRYPT'97, volume

1233 of Leture Notes in Computer Siene, pages 226�238. Springer-Verlag,

1997.

[KMP

+
98℄ L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Anal-

ysis methods for (alleged) RC4. In K. Ohta and D. Pei, editors, Advanes in

Cryptology�ASIACRYPT'98, volume 1998 of Leture Notes in Computer

Siene, pages 327�341. Springer-Verlag, 1998.

[Man01℄ I. Mantin. Analysis of the stream ipher RC4. Master's thesis, The Weiz-

mann Institute of Siene, Department of Applied Math and Computer

Siene, Rehovot 76100, Israel., 2001.

[Man05℄ I. Mantin. Prediting and distinguishing attaks on RC4 keystream gener-

ator. In R. Cramer, editor, Advanes in Cryptology�EUROCRYPT 2005,

volume 3494 of Leture Notes in Computer Siene, pages 491�506, 2005.

[Max05℄ A. Maximov. Two linear distinguishing attaks on VMPC and RC4A and

weakness of RC4 family of stream iphers. In H. Gilbert and H. Handshuh,

editors, Fast Software Enryption 2005, volume 3557 of Leture Notes in

Computer Siene, pages 342�358. Springer-Verlag, 2005.

[MS01℄ I. Mantin and A. Shamir. Pratial attak on broadast RC4. In M. Matsui,

editor, Fast Software Enryption 2001, volume 2355 of Leture Notes in

Computer Siene, pages 152�164. Springer-Verlag, 2001.

[MT98℄ S. Mister and S. E. Tavares. Cryptanalysis of RC4-like iphers. In Seleted

Areas in Cryptography�SAC 1998, Leture Notes in Computer Siene,

pages 131�143, 1998.

[PM07℄ G. Paul and S. Maitra. Permutation after RC4 key sheduling reveals the

seret key. In Seleted Areas in Cryptography�SAC 2007, volume 4876 of

Leture Notes in Computer Siene, pages 360�377. Springer-Verlag, 2007.

Available at http://eprint.iar.org/2007/208, June 1, 2007 (aessed Jan-

uary 10, 2008).

[PP04℄ S. Paul and B. Preneel. A new weakness in the RC4 keystream generator

and an approah to improve the seurity of the ipher. In B. Roy and

W. Meier, editors, Fast Software Enryption 2004, volume 3017 of Leture

Notes in Computer Siene, pages 245�259. Springer-Verlag, 2004.

[Sh96℄ B. Shneier. Applied Cryptography: Protools, Algorithms, and Soure Code

in C. John Wiley&Sons, New York, NY, 2nd edition, 1996. ISBN 0-471-

11709-9.

A Example Support for the State Reovery Algorithm

Figure 4 illustrates an example of the proess of the IR blok. In the example we

start with spei� values of i and j, and also d = 5 ells of the state S are �lled

with ertain values, whereas the remaining ells are unknown. This onstraint

allows to ollet w = 15 equations of the form (3). The keystream is given in the

rightmost olumn of the table.

The �rst iteration, in Figure 4(b), �nds that z6 = 4 and z8 = −2 are already

alloated, thus solving equations 6 and 8 (s4 = 10, s9 = 5). Afterwards, given
s9 = 5, the IR blok solves the equation 14 and suessfully heks for a on-

tradition, in Figure 4(). Finally, after the step (e) four additional ells of the

state S were derived with probability 1.

When the IR blok is proessed, the input to the MC blok is the maximum

lique of size 4 equations with 5 unknowns, shown in Figure 4(f). It means that

guessing only one unknown determines four other ones. Furthermore, the spae

of possible guesses is signi�antly redued due to the higher probability of a

ontradition to our.

B Searhing Tehnique

Sine the searh spae for a d-order pattern grows exponentially with d, only pat-
terns of order d ≤ 6 were analysed before in various literature, e.g., in [Man05℄. In

this setion we suggest a few tehniques that aelerate this searh signi�antly,

and allow to searh and analyse patterns of order up to d ≤ 15, approximately,

on a usual desktop PC.

First, we need to make some observations on the onstrution of patterns.

Afterwards, several ideas based on the observation for improving the algorithm

follow.

The part of the state St at time t, just before the swap-operation

it+1 jt+1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S[i] S[j] z

1 8 4 -2 1 8 -4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 4 s3 18

2 6 s3 -2 1 8 -4 s1 s2 4 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 -2 s1 29

3 7 s3 s1 1 8 -4 -2 s2 4 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 1 s2 6

4 15 s3 s1 s2 8 -4 -2 1 4 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 8 s10 16

5 11 s3 s1 s2 s10 -4 -2 1 4 s4 s5 s6 s7 s8 s9 8 s11 s12 s13 s14 s15 -4 s6 5

6 9 s3 s1 s2 s10 s6 -2 1 4 s4 s5 -4 s7 s8 s9 8 s11 s12 s13 s14 s15 -2 s4 4

7 10 s3 s1 s2 s10 s6 s4 1 4 -2 s5 -4 s7 s8 s9 8 s11 s12 s13 s14 s15 1 s5 12

8 14 s3 s1 s2 s10 s6 s4 s5 4 -2 1 -4 s7 s8 s9 8 s11 s12 s13 s14 s15 4 s9 -2

9 12 s3 s1 s2 s10 s6 s4 s5 s9 -2 1 -4 s7 s8 4 8 s11 s12 s13 s14 s15 -2 s7 21

10 13 s3 s1 s2 s10 s6 s4 s5 s9 s7 1 -4 -2 s8 4 8 s11 s12 s13 s14 s15 1 s8 6

11 9 s3 s1 s2 s10 s6 s4 s5 s9 s7 s8 -4 -2 1 4 8 s11 s12 s13 s14 s15 -4 s7 9

12 7 s3 s1 s2 s10 s6 s4 s5 s9 -4 s8 s7 -2 1 4 8 s11 s12 s13 s14 s15 -2 s5 1

13 8 s3 s1 s2 s10 s6 s4 -2 s9 -4 s8 s7 s5 1 4 8 s11 s12 s13 s14 s15 1 s9 10

14 12 s3 s1 s2 s10 s6 s4 -2 1 -4 s8 s7 s5 s9 4 8 s11 s12 s13 s14 s15 4 s5 16

15 20 s3 s1 s2 s10 s6 s4 -2 1 -4 s8 s7 4 s9 s5 8 s11 s12 s13 s14 s15 8 s15 17

16 ?

S[j] S[i]+

s3

S[z] z

? 18

=

s1 ? 29
s2 ? 6
s10 ? 16
s6 ? 5
s4 ? 4

s5 ? 16
s15 ? 17

s5 ? 12
s9 ? -2
s7 ? 21
s8 ? 6
s7 ? 9
s5 ? 1
s9 ? 10

+4
-2
+1
+8
-4
-2

+4
+8

+1
+4
-2
+1
-4
-2
+1

(a)PSfrag replaements

S[j] S[i]+

s3

S[z] z

? 18

=

s1 ? 29
s2 ? 6
s10 ? 16
s6 ? 5

s4

4

s5 ? 16
s15 ? 17

s5 ? 12
-2

s7 ? 21
s8 ? 6
s7 ? 9
s5 ? 1

? 10

810

=10

10

95

s9=5

5

5

+4
-2
+1
+8
-4
-2

+4
+8

+1
+4
-2
+1
-4
-2
+1

(b)
PSfrag replaements

S[j] S[i]+

s3 +4

S[z] z

? 18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16
s6 -4 ? 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 ? 10

8

=10

10

9

s9=5

5

5 6 10 no contra-
diction!

(c)
PSfrag replaements

S[j] S[i]+

s3 +4

S[z] z

? 18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16

s6

-4 ? 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 10

8

=10

10

9

s9=5

5

5 6

141818

=18

(d)
PSfrag replaements

S[j] S[i]+

+4

S[z] z

? 18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16

s6

-4 14 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 10

8

=10

10

9

s9=5

5

5 6

117

18

=18

(e)

s3=7

7

PSfrag replaements

S[j] S[i]+

+4

S[z] z

18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16

s6

-4 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 10

8

=10

10

9

s9=5

5

5 6

1418

=18
s3=7

117

(f)
PSfrag replaements

Fig. 4. Example of the iterative reonstrution proess.

As an be seen from Table 7 in Appendix D, all �good� patterns found have

V s with values from a short interval Iδ = [−δ . . .+δ], where δ ≈ 10 . . .25 is quite

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35
d=7

d=6

d=5

d=4

d=3

d=2

PSfrag replaements

m

a

x

i

m

u

m

w

δ

Fig. 5. Dependeny of the maximum w from δ for various d.

onservative. Figure 5 illustrates the dependeny of the maximum ahievable w
from δ. From this we make the following onjeture.

Conjeture 3. A pattern with the largest w is likely found among all possible

ombinations for i = 0, j ∈ Iδ, V ∈ Id
δ , with a moderate value of δ ≪ N . ⊓⊔

This onjeture will be used as the basis for a signi�ant improvement in the

searhing tehnique of suh patterns.

Table 4 provides the number of patterns for δ = 15, and various values

of d and w. When d and δ are �xed, the amount of desired patterns an be

exponentially inreased by letting w be slightly less than wmax. This approah

an help �nding patterns with additional properties whih are introdued in

Setion 4.

d The number of patterns Ad when δ = 15.
↓ w → 15 14 13 12 11 10 9 8 7 6

4 #{A4} → 1 3 10 26 226 863 5234 21702 114563 853012

w → 21 20 19 18 17 16 15 14 13 12

5 #{A5} → 1 4 6 15 66 252 652 1879 6832 27202

w → 27 26 25 24 23 22 21 20 19 18

6 #{A6} → 1 2 7 42 81 177 371 799 2646 10159

Table 4. The number of di�erent onstraints for spei� d and w, when δ = 15.

The �rst idea is to set i = 0 due to (6), and for the remaining variables only

a small set of values Iδ for some δ should be tested due to Conjeture 3.

A straightforward approah would be to alloate d values in a vetor S and

then to hek the desired properties of the pattern. The time omplexity of this

approah is O
((

N
d

)(
|Iδ|
d

)
|Iδ|

)

, whih is still very large. Our seond idea is to

alloate a new element in S only when it is neessary. This will signi�antly

derease the time omplexity.

i=0

Loop for

i++

S[i] is known?

#of allocated
elements <d?

j+=S[i]
swap(S[i], S[j])

yes

no

Loop for S[i]
yesno

recursion forward

Check the pro-
perties of the
state (w, b, ...)
and output if
it is "good".

recursion backward

(*)

PSfrag replaements

j ∈ Iδ

∈ Iδ

Fig. 6. Reursive algorithm for searhing patterns with large w.

The diagram of a reursive algorithm exploiting the �rst two ideas is shown

in Figure 6, but it an be improved with the following heuristi. The third idea

is to start searhing for a desired pattern somewhere in the middle of its future

window. Let us split d as d = dfwd+dback and then start the algorithm in Figure 6

allowing to alloate exatly dfwd ells of S. At the point (∗) the urrent length of

the window w is ompared with some threshold wthr. If w ≥ wthr, then a similar

reursive algorithm starts, but it goes bakward and alloates remaining dback
ells of S. This double-reursion results in a pattern with w likely to be lose to

the maximum possible length of the window.

C Complexity Analysis of the Reovering Attak

Sine for large inputs it is not always possible to make real simulations of the

new reovering attak, we are interested in a theoretial upper bound of its

omplexity. In this setion we explain how this omplexity an be derived, veri�ed

and used.

C.1 Tool for Simulations and Analysis

The new reovering algorithm is a reursion as shown in Figure 7(a). The nodes

are IR and WE bloks, whereas eah branh is initiated by MC or GSi bloks.

A branh is terminated when a ontradition ours, and only one path leads to

the orret solution, where the internal state is suessfully reovered.

We measure the omplexity of the attak as the number of branhes, i.e., the

number of guesses in the MC and GSi bloks done.

C

C

CC

C

C

F

S

C C

C

C C

C C

C
(L

1,
w

1)

C
(L

2
,w

2
)

C
(L

r,
w

r)

L, a=w

L, a=0

S

(a) (b)

Part-1

Part-2

Part-3

S
F
C

start

finish

contradiction

...

PSfrag replaements

∆thr

CK(L′

1) CK(L′

2) CK(L′

r)

Fig. 7. (a) Attak as a reursion; (b) Three parts of the tool for simulations.

Let us introdue a three-part tool, shown in Figure 7(b), in order to alu-

late the omplexity of the attak when a ertain pattern is given. We give a

desription of eah of the three parts.

In the �rst part the simulation of the attak with a ertain pattern is launhed

(all four bloks, IR, WE, MC, GSi, are working), and the number of branhes is

ounted. Whenever the depth of the reursion reahes ∆thr, some preomputed

funtion for the omplexity of the remaining subtree is alled, and the reursion

makes a bakward step.

The seond part is a preomputed pattern-independent upper bound of the

average omplexity, when the status of the reursion an be desribed as the

number of already alloated ells L and the number of ative equations a.

The third part is Knudsen's attak omplexity aepted as an upper bound

for the algorithm on the leafs of the reursion, in order to avoid analysis of WE.

To reeive theoretial omplexity using this tool one should run the simu-

lations a su�ient number of times, and then take an average of the results.

The exat omplexity is reeived when ∆thr = ∞, in this ase the tool requres

the same omputational time as the targeting omplexity. On the other hand,

when ∆thr = 0, the upper bound of the omplexity is reeived immediately. The

reason to introdue ∆thr and the three parts of the tool will be explained later.

C.2 Assumptions

We will derive the preomputed pattern-independent upper bound of the average

omplexity under the following assumptions.

Assume that the algorithm �rst

proesses all given w equations of the

kind (3) with two unknowns in eah,

and then Knudsen's attak is applied

to the remaining part of the reursion

(see table on the right, in the olumns

with WE on and o�).

Assume that in all given w equa-

tions the values St[jt] refer to di�er-

ent unknowns. This makes the attak

slower sine in the MC blok the max-

imum lique an then only be on-

struted via keystream symbols. The

table on the right shows that for this

assumption the omplexity of the at-

tak is higher.

Assume that the keystream is ran-

dom, whih is reasonable sine the real

internal state is unknown to an at-

taker. We have seleted several pat-

terns with similar properties, d =
4, w = 9 (A s and Bs from Table 7).

One half of them have di�erent St[jt]s,
and the other half ontains pairs of

(Logarithms of the omplexities)

Random z True z
Patrn. WE o� WE on WE o� WE on

∆thr = ∞, N = 25, d = 4, w = 9,
all St[jt] are di�erent. # of tests is ≥ 500.
A 1 15.87 14.25 16.33 15.09
A 2 15.24 14.02 16.30 14.38
A 3 14.89 14.48 16.00 14.80
A 4 15.51 14.18 16.38 14.44
A 5 15.20 12.97 15.87 12.57
A 6 14.98 12.02 15.50 11.66

Average 15.32 13.86 16.09 14.24

∆thr = ∞, N = 25, d = 4, w = 9, at least
two St[jt] oinide. # of tests is ≥ 5000.
B1 7.41 7.95 13.08 13.49
B2 5.08 3.71 13.42 12.03
B3 4.62 3.67 13.30 12.00
B4 4.84 4.43 10.28 10.06
B5 3.41 3.72 11.42 12.21
B6 2.94 3.19 12.00 13.38
B7 3.81 4.57 11.12 12.39

Average 5.37 5.60 12.48 12.54

Assumptions make the algorithm

slower and bound the real omplexity.

equal St[jt]s. Afterwards, the omplexities of the attak are estimated (∆thr =
∞, N = 25) when the keystream is random/true, and WE is on/o�. The results

learly show that the omplexities under our assumptions are upper bounds.

C.3 Average Complexity Derivations

In this setion a preomputed pattern-independent upper bound of the average

omplexity is derived under the assumptions proposed above. In all formulas the

following meaning of variables is aepted: a is the number of ative (not yet

proessed) equations of the form (3); L is the number of known and previously

assigned ells of the state, and no single zt from the ative equations an be one

of the L values; l is the number of already (the most reently) assigned ells of

the state, and zts from ative equations ould possibly be one of the l values;
qmax is the size of the maximum possible lique that an be found in the MC

blok.

q

q+1

x
x
x
x
x
x

x
x
x
x
x
x x x

x x x

x
x
xx
xx
xx
xx
xx

x
x

x
x

x
x
x
x
x
x

x
x

x
x

+1

PSfrag replaements

CMC(L; a; qmax)

CB

IR(L; a; qmax) CA0

IR (L; l; a; qmax)

CA1

IR (L; l; a; qmax)

δ

δ

zz

zz

S0S0

S0S0

L

L

L

L

a

a

a

a

l

l

N

NN

N

Fig. 8. Four ases supporting derivations of the attak omplexity.

Every step of the reursion has a omplexity to whih we will refer as: CK(L)
is the omplexity of Knudsen's attak, given that L ells of the internal state

are known, and it an be preomputed as in [KMP

+
98℄; CMC(L; a; qmax) is the

omplexity of the MC blok; CA0

IR
(L; l; a; qmax) is the omplexity of one iteration

of the IR blok that starts with L known and l new values, and ends with another

set of new values of some size δ; CA1

IR
(L; l; a; qmax) is the same as CA0

IR
, but for one of

the equations the value of S[j] is known; CB

IR
(L; a; qmax) is the omplexity of the

ase when IR returns no new assignments, but for one equation S[j] is known,
i.e., the IR blok makes an iteration of a di�erent sort in this ase.

Supplementary Formulas When L ells of S0 are already known and δ new

assignments are performed one by one, the probability of no ontradition is

Pc(L; δ) =
(N − L)!

(N − L − δ)!N δ
, when 0 ≤ L + δ ≤ N. (16)

Let M(r; a; q) be the number of possible keystream sequenes of length a,
where eah symbol an have one out of r values, and the maximum possible size

of a lique is q. The value of M an reursively be alulated as

5

M(r; a; q) =

q
∑

i=0

(
a

i

)

M(r − 1; a− i; q), where

{

1 ≤ a, t ≤ N,

q ≤ a,

M(r; 0; 0) = 1, where 1 ≤ t ≤ N.

(17)

Complexity CA0

IR
(L; l; a; qmax) The probability that, in one iteration, δ out of

a equations will be solved is

PA0(L; l; a; δ; qmax) =

(
a

δ

)
M(l; δ; qmax) · M(N − L − l; a− δ; qmax)

M(N − L; a; qmax)
,

when

{

0 ≤ L + l + a ≤ N,

0 ≤ δ ≤ a.

(18)

In these δ equations zt must be one of the l values and they must give δ
new values St[jt], sine, otherwise, they would have been found before. For eah

of the δ equations, St[zt] is alloated somewhere. Thus, a new value St[jt] =
S−1

t [zt] − St[it] an be derived. The number of ative equations is evidently

redued by δ. The total omplexity of CA0

IR
is reursively expressed as

CA0

IR
(L; l;a; qmax) =

a−1∑

δ=1

PA0(L; l; a; δ; qmax) · Pc(L + l; δ) · CA0

IR
(L + l; δ; a− δ; qmax)

+ PA0(L; l; a; a; qmax) · Pc(L + l; a) · CK(L + l + a)

+ PA0(L; l; a; 0; qmax) · CMC(L + l; a), when

{

0 ≤ L + l + a ≤ N,

1 ≤ qmax ≤ a,

CIR(L; l;0; 0) = CK(L + l), when L + l ≤ N.

(19)

Complexity CMC(L; a; qmax) The probability of a maximum lique of size q to

appear is

PMC(L; a; qmax; q) =

M(N − L; a; q) − M(N − L; a; q − 1)

M(N − L; a; qmax)
, where

{

1 ≤ L + a ≤ N,

1 ≤ q ≤ qmax ≤ a,

(20)

with a boundary ase PMC(L; 0; 0; 0) = 1. The parameter qmax tells us that in

the remaining ative equations no liques of size more than qmax exist, sine,

otherwise, it would have been found on a previous all of the MC blok.

Consider the unknown x = S−1
t [zt] from the lique that has to be guessed

as one of the N − L remaining values. The hoie of x is in prinipal one of the

5

One should start with a loop for t = 1 → N , then a loop for a = 1 → N , and then

alulate the orresponding subtable.

following three options. (a) x is one of the jts and the equation assoiated with

time t belongs to the lique. This happens in q hoies and results in q − 1 new

values. An additional ontradition test should be inluded: St[it] + zt must be

equal to S−1
t [zt] (= x). (b) x is one of the jts and the equation assoiated with

time t does not belong to the lique. This happens in a − q hoies and results

in q + 1 new values. () In the remaining N − L − a hoies q new values of the

state are obtained.

Finally, the MC blok is the only blok where the omplexity is summarized.

Thus, its total omplexity is

CMC(L; a; qmax) = (N − L)
︸ ︷︷ ︸

omplexity

+

qmax∑

q=1

PMC(L; a; qmax; q) ·
[

+ q
︸︷︷︸

q branhes

· 1

N
︸︷︷︸

zt = jt−1

·Pc(L + 1; q − 1) · CA0

IR
(L + 1; q − 1; a− q; q)

+ (a − q)
︸ ︷︷ ︸

a − q branhes

·Pc(L + 1; q) · CA1

IR
(L + 1; q; a− q; q)

+ (N − L − a)
︸ ︷︷ ︸

remaining branhes

·Pc(L + 1; q) · CA0

IR
(L + 1; q; a− q; q)

]

,

when 1 ≤ L + a ≤ N, and 1 ≤ qmax ≤ a.

(21)

Complexity CA1

IR
(L; l; a; qmax) This ase is similar to that of CA0

IR
, although

this ase is divided into two subases with respet to the number of proessed

equations.

CA1

IR
(L; l;a; qmax) =

a−1∑

δ=0

(
a − 1

δ

)
M(l; δ; qmax) · M(N − L − l; a − δ; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸

probability of proessing δ equations, exept �speial� one

× Pc(L + l; δ) ·
{

CB

IR
(L + l + δ; a − δ; qmax), δ = 0, a − 1

CA1

IR
(L + l; δ; a − δ; qmax), otherwise

}

+
a−1∑

δ=0

(
a − 1

δ

)
M(l; δ + 1; qmax) · M(N − L − l; a− δ − 1; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸

probability of proessing δ + 1 equations, inluding �speial� one

× 1

N
· Pc(L + l; δ) ·

CMC(L + l; a − 1; qmax), δ = 0

CK(L + l + a − 1), δ = a − 1

CA0

IR
(L + l; δ; a− δ − 1; qmax), otherwise

,

(22)

where by �speial� equation we refer to the one for whih the value of S[j] is
known.

Complexity CB

IR
(L; a; qmax) This is the IR blok where one equation (assoi-

ated with time t) has St[jt] known. There ould be three ases similar to CMC.

However, these ases are not hosen by us as in MC, but instead one of them

appears with some probability. The probability that the value zt is in the lique

of size q + 1 is

PA1(L; a; qmax; q) =

(
a − 1

q

)
(N − L) · M(N − L − 1; a − q − 1; qmax)

M(N − L; a; qmax)
, (23)

and the target omplexity is

CB

IR
(L; a;qmax) =

qmax−1
∑

q=0

PA1(L; a; qmax; q) ×
[

q

N
︸︷︷︸

S−1[z]
is one

of the q

· 1

N
︸︷︷︸

No ontra-

dition in

the lique

of size q

·Pc(L + 1; q − 1) · CA0

IR
(L + 1, q − 1, a − q − 1, qmax)

+
a − q − 1

N
· Pc(L + 1; q) · CA1

IR
(L + 1; q; a − q − 1; qmax)

+
N − L − a + 1

N
· Pc(L + 1; q) · CA0

IR
(L + 1; q; a − q − 1; qmax)

]

.

(24)

C.4 How to Apply the Complexities?

When the pattern is known and ∆thr 6= 0, the omplexity funtion should be

applied at the point where the MC blok is alled. In this ase CMC(L; a; qmax)
is added to the total omplexity ounter, where L and a are known, and qmax
is the size of the maximum lique that had been previously found during the

simulation.

When the pattern is unknown (∆thr = 0) but its parameters d, w, l, bα, bβ , bγ , bθ

are given, the upper bound of the total omplexity is alulated as

CRand < Pc(d, bγ) · CA0

IR
(0; d + bγ ; w − l − bθ; w − l − bθ), for random keystream,

CTrue < CA0∗
IR

(bγ ; d; w − l; 1), for true keystream,

(25)

where CA0∗
IR

is the same as CA0

IR
exept that the �rst all of the IR blok may not

have ontraditions

6

.

C.5 Restrited Veri�ation Tests on Random Keystream

A set of patterns for restrited veri�ation tests were hosen suh that pratial

simulations of the attak would have as lose onditions to the assumptions in

Setion C.2 as possible. We set ∆thr = 0, CK(L) = 0, swith o� the WE and GSi

bloks, take patterns with bα = bβ = 0, and test them on a random keystream.

6

Brief boundings that need only d and w are CA0

IR (0; d;w;w) and CA0∗

IR (0; d;w; 1).

(Logarithms of the omplexities)

Tests show that theoretial omplexities

behave adequately

Tests show that the real omplexity de-

pends on a ertain pattern used

Pattern G
2
G
3a
G
4a
G
4b
G
5
G
6
G
7

G
3b
G
3c
G
3d

G
4c
G
4d

G
4e

d 2 3 4 4 5 6 7 3 3 3 4 4 4
N w 5 8 11 13 16 20 25 7 7 7 9 9 9

16 Prat 10.16 4.74 0.60 � � � � 5.87 5.09 6.09 1.09 1.26 1.19

Theor 9.76 4.65 0.98 � � � � 5.96 5.96 5.96 2.14 2.14 2.14

30 Prat 19.90 24.22 21.22 17.90 8.71 1.84 � 22.69 22.73 22.90 22.50 22.87 22.27

Theor 19.32 23.50 20.49 17.06 7.65 1.92 � 22.41 22.41 22.41 21.99 21.99 21.99

38 Prat � � � � 25.73 12.25 2.66 � � � � � �

Theor � � � � 24.78 11.54 2.59 � � � � � �

Table 5. Results of restrited veri�ation tests.

The results of the tests are given in Table 5. The �rst group of tests shows

that the theoretial omplexities are lose to the omplexities ahieved through

simulations. The seond group of tests shows that the atual omplexity of the

attak depends on a ertain pattern, and it may vary.

C.6 Why Is Part-1 Needed?

Consider the pattern A = {0, 0, {3, 1}, {1, 2}} and N = 28, qmax = 1. The length
of the window is w = 5. The probability of exatly one equation to be solved

during the �rst iteration of the IR blok is 0.3042, then a new value of S[j] is
reeived. In theory the probability that no ontradition would our is (N −L−
l)/N ≈ 0.928, whereas in pratie it is around 0.6, and this is a large deviation.

This simple example shows that no assumptions ould over all peuliarities

of an atual pattern used. Therefore, when a preise pattern is given, it would

be advised to run partial simulations of the attak in order to test top level

branhes of the reursion with the depth 1-3, sine the ase of the remaining

subtrees beomes well ompliant with the assumptions. This solution an attune

theoretial omplexity signi�antly in some ases.

C.7 Full Veri�ation Tests on True Keystream

In order to verify reliability of omplexity funtions a set of full veri�ation tests

for three attak senarios were arried out. For all senarios N = 64, the patterns
are M

8
, M

9
, and M

10
, and a true keystream is generated randomly. The four

bloks in pratie and the part with Knudsen's attak in theory are swithed on.

Figure 9 shows the results of the tests for the three senarios. Real om-

plexities reeived via simulations of the state reovery algorithm are horisontal

lines, wherease the urves are orresponding theoretial upper bounds of average

omplexities for various ∆thr, respetively. When ∆thr = 0, points on the urves

are pattern independent upper bounds.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40 d=8, w=37

d=9, w=42

d=10, w=50

PSfrag replaements

∆thr

L

o

g

a

r

i

t

h

m

s

o

f

t

h

e

o

m

p

l

e

x

i

t

i

e

s

Fig. 9. Three patterns, true keystream, full attak, N = 64. The results of full veri�-
ation tests of omplexity funtions of the new state reovery attak.

D Patterns Used in This Paper

R

e

f

e

r

e

n

e

l

e

v

e

l

o

f

a

n

a

l

y

s

i

s

Pattern desription o

r

d

e

r

g

e

n

e

r

a

t

i

v

e

d

e

�

n

i

t

i

v

e

α

-

p

r

e

d

i

t

i

v

e

β

-

p

r

e

d

i

t

i

v

e

θ

-

p

r

e

d

i

t

i

v

e

u

m

u

l

a

t

i

v

e

d

i

s

t

a

n

e

h

a

i

n

d

i

s

t

a

n

e

i

n

t

e

r

s

e

t

i

o

n

n

e

w

g

u

e

s

s

e

s

P
r{
E

i
n
t
}

P
r{
E

e
x
t
}

Ref. A.l. i, j P, V d w l bα bβ bθ Πθ σ ξ ψ Int Ext

(a) Trade-o� between w and l, the �rst level of analysis

X
2

1

st
-3, 0 P ={-2, -1}, V ={0, 1} 2 4 2 2 0 0 0 � � � N−3 N−2

X
3

1

st
-6, -7 P ={-5, -3, -2}, V ={3, 2, -1} 3 10 3 3 0 0 0 � � � N−4 N−3

X
4

1

st
-10, -11 P ={-9, -7, -6, -2}, V ={3, 2, -4, -1} 4 14 3 3 0 0 0 � � � N−5 N−3

X
5

1

st
-7, -2 P ={-6, -5, -3, -1, 1}, V ={-2, 4, 7, -1, 1} 5 16 5 4 0 0 0 � � � N−6 N−4

X
6

1

st
-8, -10 P ={8, 9, -7, -5, -4, -3}, V ={2, -1, 4, 3, -2, 1} 6 23 4 4 0 1 2 � � � N−7e−4/N N−5

X
7

1

st
-13,-2 P ={8, 9, -12, -11, -10, -9, -7} 7 28 4 4 0 2 4 � � � N−8e−8/N N−6

V ={2, -1, -2, 1, -5, 3, 4}

X
8

1

st
-18,-5 P ={8 9 -17 -16 -15 -14 -13 -9} 8 33 5 5 0 2 4 � � � N−9e−8/N N−7

V ={2, -1, -5, -2, 1, 4, 5, 3}

X
9

1

st
-20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 9 41 5 4 0 2 4 � � � N−10e−8/N N−6

V ={-5, 8, 3, 5, 4, -2, -1, 2, 1}

X
10

1

st
-25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10 47 6 5 0 2 4 � � � N−11e−8/N N−7

V ={3, 4, 2, 8, -3, -2, 1, 7, 0, -5}

X
11

1

st
-37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} 11 49 11 9 0 . . � � � N−12 N−9

V ={10, -4, -1, 11, 3, -2, 1, 9, -3, -7, 2}

(b) Good detetion through the seond level of analysis

Y
4

1

st
-7, -7 P ={-6, -5, -3, -1}, V ={3, 2, -1, 0} 4 9 4 4 0 . . � � � N−5 N−4

2

nd
-2, -1 P ′ ={0, 2, -1}, V ′ ={0, -1, 2} 3 4 3 3 0 . . -4 3 0 N−6e−3 N−7

Y
7

1

st
-24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7 26 6 5 0 . . � � � N−8 N−5

V ={-3, -2, 4, 5, 1, 0, -1}

2

nd
-5, -2 P ′ ={0, 1, -4, -3, -2}, V ′ ={2, -1, 1, 0, -2} 5 6 5 5 0 . . -7 4 1 N−10e−4 N−10

Y
8

1

st
-26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 8 29 6 4 1 0 0 � � � N−9 N−5

V ={5, 1, 4, -3, -1, 2, 3, -2}

2

nd
-7, 2 P ′ ={0, 3, -6, -5, -4, -3, -2}, V ′ ={-2, 3, 0, -1, 1, -3, 2} 7 10 7 7 0 0 0 -10 6 1 N−12e−6 N−12

Table 6. Various patterns that were ahieved by our simulations (part I).

Ref. i, j P, V d w l bα bβ bγ bθ Πθ

(a) Maximum generative patterns (w → max)

M
2
0, -1 P ={1, 3}, V ={3, -1} 2 6 0 0 0 0 1 1

M
3
0, -1 P ={1, 3, 4}, V={3, 2, -1} 3 10 3 0 1 2 0 0

M
4
0, -2 P ={1, 3, 4, 5}, V={4, 3, -2, 1} 4 15 1 0 0 1 1 2

M
5
0, -2 P ={1, 2, 4, 6, 8}, V={5, 2, -3, 6, -1} 5 21 0 0 0 0 0 0

M
6
0, 0 P ={1, 2, 3, 4, 5, 20}, V={7, -1, 5, -3, 2, -9} 6 27 3 0 1 2 0 0

M
7
0, 5 P ={1, 2, 4, 6, 8, 9, 16}, V={-2, 4, 7, 1, 3, -3, 8} 7 31 4 0 0 4 1 2

M
8
0, 5 P ={1, 2, 4, 6, 14, 18, 19, 25} 8 37 6 0 1 5 0 0

V ={-2, 4, 5, 1, 3, -3, 2, -1}

M
9
0, 9 P ={1, 2, 3, 6, 7, 8, 11, 20, 24} 9 42 6 0 1 5 1 2

V ={-4, -1, 10, 3, -2, 11, 1, 4, -6}

M
10

0, 3 P ={1, 2, 3, 5, 8, 10, 18, 21, 22, 23} 10 50 4 1 1 2 1 2

V ={1, 5, -3, 8, -7, 3, -2, -5, 9, -1}

M
11

0, -1 P ={1, 2, 3, 4, 6, 9, 11, 13, 21, 30, 33} 11 55 10 0 1 9 0 0

V ={6, 5, -3, 1, 4, -4, 7, -1, 2, -9, 8}

M
12

0, 6 P ={1, 2, 3, 4, 5, 9, 15, 17, 34, 35, 43, 45 } 12 59 8 1 0 7 2 4

V ={2, -2, 1, 12, -7, 7, 8, -3, 0, -5, 3, 4}

M
13

0, 0 P ={1, 3, 5, 6, 7, 8, 22, 23, 31, 32, 34, 44, 52} 13 68 9 0 2 7 2 4

V ={2, 8, -3, -2, 1, 7, 4, -9, 5, 10, -14, -5, 3}

M
14

0, 15 P ={1, 2, 3, 4, 5, 11, 13, 30, 31, 39, 40, 42, 52, 60} 14 76 10 0 2 8 2 4

V ={-7, -2, 1, 2, 7, 8, -3, 4, -9, 5, 10, -14, -5, 3}

(b) Patterns with all St[jt] di�erent to test omplexity funtions

G
2

0, 0 P ={3, 1}, V ={1, 2} 2 5 0 0 0 0 0 0

G
3a

0, -2 P ={1, 3, 4}, V ={4, -1, 3} 3 8 0 0 0 0 0 0

G
3b

0, -4 P ={2, 1, 3}, V ={1, 8, -7} 3 7 0 0 0 0 0 0

G
3c

0, -3 P ={2, 1, 3}, V ={1, 7, -6} 3 7 0 0 0 0 0 0

G
3d

0, 0 P ={3, 1, 2}, V ={3, 5, -1} 3 7 0 0 0 0 0 0

G
4a

0, -4 P ={1, 3, 4, 5}, V ={6, -2, 1, 4} 4 11 0 0 0 0 0 0

G
4b

0, 5 P ={1, 2, 4, 6}, V ={-2, 4, 5, 1} 4 13 0 0 0 0 0 0

G
4c

0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0

G
4d

0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0

G
4e

0, 7 P ={4, 3, 5, 1}, V ={1, 9, -8, -5} 4 9 0 0 0 0 0 0

G
5

0, -6 P ={1, 3, 4, 5, 8}, V ={8, -3, -1, 7, 5} 5 16 0 0 0 0 0 0

G
6

0, -2 P ={2, 8, 1, 6, 5, 12}, V ={1, 2, 5, 7, -3, -1} 6 20 0 0 0 0 0 0

G
7

0, -2 P ={2, 8, 21, 1, 6, 5, 12}, V ={1, 2, 4, 5, 7, -3, -1} 7 25 0 0 0 0 0 0

() Patterns to support assumptions

A
1
0, -10 P ={5, 2, 1, 4}, V ={3, 4, 9, -1} 4 9 0 0 0 0 0 0

A
2
0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0

A
3
0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0

A
4
0, 0 P ={3, 1, 6, 9}, V ={1, 2, 6, -5} 4 9 0 0 0 0 0 0

A
5
0, 7 P ={4, 3, 5, 1}, V ={1, 9,-8, -5} 4 9 0 0 0 0 0 0

A
6
0, 9 P ={2, 4, 1, 6}, V ={2, 8,-6, -1} 4 9 0 0 0 0 0 0

B1 0, -1 P ={8, 1, 7, 3}, V ={1, 3,-9, -1} 4 9 0 0 0 0 1 1

B2 0, 0 P ={3, 1, 9, 6}, V ={1, 2, 3, -8} 4 9 0 0 0 0 2 10

B3 0, 0 P ={1, 3, 8, 5}, V ={2, 3,-6, -3} 4 9 0 0 0 0 2 11

B4 0, 5 P ={4, 2, 8, 1}, V ={1, 4,-7, -2} 4 9 0 0 0 0 1 2

B5 0, 7 P ={2, 3, 1, 8}, V ={1, 4,-3, -2} 4 9 0 0 0 0 2 4

B6 0, 9 P ={2, 4, 3, 1}, V ={1, 4,-3, -2} 4 9 0 0 0 0 3 15

B7 0, 10 P ={5, 3, 1, 2}, V ={1, 5,-4, -2} 4 9 0 0 0 0 2 11

Table 7. Various patterns that were ahieved by our simulations (part II).

