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Abstra
t. The stream 
ipher RC4 was designed by R. Rivest in 1987,

and it has a very simple and elegant stru
ture. It is probably the most

deployed 
ipher on the Earth.

In this paper we analyse the 
lass RC4-N of RC4-like stream 
iphers,

where N is the modulus of operations, as well as the length of inter-

nal arrays. Our new atta
k is a state re
overy atta
k whi
h a

epts the

keystream of a 
ertain length, and re
overs the internal state. For the

original RC4-256, our atta
k has total 
omplexity of around 2241
opera-

tions, whereas the best previous atta
k needs 2779
of time. Moreover, we

show that if the se
ret key is of length N bits or longer, the new atta
k

works faster than an exhaustive sear
h. The algorithm of the atta
k was

implemented and veri�ed on small 
ases.
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1 Introdu
tion

RC4 [S
h96℄ is a stream 
ipher designed by Ron Rivest in 1987, and sin
e then it

has been implemented in many various software appli
ations to ensure priva
y

in 
ommuni
ation. It is, perhaps, the most widely deployed stream 
ipher and

its most 
ommon appli
ation is to prote
t Internet tra�
 in the SSL proto
ol.

Moreover, it has been implemented in Mi
rosoft Lotus, Ora
le Se
ure SQL, et
.

The design of RC4 was kept se
ret until 1994 when it was anonymously leaked

to the members of the Cypherpunk 
ommunity. A bit later the 
orre
tness of

the algorithm was 
on�rmed.

In this paper we study a family RC4-N of RC4 like stream 
iphers, where N
is the modulus of operations. The internal state of RC4 is two registers i, j ∈ ZN

and a permutation S of all elements of ZN . Thus, RC4 has a huge state of

log2(N
2N !) bits. For the original version, when N = 256, the size of the state is

≈ 1700 bits. This makes any time-memory trade-o� atta
ks impra
ti
al. RC4-

256 uses a variable length key from 1 to 256 bytes for its initialisation.

The initialisation pro
edure of RC4 has been thoroughly analysed in a large

number of various papers, see e.g. [MS01,Man01,PP04℄. These results show that

the initialisation of RC4 is weak, and the se
ret key 
an be re
overed with a small

portion of data/time. Be
ause of these atta
ks, RC4 
an be regarded as broken.

However, if one would tweak the initialisation pro
edure, the 
ipher be
omes

se
ure again.



The simpli
ity of the keystream generating algorithm of RC4 has attra
ted

many 
ryptanalysis e�orts. In most analyses the s
enario assumes that keystream

of some length is given, and either a distinguishing ([Gol97,FM00,Max05,Man05℄)

or a state re
overy ([KMP

+
98℄) atta
k is of interest. A state re
overy atta
k 
an

be used to determine the a
tual se
urity level of a 
ipher, if the initial internal

state is 
onsidered as a se
ret key. The �rst state re
overy atta
k was proposed

by Knudsen et al in 1998 [KMP

+
98℄. This had a 
omputational 
omplexity of

2779
. Some minor improvements were found in other literature, e.g. [MT98℄, but

still, there is no atta
k even 
lose to 2700
. One interesting attempt to improve the

analysis was re
ently done in [Man05℄. Although that atta
k is only a potential

one, the pretending time 
omplexity 
laimed was around 2290
.

In this paper we propose a new state re
overy atta
k on RC4-N . For the

original design RC4-256 the total time 
omplexity of the atta
k is less than 2241
,

requiring keystream of a similar length. This means that there is no additional

gain in using a se
ret key longer than 30 bytes. We also show that in general if the

se
ret key is of length N bits or longer the new atta
k is faster than exhaustive

key sear
h.

The idea of the new atta
k is as follows. The algorithm sear
hes for a

pla
e in the keystream where the probability of a spe
i�
 internal state, 
ompli-

ant with a 
hosen pattern, is high. Afterwards, the new state re
overy algorithm

is used together with a small portion of data (around 2N output words) in order

to re
over the internal state of the 
ipher in an iterative manner. This algorithm

has been implemented and veri�ed for small values of N , it has determined the


orre
t internal state in every simulation run. The su

ess rate of the full atta
k

is shown to be at least 98%. For large values of N , where simulations were

impossible, an upper bound for the average 
omplexity of the atta
k is derived

and 
al
ulated.

This paper is organized as follows. In Se
tion 2 the new iterative state re-


overy algorithm is des
ribed in detail. Afterwards, Se
tion 3 introdu
es various

properties of a pattern that are needed for the re
overing algorithm. An e�e
tive

sear
hing algorithm to �nd su
h patterns is also proposed in Appendix B (due to

the page limitation and 
larity of presentation). Se
tion 4 des
ribes several te
h-

niques to dete
t spe
i�
 states by observing the keystream, and also introdu
es

additional properties of a pattern needed for dete
tion purposes. Theoreti
al

analysis of the state re
overy algorithm and derivation of its 
omplexity fun
-

tions are performed in Appendix C. All pie
es of the atta
k are then 
ombined in

Se
tion 5. Finally, we perform a set of simulations of the atta
k, summarize the

results and 
on
lude in Se
tion 6. The paper ends with suggestions for further

improvements and open problems in Se
tion 7.

1.1 Notations

All internal variables of RC4 are over the ring ZN , where N is the size of the

ring. To spe
ify a parti
ular instan
e of the 
ipher we denote it by RC4-N . Thus,

the original design is RC4-256. Whenever appli
able, + and − are performed in

modulo N . At any time t the notation at denotes the value of a variable a at time



t. The keystream is denoted by z = (z1, z2, . . .), where zi is a value 0 ≤ zi < N .

In all tables probabilities and 
omplexities will be given in a logarithmi
al form

with base 2.

1.2 Des
ription of the Keystream Generator RC4-N

The new atta
k targets the keystream generation phase of RC4 and, thus, the

initialisation pro
edure will not be des
ribed. We refer to, e.g., [S
h96℄ for a full

des
ription of RC4. After the initialisation pro
edure, the keystream generation

algorithm of RC4 begins. Its des
ription is given in Figure 1.

Internal variables:

i, j � integers in ZN

S[0 . . . N − 1] � a permutation of integers 0 . . . N − 1
S[·] is initialised with the se
ret key

The keystream generator RC4-N

i = j = 0
Loop until we get enough symbols over ZN∣

∣
∣
∣
∣
∣
∣
∣

(A) i = i+ 1
(B) j = j + S[i]
(C) swap(S[i], S[j])
(D) zt = S[S[i] + S[j]]

Fig. 1. The keystream generation algorithm of RC4-N .

2 New State Re
overy Algorithm

2.1 Previous Analysis: Knudsen's Atta
k

In [KMP

+
98℄ Knudsen et al. have presented a basi
 re
ursive algorithm to re
over

the internal state of RC4. It starts at some point t in the keystream z given k
known 
ells of the permutation St, whi
h helps the re
ursion to 
an
el unlikely

bran
hes. The idea of the algorithm is simple. At every time t we have four

unknowns:

jt, St[it], St[jt], S−1
t [zt]. (1)

One 
an simply simulate the pseudo random generation algorithm and, when ne
-

essary, guess these unknown values in order to 
ontinue the simulation. The re-


ursion steps ba
kward when a 
ontradi
tion is rea
hed due to previously wrong

guesses. Additionally, it 
an be assumed that some k values are a priori known

(guessed, given, or derived somehow), and this may redu
e the 
omplexity of

the atta
k signi�
antly. An important note is that the known k values should

be lo
ated in a short window of the �working area� of the keystream, otherwise

they 
annot help to 
an
el hopeless bran
hes.



The pre
ise 
omplexity of the atta
k was 
al
ulated in [KMP

+
98℄, and several

tables for various values of N and k were given in Appendi
es D.1 and D.2

of [Man01℄. As an example, the 
omplete state re
overy atta
k on RC4-256

would require time around 2779
.

2.2 Our Algorithm for State Re
overy

In this se
tion we propose an improved version of the state re
overy algorithm.

Assume that, at some time t in a window of length w + 1 of the keystream z,
all the values jt, jt+1, jt+2, . . . , jt+w are known. This means that for w steps the

values St+1[it+1], . . . , Si+w[it+w] are known as well, sin
e they are derived as

St+1[it+1] = jt+1 − jt, ∀t.
(2)

Consequently, w equations of the following kind 
an be 
olle
ted:

S−1
k [zk] = Sk[ik] + Sk[jk], k = t + 1, . . . , t + w, (3)

where only two variables are unknown,

S−1
k [zk], Sk[jk], (4)

instead of four in Knudsen's atta
k, see (1). Let the set of 
onse
utive w equations

of the form (3) be 
alled a window of length w.
Sin
e all js in the window are known, then all swaps done during these w

steps are known as well. This makes it possible to map the positions of the

internal state St at any time t to the positions of some 
hosen ground state St0

at some ground time t0 in the window. For simpli
ity, let us set t0 = 0.
Our new state re
overy algorithm is a re
ursive algorithm, shown in Figure 2.

It starts with a 
olle
tion of w equations, and attempts to solve them. A single

equation is 
alled solved or pro
essed if its 
orresponding unknowns (4) have been

expli
itly derived or guessed. During the pro
ess, the window will dynami
ally

in
rease and de
rease. When the length of the window w is long enough (say,

w = 2N), and all equations are solved, the ground state S0 is likely to be fully

re
overed.

Now we give a more detailed des
ription of the di�erent parts of the algo-

rithm.

Iterative Re
overing (IR) Blo
k The Iterative Re
overing blo
k re
eives a

number a of a
tive equations (not yet pro
essed) in the window of length w
as input, and tries to derive the values of St[jt]s and S−1

t [zt]s. To do that, the

IR blo
k goes through two steps iteratively, until no more new derivations are

possible. If all previous guesses were 
orre
t, then all newly derived values (
ells

of the ground state) will be 
orre
t with probability 1. Otherwise, when the IR

blo
k �nds a 
ontradi
tion the re
ursion steps ba
kward. The two steps are as

follows.



Iterative
Recovering

Window 
Expansion

Find and Guess the 
Maximum Clique

Contradiction?

Are all 
equations in the window

solved?

Are new 
equations available?

Guess One S[i]

no

no

yes

yes

no

recursion
backward

recursion
forward

recursion
forward

1.

4.

3.

2.

yes

Fig. 2. New state re
overy algorithm.

A. Assume that, for one of the a
tive equations its output symbol zt is already

allo
ated somewhere in the ground state. I.e., the value S−1
t [zt] is known,

and the se
ond unknown St[jt] 
an expli
itly be derived using (3).

A 
ontradi
tion arises if (a) St[jt] is already allo
ated and it is not equal to

the derived value; (b) the derived value already exists in some other 
ell.

B. Already allo
ated values may give the value of St[jt] in another equation.

Consequently, a new value S−1
t [zt] 
an be derived via (3), whi
h might pos-

sibly 
ause a 
ontradi
tion.

Find and Guess the Maximum Clique (MC) Blo
k If no more a
tive

equations 
an expli
itely be solved, S−1
t [zt] for one t has to be guessed. The

Find and Guess the Maximum Clique blo
k analyses given a
tive equations,

and 
hooses the element that gives the maximum number of new derivations in


onse
utive re
ursive 
alls of the IR blo
k. This element is then guessed.

The analysis is very simple. Let a a
tive equations be verti
es vt in a graph

representation. Two verti
es vt′ and vt′′ are 
onne
ted if zt′ = zt′′ and/or St′ [jt′ ]
and St′′ [jt′′ ] refer (like pointers) to the same 
ell of the ground state. Guessing

any unknown variable in any 
onne
ted subgraph solves all equations involved

in that subgraph. Therefore, let us 
all these subgraphs 
liques. The MC blo
k

sear
hes for a maximum 
lique, and then guess one S−1
t [zt] for one of the equa-

tions belonging to the 
lique. Afterwards, the IR blo
k is 
alled re
ursively.

Window Expansion (WE) Blo
k Obviously, the more equations we have the

faster the algorithm works. Therefore, a new equation is added to the system

as soon as the missing value S[i] in the beginning or in the end of the window

is derived. The Window Expansion blo
k 
he
ks for this event and dynami
ally



extends the window. Sometimes several equations are added at on
e, espe
ially

on the leafs of the re
ursion.

Guess One S[i] (GSi) Blo
k If there are no a
tive equations but the ground

state S0 is not yet fully determined, the window is then expanded by a dire
t

guess of S[i], in front or in ba
k of the window. Then the WE, IR and MC blo
ks


ontinue to work as usual. Additional heuristi
s 
an be applied for 
hoosing whi
h

side of the window to be expanded for a larger su

ess.

Appendix A provides an example that shows the steps of the outlined algo-

rithm.

3 Pre
omputations: Finding Good Patterns

The algorithm presented in the previous se
tion is used in the full state re
overy

atta
k as a part of it. Every time when the algorithm is running at some point

of the keystream, its e�e
tiveness depends on 
ertain properties of the 
urrent

internal state. Although these properties are not visible for the intruder, she may

have a good guess about pla
es in the keystream where the internal state has

good properties (see Se
tion 4), and apply the state re
overy algorithm only at

those pla
es.

In this se
tion we will de�ne patterns (see De�nition 1), they determine

huge sets of internal states with 
ommon properties. If, for instan
e, a pattern

has a large window then this 
ertainly helps de
reasing the 
omplexity of the

algorithm. However, the probability that the internal state is 
ompliant with a


ertain pattern de
reases with the number of 
onditions put on the pattern.

In this se
tion we dis
uss properties of patterns that in�uen
e on the 
om-

plexity of the atta
k, and also study their availability. We have also developed

an e�
ient algorithm for �nding these paterns, and it is lo
ated in Appendix B.

3.1 Generative States

Let us start with the following de�nition

De�nition 1 (d-order pattern). A d-order pattern is a tuple

A = {i, j, P, V }, i, j ∈ ZN ,
(5)

where P and V are two ve
tors from Z
d
N with pairwise distin
t elements. At a

time t the internal state is said to be 
ompliant with A if it = i, jt = j, and
d 
ells of the state St with indi
es from P 
ontain 
orresponding values from

V . ⊓⊔
The example in Figure 4 in Appendix A illustrates how a 5-order pattern

allows to re
eive a window of length 15. However, the higher the order, the less

the probability of su
h a 
onstraint to happen. Thus, we are interested in �nding

a low order pattern whi
h generates a long window.



De�nition 2 (w-generative pattern). A pattern A is 
alled w-generative
if for any internal state 
ompliant with A the next w 
lo
kings allow to derive w
equations of the form (3), i.e., 
onse
utive w + 1 values of js are known. ⊓⊔

Table 1 demonstrates a 4-order 7-generative pattern A={-7,-8,{-6, -5, -4,
0}, {6, -1, 2, -2}}, that supports the above de�nitions. Eight equations involve

symbols of the keystream zt+1, . . . , zt+8 asso
iated with a 
ertain time t. We say

that the keystream is true if the internal state at time t is 
ompliant with the

pattern, otherwise we say the keystream is random.

Let another pattern B be derived from A as

B = A + τ = {i + τ, j + τ, P + τ, V },
(6)

for some �shift� τ . The pattern B is likely to be w-generative as well. This

happens when the properties of A are independent of N , whi
h is the usual 
ase.

it jt S[i] S[j] S[i] + S[j] zt −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−7 −8 � � � � 6 −1 2 x1 x2 x3 −2 x4 x5 x6 x7 x8

−6 −2 6 x2 6 + x2 ∗ x2 −1 2 x1 6 x3 −2 x4 x5 x6 x7 x8

−5 −3 −1 x1 −1 + x1 ∗ x2 x1 2 −1 6 x3 −2 x4 x5 x6 x7 x8

−4 −1 2 x3 2 + x3 ∗ x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−3 −2 −1 6 5 x8 x2 x1 x3 6 −1 2 −2 x4 x5 x6 x7 x8

−2 −3 −1 6 5 x8 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−1 −1 2 2 4 x7 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

0 −3 −2 −1 −3 −2 x2 x1 x3 −2 6 2 −1 x4 x5 x6 x7 x8

1 ∗ x4 ∗ ∗ ∗

Table 1. An example of a 4-order 7-generative pattern.

3.2 Availability

We have done a set of simulations in order to �nd maximum w-generative d-order
patterns, denoted by M

d
. The results are given in Table 7(a) in Appendix D.

Sear
hing for a high order pattern is a 
hallenging task sin
e the 
omputational


omplexity grows exponentially with d. The best result a
hieved in our work is

a 14-order 76-generative pattern M14.

Real values from our simulations Approximated values

d = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

wmax = 6 10 15 21 27 31 37 42 50 55 61 68 76 82 88 94 100 106 112 118

Table 2. Dependen
y of the maximum w from d, simulated and approximated values.

Table 2 shows the dependen
y of a maximum a
hievable generativeness wmax

from the order d. We 
an note that this dependen
y is almost linear, and it


onverges to wmax = 6d + λ as d → ∞. We make the following 
onje
ture.



Conje
ture 1. The rate of

wmax

d ≈ 6 as d → ∞.

1 ⊓⊔
That 
onje
ture allows us to make a predi
tion about 
ertain parameters

for patterns with large d. These 
ould not be found due to a very high pre-


omputation 
omplexity, but they are needed to analyse the atta
k for large N
(N = 128, 256 in Table 3). However, given those parameters, d and w, we 
an

derive theoreti
al 
omplexities of the atta
k on average. This has been done in

Appendix C.

An e�
ient sear
h algorithm for patterns with desired properties is given in

Appendix B.

4 Dete
tion of Patterns in the Keystream

In the previous se
tion we have studied properties of a pattern that are desirable

for the state re
overy algorithm to work fast and e�
ient. We have also shown

(in Appendix B) how these patterns 
an be found, and introdu
ed an e�
ient

sear
hing algorithm.

In this se
tion we show how the internal state of RC4, 
ompliant to a 
hosen

pattern, 
an be dete
ted by observing the keystream. If the dete
tion is very

good, then the state re
overy algorithm might only have to be exe
uted on
e, at

the right lo
ation in the keystream.

The dete
tion me
hanism itself 
an be trivial (no dete
tion at all), in whi
h


ase the algorithm has to be run at every position of the keystream. On the

other hand, a good dete
tion may require a deep analysis of the keystream,

where spe
i�
 properties of the pattern 
an be used e�
iently.

4.1 First Level of Analysis

The internal state of RC4 
ompliant to a d-order pattern A 
an be regarded as

an internal event with probability

Pr{Eint} = N−d−1. (7)

When the internal event o

urs, there 
ould exist an external event Eext ob-

served in the keystream, and asso
iated with the pattern A, i.e., Pr{Eext|Eint} =
1. Applying Bayes' law we 
an derive the dete
tion probability Pdet of the pattern

A in the keystream as

Pdet = Pr{Eint|Eext} =
Pr{Eint}
Pr{Eext}

. (8)

1

Indeed, the �jump� of wmax as d in
rements by one is the sequen
e Γ={4, 5, 6, 6, 4,

6, 5, 8, 5, 6, 7, 8, . . .}. Obviously, for small d this �jump� is small, and it is notable

that the �jump� in
reases for larger d. In our simulations heuristi
s were used (see

Se
tion B) when sear
hing patterns for d ≥ 6. This means that our �jumps� in the

sequen
e Γ 
ould possibly be larger if an optimal sear
hing te
hnique is applied,

sin
e our heuristi
 
annot guarantee that we get a pattern with the longest window.

This suggests that the ratio w → 6d as d→ ∞ seems quite a fair 
onje
ture.



Our goal in this se
tion is to study possible external events with high Pdet in

order to in
rease the dete
tion of the pattern.

De�nition 3 (l-de�nitive pattern). A w-generative pattern A is 
alled l-
de�nitive if there are exa
tly l out of w equations with determined S[j]s. ⊓⊔

It means that in l equations S[i] + S[j] are known. If, additionally, z′ =
S[S[i]+S[j]] is also known, then the 
orre
t value of zt = z′ at the right position
t of the keystream z dete
ts the 
ase �the state at time t is possibly 
ompliant

to the pattern�. Otherwise, when zt 6= z′, it says that �the state at time t 
annot
be 
ompliant to the pattern�.

For dete
tion purposes a large l (up to d) is important. From our experiments

we found that, however, a large l 
an be a
hieved via a slight redu
tion of the

parameter w. This leads us to one more 
onje
ture.

Conje
ture 2. For any d and w = wmax − λ there exist a pattern with l = d,
where λ is relatively small

2

. ⊓⊔

In the following de�nition we introdu
e other properties of a patter that are

important for its good dete
tion via the keystream.

De�nition 4 (bα, bβ, bγ-
α,β,γ

predi
tive pattern). Let us have an l-de�nitive
pattern A and 
onsider only those equations where S[j]s are determined. Then,

the pattern A is 
alled bα-
α
predi
tive if for bα of the l equations S[S[i] + S[j]]

is determined. For the remaining l − bα equations two additional de�nitions are

as follows. The pattern A is 
alled bβ-
β
predi
tive if for bβ pairs of the l − bα

equations the unknowns S[S[i]+S[j]]s must be the same. The set of bβ pairs must

be of full rank. The pattern A is 
alled bγ-
γ
predi
tive if the l − bα equations


ontain exa
tly bγ di�erent variables of S[S[i] + S[j]]. ⊓⊔

These types of predi
tiveness are other properties of a pattern visible in the

keystream. For example, it is not only ne
essary to sear
h for known z′ values (bα

of su
h), but one 
an also require that 
ertain pairs of the keystream symbols (bβ

of su
h) are equal zt′ = zt′′ , whi
h also helps to dete
t the pattern signi�
antly.

The parameter bα is usually quite moderate and to have it larger than 15

is quite di�
ult. However, the other 
riteria are more �exible and 
an be large.

These new parameters follow the 
onstraint

bα + bβ + bγ = l ≤ d.
(9)

Consider the remaining w− l equations of the pattern A where S[j]s are not
determined. Let at time instan
es t1 and t2 one pair of these equations be su
h

2

Table 6(a) in Appendix D 
ontains patterns Xs with l = d where w is still large,

whi
h supports the above 
onje
ture. Indeed, Table 4 in Appendix B shows how

the number of available patterns grows when relaxing the 
ondition put on w. I.e.,

a slight redu
tion of w in
reases the 
han
e of �nding a pattern with d = l. This

makes the 
onje
ture fair.



that the S[i] values and the S[j] pointers are equal. If the distan
e ∆t = t2 − t1
is small, it is likely that the output z1 is the same as z2. The probability of this

event is

Pr{z1 = z2|∆t} >

(

1 − ∆t

N

)

·
(

1 − 1

N

)∆t

≈ exp

(

−2∆t

N

)

. (10)

De�nition 5 (bθ-
θ
predi
tive pattern). A pattern A is 
alled bθ-

θ
predi
tive

if the number of su
h pairs (des
ribed above) is bθ. Let the time distan
es of these

pairs be ∆1, . . . , ∆bθ
, then the 
umulative distan
e is the sum Πθ = Σi∆i ⊓⊔

These four types of predi
tiveness are dire
t external events for a pattern.

One should observe the keystream and sear
h for 
ertain bα symbols, 
he
k

another bβ and bθ pairs of symbols that they are equal, and also 
he
k that a

group of bγ symbols are di�erent from the values of V and from ea
h other.

Thus, we have

Pr{Eext} = N−bα−bβ−bθ ·
[

(N − d)!

N bγ (N − d − bγ)!

]

Pr{Eint} ≈ N−d−1 · e−2Πθ/N .

(11)

The example in Table 1 is a 4-de�nitive bα = 1, bβ = 1, bγ = 2, bθ = 0-
predi
tive pattern. For dete
tion one has to test that zt+6 = −2, zt+3 = zt+4, and

zt+4, zt+5 are di�erent from the initial values at V and zt+4 6= zt+5. I.e., when,

for example, N = 64, the dete
tion probability is 64−5 ÷ (64−2 · 60 · 59/642) ≈
64−2.96 3

.

4.2 Se
ond Level of Analysis

In fa
t, the �rst level of analysis allows to dete
t a pattern with probability at

most N−1
(be
ause j is not dete
table), whereas with the se
ond level of analysis

it 
an be 1. Let us introdu
e a te
hnique that we 
all a 
hain of patterns.

De�nition 6 (
hain of patterns A → B, distan
e, interse
tion). Let us
have two patterns A = {ia, ja, Pa, Va} and B = {ib, jb, Pb, Vb}. An event when

two patterns appear in the keystream within the shortest possible time distan
e

σ is 
alled 
hain of patterns, and is denoted as A → B if B appears after A.

The 
hain distan
e σ between two patterns A and B is the shortest possible

time between A's ending and B's beginning of their windows, i.e.,

σ = ib − (ia + wa) mod N.
(12)

The interse
tion of A and B is the number ξ of positions in A that are

reused in B. These positions must not appear as S[i] during σ 
lo
kings while

the 
hain distan
e between A and B is approa
hed. ⊓⊔
3

Sin
e

γ
-predi
tiveness has a minor in�uen
e on dete
tion, we skip this parameter in

future 
al
ulations.



For example, let A = {0, 0, {1, 3, 5, 6, 7, 8, 22, 23}, {2, 8,−3,−2, 1, 7, 4,−9}}
andB = {34, 34, {35, 36, 37, 38, 39, 44, 48, 52}, {8,−2, 1, 2, 4,−5, 5, 3}}. After wa =
30 
lo
kings the �rst pattern be
omes A′ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{−3,−9, 7, 8,−2, 1, 2, 4}}. Obviously, the last ξ = 5 positions 
an be reused in

B, and after σ = 4 
lo
kings a new pattern B (wb = 34) 
an appear if jt+34 = jb.

The probability that the 
hain A → B appears is N−9 · N−4
, multiplied by the

probability that 5 elements from A′
stay at the same lo
ations during the next 4


lo
kings. This is mu
h larger than the trivial N−9 ·N−9
. Thus, a more general

theorem 
an be stated.

Theorem 1 (
hain probability). The probability of a 
hain A → B to appear

is

PA→B = Pr{Eint} ≈ N−(da+db+2−ξ) · e−2(Πθa+Πθb)/N · e−ξ. (13)

Proof. In [Man01℄ it has been shown that ξ elements stay in pla
e during N

lo
kings with an approximate probability e−ξ

. The remaining part 
omes from

an assumption that the internal state is random, from where the proof follows.

⊓⊔

Obviously, the probability of the external event for the 
hain is

Pr{Eext} = N−(bαa+bβa+bθa)−(bαb+bβb+bθb), (14)

whi
h 
an be smaller than Pr{Eint} (see Y4
in Table 6 in Appendix D), 
onfusing

the equation (8). This happens sin
e Pr{Eext} is 
al
ulated assuming that the

keystream is random. However, in RC4 only a portion of the observed external

probability spa
e 
an appear (whi
h is another sour
e for a distinguishing atta
k,

but it is out of s
ope of this paper). Therefore, in the 
ase when Pr{Eext} <
Pr{Eint} we simply assume that the dete
tion probability is 1.

Table 6 in Appendix D presents a few examples with a good trade-o� (based

on our intuition) between w and dete
tability for various d. Sin
e the 
omputa-

tion time for sear
hing su
h patterns with multiple desired properties is really

huge, only a few examples for small d were given. However, we believe that for

large d it is possible to dete
t su
h patterns with a high probability, up to 1,

applying the two proposed levels of analysis.

5 Complete State Re
overy Atta
k on RC4

5.1 Atta
k S
enario and Total Complexity

Re
all pattern dete
tion te
hniques from Se
tion 4. In the atta
k s
enario an

adversary analyses the keystream at every time t, and applies the state re
overy

algorithm if the desired internal event (pattern) is dete
ted. In all 
ases ex
ept

one the re
overing algorithm deals with a random keystream.



Proposition 1 (Total Atta
k Complexities). Let the dete
tion probability

be Pdet, then the total time CT and data CD 
omplexities of the atta
k are

CT = Pr{Eint}−1 + (P−1
det

− 1) · CRand + 1 · CTrue,

CD = Pr{Eint}−1.
(15)

⊓⊔

5.2 Su

ess Rate of the Atta
k

The 
omplexities CTrue and CRandom are upper bounds for the average time the

algorithm requires. It means that for some 
ases it 
ould take more time than

these bounds. In order to guarantee the upper bound of the total (not aver-

age) time 
omplexity one 
an terminate the algorithm after, for example, Cthr

operations. In this 
ase the su

ess rate of the atta
k 
an be determined.
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Fig. 3. Probability density (left) and 
umulative (right) fun
tions of the time CTrue in

logarithmi
al form (k = log2 CTrue). The s
enario is N = 64,M
8
and 2000 samples.

Figure 3 shows density and 
umulative fun
tions for the time 
omplexity

of an example atta
k s
enario. It shows that around 98% of all simulations of

the atta
k have time smaller than the average 229.28
(verti
al line). When the

keystream is random the termination makes the average time bound CRandom even

smaller, sin
e the random 
ase is likely to be repeated very many times and the

se
ond term in (15) 
an only de
rease.

The plots in Figure 3 also show that even if the termination of the algorithm

is done on the level Cthr =
√

CTrue (≈ 215
), the su

ess rate of the atta
k is still

very high. I.e., the state re
overy algorithm on RC4-64 
an be done in time 215

with su

ess probability 35%! If a similar situation happens for large N (e.g.,

N = 256), then the full time 
omplexity 
an be signi�
antly de
reased (perhaps,

down to a square root of the estimated average 
omplexity), and the su

ess

probability 
an still be very large.



6 Simulation Results and Con
lusions

We have sele
ted a set of test 
ases with various parameters and patters, and

derived total data and time 
omplexities of the new atta
k. Table 3 presents the

results of this work. For example, when N = 64, the total 
omplexity of the new

atta
k is upper bounded by 260
, if the pattern X9 is used. This is mu
h faster

than, for example, Knudsen's atta
k, whi
h 
omplexity for this 
ase is 2132.6
.

Even if d = 9 elements of the state are known, Knudsen's atta
k needs 298.1
of

time, whi
h is still mu
h higher. The 
omplexity of a potential atta
k re
ently

dis
ussed by I. Mantin in [Man05℄

4

is also higher. As it was shown in Se
tion 5.2,

the su

ess rate of the new atta
k is at least 98%.

N N = 64 N = 100 N = 128 N = 160 N = 200 N = 256
Cases I II III IV V VI VII VIII IX X XI XII XIII

Des
riptions of the 
ases (⋆ � are hypotheti
al 
ases)

Pattern M
8
Y

8
X

9
X

11
M

13
M

14
⋆ M

14
⋆ M

14
⋆ M

14
⋆

d 8 8 9 11 13 14 17 14 18 14 23 14 29

w 37 29 41 49 68 76 92 76 102 76 132 76 168

l 6 6 5 11 9 10 10 10 10 10 14 10 17

bα 0 4 4 9 0 0 10 0 11 0 10 0 11

bβ 1 1 0 0 2 2 0 2 0 2 2 2 4

bγ 5 1 1 2 7 8 0 8 0 8 2 8 2

bθ 0 0 2 0 2 2 0 2 7 2 4 2 12

Πθ 0 0 4 0 4 4 0 4 � 4 � 4 �

Internal/external/dete
tion probabilities

Pint -54.0 -65.8 -60.0 -79.7 -93.0 -105.0 -112.0 -109.8 -139.1 -114.7 -183.5 -120.0 -240.0

Pext -6.0 -60.0 -36.0 -59.8 -26.6 -28.0 -70.0 -29.3 -131.8 -30.6 -122.3 -32.0 -216.0

Pdet -48.0 -5.8 -24.0 -19.9 -66.4 -77.0 -42.0 -80.5 -7.3 -84.1 -61.2 -88.0 -24.0

Complexities of the state re
overy algorithm

when the keystream is true/random

Theor. 20.5 58.2 22.8 107.8 10.0 71.3 71.7 191.1 131.7 317.4 121.3 507.4 217.1

C
R
a
n
d

Attun. 15.5 57.8 � 107.5 � 66.3 � 179.2 � 302.6 � 491.8 �

Theor. 35.0 64.9 30.9 120.4 34.5 94.7 102.0 213.0 138.2 335.6 157.5 519.6 225.4

Attun. 30.3 57.6 � 108.3 31.8 85.5 � 185.1 � 309.9 � 501.8 �

C
T
r
u
e

Real 29.3 � � � 29.1 � � � � � � � �

Total data/time 
omplexity, and the 
omparison

with previous atta
ks

CK(0) 132.6 236.6 324.8 431.4 572.0 779.7

K

n

u

d

-

s

e

n

'

s

CK(d) 101.7 101.7 98.1 189.3 181.0 261.3 256.9 364.6 346.1 501.9 458.2 705.9 629.3

Mantin's po-

tential atta
k

73 114 147 186 243 290

CD 54.0 65.8 60.0 79.7 93.0 105.0 112.0 109.8 139.1 114.7 183.4 120.0 240.0

O

u

r

a

t

t

a




k

CT 63.5 63.4 60.0 127.4 93.1 143.4 113.7 271.7 140.4 386.7 184.0 579.8 241.7

Table 3. Simulation results and 
omparisons with previous atta
ks.

4

Mantin dete
ts a large number of bytes of the state, and then applies Knudsen's

atta
k given those bytes. However, to make these knowns to redu
e the 
omplexity

of Knudsen's atta
k they must be lo
ated in a short window all together, and this

is not the 
ase. This fa
t is 
on�rmed in [Man05℄ (Se
tion �State Re
overy Atta
k�).



Table 3 also 
ontains intermediate probabilities and 
omplexities for the at-

ta
k, in
luding theoreti
al (∆ = 0) and attuned (∆ = 2) values for CRand and

CTrue. When it was possible, the real atta
k on a true keystream was simulated

(real 
omplexities for CTrue are shown in itali
). In these simulations the 
omplete

state of RC4 was su

essfully re
overed for every randomly generated keystream


ompliant with the 
orresponding pattern.

For larger N , patterns of a high order are needed to re
eive an atta
k of low


omplexity. The largest pattern that we 
ould �nd in this work is M
14
, and this

was applied to atta
k RC4-N with N = 128, 160, 200, 256. These atta
k s
enarios
are those that we have in our hands already. However, the 
omplexities re
eived

are not optimal, but they are still lower than in Knudsen's atta
k. Conje
ture 1

and also dis
ussions in Se
tion 4 make it possible to approximate the parameters

of a hypotheti
al pattern that is likely to exist (⋆ � patterns). To be se
ure, we

relate d and w as w = 6d−6, with a 
on�den
e gap of 6 positions. The remaining

parameters were 
hosen moderate as well. As the result, we obtained an atta
k

on RC4-256 with the (upper bounded) total 
omplexity of 2241.7
, and this is the

best state re
overy atta
k known at the moment.

In general, we have noted the following tenden
y. For RC4-N with a se
ret

key of length N bits or longer, the new atta
k 
an re
over the internal state

mu
h faster than an exhaustive sear
h. This observation 
an also be seen from

the results in Table 3.

As the last point of the dis
ussions we note that the key re
overy atta
k 
an

be easily 
onverted from a state re
overy atta
k. There are several papers dealing

with re
overing the se
ret key from a known internal state [MS01,Man01,PM07℄.

However, this part works mu
h faster than 
urrently known state re
overy at-

ta
ks, and, therefore, we just refer to these papers without giving details.

7 Further Improvements and Open Problems

Pattern dete
tion improvements. With a 
hain of patterns des
ribed in Se
tion 4

one 
ould rea
h a good dete
tion. However, not only forward dire
tion of 
hain-

ing 
an be 
onsidered, but also ba
kward one. Additionally, there is a possibility

to analyse longer sequen
es of patterns in order to have a good dete
tability. An-

other idea is to use unusual re
y
lable patterns in a similar manner as in [Man05℄.

The di�eren
e is that these patterns are both re
y
lable and have a long window.

For example, A = {0,−4, {6, 4, 1, 5, 3}, {0, 1, 7,−2,−1}}.
State re
overy algorithm improvement. The GSi blo
k 
an 
hoose the 
orner

(left or right) of the window to be extended by an additional heuristi
 analysis of

the 
urrent situation during the pro
ess. Another improvement is a
hieved if the

MC blo
k 
ould spe
ulatively run the re
ursion for additional 1-3 extra forward

steps for every possible guess, and, afterwards, make su
h a guess for whi
h the

number of sub bran
hes is the minimum. The average time of the atta
k for this

strategy is redu
ed.

Derivation and statisti
s. Our investigation showed that the derived theoret-

i
al upper bound gives a mu
h larger 
omplexity than the one re
eived from the



real simulations of the atta
k. Obviously, a better analysis of the algorithm's


omplexity is needed. This would allow a more a

urate estimation of the total


omplexity, and it might improve the 
omplexities in Table 3 signi�
antly. An-

other interesting problem is to determine the density fun
tion of the re
overing

algorithm, likewise in Figure 3. This may allow us to de
rease the 
omplexity in

square root times, maintaining a high su

ess rate.

Other open problems. The sear
h for patterns of a higher order with long

windows is another 
hallenging open question. We have shown that there are


hains of patterns with short distan
es. The �rst pattern is used for the re
over-

ing algorithm, and the se
ond one is for dete
tion. However, another interesting

question is whether or not the se
ond pattern 
an also be used in the re
overing

algorithm.

We believe that the outlined open problems have a huge potential for redu
ing

the 
omplexity of the atta
k on RC4. Perhaps, very soon we will be witnessing

an atta
k of 
omplexity lower than 2128
on the full RC4-256.
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A Example Support for the State Re
overy Algorithm

Figure 4 illustrates an example of the pro
ess of the IR blo
k. In the example we

start with spe
i�
 values of i and j, and also d = 5 
ells of the state S are �lled

with 
ertain values, whereas the remaining 
ells are unknown. This 
onstraint

allows to 
olle
t w = 15 equations of the form (3). The keystream is given in the

rightmost 
olumn of the table.

The �rst iteration, in Figure 4(b), �nds that z6 = 4 and z8 = −2 are already

allo
ated, thus solving equations 6 and 8 (s4 = 10, s9 = 5). Afterwards, given
s9 = 5, the IR blo
k solves the equation 14 and su

essfully 
he
ks for a 
on-

tradi
tion, in Figure 4(
). Finally, after the step (e) four additional 
ells of the

state S were derived with probability 1.

When the IR blo
k is pro
essed, the input to the MC blo
k is the maximum


lique of size 4 equations with 5 unknowns, shown in Figure 4(f). It means that

guessing only one unknown determines four other ones. Furthermore, the spa
e

of possible guesses is signi�
antly redu
ed due to the higher probability of a


ontradi
tion to o

ur.

B Sear
hing Te
hnique

Sin
e the sear
h spa
e for a d-order pattern grows exponentially with d, only pat-
terns of order d ≤ 6 were analysed before in various literature, e.g., in [Man05℄. In

this se
tion we suggest a few te
hniques that a

elerate this sear
h signi�
antly,

and allow to sear
h and analyse patterns of order up to d ≤ 15, approximately,

on a usual desktop PC.

First, we need to make some observations on the 
onstru
tion of patterns.

Afterwards, several ideas based on the observation for improving the algorithm

follow.



The part of the state St at time t, just before the swap-operation

it+1 jt+1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S[i] S[j] z

1 8 4 -2 1 8 -4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 4 s3 18

2 6 s3 -2 1 8 -4 s1 s2 4 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 -2 s1 29

3 7 s3 s1 1 8 -4 -2 s2 4 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 1 s2 6

4 15 s3 s1 s2 8 -4 -2 1 4 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 8 s10 16

5 11 s3 s1 s2 s10 -4 -2 1 4 s4 s5 s6 s7 s8 s9 8 s11 s12 s13 s14 s15 -4 s6 5

6 9 s3 s1 s2 s10 s6 -2 1 4 s4 s5 -4 s7 s8 s9 8 s11 s12 s13 s14 s15 -2 s4 4

7 10 s3 s1 s2 s10 s6 s4 1 4 -2 s5 -4 s7 s8 s9 8 s11 s12 s13 s14 s15 1 s5 12

8 14 s3 s1 s2 s10 s6 s4 s5 4 -2 1 -4 s7 s8 s9 8 s11 s12 s13 s14 s15 4 s9 -2

9 12 s3 s1 s2 s10 s6 s4 s5 s9 -2 1 -4 s7 s8 4 8 s11 s12 s13 s14 s15 -2 s7 21

10 13 s3 s1 s2 s10 s6 s4 s5 s9 s7 1 -4 -2 s8 4 8 s11 s12 s13 s14 s15 1 s8 6

11 9 s3 s1 s2 s10 s6 s4 s5 s9 s7 s8 -4 -2 1 4 8 s11 s12 s13 s14 s15 -4 s7 9

12 7 s3 s1 s2 s10 s6 s4 s5 s9 -4 s8 s7 -2 1 4 8 s11 s12 s13 s14 s15 -2 s5 1

13 8 s3 s1 s2 s10 s6 s4 -2 s9 -4 s8 s7 s5 1 4 8 s11 s12 s13 s14 s15 1 s9 10

14 12 s3 s1 s2 s10 s6 s4 -2 1 -4 s8 s7 s5 s9 4 8 s11 s12 s13 s14 s15 4 s5 16

15 20 s3 s1 s2 s10 s6 s4 -2 1 -4 s8 s7 4 s9 s5 8 s11 s12 s13 s14 s15 8 s15 17

16 ?

S[j] S[i]+

s3

S[z] z

? 18

=

s1 ? 29
s2 ? 6
s10 ? 16
s6 ? 5
s4 ? 4

s5 ? 16
s15 ? 17

s5 ? 12
s9 ? -2
s7 ? 21
s8 ? 6
s7 ? 9
s5 ? 1
s9 ? 10
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-2

+4
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+1
-4
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+1
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Fig. 4. Example of the iterative re
onstru
tion pro
ess.

As 
an be seen from Table 7 in Appendix D, all �good� patterns found have

V s with values from a short interval Iδ = [−δ . . .+δ], where δ ≈ 10 . . .25 is quite
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onservative. Figure 5 illustrates the dependen
y of the maximum a
hievable w
from δ. From this we make the following 
onje
ture.

Conje
ture 3. A pattern with the largest w is likely found among all possible


ombinations for i = 0, j ∈ Iδ, V ∈ Id
δ , with a moderate value of δ ≪ N . ⊓⊔

This 
onje
ture will be used as the basis for a signi�
ant improvement in the

sear
hing te
hnique of su
h patterns.

Table 4 provides the number of patterns for δ = 15, and various values

of d and w. When d and δ are �xed, the amount of desired patterns 
an be

exponentially in
reased by letting w be slightly less than wmax. This approa
h


an help �nding patterns with additional properties whi
h are introdu
ed in

Se
tion 4.

d The number of patterns Ad when δ = 15.
↓ w → 15 14 13 12 11 10 9 8 7 6

4 #{A4} → 1 3 10 26 226 863 5234 21702 114563 853012

w → 21 20 19 18 17 16 15 14 13 12

5 #{A5} → 1 4 6 15 66 252 652 1879 6832 27202

w → 27 26 25 24 23 22 21 20 19 18

6 #{A6} → 1 2 7 42 81 177 371 799 2646 10159

Table 4. The number of di�erent 
onstraints for spe
i�
 d and w, when δ = 15.

The �rst idea is to set i = 0 due to (6), and for the remaining variables only

a small set of values Iδ for some δ should be tested due to Conje
ture 3.

A straightforward approa
h would be to allo
ate d values in a ve
tor S and

then to 
he
k the desired properties of the pattern. The time 
omplexity of this



approa
h is O
((

N
d

)(
|Iδ|
d

)
|Iδ|

)

, whi
h is still very large. Our se
ond idea is to

allo
ate a new element in S only when it is ne
essary. This will signi�
antly

de
rease the time 
omplexity.

i=0

Loop for

i++

S[i] is known?

#of allocated
elements <d?

j+=S[i]
swap(S[i], S[j])

yes

no

Loop for S[i]
yesno

recursion forward

Check the pro-
perties of the 
state (w, b, ...)
and output if 
it is "good".

recursion backward

(*)
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Fig. 6. Re
ursive algorithm for sear
hing patterns with large w.

The diagram of a re
ursive algorithm exploiting the �rst two ideas is shown

in Figure 6, but it 
an be improved with the following heuristi
. The third idea

is to start sear
hing for a desired pattern somewhere in the middle of its future

window. Let us split d as d = dfwd+dback and then start the algorithm in Figure 6

allowing to allo
ate exa
tly dfwd 
ells of S. At the point (∗) the 
urrent length of

the window w is 
ompared with some threshold wthr. If w ≥ wthr, then a similar

re
ursive algorithm starts, but it goes ba
kward and allo
ates remaining dback

ells of S. This double-re
ursion results in a pattern with w likely to be 
lose to

the maximum possible length of the window.

C Complexity Analysis of the Re
overing Atta
k

Sin
e for large inputs it is not always possible to make real simulations of the

new re
overing atta
k, we are interested in a theoreti
al upper bound of its


omplexity. In this se
tion we explain how this 
omplexity 
an be derived, veri�ed

and used.

C.1 Tool for Simulations and Analysis

The new re
overing algorithm is a re
ursion as shown in Figure 7(a). The nodes

are IR and WE blo
ks, whereas ea
h bran
h is initiated by MC or GSi blo
ks.



A bran
h is terminated when a 
ontradi
tion o

urs, and only one path leads to

the 
orre
t solution, where the internal state is su

essfully re
overed.

We measure the 
omplexity of the atta
k as the number of bran
hes, i.e., the

number of guesses in the MC and GSi blo
ks done.
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Fig. 7. (a) Atta
k as a re
ursion; (b) Three parts of the tool for simulations.

Let us introdu
e a three-part tool, shown in Figure 7(b), in order to 
al
u-

late the 
omplexity of the atta
k when a 
ertain pattern is given. We give a

des
ription of ea
h of the three parts.

In the �rst part the simulation of the atta
k with a 
ertain pattern is laun
hed

(all four blo
ks, IR, WE, MC, GSi, are working), and the number of bran
hes is


ounted. Whenever the depth of the re
ursion rea
hes ∆thr, some pre
omputed

fun
tion for the 
omplexity of the remaining subtree is 
alled, and the re
ursion

makes a ba
kward step.

The se
ond part is a pre
omputed pattern-independent upper bound of the

average 
omplexity, when the status of the re
ursion 
an be des
ribed as the

number of already allo
ated 
ells L and the number of a
tive equations a.

The third part is Knudsen's atta
k 
omplexity a

epted as an upper bound

for the algorithm on the leafs of the re
ursion, in order to avoid analysis of WE.

To re
eive theoreti
al 
omplexity using this tool one should run the simu-

lations a su�
ient number of times, and then take an average of the results.

The exa
t 
omplexity is re
eived when ∆thr = ∞, in this 
ase the tool requres

the same 
omputational time as the targeting 
omplexity. On the other hand,



when ∆thr = 0, the upper bound of the 
omplexity is re
eived immediately. The

reason to introdu
e ∆thr and the three parts of the tool will be explained later.

C.2 Assumptions

We will derive the pre
omputed pattern-independent upper bound of the average


omplexity under the following assumptions.

Assume that the algorithm �rst

pro
esses all given w equations of the

kind (3) with two unknowns in ea
h,

and then Knudsen's atta
k is applied

to the remaining part of the re
ursion

(see table on the right, in the 
olumns

with WE on and o�).

Assume that in all given w equa-

tions the values St[jt] refer to di�er-

ent unknowns. This makes the atta
k

slower sin
e in the MC blo
k the max-

imum 
lique 
an then only be 
on-

stru
ted via keystream symbols. The

table on the right shows that for this

assumption the 
omplexity of the at-

ta
k is higher.

Assume that the keystream is ran-

dom, whi
h is reasonable sin
e the real

internal state is unknown to an at-

ta
ker. We have sele
ted several pat-

terns with similar properties, d =
4, w = 9 (A s and Bs from Table 7).

One half of them have di�erent St[jt]s,
and the other half 
ontains pairs of

(Logarithms of the 
omplexities)

Random z True z
Patrn. WE o� WE on WE o� WE on

∆thr = ∞, N = 25, d = 4, w = 9,
all St[jt] are di�erent. # of tests is ≥ 500.
A 1 15.87 14.25 16.33 15.09
A 2 15.24 14.02 16.30 14.38
A 3 14.89 14.48 16.00 14.80
A 4 15.51 14.18 16.38 14.44
A 5 15.20 12.97 15.87 12.57
A 6 14.98 12.02 15.50 11.66

Average 15.32 13.86 16.09 14.24

∆thr = ∞, N = 25, d = 4, w = 9, at least
two St[jt] 
oin
ide. # of tests is ≥ 5000.
B1 7.41 7.95 13.08 13.49
B2 5.08 3.71 13.42 12.03
B3 4.62 3.67 13.30 12.00
B4 4.84 4.43 10.28 10.06
B5 3.41 3.72 11.42 12.21
B6 2.94 3.19 12.00 13.38
B7 3.81 4.57 11.12 12.39

Average 5.37 5.60 12.48 12.54

Assumptions make the algorithm

slower and bound the real 
omplexity.

equal St[jt]s. Afterwards, the 
omplexities of the atta
k are estimated (∆thr =
∞, N = 25) when the keystream is random/true, and WE is on/o�. The results


learly show that the 
omplexities under our assumptions are upper bounds.

C.3 Average Complexity Derivations

In this se
tion a pre
omputed pattern-independent upper bound of the average


omplexity is derived under the assumptions proposed above. In all formulas the

following meaning of variables is a

epted: a is the number of a
tive (not yet

pro
essed) equations of the form (3); L is the number of known and previously

assigned 
ells of the state, and no single zt from the a
tive equations 
an be one

of the L values; l is the number of already (the most re
ently) assigned 
ells of

the state, and zts from a
tive equations 
ould possibly be one of the l values;
qmax is the size of the maximum possible 
lique that 
an be found in the MC

blo
k.
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Fig. 8. Four 
ases supporting derivations of the atta
k 
omplexity.

Every step of the re
ursion has a 
omplexity to whi
h we will refer as: CK(L)
is the 
omplexity of Knudsen's atta
k, given that L 
ells of the internal state

are known, and it 
an be pre
omputed as in [KMP

+
98℄; CMC(L; a; qmax) is the


omplexity of the MC blo
k; CA0

IR
(L; l; a; qmax) is the 
omplexity of one iteration

of the IR blo
k that starts with L known and l new values, and ends with another

set of new values of some size δ; CA1

IR
(L; l; a; qmax) is the same as CA0

IR
, but for one of

the equations the value of S[j] is known; CB

IR
(L; a; qmax) is the 
omplexity of the


ase when IR returns no new assignments, but for one equation S[j] is known,
i.e., the IR blo
k makes an iteration of a di�erent sort in this 
ase.

Supplementary Formulas When L 
ells of S0 are already known and δ new

assignments are performed one by one, the probability of no 
ontradi
tion is

Pc(L; δ) =
(N − L)!

(N − L − δ)!N δ
, when 0 ≤ L + δ ≤ N. (16)

Let M(r; a; q) be the number of possible keystream sequen
es of length a,
where ea
h symbol 
an have one out of r values, and the maximum possible size



of a 
lique is q. The value of M 
an re
ursively be 
al
ulated as

5

M(r; a; q) =

q
∑

i=0

(
a

i

)

M(r − 1; a− i; q), where

{

1 ≤ a, t ≤ N,

q ≤ a,

M(r; 0; 0) = 1, where 1 ≤ t ≤ N.

(17)

Complexity CA0

IR
(L; l; a; qmax) The probability that, in one iteration, δ out of

a equations will be solved is

PA0(L; l; a; δ; qmax) =

(
a

δ

)
M(l; δ; qmax) · M(N − L − l; a− δ; qmax)

M(N − L; a; qmax)
,

when

{

0 ≤ L + l + a ≤ N,

0 ≤ δ ≤ a.

(18)

In these δ equations zt must be one of the l values and they must give δ
new values St[jt], sin
e, otherwise, they would have been found before. For ea
h

of the δ equations, St[zt] is allo
ated somewhere. Thus, a new value St[jt] =
S−1

t [zt] − St[it] 
an be derived. The number of a
tive equations is evidently

redu
ed by δ. The total 
omplexity of CA0

IR
is re
ursively expressed as

CA0

IR
(L; l;a; qmax) =

a−1∑

δ=1

PA0(L; l; a; δ; qmax) · Pc(L + l; δ) · CA0

IR
(L + l; δ; a− δ; qmax)

+ PA0(L; l; a; a; qmax) · Pc(L + l; a) · CK(L + l + a)

+ PA0(L; l; a; 0; qmax) · CMC(L + l; a), when

{

0 ≤ L + l + a ≤ N,

1 ≤ qmax ≤ a,

CIR(L; l;0; 0) = CK(L + l), when L + l ≤ N.

(19)

Complexity CMC(L; a; qmax) The probability of a maximum 
lique of size q to

appear is

PMC(L; a; qmax; q) =

M(N − L; a; q) − M(N − L; a; q − 1)

M(N − L; a; qmax)
, where

{

1 ≤ L + a ≤ N,

1 ≤ q ≤ qmax ≤ a,

(20)

with a boundary 
ase PMC(L; 0; 0; 0) = 1. The parameter qmax tells us that in

the remaining a
tive equations no 
liques of size more than qmax exist, sin
e,

otherwise, it would have been found on a previous 
all of the MC blo
k.

Consider the unknown x = S−1
t [zt] from the 
lique that has to be guessed

as one of the N − L remaining values. The 
hoi
e of x is in prin
ipal one of the

5

One should start with a loop for t = 1 → N , then a loop for a = 1 → N , and then


al
ulate the 
orresponding subtable.



following three options. (a) x is one of the jts and the equation asso
iated with

time t belongs to the 
lique. This happens in q 
hoi
es and results in q − 1 new

values. An additional 
ontradi
tion test should be in
luded: St[it] + zt must be

equal to S−1
t [zt] (= x). (b) x is one of the jts and the equation asso
iated with

time t does not belong to the 
lique. This happens in a − q 
hoi
es and results

in q + 1 new values. (
) In the remaining N − L − a 
hoi
es q new values of the

state are obtained.

Finally, the MC blo
k is the only blo
k where the 
omplexity is summarized.

Thus, its total 
omplexity is

CMC(L; a; qmax) = (N − L)
︸ ︷︷ ︸


omplexity

+

qmax∑

q=1

PMC(L; a; qmax; q) ·
[

+ q
︸︷︷︸

q bran
hes

· 1

N
︸︷︷︸

zt = jt−1

·Pc(L + 1; q − 1) · CA0

IR
(L + 1; q − 1; a− q; q)

+ (a − q)
︸ ︷︷ ︸

a − q bran
hes

·Pc(L + 1; q) · CA1

IR
(L + 1; q; a− q; q)

+ (N − L − a)
︸ ︷︷ ︸

remaining bran
hes

·Pc(L + 1; q) · CA0

IR
(L + 1; q; a− q; q)

]

,

when 1 ≤ L + a ≤ N, and 1 ≤ qmax ≤ a.

(21)

Complexity CA1

IR
(L; l; a; qmax) This 
ase is similar to that of CA0

IR
, although

this 
ase is divided into two sub
ases with respe
t to the number of pro
essed

equations.

CA1

IR
(L; l;a; qmax) =

a−1∑

δ=0

(
a − 1

δ

)
M(l; δ; qmax) · M(N − L − l; a − δ; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸

probability of pro
essing δ equations, ex
ept �spe
ial� one

× Pc(L + l; δ) ·
{

CB

IR
(L + l + δ; a − δ; qmax), δ = 0, a − 1

CA1

IR
(L + l; δ; a − δ; qmax), otherwise

}

+
a−1∑

δ=0

(
a − 1

δ

)
M(l; δ + 1; qmax) · M(N − L − l; a− δ − 1; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸

probability of pro
essing δ + 1 equations, in
luding �spe
ial� one

× 1

N
· Pc(L + l; δ) ·







CMC(L + l; a − 1; qmax), δ = 0

CK(L + l + a − 1), δ = a − 1

CA0

IR
(L + l; δ; a− δ − 1; qmax), otherwise







,

(22)

where by �spe
ial� equation we refer to the one for whi
h the value of S[j] is
known.



Complexity CB

IR
(L; a; qmax) This is the IR blo
k where one equation (asso
i-

ated with time t) has St[jt] known. There 
ould be three 
ases similar to CMC.

However, these 
ases are not 
hosen by us as in MC, but instead one of them

appears with some probability. The probability that the value zt is in the 
lique

of size q + 1 is

PA1(L; a; qmax; q) =

(
a − 1

q

)
(N − L) · M(N − L − 1; a − q − 1; qmax)

M(N − L; a; qmax)
, (23)

and the target 
omplexity is

CB

IR
(L; a;qmax) =

qmax−1
∑

q=0

PA1(L; a; qmax; q) ×
[

q

N
︸︷︷︸

S−1[z]
is one

of the q

· 1

N
︸︷︷︸

No 
ontra-

di
tion in

the 
lique

of size q

·Pc(L + 1; q − 1) · CA0

IR
(L + 1, q − 1, a − q − 1, qmax)

+
a − q − 1

N
· Pc(L + 1; q) · CA1

IR
(L + 1; q; a − q − 1; qmax)

+
N − L − a + 1

N
· Pc(L + 1; q) · CA0

IR
(L + 1; q; a − q − 1; qmax)

]

.

(24)

C.4 How to Apply the Complexities?

When the pattern is known and ∆thr 6= 0, the 
omplexity fun
tion should be

applied at the point where the MC blo
k is 
alled. In this 
ase CMC(L; a; qmax)
is added to the total 
omplexity 
ounter, where L and a are known, and qmax
is the size of the maximum 
lique that had been previously found during the

simulation.

When the pattern is unknown (∆thr = 0) but its parameters d, w, l, bα, bβ , bγ , bθ

are given, the upper bound of the total 
omplexity is 
al
ulated as

CRand < Pc(d, bγ) · CA0

IR
(0; d + bγ ; w − l − bθ; w − l − bθ), for random keystream,

CTrue < CA0∗
IR

(bγ ; d; w − l; 1), for true keystream,

(25)

where CA0∗
IR

is the same as CA0

IR
ex
ept that the �rst 
all of the IR blo
k may not

have 
ontradi
tions

6

.

C.5 Restri
ted Veri�
ation Tests on Random Keystream

A set of patterns for restri
ted veri�
ation tests were 
hosen su
h that pra
ti
al

simulations of the atta
k would have as 
lose 
onditions to the assumptions in

Se
tion C.2 as possible. We set ∆thr = 0, CK(L) = 0, swit
h o� the WE and GSi

blo
ks, take patterns with bα = bβ = 0, and test them on a random keystream.

6

Brief boundings that need only d and w are CA0

IR (0; d;w;w) and CA0∗

IR (0; d;w; 1).



(Logarithms of the 
omplexities)

Tests show that theoreti
al 
omplexities

behave adequately

Tests show that the real 
omplexity de-

pends on a 
ertain pattern used

Pattern G
2
G
3a
G
4a
G
4b
G
5
G
6
G
7

G
3b
G
3c
G
3d

G
4c
G
4d

G
4e

d 2 3 4 4 5 6 7 3 3 3 4 4 4
N w 5 8 11 13 16 20 25 7 7 7 9 9 9

16 Pra
t 10.16 4.74 0.60 � � � � 5.87 5.09 6.09 1.09 1.26 1.19

Theor 9.76 4.65 0.98 � � � � 5.96 5.96 5.96 2.14 2.14 2.14

30 Pra
t 19.90 24.22 21.22 17.90 8.71 1.84 � 22.69 22.73 22.90 22.50 22.87 22.27

Theor 19.32 23.50 20.49 17.06 7.65 1.92 � 22.41 22.41 22.41 21.99 21.99 21.99

38 Pra
t � � � � 25.73 12.25 2.66 � � � � � �

Theor � � � � 24.78 11.54 2.59 � � � � � �

Table 5. Results of restri
ted veri�
ation tests.

The results of the tests are given in Table 5. The �rst group of tests shows

that the theoreti
al 
omplexities are 
lose to the 
omplexities a
hieved through

simulations. The se
ond group of tests shows that the a
tual 
omplexity of the

atta
k depends on a 
ertain pattern, and it may vary.

C.6 Why Is Part-1 Needed?

Consider the pattern A = {0, 0, {3, 1}, {1, 2}} and N = 28, qmax = 1. The length
of the window is w = 5. The probability of exa
tly one equation to be solved

during the �rst iteration of the IR blo
k is 0.3042, then a new value of S[j] is
re
eived. In theory the probability that no 
ontradi
tion would o

ur is (N −L−
l)/N ≈ 0.928, whereas in pra
ti
e it is around 0.6, and this is a large deviation.

This simple example shows that no assumptions 
ould 
over all pe
uliarities

of an a
tual pattern used. Therefore, when a pre
ise pattern is given, it would

be advised to run partial simulations of the atta
k in order to test top level

bran
hes of the re
ursion with the depth 1-3, sin
e the 
ase of the remaining

subtrees be
omes well 
ompliant with the assumptions. This solution 
an attune

theoreti
al 
omplexity signi�
antly in some 
ases.

C.7 Full Veri�
ation Tests on True Keystream

In order to verify reliability of 
omplexity fun
tions a set of full veri�
ation tests

for three atta
k s
enarios were 
arried out. For all s
enarios N = 64, the patterns
are M

8
, M

9
, and M

10
, and a true keystream is generated randomly. The four

blo
ks in pra
ti
e and the part with Knudsen's atta
k in theory are swit
hed on.

Figure 9 shows the results of the tests for the three s
enarios. Real 
om-

plexities re
eived via simulations of the state re
overy algorithm are horisontal

lines, wherease the 
urves are 
orresponding theoreti
al upper bounds of average


omplexities for various ∆thr, respe
tively. When ∆thr = 0, points on the 
urves

are pattern independent upper bounds.
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Fig. 9. Three patterns, true keystream, full atta
k, N = 64. The results of full veri�-

ation tests of 
omplexity fun
tions of the new state re
overy atta
k.

D Patterns Used in This Paper
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Ref. A.l. i, j P, V d w l bα bβ bθ Πθ σ ξ ψ Int Ext

(a) Trade-o� between w and l, the �rst level of analysis

X
2

1

st
-3, 0 P ={-2, -1}, V ={0, 1} 2 4 2 2 0 0 0 � � � N−3 N−2

X
3

1

st
-6, -7 P ={-5, -3, -2}, V ={3, 2, -1} 3 10 3 3 0 0 0 � � � N−4 N−3

X
4

1

st
-10, -11 P ={-9, -7, -6, -2}, V ={3, 2, -4, -1} 4 14 3 3 0 0 0 � � � N−5 N−3

X
5

1

st
-7, -2 P ={-6, -5, -3, -1, 1}, V ={-2, 4, 7, -1, 1} 5 16 5 4 0 0 0 � � � N−6 N−4

X
6

1

st
-8, -10 P ={8, 9, -7, -5, -4, -3}, V ={2, -1, 4, 3, -2, 1} 6 23 4 4 0 1 2 � � � N−7e−4/N N−5

X
7

1

st
-13,-2 P ={8, 9, -12, -11, -10, -9, -7} 7 28 4 4 0 2 4 � � � N−8e−8/N N−6

V ={2, -1, -2, 1, -5, 3, 4}

X
8

1

st
-18,-5 P ={8 9 -17 -16 -15 -14 -13 -9} 8 33 5 5 0 2 4 � � � N−9e−8/N N−7

V ={2, -1, -5, -2, 1, 4, 5, 3}

X
9

1

st
-20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 9 41 5 4 0 2 4 � � � N−10e−8/N N−6

V ={-5, 8, 3, 5, 4, -2, -1, 2, 1}

X
10

1

st
-25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10 47 6 5 0 2 4 � � � N−11e−8/N N−7

V ={3, 4, 2, 8, -3, -2, 1, 7, 0, -5}

X
11

1

st
-37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} 11 49 11 9 0 . . � � � N−12 N−9

V ={10, -4, -1, 11, 3, -2, 1, 9, -3, -7, 2}

(b) Good dete
tion through the se
ond level of analysis

Y
4

1

st
-7, -7 P ={-6, -5, -3, -1}, V ={3, 2, -1, 0} 4 9 4 4 0 . . � � � N−5 N−4

2

nd
-2, -1 P ′ ={0, 2, -1}, V ′ ={0, -1, 2} 3 4 3 3 0 . . -4 3 0 N−6e−3 N−7

Y
7

1

st
-24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7 26 6 5 0 . . � � � N−8 N−5

V ={-3, -2, 4, 5, 1, 0, -1}

2

nd
-5, -2 P ′ ={0, 1, -4, -3, -2}, V ′ ={2, -1, 1, 0, -2} 5 6 5 5 0 . . -7 4 1 N−10e−4 N−10

Y
8

1

st
-26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 8 29 6 4 1 0 0 � � � N−9 N−5

V ={5, 1, 4, -3, -1, 2, 3, -2}

2

nd
-7, 2 P ′ ={0, 3, -6, -5, -4, -3, -2}, V ′ ={-2, 3, 0, -1, 1, -3, 2} 7 10 7 7 0 0 0 -10 6 1 N−12e−6 N−12

Table 6. Various patterns that were a
hieved by our simulations (part I).



Ref. i, j P, V d w l bα bβ bγ bθ Πθ

(a) Maximum generative patterns (w → max)

M
2
0, -1 P ={1, 3}, V ={3, -1} 2 6 0 0 0 0 1 1

M
3
0, -1 P ={1, 3, 4}, V={3, 2, -1} 3 10 3 0 1 2 0 0

M
4
0, -2 P ={1, 3, 4, 5}, V={4, 3, -2, 1} 4 15 1 0 0 1 1 2

M
5
0, -2 P ={1, 2, 4, 6, 8}, V={5, 2, -3, 6, -1} 5 21 0 0 0 0 0 0

M
6
0, 0 P ={1, 2, 3, 4, 5, 20}, V={7, -1, 5, -3, 2, -9} 6 27 3 0 1 2 0 0

M
7
0, 5 P ={1, 2, 4, 6, 8, 9, 16}, V={-2, 4, 7, 1, 3, -3, 8} 7 31 4 0 0 4 1 2

M
8
0, 5 P ={1, 2, 4, 6, 14, 18, 19, 25} 8 37 6 0 1 5 0 0

V ={-2, 4, 5, 1, 3, -3, 2, -1}

M
9
0, 9 P ={1, 2, 3, 6, 7, 8, 11, 20, 24} 9 42 6 0 1 5 1 2

V ={-4, -1, 10, 3, -2, 11, 1, 4, -6}

M
10

0, 3 P ={1, 2, 3, 5, 8, 10, 18, 21, 22, 23} 10 50 4 1 1 2 1 2

V ={1, 5, -3, 8, -7, 3, -2, -5, 9, -1}

M
11

0, -1 P ={1, 2, 3, 4, 6, 9, 11, 13, 21, 30, 33} 11 55 10 0 1 9 0 0

V ={6, 5, -3, 1, 4, -4, 7, -1, 2, -9, 8}

M
12

0, 6 P ={1, 2, 3, 4, 5, 9, 15, 17, 34, 35, 43, 45 } 12 59 8 1 0 7 2 4

V ={2, -2, 1, 12, -7, 7, 8, -3, 0, -5, 3, 4}

M
13

0, 0 P ={1, 3, 5, 6, 7, 8, 22, 23, 31, 32, 34, 44, 52} 13 68 9 0 2 7 2 4

V ={2, 8, -3, -2, 1, 7, 4, -9, 5, 10, -14, -5, 3}

M
14

0, 15 P ={1, 2, 3, 4, 5, 11, 13, 30, 31, 39, 40, 42, 52, 60} 14 76 10 0 2 8 2 4

V ={-7, -2, 1, 2, 7, 8, -3, 4, -9, 5, 10, -14, -5, 3}

(b) Patterns with all St[jt] di�erent to test 
omplexity fun
tions

G
2

0, 0 P ={3, 1}, V ={1, 2} 2 5 0 0 0 0 0 0

G
3a

0, -2 P ={1, 3, 4}, V ={4, -1, 3} 3 8 0 0 0 0 0 0

G
3b

0, -4 P ={2, 1, 3}, V ={1, 8, -7} 3 7 0 0 0 0 0 0

G
3c

0, -3 P ={2, 1, 3}, V ={1, 7, -6} 3 7 0 0 0 0 0 0

G
3d

0, 0 P ={3, 1, 2}, V ={3, 5, -1} 3 7 0 0 0 0 0 0

G
4a

0, -4 P ={1, 3, 4, 5}, V ={6, -2, 1, 4} 4 11 0 0 0 0 0 0

G
4b

0, 5 P ={1, 2, 4, 6}, V ={-2, 4, 5, 1} 4 13 0 0 0 0 0 0

G
4c

0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0

G
4d

0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0

G
4e

0, 7 P ={4, 3, 5, 1}, V ={1, 9, -8, -5} 4 9 0 0 0 0 0 0

G
5

0, -6 P ={1, 3, 4, 5, 8}, V ={8, -3, -1, 7, 5} 5 16 0 0 0 0 0 0

G
6

0, -2 P ={2, 8, 1, 6, 5, 12}, V ={1, 2, 5, 7, -3, -1} 6 20 0 0 0 0 0 0

G
7

0, -2 P ={2, 8, 21, 1, 6, 5, 12}, V ={1, 2, 4, 5, 7, -3, -1} 7 25 0 0 0 0 0 0

(
) Patterns to support assumptions

A
1
0, -10 P ={5, 2, 1, 4}, V ={3, 4, 9, -1} 4 9 0 0 0 0 0 0

A
2
0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0

A
3
0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0

A
4
0, 0 P ={3, 1, 6, 9}, V ={1, 2, 6, -5} 4 9 0 0 0 0 0 0

A
5
0, 7 P ={4, 3, 5, 1}, V ={1, 9,-8, -5} 4 9 0 0 0 0 0 0

A
6
0, 9 P ={2, 4, 1, 6}, V ={2, 8,-6, -1} 4 9 0 0 0 0 0 0

B1 0, -1 P ={8, 1, 7, 3}, V ={1, 3,-9, -1} 4 9 0 0 0 0 1 1

B2 0, 0 P ={3, 1, 9, 6}, V ={1, 2, 3, -8} 4 9 0 0 0 0 2 10

B3 0, 0 P ={1, 3, 8, 5}, V ={2, 3,-6, -3} 4 9 0 0 0 0 2 11

B4 0, 5 P ={4, 2, 8, 1}, V ={1, 4,-7, -2} 4 9 0 0 0 0 1 2

B5 0, 7 P ={2, 3, 1, 8}, V ={1, 4,-3, -2} 4 9 0 0 0 0 2 4

B6 0, 9 P ={2, 4, 3, 1}, V ={1, 4,-3, -2} 4 9 0 0 0 0 3 15

B7 0, 10 P ={5, 3, 1, 2}, V ={1, 5,-4, -2} 4 9 0 0 0 0 2 11

Table 7. Various patterns that were a
hieved by our simulations (part II).


