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Abstract. The stream cipher RC4 was designed by R. Rivest in 1987,
and it has a very simple and elegant structure. It is probably the most
deployed cipher on the Earth.

In this paper we analyse the class RC4-N of RC4-like stream ciphers,
where N is the modulus of operations, as well as the length of inter-
nal arrays. Our new attack is a state recovery attack which accepts the
keystream of a certain length, and recovers the internal state. For the
original RC4-256, our attack has total complexity of around 224! opera-
tions, whereas the best previous attack needs 277 of time. Moreover, we
show that if the secret key is of length N bits or longer, the new attack
works faster than an exhaustive search. The algorithm of the attack was
implemented and verified on small cases.
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1 Introduction

RC4 [Sch96] is a stream cipher designed by Ron Rivest in 1987, and since then it
has been implemented in many various software applications to ensure privacy
in communication. It is, perhaps, the most widely deployed stream cipher and
its most common application is to protect Internet traffic in the SSL protocol.
Moreover, it has been implemented in Microsoft Lotus, Oracle Secure SQL, etc.
The design of RC4 was kept secret until 1994 when it was anonymously leaked
to the members of the Cypherpunk community. A bit later the correctness of
the algorithm was confirmed.

In this paper we study a family RC4-N of RC4 like stream ciphers, where NV
is the modulus of operations. The internal state of RC4 is two registers i, j € Zxy
and a permutation S of all elements of Zy. Thus, RC4 has a huge state of
log, (N2 N!) bits. For the original version, when N = 256, the size of the state is
~ 1700 bits. This makes any time-memory trade-off attacks impractical. RC4-
256 uses a variable length key from 1 to 256 bytes for its initialisation.

The initialisation procedure of RC4 has been thoroughly analysed in a large
number of various papers, see e.g. [MS01,Man01,PP04]. These results show that
the initialisation of RC4 is weak, and the secret key can be recovered with a small
portion of data/time. Because of these attacks, RC4 can be regarded as broken.
However, if one would tweak the initialisation procedure, the cipher becomes
secure again.



The simplicity of the keystream generating algorithm of RC4 has attracted
many cryptanalysis efforts. In most analyses the scenario assumes that keystream
of some length is given, and either a distinguishing ([Gol97,FM00,Max05,Man05])
or a state recovery (|[KMPT98]) attack is of interest. A state recovery attack can
be used to determine the actual security level of a cipher, if the initial internal
state is considered as a secret key. The first state recovery attack was proposed
by Knudsen et al in 1998 [KMP*98|. This had a computational complexity of
277 Some minor improvements were found in other literature, e.g. [MT98], but
still, there is no attack even close to 27°°. One interesting attempt to improve the
analysis was recently done in [Man05]. Although that attack is only a potential
one, the pretending time complexity claimed was around 22%°.

In this paper we propose a new state recovery attack on RC4-N. For the
original design RC4-256 the total time complexity of the attack is less than 2241,
requiring keystream of a similar length. This means that there is no additional
gain in using a secret key longer than 30 bytes. We also show that in general if the
secret key is of length N bits or longer the new attack is faster than exhaustive
key search.

The idea of the new attack is as follows. The algorithm searches for a
place in the keystream where the probability of a specific internal state, compli-
ant with a chosen pattern, is high. Afterwards, the new state recovery algorithm
is used together with a small portion of data (around 2N output words) in order
to recover the internal state of the cipher in an iterative manner. This algorithm
has been implemented and verified for small values of N, it has determined the
correct internal state in every simulation run. The success rate of the full attack
is shown to be at least 98%. For large values of N, where simulations were
impossible, an upper bound for the average complexity of the attack is derived
and calculated.

This paper is organized as follows. In Section 2 the new iterative state re-
covery algorithm is described in detail. Afterwards, Section 3 introduces various
properties of a pattern that are needed for the recovering algorithm. An effective
searching algorithm to find such patterns is also proposed in Appendix B (due to
the page limitation and clarity of presentation). Section 4 describes several tech-
niques to detect specific states by observing the keystream, and also introduces
additional properties of a pattern needed for detection purposes. Theoretical
analysis of the state recovery algorithm and derivation of its complexity func-
tions are performed in Appendix C. All pieces of the attack are then combined in
Section 5. Finally, we perform a set of simulations of the attack, summarize the
results and conclude in Section 6. The paper ends with suggestions for further
improvements and open problems in Section 7.

1.1 Notations

All internal variables of RC4 are over the ring Zy, where NNV is the size of the
ring. To specify a particular instance of the cipher we denote it by RC4-N. Thus,
the original design is RC4-256. Whenever applicable, + and — are performed in
modulo N. At any time ¢ the notation a; denotes the value of a variable a at time



t. The keystream is denoted by z = (21, 22, .. .), where z; is a value 0 < z; < N.
In all tables probabilities and complexities will be given in a logarithmical form
with base 2.

1.2 Description of the Keystream Generator RC4-IN

The new attack targets the keystream generation phase of RC4 and, thus, the
initialisation procedure will not be described. We refer to, e.g., [Sch96] for a full
description of RC4. After the initialisation procedure, the keystream generation
algorithm of RC4 begins. Its description is given in Figure 1.

Internal variables:

i, j — integers in Zn

S[0...N — 1] — a permutation of integers 0... N — 1
S[-] is initialised with the secret key

The keystream generator RC4-N

1=75=0
Looi) until we get enough symbols over Zy
A)i=i+1
(B) j =3+ Sl
(©) swap(S[z] Sih
(D) 2 = S[S[i] + S[l]

Fig. 1. The keystream generation algorithm of RC4-N.

2 New State Recovery Algorithm

2.1 Previous Analysis: Knudsen’s Attack

In [KMP*98] Knudsen et al. have presented a basic recursive algorithm to recover
the internal state of RC4. It starts at some point ¢ in the keystream z given k
known cells of the permutation S¢, which helps the recursion to cancel unlikely
branches. The idea of the algorithm is simple. At every time ¢ we have four
unknowns:

Jes Selidl, Silgel, Sp 'zl (1)

One can simply simulate the pseudo random generation algorithm and, when nec-
essary, guess these unknown values in order to continue the simulation. The re-
cursion steps backward when a contradiction is reached due to previously wrong
guesses. Additionally, it can be assumed that some k values are a priori known
(guessed, given, or derived somehow), and this may reduce the complexity of
the attack significantly. An important note is that the known k values should
be located in a short window of the “working area” of the keystream, otherwise
they cannot help to cancel hopeless branches.



The precise complexity of the attack was calculated in [KMP 98], and several
tables for various values of N and k were given in Appendices D.1 and D.2
of [Man0O1]. As an example, the complete state recovery attack on RC4-256
would require time around 277°,

2.2 Owur Algorithm for State Recovery

In this section we propose an improved version of the state recovery algorithm.
Assume that, at some time ¢ in a window of length w + 1 of the keystream z,

all the values ji, je41, jt42, - - - je+w are known. This means that for w steps the
values Sii1[ity1],- -, Sitwlit+w] are known as well, since they are derived as
Seralivr1] = jey1 — Ju,  VE (2)

Consequently, w equations of the following kind can be collected:
Sk’l[zk]:Sk[ik]+Sk[jk], k=t+1,...,t+w, (3)
where only two variables are unknown,

Si lzkl, Skl (4)

instead of fourin Knudsen’s attack, see (1). Let the set of consecutive w equations
of the form (3) be called a window of length w.

Since all js in the window are known, then all swaps done during these w
steps are known as well. This makes it possible to map the positions of the
internal state S; at any time ¢ to the positions of some chosen ground state S,
at some ground time o in the window. For simplicity, let us set ¢ty = 0.

Our new state recovery algorithm is a recursive algorithm, shown in Figure 2.
It starts with a collection of w equations, and attempts to solve them. A single
equation is called solved or processed if its corresponding unknowns (4) have been
explicitly derived or guessed. During the process, the window will dynamically
increase and decrease. When the length of the window w is long enough (say,
w = 2N), and all equations are solved, the ground state Sy is likely to be fully
recovered.

Now we give a more detailed description of the different parts of the algo-
rithm.

Iterative Recovering (IR) Block The lterative Recovering block receives a
number a of active equations (not yet processed) in the window of length w
as input, and tries to derive the values of S;[js|s and S; '[z]s. To do that, the
IR block goes through two steps iteratively, until no more new derivations are
possible. If all previous guesses were correct, then all newly derived values (cells
of the ground state) will be correct with probability 1. Otherwise, when the IR
block finds a contradiction the recursion steps backward. The two steps are as
follows.
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Fig. 2. New state recovery algorithm.

A. Assume that, for one of the active equations its output symbol z; is already
allocated somewhere in the ground state. Le., the value S; '[z] is known,
and the second unknown S;[j;] can explicitly be derived using (3).

A contradiction arises if (a) S¢[ji] is already allocated and it is not equal to
the derived value; (b) the derived value already exists in some other cell.

B. Already allocated values may give the value of S;[j;] in another equation.
Consequently, a new value S; *[z] can be derived via (3), which might pos-
sibly cause a contradiction.

Find and Guess the Maximum Clique (MC) Block If no more active
equations can explicitely be solved, S’t_l[zt] for one t has to be guessed. The
Find and Guess the Mazimum Cliqgue block analyses given active equations,
and chooses the element that gives the maximum number of new derivations in
consecutive recursive calls of the IR block. This element is then guessed.

The analysis is very simple. Let a active equations be vertices v; in a graph
representation. Two vertices vy and vy are connected if zp = zp and/or Sy [jy]
and Sy [jir] refer (like pointers) to the same cell of the ground state. Guessing
any unknown variable in any connected subgraph solves all equations involved
in that subgraph. Therefore, let us call these subgraphs cliqgues. The MC block
searches for a maximum clique, and then guess one S; *[z] for one of the equa-
tions belonging to the clique. Afterwards, the IR block is called recursively.

Window Expansion (WE) Block Obviously, the more equations we have the
faster the algorithm works. Therefore, a new equation is added to the system
as soon as the missing value S[i] in the beginning or in the end of the window
is derived. The Window Ezpansion block checks for this event and dynamically



extends the window. Sometimes several equations are added at once, especially
on the leafs of the recursion.

Guess One S[i] (GSi) Block If there are no active equations but the ground
state Sy is not yet fully determined, the window is then expanded by a direct
guess of S[i], in front or in back of the window. Then the WE, IR and MC blocks
continue to work as usual. Additional heuristics can be applied for choosing which
side of the window to be expanded for a larger success.

Appendix A provides an example that shows the steps of the outlined algo-
rithm.

3 Precomputations: Finding Good Patterns

The algorithm presented in the previous section is used in the full state recovery
attack as a part of it. Every time when the algorithm is running at some point
of the keystream, its effectiveness depends on certain properties of the current
internal state. Although these properties are not visible for the intruder, she may
have a good guess about places in the keystream where the internal state has
good properties (see Section 4), and apply the state recovery algorithm only at
those places.

In this section we will define patterns (see Definition 1), they determine
huge sets of internal states with common properties. If, for instance, a pattern
has a large window then this certainly helps decreasing the complexity of the
algorithm. However, the probability that the internal state is compliant with a
certain pattern decreases with the number of conditions put on the pattern.

In this section we discuss properties of patterns that influence on the com-
plexity of the attack, and also study their availability. We have also developed
an efficient algorithm for finding these paterns, and it is located in Appendix B.

3.1 Generative States
Let us start with the following definition
Definition 1 (d-order pattern). A d-order pattern is a tuple

A:{i7j7P7V}7 i7j€ZN, (5)

where P and V are two vectors from 7%, with pairwise distinct elements. At a
time t the internal state is said to be compliant with A if iy = i,j; = j, and

d cells of the state Sy with indices from P contain corresponding values from
V. O

The example in Figure 4 in Appendix A illustrates how a 5-order pattern
allows to receive a window of length 15. However, the higher the order, the less
the probability of such a constraint to happen. Thus, we are interested in finding
a low order pattern which generates a long window.



Definition 2 (w-generative pattern). A pattern A is called w-generative
if for any internal state compliant with A the next w clockings allow to derive w
equations of the form (3), i.e., consecutive w + 1 values of js are known. ad

Table 1 demonstrates a 4-order 7-generative pattern A—={-7,-8,{-6, -5, -4,
0}, {6, -1, 2, -2}}, that supports the above definitions. Eight equations involve
symbols of the keystream z;11, ..., 2i4s associated with a certain time t. We say
that the keystream is true if the internal state at time ¢ is compliant with the
pattern, otherwise we say the keystream is random.

Let another pattern B be derived from A as

B=A+7r={i+n,j+71,P+T1,V} (6)

for some “shift” 7. The pattern B is likely to be w-generative as well. This
happens when the properties of A are independent of N, which is the usual case.

it | ¢ [SH[SIISH] + S[j]] 2 [|[-6 =5 -4 —3—2—-1 0 1 2 3 4 5
—7|—-8| — - - - 6 —1 2 X1 T2 I3 -2 X4 x5 Te 7 T8
—6(—2| 6 | z2 6+ x2 * ||xg —1 2 1 6 X3 —2 x4 T5 Te T7 T8
—5|=3|—=1|x1 | =1+x1 | *||z2 1 2 —1 6 x3 —2 x4 T5 T6 T7 T8
—4|1-1| 2 | x3 2+ x3 * ||lxe 1 3 —1 6 2 —2 x4 x5 X6 T7 X8
—3[—2| -1 6 5 g (|2 X1 T3 6 —1 2 =2 X4 5 Te 7 T8
—2/-3|—1 6 5 Trg || X2 1 I3 -1 6 2 =2 T4 Ts Te T7 T
—1(—1] 2 2 4 X7 (|2 X1 X3 -1 6 2 =2 X4 5 Te 7 T8
0(-3—-2|-1 -3 —2 X2 X1 T3 -2 6 2 —1 X4 5 Te 7 T8
1| % |xa| * * *

Table 1. An example of a 4-order 7-generative pattern.

3.2 Availability

We have done a set of simulations in order to find mazimum w-generative d-order
patterns, denoted by J/(,. The results are given in Table 7(a) in Appendix D.
Searching for a high order pattern is a challenging task since the computational
complexity grows exponentially with d. The best result achieved in our work is
a 14-order 76-generative pattern (.

Real values from our simulations Approximated values
d= 123 4 5 6 7 8 9 10111213 14|[151617 18 19 20 21
Wnax =6 10 15 21 27 31 37 42 50 55 61 68 76{|82 88 94 100 106 112 118

Table 2. Dependency of the maximum w from d, simulated and approximated values.

Table 2 shows the dependency of a maximum achievable generativeness wyayx
from the order d. We can note that this dependency is almost linear, and it
converges to Wpax = 6d + A as d — co. We make the following conjecture.



Conjecture 1. The rate of *== ~ 6 as d — 0o.! a

That conjecture allows us to make a prediction about certain parameters
for patterns with large d. These could not be found due to a very high pre-
computation complexity, but they are needed to analyse the attack for large N
(N = 128,256 in Table 3). However, given those parameters, d and w, we can
derive theoretical complexities of the attack on average. This has been done in
Appendix C.

An efficient search algorithm for patterns with desired properties is given in
Appendix B.

4 Detection of Patterns in the Keystream

In the previous section we have studied properties of a pattern that are desirable
for the state recovery algorithm to work fast and efficient. We have also shown
(in Appendix B) how these patterns can be found, and introduced an efficient
searching algorithm.

In this section we show how the internal state of RC4, compliant to a chosen
pattern, can be detected by observing the keystream. If the detection is very
good, then the state recovery algorithm might only have to be executed once, at
the right location in the keystream.

The detection mechanism itself can be trivial (no detection at all), in which
case the algorithm has to be run at every position of the keystream. On the
other hand, a good detection may require a deep analysis of the keystream,
where specific properties of the pattern can be used efficiently.

4.1 First Level of Analysis

The internal state of RC4 compliant to a d-order pattern A can be regarded as
an internal event with probability

Pr{FEi,} = N"91 (7)

When the internal event occurs, there could exist an external event Eqyy Ob-
served in the keystream, and associated with the pattern A, i.e., Pr{Feyt|Eint } =
1. Applying Bayes’ law we can derive the detection probability Paer of the pattern
A in the keystream as

PI'{Eint}

Paetr = PI"{Eint|Eext} = m (8)

! Indeed, the “jump” of wmax as d increments by one is the sequence I'={4, 5, 6, 6, 4,
6, 5, 8,5, 6, 7,8, ...}. Obviously, for small d this “jump” is small, and it is notable
that the “jump” increases for larger d. In our simulations heuristics were used (see
Section B) when searching patterns for d > 6. This means that our “jumps” in the
sequence I' could possibly be larger if an optimal searching technique is applied,
since our heuristic cannot guarantee that we get a pattern with the longest window.
This suggests that the ratio w — 6d as d — oo seems quite a fair conjecture.



Our goal in this section is to study possible external events with high Pgey in
order to increase the detection of the pattern.

Definition 3 (I-definitive pattern). A w-generative pattern A is called I-
definitive if there are exactly I out of w equations with determined S[j]s. ad

It means that in [ equations S[i] + S[j] are known. If, additionally, 2z’ =
S[S[¢]+ S[J]] is also known, then the correct value of z; = z’ at the right position
t of the keystream z detects the case “the state at time t is possibly compliant
to the pattern’. Otherwise, when z; # 2/, it says that “the state at time t cannot
be compliant to the pattern”.

For detection purposes a large I (up to d) is important. From our experiments
we found that, however, a large [ can be achieved via a slight reduction of the
parameter w. This leads us to one more conjecture.

Congecture 2. For any d and w = wyay — A there exist a pattern with | = d,
where X is relatively small 2. 0

In the following definition we introduce other properties of a patter that are
important for its good detection via the keystream.

Definition 4 (ba,bs, b,-*"Ypredictive pattern). Let us have an l-definitive
pattern A and consider only those equations where S[j]s are determined. Then,
the pattern A is called b, -* predictive if for b, of the | equations S[S[i] + S[j]]
is determined. For the remaining [ — b, equations two additional definitions are
as follows. The pattern A is called bg-" predictive if for bg pairs of the | — b,
equations the unknowns S[S[i]4S[j]]s must be the same. The set of bg pairs must
be of full rank. The pattern A is called b,-"predictive if the | — b, equations
contain exactly b., different variables of S[S[i] + S[7]]. O

These types of predictiveness are other properties of a pattern visible in the
keystream. For example, it is not only necessary to search for known 2z’ values (b,
of such), but one can also require that certain pairs of the keystream symbols (bg
of such) are equal zy = 2+, which also helps to detect the pattern significantly.

The parameter b, is usually quite moderate and to have it larger than 15
is quite difficult. However, the other criteria are more flexible and can be large.
These new parameters follow the constraint

bo +bg+by=1<d. (9)

Consider the remaining w — [ equations of the pattern A where S[j]s are not
determined. Let at time instances ¢; and ¢ one pair of these equations be such

2 Table 6(a) in Appendix D contains patterns Xs with | = d where w is still large,
which supports the above conjecture. Indeed, Table 4 in Appendix B shows how
the number of available patterns grows when relaxing the condition put on w. lLe.,
a slight reduction of w increases the chance of finding a pattern with d = [. This
makes the conjecture fair.



that the S[i] values and the S[j] pointers are equal. If the distance A, = to — t;
is small, it is likely that the output z; is the same as z2. The probability of this

event is
A 1) 24
Pr{z = z|A;} > (1 — ﬁ) : (1 — N) A exp <—Tt) . (10)

Definition 5 (by-’predictive pattern). A pattern A is called by-? predictive
if the number of such pairs (described above) is bg. Let the time distances of these
pairs be Ay, ..., Ay,, then the cumulative distance is the sum Iy = X;A; O

These four types of predictiveness are direct external events for a pattern.
One should observe the keystream and search for certain b, symbols, check
another bg and by pairs of symbols that they are equal, and also check that a
group of b, symbols are different from the values of V' and from each other.
Thus, we have

(N = d)!
Nb (N —d —b,)! (11)
Pr{Eip} ~ N~471. =200/N,

Pr{Boc} = N7bbob0.

The example in Table 1 is a 4-definitive b, = 1,05 = 1,b, = 2,by = 0-
predictive pattern. For detection one has to test that z;16 = —2, 2143 = 214, and
Zi+a, Zey5 are different from the initial values at V' and 2414 # z445. Le., when,

for example, N = 64, the detection probability is 6475 = (6472 - 60 - 59/642) ~
64-2:96 3

4.2 Second Level of Analysis

In fact, the first level of analysis allows to detect a pattern with probability at
most N ! (because j is not detectable), whereas with the second level of analysis
it can be 1. Let us introduce a technique that we call a chain of patterns.

Definition 6 (chain of patterns A — B, distance, intersection). Let us
have two patterns A = {ia, ja, Pa, Va} and B = {ip, jb, Py, Vo }. An event when
two patterns appear in the keystream within the shortest possible time distance
o is called chain of patterns, and is denoted as A — B if B appears after A.

The chain distance o between two patterns A and B is the shortest possible
time between A’s ending and B’s beginning of their windows, i.e.,

0 =1p — (iq +w,) mod N. (12)

The intersection of A and B is the number £ of positions in A that are
reused in B. These positions must not appear as S[i| during o clockings while
the chain distance between A and B is approached. O

% Since 7-predictiveness has a minor influence on detection, we skip this parameter in
future calculations.



For example, let A = {0,0,{1,3,5,6,7,8,22,23},{2,8,-3,-2,1,7,4,-9}}
and B = {34, 34, {35, 36,37,38,39,44, 48,52}, {8, -2,1,2,4, —5,5, 3} }. After w, =
30 clockings the first pattern becomes A’ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{-3,-9,7,8,—2,1,2,4}}. Obviously, the last £ = 5 positions can be reused in
B, and after 0 = 4 clockings a new pattern B (w, = 34) can appear if jiy34 = jp.
The probability that the chain A — B appears is N~ - N~4, multiplied by the
probability that 5 elements from A’ stay at the same locations during the next 4
clockings. This is much larger than the trivial N=2- N=9. Thus, a more general
theorem can be stated.

Theorem 1 (chain probability). The probability of a chain A — B to appear
18

Pap =Pr{E.}~ N~ (datdp+2-€) | o—2(Hoa+op)/N | ,—€ (13)

Proof. In [Man01] it has been shown that & elements stay in place during N

clockings with an approzimate probability e=¢. The remaining part comes from

an assumption that the internal state is random, from where the proof follows.
O

Obviously, the probability of the external event for the chain is
PI"{Eext} — N_(baa+bﬁa+b9a)_(bab"l‘bﬁb"l'beb)7 (14)

which can be smaller than Pr{F;,.} (see ? , in Table 6 in Appendix D), confusing
the equation (8). This happens since Pr{Fex:} is calculated assuming that the
keystream is random. However, in RC4 only a portion of the observed external
probability space can appear (which is another source for a distinguishing attack,
but it is out of scope of this paper). Therefore, in the case when Pr{Fe.} <
Pr{Ei,: } we simply assume that the detection probability is 1.

Table 6 in Appendix D presents a few examples with a good trade-off (based
on our intuition) between w and detectability for various d. Since the computa-
tion time for searching such patterns with multiple desired properties is really
huge, only a few examples for small d were given. However, we believe that for
large d it is possible to detect such patterns with a high probability, up to 1,
applying the two proposed levels of analysis.

5 Complete State Recovery Attack on RC4

5.1 Attack Scenario and Total Complexity

Recall pattern detection techniques from Section 4. In the attack scenario an
adversary analyses the keystream at every time ¢, and applies the state recovery
algorithm if the desired internal event (pattern) is detected. In all cases except
one the recovering algorithm deals with a random keystream.



Proposition 1 (Total Attack Complexities). Let the detection probability
be Paet, then the total time Cr and data Cp complexities of the attack are

OT = PI‘{Eint}il + (,Pd;,l; - 1) . CRand +1- CTru97

Cp = Pr{Ei} 1. (15)

O

5.2 Swuccess Rate of the Attack

The complexities Crrye and Crangon are upper bounds for the average time the
algorithm requires. It means that for some cases it could take more time than
these bounds. In order to guarantee the upper bound of the total (not aver-
age) time complexity one can terminate the algorithm after, for example, Cypy
operations. In this case the success rate of the attack can be determined.
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Fig. 3. Probability density (left) and cumulative (right) functions of the time Crrye in
logarithmical form (k = logy Crrue). The scenario is N = 64, M(, and 2000 samples.

Figure 3 shows density and cumulative functions for the time complexity
of an example attack scenario. It shows that around 98% of all simulations of
the attack have time smaller than the average 2292® (vertical line). When the
keystream is random the termination makes the average time bound Crangon €ven
smaller, since the random case is likely to be repeated very many times and the
second term in (15) can only decrease.

The plots in Figure 3 also show that even if the termination of the algorithm
is done on the level Cypy = v/COrrue (= 219), the success rate of the attack is still
very high. Le., the state recovery algorithm on RC4-64 can be done in time 2'°
with success probability 35%! If a similar situation happens for large N (e.g.,
N = 256), then the full time complexity can be significantly decreased (perhaps,
down to a square root of the estimated average complexity), and the success
probability can still be very large.



6 Simulation Results and Conclusions

We have selected a set of test cases with various parameters and patters, and
derived total data and time complexities of the new attack. Table 3 presents the
results of this work. For example, when N = 64, the total complexity of the new
attack is upper bounded by 29°, if the pattern X, is used. This is much faster
than, for example, Knudsen’s attack, which complexity for this case is 2!326.
Even if d = 9 elements of the state are known, Knudsen’s attack needs 2981 of
time, which is still much higher. The complexity of a potential attack recently
discussed by I. Mantin in [Man05] * is also higher. As it was shown in Section 5.2,
the success rate of the new attack is at least 98%.

N N = 64 N =100 N =128 N =160 N = 200 N = 256

—

Cases [ I WL IV [ V || VI [ VII[[VII] IX || X | XI || XII | XIII

Descriptions of the cases (x — are hypothetical cases)

Pattern|| M, | Vg | Xo [[ X1y [ W5 || Vs * ., * M, * g, *
d|| 8 8 9 11 13 14 17 14 18 14 23 14 29
wi| 37 | 29 | 41 49 | 68 76 92 76 102 76 132 76 168
l| 6 6 5 11 9 10 10 10 10 10 14 10 17
ball O 4 4 9 0 0 10 0 11 0 10 0 11
bg|| 1 1 0 0 2 2 0 2 0 2 2 2 4
byl| 5 1 1 2 7 8 0 8 0 8 2 8 2
be|| O 0 2 0 2 2 0 2 7 2 4 2 12
|| 0 0 4 0 4 4 0 4 - 4 - 4 -
Internal/external /detection probabilities
Pint ||-54.0-65.8 |-60.0(|-79.7]-93.0||-105.0|-112.0{{-109.8|-139.1||-114.7|-183.5|-120.0|-240.0
Pext || -6.0 |-60.0]-36.0(|-59.8-26.6 || -28.0 | -70.0 |{ -29.3 |-131.8|| -30.6 |-122.3|| -32.0 |-216.0
Paet ||-48.0| -5.8 |-24.0(|-19.9|-66.4 || -77.0 | -42.0 || -80.5 | -7.3 || -84.1 | -61.2 || -88.0 | -24.0

Complexities of the state recovery algorithm
when the keystream is true/random

3 Theor. || 20.5 | 58.2 |22.8 {/107.8| 10.0 || 71.3 | 71.7 || 191.1|131.7 || 317.4 | 121.3 || 507.4 | 217.1
& Attun.|| 15.5 | 57.8 | — |/107.5| — 66.3 | - |[|179.2| - |/302.6| - |/ 491.8| -
. Theor.|| 35.0 | 64.9 | 30.9|{120.4| 34.5 || 94.7 {102.0 || 213.0|138.2|[335.6 | 157.5 || 519.6 | 225.4
& Attun.|[ 30.3 | 57.6 | — {{108.3| 31.8 || 85.5 - 185.1| - 309.9 501.8| -
O Real[29.5] - | - || - |201| - | - || - | - - | - - | -
Total data/time complexity, and the comparison
with previous attacks
& Ck(0) 132.6 236.6 324.8 431.4 572.0 779.7
= .0
g ; Ck(d) 101.7‘101.7‘98.1 189.3‘181.0 261.3 [256.9 || 364.6 | 346.1 || 501.9 | 458.2 || 705.9 | 629.3
Mantin’s po- 73 114 147 186 243 290
tential attack
4 Cpl| 54.0 | 65.8 (60.0|| 79.7 |93.0 (| 105.0 (112.0(| 109.8 (139.1|| 114.7 |183.4|| 120.0 |240.0
-
S E Cr||63.5 | 63.4 (60.0(/127.4/93.1 || 143.4 |113.7||271.7 (140.4|| 386.7 |184.0|| 579.8 |241.7

Table 3. Simulation results and comparisons with previous attacks.

* Mantin detects a large number of bytes of the state, and then applies Knudsen’s
attack given those bytes. However, to make these knowns to reduce the complexity
of Knudsen’s attack they must be located in a short window all together, and this
is not the case. This fact is confirmed in [Man05] (Section “State Recovery Attack”).




Table 3 also contains intermediate probabilities and complexities for the at-
tack, including theoretical (A = 0) and attuned (A = 2) values for Crana and
Crrue- When it was possible, the real attack on a true keystream was simulated
(real complexities for Crrye are shown in italic). In these simulations the complete
state of RC4 was successfully recovered for every randomly generated keystream
compliant with the corresponding pattern.

For larger N, patterns of a high order are needed to receive an attack of low
complexity. The largest pattern that we could find in this work is Wl/(l 4» and this
was applied to attack RC4-N with N = 128,160, 200, 256. These attack scenarios
are those that we have in our hands already. However, the complexities received
are not optimal, but they are still lower than in Knudsen’s attack. Conjecture 1
and also discussions in Section 4 make it possible to approximate the parameters
of a hypothetical pattern that is likely to exist (x — patterns). To be secure, we
relate d and w as w = 6d—6, with a confidence gap of 6 positions. The remaining
parameters were chosen moderate as well. As the result, we obtained an attack
on RC4-256 with the (upper bounded) total complexity of 22417 and this is the
best state recovery attack known at the moment.

In general, we have noted the following tendency. For RC4-N with a secret
key of length N bits or longer, the new attack can recover the internal state
much faster than an exhaustive search. This observation can also be seen from
the results in Table 3.

As the last point of the discussions we note that the key recovery attack can
be easily converted from a state recovery attack. There are several papers dealing
with recovering the secret key from a known internal state [MS01,Man01,PMO07].
However, this part works much faster than currently known state recovery at-
tacks, and, therefore, we just refer to these papers without giving details.

7 Further Improvements and Open Problems

Pattern detection improvements. With a chain of patterns described in Section 4
one could reach a good detection. However, not only forward direction of chain-
ing can be considered, but also backward one. Additionally, there is a possibility
to analyse longer sequences of patterns in order to have a good detectability. An-
other idea is to use unusual recyclable patterns in a similar manner as in [Man05].
The difference is that these patterns are both recyclable and have a long window.
For example, A = {0,—4,{6,4,1,5,3},{0,1,7,—2, —1}}.

State recovery algorithm improvement. The GSi block can choose the corner
(left or right) of the window to be extended by an additional heuristic analysis of
the current situation during the process. Another improvement is achieved if the
MC block could speculatively run the recursion for additional 1-3 extra forward
steps for every possible guess, and, afterwards, make such a guess for which the
number of sub branches is the minimum. The average time of the attack for this
strategy is reduced.

Derivation and statistics. Our investigation showed that the derived theoret-
ical upper bound gives a much larger complexity than the one received from the



real simulations of the attack. Obviously, a better analysis of the algorithm’s
complexity is needed. This would allow a more accurate estimation of the total
complexity, and it might improve the complexities in Table 3 significantly. An-
other interesting problem is to determine the density function of the recovering
algorithm, likewise in Figure 3. This may allow us to decrease the complexity in
square root times, maintaining a high success rate.

Other open problems. The search for patterns of a higher order with long
windows is another challenging open question. We have shown that there are
chains of patterns with short distances. The first pattern is used for the recover-
ing algorithm, and the second one is for detection. However, another interesting
question is whether or not the second pattern can also be used in the recovering
algorithm.

We believe that the outlined open problems have a huge potential for reducing
the complexity of the attack on RCY. Perhaps, very soon we will be witnessing
an attack of complexity lower than 228 on the full RC4-256.
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A Example Support for the State Recovery Algorithm

Figure 4 illustrates an example of the process of the IR block. In the example we
start with specific values of 7 and 7, and also d = 5 cells of the state S are filled
with certain values, whereas the remaining cells are unknown. This constraint
allows to collect w = 15 equations of the form (3). The keystream is given in the
rightmost column of the table.

The first iteration, in Figure 4(b), finds that z¢ = 4 and zs = —2 are already
allocated, thus solving equations 6 and 8 (s4 = 10,s9 = 5). Afterwards, given
sg = b, the IR block solves the equation 14 and successfully checks for a con-
tradiction, in Figure 4(c). Finally, after the step (e) four additional cells of the
state S were derived with probability 1.

When the IR block is processed, the input to the MC block is the maximum
clique of size 4 equations with 5 unknowns, shown in Figure 4(f). It means that
guessing only one unknown determines four other ones. Furthermore, the space
of possible guesses is significantly reduced due to the higher probability of a
contradiction to occur.

B Searching Technique

Since the search space for a d-order pattern grows exponentially with d, only pat-
terns of order d < 6 were analysed before in various literature, e.g., in [Man05]. In
this section we suggest a few techniques that accelerate this search significantly,
and allow to search and analyse patterns of order up to d < 15, approximately,
on a usual desktop PC.

First, we need to make some observations on the construction of patterns.
Afterwards, several ideas based on the observation for improving the algorithm
follow.



The part of the state Sy at time ¢, just before the swap-operation
Gt41 e41|1 2 3 4 5 6 7 8 91011121314 15 16 17 18 19 20 |[S[i] S[j] =
1 8 |4 -2 1 8 -4 51 828384 S5 Se ST S8 S9 S10 S11 S12 S13 S14  S15 4 s3 18
2 6 [s3-2 1 8 -4 5182 4 sS4 85 S¢ S7 Sg S9 S10 S11 S12 S13 S14  S15 -2 s1 29
3 7 83 S1 1 8 -4 -2 S2 4 S84 S5 S¢ S7 S8 S9 S10 S11 S12 S13 S14 S15 1 S2 6
4 15 83 81 S2 8 -4-21 4 S84 S5 S¢ S7 S8 S9 S10 S11 S12 S13 S14 S15 8 S10 16
5 11 |s38182810-4-2 1 4 s4 85 S6 S7 Sg S9 8 S11 S12 S13 S14  S15 -4 sg b
6 9 83 S1 S2 S10 S6 21 4 S4 S5 -4 S7 S8 S9 8 S11 S12 S13 S14 S15 -2 S4 4
7 10 83 S1 S2 S10 S6 S4 1 4 -2 S5 -4 S7 S8 S9 8 S11 S12 S13 S14 S15 1 S5 12
8 14 83 81 S2 S10 S6 S4 S5 4 -2 1 -4 S7 S8 S9 8 S11 S12 S13 S14 S15 4 S9 -2
9 12 [s3 81 S2 S10 S6 S4 S5 S9 -2 1 -4 s7 sg 4 8 S11 S12 S13 S14  S15 -2 s7 21
10 13 |s3 S1 S2 S10 S6 Sa S5 S9g s7 1 -4 -2 sg 4 8 s11 S12 S13 S14 S15 1 ss 6
11 9 |s3 81 82 S10 S6 S4 S5 Sg9 87 Sg -4 -2 1 4 8 s11 S12 S13 S14 S15 -4 s7 9
12 7 |s3 5152810 56 54 85 S9 -4 s 57 -2 1 4 8 s11 512813814 S15 || -2 s5 1
13 8 |s3 81 82 S10 S6 S4 -2 Sg -4 sg s7 s5 1 4 8 s11 S12 S13 S14 S15 1 so 10
14 12 |s3 s1 S2 510 S6 S4 -2 1 -4 sg S7 S5 S9 4 8 S11 S12 S13 S14  S15 4 s5 16
15 20 |s3 s1 52 S10 S6 Sa -2 1 -4 sg s7 4 S9 S5 8 S11 S12 S13 S14 S15 8 s15 17
16 7
SISl = Szl z SISl =  S[z]«=z SISl =  Slzl<—s z
Sz +40 o? 18 S5 +40 o? 18 Si=10 S5 +40 0? 8 S=10
St =20 °? 29 s 20 0? 29 %75 s 20 0? 29 %75
Sz +1o °? 6 So 410 o? 6 So 410 o? 6
Si0 +80 o? 16 Si0o +80 o? 16 Si0 +80 o? 16
S6 40 o? 5 S6 4o o? 5 S6 4o o? 5
St 20 °? 4 10 -20 10 o<8—@ 10 -2o 8 4
S5 +1o o? 12 S5 +1o o? 12 S5 +1o o? 12
So +40 0? -2 5Hde ol (> 5+40 09 -2
Sy 20 o? 21 Sy 20 o? 21 Sy 20 o? 21
S8 +1o o? 6 Ss +1o o? 6 Ss +1o o? 6
Sy 4o o? 9 S7 40 o? 9 Sy 4o o? 9
S5 20 o? 1 S5 20 o? 1 S5 20 o? 1
So +lo °? 10 5+1e ? 10 ®+1e 6 . .2100 1o contra-
S5 +4o0 o? 16 S5 +4o o? 16 S5 +4o o?
Si15+80 o? 17 Si5+80 o? 17 Si5+80 o? 17
(a) (b) (©)
Sl+S[i] = S[z]w> z SISl =  S[z]l=sz SISl =  S[z]w z
S3 +4o o? 18 S+710 7 +40~L o0 P11 $4=10 7 +4e o011 18 S4710
S 20 0? 29 %75 s 20 0?39 %75 S 20 o? 29 %75
S +lo 0? 6 %718 S +1o 0? 6 =18 S: +1o 0? 6 S=18
Si0 +80 o? 16 S10+86 0? 16 BT [S0+8e—— o? 16l 77
18 -40 18 0 2214(3) 18 -40 014 5 1840 014 5
10 -20 o8 4 10 -20 o8 4 10 -20 o8 4
S5 +lo 0? 12 S5 +1o 0? 12 Is; +1 ? 12]
5+40 °9 -2 5+40 °9 -2 _Ht4e 09 __-2
S, 2o °? 21 S, 20 o? 21 \S7. 26 ___0?_ _ 21
Ss +1e °? 6 S8 +1e o? 6 Sgtle °? 6
Sy 4o o? 9 Sy 4o o? 9 1S 4o o? 9,
S5 20 0? 1 S5 20 0? 1 S5 20— 7 1]
5 +1o 06 10 5 +1o 06 10 5 +1o 06 10
S5 +4o o? 16 S5 +40 o? 16 5 +4do——— o2 16
Si15+80 o? 17 Si5 +8e o? 17 Si5 +80 o? 17

Fig. 4. Example of the iterative reconstruction process.

As can be seen from Table 7 in Appendix D, all “good” patterns found have

V's with values from a short interval Is = [=¢...4 6], where § = 10..
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Fig. 5. Dependency of the maximum w from ¢ for various d.

conservative. Figure 5 illustrates the dependency of the maximum achievable w
from §. From this we make the following conjecture.

Congecture 3. A pattern with the largest w is likely found among all possible
combinations for i = 0,j € I5,V € I, with a moderate value of § < N. a

This conjecture will be used as the basis for a significant improvement in the
searching technique of such patterns.

Table 4 provides the number of patterns for 6 = 15, and various values
of d and w. When d and ¢ are fixed, the amount of desired patterns can be
exponentially increased by letting w be slightly less than wpax. This approach
can help finding patterns with additional properties which are introduced in
Section 4.

d The number of patterns A; when 6 = 15.

1 w—|15141312 11 10 9 8 7 6

4 #{As} —|1 3 10 26 226 863 5234 21702 114563 853012
w—|212019 18 17 16 15 14 13 12

5 #{As} —|1 4 6 15 66 252 652 1879 6832 27202
w —|27 26 25 24 23 22 21 20 19 18

6 #{Ac} —|1 2 7 42 81 177 371 799 2646 10159

Table 4. The number of different constraints for specific d and w, when § = 15.

The first idea is to set i = 0 due to (6), and for the remaining variables only
a small set of values I for some § should be tested due to Conjecture 3.

A straightforward approach would be to allocate d values in a vector S and
then to check the desired properties of the pattern. The time complexity of this



approach is O ((g) (uj‘)|I(5|), which is still very large. Our second idea is to

allocate a new element in S only when it is necessary. This will significantly
decrease the time complexity.

=0

Loop forj € Is

@) J+=Sli]
Slil, S[j
Check the pro- swap(Sli], S[j1)
perties of the .
state (w, b, ...) recursion forward
and output if Loop for S[i] € Is
it is "good".

recursion backward

L—

Fig. 6. Recursive algorithm for searching patterns with large w.

The diagram of a recursive algorithm exploiting the first two ideas is shown
in Figure 6, but it can be improved with the following heuristic. The third idea
is to start searching for a desired pattern somewhere in the middle of its future
window. Let us split d as d = dgya+ dpack and then start the algorithm in Figure 6
allowing to allocate exactly dsyq cells of S. At the point (%) the current length of
the window w is compared with some threshold wep,. If w > wyene, then a similar
recursive algorithm starts, but it goes backward and allocates remaining dpack
cells of S. This double-recursion results in a pattern with w likely to be close to
the maximum possible length of the window.

C Complexity Analysis of the Recovering Attack

Since for large inputs it is not always possible to make real simulations of the
new recovering attack, we are interested in a theoretical upper bound of its
complexity. In this section we explain how this complexity can be derived, verified
and used.

C.1 Tool for Simulations and Analysis

The new recovering algorithm is a recursion as shown in Figure 7(a). The nodes
are IR and WE blocks, whereas each branch is initiated by MC or GSi blocks.



A branch is terminated when a contradiction occurs, and only one path leads to
the correct solution, where the internal state is successfully recovered.

We measure the complexity of the attack as the number of branches, i.e., the
number of guesses in the MC and GSi blocks done.

Part-1
© ‘
Athr © © ‘ L7 a=w
e
=\ YR A
2 @ ‘ 2 Si Part-2
S) SIS
Qo &)
Qo |8
@ start = @@
) finish Cx(LY)) (©Cx(Ly)) Cx(Ly))
(© contradiction Part-3

(@) (b)

Fig. 7. (a) Attack as a recursion; (b) Three parts of the tool for simulations.

Let us introduce a three-part tool, shown in Figure 7(b), in order to calcu-
late the complexity of the attack when a certain pattern is given. We give a
description of each of the three parts.

In the first part the simulation of the attack with a certain pattern is launched
(all four blocks, IR, WE, MC, GSi, are working), and the number of branches is
counted. Whenever the depth of the recursion reaches Ay, some precomputed
function for the complexity of the remaining subtree is called, and the recursion
makes a backward step.

The second part is a precomputed pattern-independent upper bound of the
average complexity, when the status of the recursion can be described as the
number of already allocated cells L and the number of active equations a.

The third part is Knudsen’s attack complexity accepted as an upper bound
for the algorithm on the leafs of the recursion, in order to avoid analysis of WE.

To receive theoretical complexity using this tool one should run the simu-
lations a sufficient number of times, and then take an average of the results.
The exact complexity is received when Agpe = 00, in this case the tool requres
the same computational time as the targeting complexity. On the other hand,



when Ay, = 0, the upper bound of the complexity is received immediately. The
reason to introduce A, and the three parts of the tool will be explained later.

C.2 Assumptions

We will derive the precomputed pattern-independent upper bound of the average
complexity under the following assumptions.
Assume that the algorithm first [(Logarithms of the complexities)

processes all given w equations of the Random z True z
kind (3) with two unknowns in each, | Patrn. [WE off [WE on [WE off [WE on
and then Knudsen’s attack is applied Agpr =00, N =25, d=4,w =09,
to the remaining part of the recursion |all Si[ji] are different. # of tests is > 500.
(see table on the right, in the columns Ay 15.87 | 14.25 | 16.33 | 15.09
with WE on and Off) Ay 15.24 | 14.02 | 16.30 | 14.38
Assume that in all given w equa- Ag | 1489 1448 | 16.00 | 14.80
tions the values Si[j:] refer to differ- Lo | 1951 1418 1638 1 1444
. As 15.20 | 12.97 | 15.87 | 12.57
ent unknowns. This makes the attack A, | 1498 | 1202 | 1550 | 11.66
slower since in the MC block the max- | Average| 15.32 | 13.86 | 16.00 | 14.24
imum clique can then only be con- A = o5 T =9 i Jeast

structed via keystream symbols. The two Si[ji] coincide. # of tests is > 5000.
table on the right shows that for this 2] 741 7.95 | 13.08 | 13.49

assumption the complexity of the at- B, 5.08 | 3.71 | 13.42 | 12.03
tack is higher. B 4.62 | 3.67 | 13.30 | 12.00

Assume that the keystream is ran- 3B, 4.84 | 4.43 | 10.28 | 10.06
dom, which is reasonable since the real B 3.41 3.72 | 1142 | 12.21

B 2.94 3.19 12.00 | 13.38

B 3.81 4.57 11.12 | 12.39
Average| 5.37 5.60 12.48 | 12.54

Assumptions make the algorithm
slower and bound the real complexity.

internal state is unknown to an at-
tacker. We have selected several pat-
terns with similar properties, d =
4,w =9 (A_s and Bs from Table 7).
One half of them have different S;[j]s,
and the other half contains pairs of
equal Si[j:]s. Afterwards, the complexities of the attack are estimated (A =
00, N = 25) when the keystream is random/true, and WE is on/off. The results
clearly show that the complexities under our assumptions are upper bounds.

C.3 Average Complexity Derivations

In this section a precomputed pattern-independent upper bound of the average
complezity is derived under the assumptions proposed above. In all formulas the
following meaning of variables is accepted: a is the number of active (not yet
processed) equations of the form (3); L is the number of known and previously
assigned cells of the state, and no single z; from the active equations can be one
of the L values; [ is the number of already (the most recently) assigned cells of
the state, and z;s from active equations could possibly be one of the [ values;
(nax 18 the size of the maximum possible clique that can be found in the MC
block.



q CMC(L;O/; qmax) ) Cf}%(L, l;a; qmax)

Fig. 8. Four cases supporting derivations of the attack complexity.

Every step of the recursion has a complexity to which we will refer as: Cx(L)
is the complexity of Knudsen’s attack, given that L cells of the internal state
are known, and it can be precomputed as in [KMPT98|; Cuc(L;a; Gnax) is the
complexity of the MC block; C2(L;l; a; guax) is the complexity of one iteration
of the IR block that starts with L known and [ new values, and ends with another
set of new values of some size 6; Cfa (L; l; a; gnax) is the same as C3y, but for one of
the equations the value of S[j] is known; C% (L; a; quax) is the complexity of the
case when IR returns no new assignments, but for one equation S[j] is known,
i.e., the IR block makes an iteration of a different sort in this case.

Supplementary Formulas When L cells of Sy are already known and § new
assignments are performed one by one, the probability of no contradiction is

(N — L)!

Pellid) = v =T gy

when 0 <L+6§<N. (16)

Let M (r;a;q) be the number of possible keystream sequences of length a,
where each symbol can have one out of r values, and the maximum possible size



of a clique is g. The value of M can recursively be calculated as °
q
1<a,t<N,
M(T;a;q)_Z<7)M(T—1;a—i;q), where =®b=
i—o \! q<a, (17)
M(r;0;0) =1, where 1<t <N.

Complexity C12(L;1; a; gnax) The probability that, in one iteration, § out of
a equations will be solved is

a M(l;é;Qmax)'M(N_L_l;a_é;Qmax)

5 M(N_L;a;Qmax) ’
{0§L+l+a§N,

when

Pao(L; 15 a; 05 gnax) =(
(18)

0<d<a.

In these § equations z; must be one of the [ values and they must give &
new values S¢[j;], since, otherwise, they would have been found before. For each
of the § equations, S¢[z;] is allocated somewhere. Thus, a new value Si[j;] =
S;[z] — Sifis] can be derived. The number of active equations is evidently
reduced by 4. The total complexity of C22 is recursively expressed as

a—1
OT‘?I({)(Lv la; Qmax) = ZPAO(L; l;a; 5; Qmax) : PC(L + 1 5) : OIAI({)(L +1; 5; a— 5; Qmax)
6=1

+ Pao(L; 15 45 @5 Gnax) - Pe(L +1;a) - Cx(L 41+ a)

0<L+1 <N
+ Pao(L; 1; a; 0; Guax) - Cue(L + 1;a), when sLtitas h,
1 S qmax S a/7
Cw(L;1;0;0) = Cx(L +1), when L+1<N.
(19)

Complexity Cyc(L; a3 gnax) The probability of a maximum clique of size ¢ to
appear is
Puc(L; a; gmax; q) =

M(N — L;a;q) — M(N — Lya;q — 1) 1<L+a<N, (20)
,  where
M(N_L;a;Qmax)

1<q< quax < a,

with a boundary case Pyc(L;0;0;0) = 1. The parameter guax tells us that in

the remaining active equations no cliques of size more than gm.x exist, since,

otherwise, it would have been found on a previous call of the MC block.
Consider the unknown z = S; (2] from the clique that has to be guessed

as one of the NV — L remaining values. The choice of x is in principal one of the

® One should start with a loop for t = 1 — N, then a loop for a = 1 — N, and then
calculate the corresponding subtable.



following three options. (a) z is one of the jis and the equation associated with
time ¢ belongs to the clique. This happens in ¢ choices and results in ¢ — 1 new
values. An additional contradiction test should be included: Si[i;] + z;: must be
equal to S; '[z] (= z). (b) = is one of the jis and the equation associated with
time ¢ does not belong to the clique. This happens in a — ¢ choices and results
in ¢ + 1 new values. (c) In the remaining N — L — a choices ¢ new values of the
state are obtained.

Finally, the MC block is the only block where the complexity is summarized.
Thus, its total complexity is

Gnax

Cro(L3 @3 Gnax) = (N — L) + Z Puc(L; a; Guax; q) - [
N—_——

. =1
complexity a

1
+ 4 - = PL+1g—1)-CR(L+ 19— La—qq)
~—~ N
q branches zj"/
t = Jt—1 " (21)
+ (a—q) Pe(L +15q) - O (L + 15¢;a — ¢ )

——

a — q branches
+ (N-L-a) PdL+1;9)-CR(IL+1¢a-q9q)|,
~—_———

remaining branches

when 1< L+a<N, and 1< guax < a.

Complexity C3:(L;l; a5 gnax) This case is similar to that of Cfg, although

this case is divided into two subcases with respect to the number of processed
equations.

a

-1

a— 1\ M(l;0; gnax) - M(N — L — I;a — J; Gnax
O?}%(Lﬂ;a;‘lmax)_Z( 5 > ( ]\)4(N(—L'a'q ) )
6:0 ) 3 Ymax

probability of processing § equations, except “special” one

OIBR(L+Z+5;a_5;qmax)7 5—0,@—1}

X P(L+1;0) -
(bt {C’fﬁ(L—l—l;(;;a—(S;qmax), otherwise

+“*1 a—1\ M6+ 1;quax) - M(N = L — ;0 — 6 — 1 Gnax)
5—0 5 M(N_L;a;qmax)'

probability of processing é 4+ 1 equations, including “special” one
CMC(L+Z;G_1;Qmax)7 0=0
PAL+10)- S Ck(L+1+a—1), bd=a—-1 p,
CR(L+1;0;0—0 — 1; gnax), otherwise

1
X — -
N

(22)

where by “special” equation we refer to the one for which the value of S[j] is
known.



Complexity C3,(L; a; gnax) This is the IR block where one equation (associ-
ated with time t) has S;[j;] known. There could be three cases similar to Cyc.
However, these cases are not chosen by us as in MC, but instead one of them
appears with some probability. The probability that the value z; is in the clique
of size ¢+ 1 1is

a—1\(N—L)-M(N—-L—-1;a—q—1; Guax
PAI(L;G;Qmax;q) = ( > ( ) ( d c )

q M(N _L;a;Qmax) ’

and the target complexity is

(23)

Quax—1
Coa(L; Ginax) = Par(L; 03 Guaxs ) X {
q=0
q 1 . AO
N N 'PC(L+17q_1)'OIR(L+17q_1aa_q_1anax)
~~ ~~
Sfl[z] No contra-
is one diction in
of the ¢  the clique
of size ¢
a—g—1 . At . .
T PC(L+17q) 'CIR(L+17Q7a_q_17Qmax)
N—-L—-a+1
+T'PC(L+1;Q)'Cﬁ(l)(L_Fl;Q;a_q_l;Qmax)}-

(24)

C.4 How to Apply the Complexities?

When the pattern is known and Ay, # 0, the complexity function should be
applied at the point where the MC block is called. In this case Cye(L; @; Gnax)
is added to the total complexity counter, where L and a are known, and ¢pax
is the size of the maximum clique that had been previously found during the
simulation.

When the pattern is unknown (Agpy = 0) but its parameters d, w, [, by, bg, by, bg
are given, the upper bound of the total complexity is calculated as

Crana < Pe(d,by) - C13(0;5d + by;w — 1 — bg;w — I — bg), for random keystream,
Crrue < Cia*(by; dyw — 13 1), for true keystream,
(25)

where C10* is the same as Cfy except that the first call of the IR block may not
6

have contradictions °.

C.5 Restricted Verification Tests on Random Keystream

A set of patterns for restricted verification tests were chosen such that practical
simulations of the attack would have as close conditions to the assumptions in
Section C.2 as possible. We set Agyy = 0, Ck(L) = 0, switch off the WE and GSi
blocks, take patterns with b, = bg = 0, and test them on a random keystream.

6 Brief boundings that need only d and w are C%(0; d; w; w) and C%*(0; d; w; 1).



(Logarithms of the complezities)
Tests show that theoretical complexities|[Tests show that the real complexity de-

behave adequately pends on a certain pattern used
Pattern|| ¢ . g g . ) .
2 3a 4a 4b 5 6 7 3b 3c 3d 4c 4d 4e
d 2 3 4 4 5 6 7 3 3 3 4 4 4

N w 5 8 11 13 | 16 | 20 25 7 7 7 9 9 9

16|Pract |{10.16| 4.74 | 0.60 | — - - - 5.8715.0916.091/1.09|1.26 | 1.19
Theor|| 9.76 | 4.65 | 0.98 | — - - - 5.96 596|596 | 214|214 | 2.14
30| Pract [{19.90(24.22|21.22{17.90| 8.71 | 1.84 | — 22.69(22.73|22.90((22.50|22.87| 22.27

Theor|(19.32]23.50|20.49|17.06| 7.65 | 1.92 22.41(22.41|22.41|(21.99|21.99| 21.99
38|Pract|| - - - - 25.73]12.25| 2.66 - - - - - -
Theor|| - - - - |24.78]11.54| 2.59 - - - - - -

Table 5. Results of restricted verification tests.

The results of the tests are given in Table 5. The first group of tests shows
that the theoretical complexities are close to the complexities achieved through
simulations. The second group of tests shows that the actual complexity of the
attack depends on a certain pattern, and it may vary.

C.6 Why Is Part-1 Needed?

Consider the pattern A = {0,0,{3,1},{1,2}} and N = 28, ggax = 1. The length
of the window is w = 5. The probability of exactly one equation to be solved
during the first iteration of the IR block is 0.3042, then a new value of S[j] is
received. In theory the probability that no contradiction would occur is (N — L —
1)/N = 0.928, whereas in practice it is around 0.6, and this is a large deviation.

This simple example shows that no assumptions could cover all peculiarities
of an actual pattern used. Therefore, when a precise pattern is given, it would
be advised to run partial simulations of the attack in order to test top level
branches of the recursion with the depth 1-3, since the case of the remaining
subtrees becomes well compliant with the assumptions. This solution can attune
theoretical complexity significantly in some cases.

C.7 Full Verification Tests on True Keystream

In order to verify reliability of complexity functions a set of full verification tests
for three attack scenarios were carried out. For all scenarios N = 64, the patterns
are Mg, N, and M(,,, and a true keystream is generated randomly. The four
blocks in practice and the part with Knudsen’s attack in theory are switched on.

Figure 9 shows the results of the tests for the three scenarios. Real com-
plexities received via simulations of the state recovery algorithm are horisontal
lines, wherease the curves are corresponding theoretical upper bounds of average
complezities for various Ay, respectively. When Ay, = 0, points on the curves
are pattern independent upper bounds.
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Fig. 9. Three patterns, true keystream, full attack, N = 64. The results of full verifi-
cation tests of complexity functions of the new state recovery attack.

D Patterns Used in This Paper
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R S EIEIZIEE| 2] 2|8 3 3
2|3 o) é 21218 81 2|8 Ei a
2|z L TIEIE| 2|25 Bl £ |58 = e
o= Pattern description ||z 3|n|d| BT &= [0 A,
Ref.|Al| 4,5 PV d|w|l |balbglbe|g|| o |E|Y Int Ext
(a) Trade-off between w and [, the first level of analysis
X, [1°] -3,0 P={-2,-1}, V={0, 1} 274]212]o]ofo0 N® N2
X, 5,-3,-2}, V ={3, 2, -1} 3(10/3(3[0|0]|0 N4 N3
X, 9, -7, -6, -2}, V ={3, 2, -4, -1} 4(14/3[3(0|0|0| - |-|-|] N—° N3
X, 6, -5, -3, -1, 1}, V ={-2, 4, 7, -1, 1} 5116/5|4(0(0|0 NS N4
X, [1%]-8,-10 P ={8,9,-7, -5, -4, -3}, V ={2,-1, 4, 3, -2, 1} 6(23[4|4(0[1]| 2] — |-|-|NTe/N|N®
X, 1] <132 P ={8,9,-12, -11, -10, -9, -7} 7(28/4(4|0|2]4 ||| N BN N
V={2,-1,-2,1, -5, 3, 4}
X |1°%] -18,-5 P ={89-17 -16 -15 -14 -13 -9} 8133/5(5(0(2]4 N 9% 8/N | N7
V={2,-1,-5,-2,1,4, 5, 3}
X, | 1°¢]-20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 9415(4(0(2]| 4| - |-|-|N"Pe NI N-C
V ={5,8,3,5,4,-2,-1,2 1}
X, |15 |-25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10{47/6 |5|0(2[4 | - |-|-|N"Me ¥/N| N7
V ={3,4,2,8-3,-2,1,7,0, -5}
X, |1 |-37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} |11[49|11] 9|0 —|-|-| N7 |N7?
vV ={10, -4, -1,11, 3,-2,1, 9, -3, -7, 2}
(b) Good detection through the second level of analysis
V, [1]-7,-7 P={-6,-5,-3,-1}, V ={3, 2, -1, 0} 4[9]4[4(0 — -1~
2nd| 2 1 P ={0, 2, -1}, V' ={0, -1, 2} 3(4(3(3]0 -4 3|0
D, | 1% |-24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7(26/6(5]0 — |-
V ={3,-2,4,51,0,-1}
2nd| 5, -2 P ={0, 1, -4, -3, -2}, V' ={2, -1, 1, 0, -2} 5(06|5(5|0|.|. |-7/4[1
DV, [ 1°°|-26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 829/6|4(1]0|0
V={51,4,-3 -1,2 3,-2}
2nd| 7.2 P ={0, 3, -6, -5, -4,-3,-2}, V' ={-2,3,0,-1,1,-3,2}| 7]10|/ 7| 7|0 |0]| 0 ||-10/6|1| N"'2e"¢ N2

Table 6. Various patterns that were achieved by our simulations (part I).




PV

[d]w] 1 ]ba]bsby[be[ITs

(a) Maximum generative patterns (w — max

A0, 1T P=(L, 3} V={3,-1} 2[6]0]0]0J0[1]1
W l0,-1 P ={1,3,4}, V={3, 2, -1} 3(10[3]0]1]2]0]0
Wi, 0,-2 P={1,3, 4, 5}, V={4, 3,-2, 1} al5|1]o]of1|1]2
W 10,2 P={1,2,4,6,8}, V={5,2,-3,6, -1} 5(21/0]0]o|o]o]o
M j0,0 P={1,2,3,4,5 20}, V={7, -1, 5, -3, 2, -0} 6l2713]0]1]2]0]0
W|0,5 P={1,2,4,6,809,16}, V={2,4,7,1,3,-3,8 |7|31|4|0[0|4|1|2
WL 0,5 P={1,2,4,6,14, 18,19, 25} 83716 /0|1]5]|0]0
V={24,51,3-3 2 -1}
W, 10,9 P={1,2,3,6,7,8, 11, 20, 24} 9l42|6]0]1]5]1]2
V ={4,-1,10,3,-2, 11,1, 4, -6}
M, 0,3 P={1,23,58,10, 18, 21, 22, 23} 10f50{4]1]1]2|1]2
V ={1,5,-3,8,-7,3,-2,-5,9, -1}
M, 10,-1 P={1,2,3,4,6,9,11, 13, 21, 30, 33} 11(55(10{ 0 [1]9]0] 0
V ={6,5,-3,1,4,4,7,-1,2,-9, 8}
M,00,6 P={1,2,3,4, 59, 15, 17, 34, 35, 43, 45 } 12[59[8 1|07 |2] 4
V={2-2,1,12,-7,7,8,-3,0, -5, 3, 4}
‘W&S 0,0 P={1,3,5,6,7, 8,22, 23, 31, 32, 34, 44, 52} 13(68|/9(0(2|7(2] 4
vV ={28,-3,-2,1,7,4,-9,5, 10, -14, -5, 3}
LW(M 0,15 P={1,2,3,4,5, 11, 13, 30, 31, 39, 40, 42, 52, 60}|14|76|10{ 0 |2 | 8|2 | 4
V={7-212,7238, -3, 4,-9,5, 10, -14, -5, 3}
(b) Patterns with all S;[j;] different to test complexity functions
gz 0,0 P={3,1},V={1,2} 2(5|/0|0(0|/0|0]0
¢, 0,2 P={1,3,4}, vV ={4,-1,3} 3|slolololo]o]o
G 10,4 P={2,1,3}, V ={1,8 -7} 3|7]olololo]o]o
G, (0.3 P={2,1,3}, V ={1, 7, -6} 3|7]olololo]o]o
o0 P=(3. 1,2}, V=35 1) 3|7]olololo]o]o
G l0.4 P={1,34,5},V={6 21,4} 4)11/0lololao]o]o
Gol0,5 P={1,24,6},V ={24,5,1} 413lofolololo]o
G, [0,-3 P={2,3,1,4},V ={1,3,8,-10} 4lololo]ololo|o
Golo.-1 P={53 1,2, V={157-2} 4lolololololo|o
G o [0.7 P={4,3,51},V={198-5 4lolololololo]o
G 10,6 P={1,3,4,58},V={83,-1,75} 5|16{0/0]0]0]0] 0
G l0,2 P={2,81,6,512}, V={1,2,5 7 -3,-1} 6/20{0/0]0/0]0]|0
9’7 0,-2 P={2,8,21,1,6,5,12}, V={1, 2,4,5,7,-3,-1}| 7{25[0 0|0 |0]|0]| O
(c) Patterns to support assumptions
A, [0,-10 P ={5, 2, 1, 4}, V ={3, 4, 9, -1} Z[9]oJ0Jololol0
N, 0,-3 P={2,3,1,4}, V ={1, 3, 8, -10} 4lolololololo|o
N, [0,-1 P={52312}V={151-2} 4lolololololo|o
A,10,0 P={31,69},V={126 -5} 4lolololololo|o
AL (0,7 P={4,35 1}, V ={1,9:8, -5} alolololololo|o
N,0,9 P={2,4,1,6},V={2 8-6,-1} 4lololo]ololo|o
B, [0,-1 P={8,1,7, 3}, V=(1,3-9, -1} 4lololofolo]|1]1
B 10,0 P={3,1,9,6},V={1,2 3 -8 4lololololo]|2]10
B 0,0 P={1,3,8,5},V=(23-6, -3} 4lololololo]|2]11
By (0,5 P={4,28 1}, V ={1, 4,7, -2} 4]9lolololo|1]2
B 0,7 P={2,31,8},V=(1,4-3 -2} 4lololololo|2]4
B (0,9 P={2,4 3, 1}, V ={1, 4.3, -2} 4]9/olofolo]3|15
By 0,10 P={5,3,1,2}, V={1, 54, -2} 4l9lolololol2|11

7. Various patterns that were achieved by our simulations (part II).




