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Abstract

We propose two constructions of chosen-ciphertext secure identity-based encryption (IBE) schemes.
Our schemes have a security proof in the standard model, yet they offer performance competitive
with all known random-oracle based schemes. The efficiency improvement is obtained by combin-
ing modifications of the IBE schemes by Waters [41] and Gentry [23] with authenticated symmetric
encryption.

Keywords: Chosen-ciphertext security, Identity-Based Encryption, Bilinear Maps.



Contents

1 Introduction 1

1.1 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 3

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Identity Based Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Target Collision Resistant Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Intractability assumptions 5

3.1 Bilinear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 The modified BDDH assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 The truncated q-ABDHE assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 IBE Scheme I 6

4.1 The IBE Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 Trading Public Key Size and Security Reduction . . . . . . . . . . . . . . . . . . . 8
4.3.2 Hierarchical Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.3 Trading ciphertext size for efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 IBE Scheme II 9

5.1 The IBE construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Comparison 11

6.1 Considered schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Security reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Implementation details and curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References 13

A Proofs 16

A.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B Relations between the Assumptions 23

B.1 The BDDH assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.2 The q-BDDHI assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.3 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



1 Introduction

An Identity-Based Encryption (IBE) scheme is a public-key encryption scheme where any string is a valid
public key. In particular, email addresses and dates can be public keys. The ability to use identities as
public keys avoids the need to distribute public key certificates — which is one of the main technical
difficulties when setting up a public-key infrastructure. An efficient construction of an IBE was not given
until almost two decades after Shamir posed the initial open question in [38] regarding the existence of
such cryptographic primitives. The first efficient IBEs appeared in 2001, given separately by Boneh and
Franklin [11, 12], and Sakai et al. [36]. In particular, Boneh and Franklin [11, 12] proposed formal security
notions for IBE systems and designed a fully functional secure IBE scheme using bilinear maps. This
scheme and the tools developed in its design have been successfully applied in numerous cryptographic
settings, transcending by far the identity based cryptography framework.

Despite its only recent invention, IBE is already used extensively in practice. Two companies —
Voltage security (http://voltage.com) and Identum (http://www.identum.com/) —are specialized in
identity-based security solutions. This is one of the reasons why IBE is currently in the process of getting
standardized — the new IEEE P1363.3 standard for “Identity-Based Cryptographic Techniques using
Pairings” is currently in preparation [27]. The schemes that are currently in consideration are the one by
Boneh and Franklin [12]; the one by Boneh and Boyen [8, 14]; and the one by Kasahara and Sakai [36, 18].

All the above IBE schemes provide security against chosen-ciphertext attacks. In a chosen ciphertext
attack [34, 12], the adversary is given access to a decryption oracle that allows to obtain the decryptions
of ciphertexts of his choosing. Intuitively, security in this setting means that an adversary obtains
(effectively) no information about encrypted messages, provided the corresponding ciphertexts are never
submitted to the decryption oracle. Since the dramatic attack by Bleichenbacher [6], the notion of chosen-
ciphertext security is commonly agreed as the “right” notion of security for encryption schemes [40]. We
stress that, in general, chosen-ciphertext security is a much stronger security requirement than semantic
security, where in the latter an attacker is not given access to the decryption oracle.

Random Oracles. The drawback of all the IBE schemes [12, 8, 36, 18] that are currently under
submission to the new IEEE P1363.3 standard is that their security can only be guaranteed in the
random oracle model [4], i.e. in an idealized world where all parties get black-box access to a truly random
function. Unfortunately a proof in the random oracle model can only serve as a heuristic argument and,
admittedly using quite contrived constructions, has been shown to possibly lead to insecure schemes when
the random oracles are implemented in the standard model (see, e.g., [16]). More importantly, there exist
results [22] indicating that even certain standardized cryptographic schemes (such as full-domain hash
signatures) will always remain in the grey area of schemes having a proof in the random oracle yet are
“provably unprovable” in the standard model.

IBE Without Random Oracles. Waters [41] presents the first practical IBE that is chosen-plaintext
secure without random oracles. It fits the category of “commutative-blinding” IBE schemes from Boneh
and Boyen [8] and its chosen-plaintext security can be reduced to the Bilinear Decisional Diffie-Hellman
(BDDH) assumption. Based on Waters scheme several chosen-ciphertext secure IBE schemes were pro-
posed starting with generic constructions [10] whose specific instantiations were later improved [15, 30].
Today’s most efficient variant is due to Kiltz and Galindo who successfully applied “direct chosen-
ciphertext” techniques from [15, 29] to Waters’ IBE scheme. More recently, Gentry [23] proposed yet an-
other practical chosen-ciphertext secure IBE scheme based on the class of “inversion-based” IBE schemes
from [8], offering interesting efficiency trade-offs compared to the commutative-blinding schemes [30].

Random Oracles: Theory vs. Practice. The above mentioned drawbacks of the random oracle
model readily leads to the question why random-oracle based schemes are sometimes chosen over schemes
with a rigorous proof in the standard model. The answer is straight-forward: it is common knowledge
that schemes in the random-oracle model are usually much more efficient than schemes in the standard
model. As long as the “theoretical problems” from [16, 22] do not lead to an actual break of a non-
artificial scheme, using random-oracle schemes seems justifiable in practice. On the other hand it is in
the belief of the authors that this general perception about random oracles will change when alternative
random-oracle free schemes become available that offer competitive performance.
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Size (bits) Cost (relative)

Scheme Ciphertext Public Key Encrypt Decrypt

Standard model

Ours: IBE1 (§4) 422 2376 39 216
Ours: IBE2 (§5) 1277 2223 110 222
KG [30] 513 2565 40 360
Gentry [23] 2223 3249 146 408

Random Oracle model

BF [11] 331 171 187 151
BB1 [8] 502 1386 39 217
KS [18] 331 171 38 152

Figure 1: Efficiency comparison for CCA-secure IBE schemes in the standard/random oracle model for
MNT/80-bit security level. Timings are relative to one exponentiation in group G.

1.1 Our contributions

In this paper we demonstrate that there exist identity-based encryption schemes that are provably secure
in the standard model, yet their performance is competitive with the best schemes in the random oracle
model. We propose two constructions of chosen-ciphertext secure IBE schemes which outperform all such
existing standard-model schemes, and have performance comparable to the random-oracle based schemes
that were described above.

Scheme I. Our first IBE scheme is based on Waters’ semantically secure IBE. Our approach to protecting
a ciphertext against chosen ciphertext attacks bears some resemblance to the one used by Cramer and
Shoup [20, 21] to obtain chosen ciphertext secure public key encryption. More precisely, we use the more
efficient “encrypt-then-mac” or “authenticated symmetric encryption” variant proposed by Kurosawa and
Desmedt [31]. More precisely, in our construction decryption of ill-formed ciphertexts (i.e. ciphertexts that
could not have been generated by the encryption algorithm) uses randomness which is built into the user
private key (and is independent of the master public key). Such ill-Formed ciphertexts can be detected
using extra-information that is algebraically encoded into the “identity-carrying” part of the ciphertext
(similar to the HIBE construction from [9]). Overall this allows us to obtain a CCA secure IBE scheme
by only adding one exponentiation to the encryption/decryption algorithm of Waters’ scheme, which
is secure only against chosen plaintext attacks. We give a standard-model security proof reducing the
intractability of the modified Bilinear Decisional Diffie-Hellman (mBDDH) problem (a problem closely
related to BDDH) to breaking the CCA security of our scheme.

Scheme II. Our second construction is a variant of Gentry’s chosen-ciphertext secure IBE scheme. Here
our new contribution is to use authenticated symmetric encryption [31, 25] to reduce ciphertext expansion
and encryption/decryption cost compared to Gentry’s original schemes. We prove chosen-ciphertext
security of our scheme with respect to the decisional augmented bilinear Diffie-Hellman exponent (q-
ABDHE) assumption [23] in the standard model. We remark that the proof technique is significantly
different from the one used for the first scheme.

1.2 Comparison

We carefully review all known chosen-ciphertext secure IBE constructions and make an extensive com-
parison with our schemes. Our studies also incorporate all relevant practical issues when making a
comparison, including the tightness of the security reduction with respect to different assumptions and
instantiating the schemes in asymmetric pairing groups. To obtain concrete comparison values we esti-
mate ciphertext expansion and encryption/decryption cost when implemented in different pairing groups
using recent (independent) timing data from [14]. This includes pairing groups based on super-singular
curves and MNT curves.

The numerical results of our comparison for 80 bits MNT curves are given in Figure 1 (For 80
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bits super-singular curves the results are similar. We refer the reader to Figure 6 in Section 6.) The
figure shows that our schemes outperform all known IBE schemes in the standard model. Most notably,
compared to the standard-model scheme KG from [30] decryption cost and ciphertext expansion is reduced
by approximately one third, whereas encryption cost is the same. More importantly, in comparison with
the random-oracle based schemes BF from [12], BB1 from [8, 14], and KS from [36, 18] our schemes offer
competitive performance in all parameters, yet are provably secure in the standard model.

1.3 Related work

A special class of authenticated symmetric encryption schemes which is obtained using the “encrypt-
then-mac” primitive was recently successfully applied to public-key encryption schemes by Kurosawa and
Desmedt [31, 2] who greatly improved efficiency of the original Cramer-Shoup encryption scheme [21].
Their result was generalized to cover arbitrary authenticated encryption schemes [25]. In fact, our second
IBE scheme can be seen as the “Kurosawa-Desmedt variant” of the original CCA secure scheme by
Gentry. A variant of it was also sketeched in independent work by Boneh, Gentry and Hamburg [7] using
their general framework of “hash proof systems”. In connection with IBE, authenticated encryption was
first used in [37]. This paper is an extended version of an unpublished manuscript [28] by the first author.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N then 1k

denotes the string of k ones. If S is a set then s ←R S denotes the operation of picking an element s of S
uniformly at random. Unless otherwise indicated, algorithms are randomized and polynomial time. By
z ←R AO1,O2,...(x, y, . . .) we denote the operation of running algorithm A with inputs x, y, . . . and access
to oracles O1,O2, . . ., and letting z be the output. An adversary is an algorithm or a tuple of algorithms.

2.2 Identity Based Encryption

An IBE scheme consists of four algorithms: Setup, KeyGen, Enc, and Dec. Setup generates the global
public and private keys; KeyGen uses the global private key to generate an individual private key PRIid
for a given identity; Enc uses the global public key to encrypt a message to a given identity; and Dec uses
the individual private key to decrypt ciphertexts.

The strongest and commonly accepted notion of security for an identity-based key encryption is that of
indistinguishability against an adaptive chosen ciphertext attack [12]. This notion, denoted IND-ID-CCA
(or simply CCA), is captured by defining the following advantage function for an adversary A = (A1,A2),
and for an IBE scheme IBE:

AdvCCA
IBE,A(k) =

∣

∣

∣
Pr[ExpCCA

IBE,A(k) = 1] − 1/2
∣

∣

∣

where ExpCCA
IBE,A(k) is defined by the following experiment.

Experiment ExpCCA
IBE,A(k)

(PUB,PRI) ←R Setup(1k)

(id∗,m0,m1,St) ←R A
KeyGen(·),Dec(·,·)
1 (PUB)

b ←R {0, 1}; C∗ ←R Enc(PUB, id∗,mb)

b′ ←R A
KeyGen(·),Dec(·,·)
2 (C∗,St)

If b = b′ Return 1 else return 0

The oracle KeyGen(·) on input id generates a new private key for the identity id and returns it. The
oracle Dec(·, ·) on input id and C first generates a new private key for id and then uses it to decrypt C.
When A1 outputs id∗ it must not be any of the identities that the adversary queried to the KeyGen(·)
oracle. Furthermore, A2 is not allowed to query the KeyGen(·) oracle on id∗, and is not allowed to query
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the Dec(·, ·) oracle on (id∗, C∗). The variable St represents some internal state information of adversary
A and can be any (polynomially bounded) string.

Definition 2.1 An IBE scheme IBE is secure against chosen-ciphertext attacks (CCA secure) if for all
adversaries A the advantage function AdvCCA

IBE,A(·) is negligible.

For a more precise analysis of the tightness of reduction we will sometimes use the following more
detailed notation. For integers k, t, qx, qd, AdvCCA

IBE,t,qx,qd
(k) = maxA AdvCCA

IBE,A(k), where the maximum is
over all adversaries A that make at most t computational steps, qx key-derivation, and qd decryption
queries. Here we make the convention to count all decryption queries for id 6= id∗ as a key-derivation
query.

2.3 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) is specified by its encryption algorithm E (encrypting
m ∈ MsgSp(k) with keys K ∈ K(k)) and decryption algorithm D (returning m ∈ MsgSp(k) or ⊥). Here
we restrict ourselves to deterministic algorithms E and D.

The most common notion of security for symmetric encryption is that of ciphertext indistinguishability,
which requires that all efficient adversaries fail to distinguish between the encryptions of two messages
of their choice. Another common security requirement is ciphertext authenticity. Ciphertext authenticity
requires that no efficient adversary can produce a new valid ciphertext under some key when given one
encryption of a message of his choice under the same key. A symmetric encryption scheme which satisfies
both requirements simultaneously is called secure in the sense of authenticated encryption (AE-OT secure).
Note that AE-OT security is a stronger notion than chosen-ciphertext security.

The above requirements are formalized as follows:

Ciphertext Indistinguishability. Let SE = (E,D) be a symmetric encryption scheme, and let A =
(A1,A2) be an adversary. We define the following experiment:

Experiment ExpIND
SE,A(k)

K ←R K(k)
(m0,m1,St) ←R A1(1

k)
b ←R {0, 1} ; c∗ ←R EK(mb)
b′ ←R A2(1

k,St , c∗)
If b = b′ Return 1 else return 0

The advantage of A in breaking the ciphertext indistinguishability security of SE is:

AdvIND
SE,A(k)

def
=

∣

∣

∣
Pr[ExpIND

SE,A(k) = 1] − 1/2
∣

∣

∣

Definition 2.2 The symmetric encryption scheme SE has indistinguishable ciphertexts if for every ad-
versary A the advantage AdvIND

SE,A(·) is negligible.

Ciphertext Authenticity. In this work we are only interested in one-time authenticated schemes.
That is, schemes for which no efficient adversary can produce a new valid ciphertext after seeing the
encryption of a single message.

Let SE = (E,D) be a symmetric encryption scheme, and let A = (A1,A2) be an algorithm. We define
the following experiment:

Experiment AdvCT-INT
SE,A (k)

K ←R K(k)
(m,St) ←R A1(1

k)
c ← EK(m)
c′ ←R A2(1

k,St , c)
If c′ 6= c and DK(C ′) 6= ⊥ return 1 else return 0
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The advantage of A in breaking the ciphertext integrity of SE is:

AdvCT-INT
SE,A (k)

def
= Pr[ExpCT-INT

SE,A (k) = 1]

Definition 2.3 The symmetric encryption scheme SE has ciphertext integrity if for every adversary A

the advantage AdvCT-INT
SE,A (·) is negligible.

Authenticated Encryption. A symmetric encryption scheme which is secure according to both
Definition 2.2 and Definition 2.3 is secure in the sense of one time authenticated encryption (or AE-OT).

Constructions. In our IBE constructions we will require an abstract notion of algebraic symmet-
ric encryption where the key-space K consists of a cyclic group GT . It is well know (following the
encrypt-then-mac approach [3, 21]) how to build such symmetric encryption schemes satisfying all re-
quired functionality and security from the following basic primitives:

• A (computationally secure) one-time symmetric encryption scheme with binary k-bit keys (such as
AES or padding with a PRNG)

• A (computationally secure) MAC (existentially unforgeable) with k-bit keys
• A (computationally secure) key-derivation function [21] that maps elements from GT into 2k-bit

strings (such as SHA-1).
We remark that for our purposes it is also possible to use a more efficient single-pass authenticated
encryption scheme (see, e.g., [35]). In both cases the the ciphertext expansion (i.e., ciphertext size minus
plaintext size) of the AE-OT secure symmetric scheme is only k (security parameter) bits which is optimal
with respect to our security notion.

2.4 Target Collision Resistant Hashing

TCR = (TCRk)k∈N is a family of keyed hash functions TCRs
k : G → Zp for each k-bit key s. It is

assumed to be target collision resistant (TCR) [21], which is captured by defining the advantage function
AdvTCR

TCR,B(k) of an adversary B as

Pr

[

TCRs(c∗) = TCRs(c) ∧ c 6= c∗ :
s ←R {0, 1}k ; c∗ ←R G

c ←R B(s, c∗)

]

,

Note that TCR is a weaker requirement than collision-resistance, so that, in particular, any practical
collision-resistant function can be used. Commonly [21, 31] this function is implemented using a dedicated
(non-keyed) cryptographic hash function like MD5 or SHA. To simplify notation we will sometimes drop
the superscript key s and simply use TCR.

3 Intractability assumptions

3.1 Bilinear Groups

Our schemes will be parameterized by a pairing parameter generator. This is an algorithm G that on input
1k returns the description of an multiplicative cyclic group G of prime order p, where 2k < p < 2k+1, the
description of a multiplicative cyclic group GT of the same order, and a non-degenerate bilinear pairing
ê : G × G → GT . See [12] for a description of the properties of such pairings. We use G

∗ to denote
G \ {1}, i.e. the set of all group elements except the neutral element. Throughout the paper we use
PG = (G, GT , p, ê, g, gT ) as shorthand for the description of bilinear groups, where g is a generator of G

and gT = ê(g, g) ∈ GT .

3.2 The modified BDDH assumption

Let PG be the description of pairing groups. The Bilinear Decisional Diffie-Hellman (BDDH) assump-
tion [12] states that the two distributions (gx, gy, gz, ê(g, g)xyz) and (gx, gy, gz, ê(g, g)r), for x, y, z, r ←R

Zp are indistinguishable for any adversary. For the modified BDDH assumption we furthermore provide
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the adversary with the element g(y2). More formally we define the advantage function Advmbddh
G,B (k) of an

adversary B as
∣

∣

∣

∣

∣

Pr[B(PG, gx, gy, gy2

, gz, ê(g, g)xyz) = 1]

−Pr[B(PG, gx, gy, gy2

, gz, ê(g, g)r) = 1]

∣

∣

∣

∣

∣

,

where x, y, z, r ←R Zp and PG ←R G(1k). We say that the modified Bilinear Decision Diffie-Hellman

(mBDDH) assumption relative to generator G holds if Advmbddh
G,B (·) is negligible for all adversaries B.

3.3 The truncated q-ABDHE assumption

Let q = q(k) be a polynomial. The q-BDDHI assumption [8] states that the two distributions (gx, . . . ,
gxq

, ê(g, g)1/x) and (gx, . . . , gxq

, ê(g, g)r), for x, r ←R Zp are indistinguishable for any adversary. In [23]
Gentry proposed the related truncated decisional augmented bilinear Diffie-Hellman exponent (truncated
q-ABDHE) assumption which augments the q-BDDHI assumption with additional information to the

adversary. We define the advantage function Adv
q-abdhe
G,B (k) of an adversary B as

∣

∣

∣

∣

∣

Pr[B(PG, gx, . . . , gxq

, gz, gzxq+2

, ê(g, g)zxq+1

) = 1]

−Pr[B(PG, gx, . . . , gxq

, gz, gzxq+2

, ê(g, g)r) = 1]

∣

∣

∣

∣

∣

,

where x, z, r ←R Zp and PG ←R G(1k). We say that the truncated q-ABDHE assumption relative to

generator G holds if Adv
q-abdhe
G,B (·) is negligible for all B.

3.4 Relations

The next lemma classifies the strength of the modified BDDH assumption we introduced between the well
known standard pairing-based assumptions BDDH and 2-BDDHI. Here ”A ≤ B” means that assumption
B implies assumption A (in a generic sense), i.e. assumption B is a stronger assumption than A.

Lemma 3.1 BDDH ≤ mBDDH ≤ 2-BDDHI ≤ . . . ≤ q-BDDHI ≤ truncated q-ABDHE

The simple proof is postponed until Appendix B.3. We remark that the complexity of q-BDDHI (as well
as truncated q-ABDHE) in the in the generic-group model [39] is roughly Ω(

√

p/q) [8, 23] which matches
the recent attack due to Cheon [19].

4 IBE Scheme I

In this section we present our first CCA secure IBE scheme. It is based on the Boneh-Boyen “commutative-
blinding” IBE scheme [8] in its full-identity secure variant of Waters [41] which is chosen-plaintext secure.
We construct a CCA secure IBE by adding a redundant group element to the ciphertext, and authenti-
cating the two group elements both explicitly, using target collision resistant hash function, and implicitly
by using the same randomness to generate both elements.

A similar technique was already used by Cramer and Shoup to obtain chosen-ciphertext secure public-
key encryption and later also successfully applied in [15, 29, 30]. All the above works make a distinction
between ciphertexts that can be generated by the encryption algorithm (well-formed ciphertexts), and
strings that the encryption algorithm would never output (ill-formed ciphertexts) in their security analysis.
The first CCA secure IBE that applies this methodology is [30]. The IBE of [30] handles ill-formed
ciphertexts by decrypting them to a fresh random value chosen by the decryption algorithm (“implicit
rejection”). This approach is sufficient for obtaining CCA security, but is prohibitively expensive as it
requires the decryption algorithm to be randomized, and to compute several exponentiations of group
elements to handle ill-formed ciphertexts.

We avoid this additional computation by exploiting the fact that in our IBE the decryption of an ill-
formed ciphertext depends on the randomness of the private key that was used for the decryption. In other
words, we decrypt ill-formed ciphertexts in the same way as we would decrypt well-formed ciphertext,
but for a well formed ciphertext the outcome of the decryption is independent of the randomness in
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Setup(1k)
α, u ←R G; z ← ê(g, α); H ←R HGen(G;n)
PUB ← (H , u, z) ∈ G

n+1 × G × GT

PRI ← α ∈ G

Return (PUB,PRI)

KeyGen(PRI, id)
s ←R Zp

PRIid ← (α · H (id)s, g−s, us) ∈ G
3

Return PRIid

Enc(PUB, id ,m)
r ←R Zp; c1 ← gr

t ← TCR(c1); c2 ← (H (id) · ut)r

K ← zr ∈ GT ; c3 ← EK(m)
Return ciphertext C = (c1, c2, c3)

Dec(PUB, id ,PRIid , C)
Parse C as (c1, c2, c3) ∈ G × G

∗ × {0, 1}∗
Parse PRIid as (d1, d2, d3) ∈ G

3

t ← TCR(c1); K ← ê(c1, d1 · dt
3) · ê(c2, d2)

Return m ← DK(c3)

Figure 2: Our first CCA-secure IBE scheme IBE1.

the private key. As a result our decryption algorithm is deterministic and significantly faster than [30].
Furthermore, our scheme also has one group element less in the ciphertext than [30]. This is achieved
by algebraically integrating the implicit ciphertext consistency check into the part of the ciphertext that
carries the information about the recipient’s identity.

4.1 The IBE Construction

We assume that PG = (G, GT , p, ê, g, gT ) are public system parameters obtained by running the group
parameter algorithm G(1k) (that may be shared among multiple systems).

We review the hash function H : {0, 1}n → G used in Waters’ identity based encryption schemes [41].
On input of G and an integer n, the randomized hash key generator HGen(G;n) chooses n + 1 random
group elements h0, . . . , hn ∈ G and returns h = (h0, h1, . . . , hn) ∈ G

n+1 as the public description of the
hash function. The algebraic hash function H : {0, 1}n → G is evaluated on a string id = (id1, . . . , idn) ∈
{0, 1}n as the product

H (id) = h0

n
∏

i=1

hidi

i ∈ G.

Let TCR : G → be a target collision-resistant hash function and SE = (E,D) be a symmetric encryption
scheme with key-space K = GT . Our IBE scheme IBE1 with identity space IDSp = {0, 1}n is described
in Figure 2. Here it is understood that decryption rejects if the ciphertext C does not parse to (c1, c2, c3)
with c1 ∈ G and c2 ∈ G

∗. An IBE scheme with arbitrary identity space IDSp = {0, 1}∗ can be obtained
by applying a collision-resistant hash function to the identities. (The choice of n = 2k is due to the
birthday paradox.)

We now show correctness of the scheme, i.e. that the symmetric key K computed in the encryption
algorithm matches the key K computed in the decryption algorithm.1 A correctly generated secret key
for identity id has the form PRIid = (d1, d2, d3) = (α · H (id)s, g−s, us) for some s ∈ Zp. Therefore the
decryption algorithm computes the symmetric key K as

K = ê(c1, d1 · dt
3) · ê(c2, d2)

= ê(gr, α · H (id)s · (us)t) · ê((H (id) · ut)r, g−s)

= ê(gr, α) · ê(gr,H (id)s · (us)t) · ê((H (id) · ut)r, g−s)

= zr · ê(gr, (H (id) · ut)s) · ê((H (id) · ut)−s, gr)

= zr,

1Decryption rejects all ciphertexts with c2 = 1 ∈ G. We can assume that encryption does not generate ciphertexts with
c2 = 1. In case it does encryption can pick fresh randomness r. Note that this implies that our encryption algorithm runs
in expected polynomial time (rather then in strict polytime). However, this has little significance in practice since it is
unlikely that for two independent choices of r we would get c2 = 1.
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which is the same as the key computed in the encryption algorithm. Now correctness of the scheme is
implied by correctness of SE.

4.2 Security

Theorem 4.1 Assume TCR is a target collision resistant hash function and (E,D) is a AE-OT-secure
symmetric scheme. Under the modified Bilinear Decisional Diffie-Hellman (mBDDH) assumption relative
to generator G, the IBE scheme IBE1 is CCA secure. In particular, for ε(k) = AdvCCA

IBE1,t,qx,qd
(k) and

ε̃(k) = Advmbddh
G,t̃ (k) we have

ε(k) ≤ (AdvIND
SE,t̃(k) + ε̃(k)) · 10nq + AdvTCR

TCR,t(k) + qd · AdvCT-INT
SE,t (k) + 2q2

d/p;

t ≥ t̃ −O(ε̃−2(k) · ln(ε̃−1(k)) + qd + qx)

The full proof is given in Appendix A.1. We give a brief overview here. Our proof for this system has
many similarities with [30] (which in turn is based on [41]). The key difference between the two proofs is
the treatment of ill-formed ciphertexts. [30] use the fact that anyone that has the global public key can
check whether a ciphertext is well-formed. Then, if the ciphertext is ill-formed the decryption algorithm
chooses a random value for K, and uses it to attempt and decrypt the symmetric ciphertext. Thus,
the adversary himself could have decrypted any ill-formed ciphertext, and does not gain any information
from querying the decryption oracle on such ciphertexts.

Our approach to dealing with ill-formed ciphertexts is different. We do not rely on the ability of
anyone who has the global public key to check whether a ciphertext is well-formed. Instead, we make the
observation that an ill-formed ciphertext, i.e. a ciphertext of the form C = (gr, (H (id) · ut)r′

, c3), where
r 6= r′, decrypts in the following way:

1. The intermediate key K is computed: K = zr · ê(g,H (id) · ut)(r−r′)s, where s is the random value
that was used to generate the private key.

2. K is used to attempt and decrypt the AE ciphertext.

Now, the adversary makes a polynomial number of decryption queries with ill-formed ciphertexts. We
show that the first such query is likely to decrypt as “reject”, and each query after the first is likely to
decrypt as “reject” given that all previous ill-formed queries decrypted as reject, which completes the
proof. The idea is that the value s remains random in the view of the adversary as he makes decryption
queries with valid ciphertexts, or ciphertexts that decrypt as “reject”. Since s is random, K is also a
random element of GT . Thus, by the authenticity property of the AE encryption, c3 will be decrypted
to “reject” when the random element K is used as the key.

4.3 Extensions

4.3.1 Trading Public Key Size and Security Reduction

As independently discovered in [17, 33], there exists an interesting trade-off between key-size of Waters’
hash H and the security reduction of the IBE schemes. The construction modifies Waters hash H as
follows: Let the integer l = l(k) be a new parameter of the scheme. In particular, we represent an
identity id ∈ {0, 1}n as an n/l-dimensional vector id = (id1, . . . , idn/l), where each id i is an l bit string.

Waters hash is then redefined to H : {0, 1}n → G, with H (id) = h0

∏n/l
i=1 hidi

i for random public elements
h0, h1, . . . , hn/l ∈ G. Waters’ original hash function is obtained as the special case l = 1. It is easy to
see that using this modification in our IBE scheme (i) reduces the size of the public key from n + 2 to
n/l + 2 elements in G, whereas (ii) it adds another multiplicative factor of 2l to the security reduction of
the IBE scheme (Theorem 4.1).

For concreteness we propose the following value for l (our choice will become clear in Section 6). For
a scheme implemented in groups offering 80 bits of security we have n = 2 · 80 = 160 bits and use 128.
This shrinks the public-key size to reasonable n/l + 2 ≈ 10 elements in G (plus one element in GT ).
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We further remark that in the random-oracle model we can replace Waters’ hash H : {0, 1}∗ → G

with H (id) = h0 · hRO(id)
1 , where RO : {0, 1}∗ → Zp is a cryptographic hash function which is modeled

as a random oracle [4] in the security analysis.

4.3.2 Hierarchical Identities

Hierarchical identity-based encryption (HIBE) is a generalization of IBE to identities supporting hierar-
chical structures [26]. In a HIBE, identities are hierarchical and take the form id = [id1.id2.id3]. This
particular hierarchical identity has depth 3, and is subordinate to [id1], [id1.id2], but not to [id1.id2.id

′
3].

Each user in the hierarchy may act as a local key-generation authority for all subordinate hierarchical
identities.

By the relation to Waters IBE scheme it is easy to see that our technique can also be used to
obtain a chosen-ciphertext secure HIBE. Using a technique from [9] it is furthermore possible to reduce
the HIBE ciphertext size to three elements, i.e. it is independent of the hierarchy’s depth. To be
more precise, the IBE from Section 4.1 is modified to a HIBE supporting maximal d hierarchies as
follows. The setup algorithm chooses d different and independent hash functions Hi ←R HGen(G;n), for
1 ≤ i ≤ d. The user secret key for the hierarchical identity id = [id1. · · · .idµ] of depth µ ≤ d is defined as

PRIid = (d1, d2, d3, (dij)µ+i≤j≤d,0≤i≤n) ∈ G
3+(n+1)·(d−µ−1), where d1 = α · (∏µ

j=1 Hi(id
(j)))r, d2 = g−r,

d3 = ur, and dij = ((h
(j)
i )r). We remark that the latter (n+1)·(d−µ−1) elements dij are only needed for

hierarchical key delegation (and may be not included in PRIid if such a feature is not wanted). Encryption

of m with respect to id computes the two ciphertext elements c1 = gr and c2 = (ut
∏µ

j=1 Hi(id
(j)))r and

uses the key K = zr to compute the symmetric ciphertext (using an AE-OT-secure scheme). Decryption
uses K = ê(d1 · dt

3, c1) · ê(d2, c2) to reconstruct the plaintext from the symmetric ciphertext. Note that
this only needs two pairing operations, independent of the depth of the hierarchy d. (In contrast the
HIBE from [30] needs d + 1 pairings.)

Security can be proved with respect to the d-modified BDDH assumption, where compared to the

mBDDH assumption the adversary gets the values gy, gy2

, . . . , gyd+1

(instead of just gy, gy2

). As in [24, 41]
the security reduction is exponential in the depth d of the hierarchy, i.e. it introduces, roughly, a
multiplicative factor of (nq)d. Hence the scheme can only be considered practical for small hierarchies,
say of depth d = 4.

4.3.3 Trading ciphertext size for efficiency

A variant of our IBE scheme can be combined with CCA-secure symmetric encryption. CCA-secure
symmetric encryption is less demanding than authenticated encryption and, in particular, strong pseu-
dorandom permutations imply CCA-secure symmetric encryption without any redundancy. This has
the advantage of more compact ciphertexts while decryption has to perform some algebraic consistency
checks and is therefore less efficient.

5 IBE Scheme II

In this section we present our second chosen-ciphertext secure IBE scheme from the q-ABDHE assump-
tion. It is based on the Boneh-Boyen “exponent inversion” IBE scheme [8] in its full-identity secure
variant of Gentry [23]. Building on techniques by Cramer and Shoup [21], Gentry also presents a chosen-
ciphertext secure variant of his basic chosen-plaintext secure scheme. Our main improvement is to
combine it with a strongly secure symmetric encryption scheme to considerably reduce ciphertext size
and encryption/decryption cost.

5.1 The IBE construction

Let PG = (G, GT , p, ê, g, gT = ê(g, g)) be a pairing group. Let TCR : G × G → Zp be a target collision-
resistant hash function. Let (E,D) be a symmetric cipher. Our IBE scheme IBE2 = (Setup,KeyGen,Enc,
Dec) with identity space IDSp = Zp is depicted in Figure 3.
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Setup(1k)
x, y1, y2 ←R Zp

u ← gx; v1 ← gy1

T ; v2 ← gy2

T

PUB ← (u, v1, v2); PRI ← (x, y1, y2)
Return (PUB,PRI)

KeyGen(PRI, id)
s1, s2 ←R Zp

d1 ← g
y1−s1
x−id ; d2 ← g

y2−s2
x−id

PRIid ← (d1, s1, d2, s2)
Return user secret-key PRIid

Enc(PUB, id ,m)
r ←R Zp c1 ← (ug−id)r; c2 ← gr

T

t ← TCR(c1, c2); K ← (vt
1v2)

r

c3 ← EK(m)
Return ciphertext C = (c1, c2, c3)

Decaps(PUB, id ,PRIid , C)
Parse C as (c1, c2, c3) ∈ G × GT × {0, 1}∗
Parse PRIid as (d1, s1, d2, s2)
t ← TCR(c1, c2) ; K ← ê(c1, d

t
1d2) · cs1t+s2

2

Return m ← DK(c3)

Figure 3: Our CCA-secure IBE scheme IBE2.

To show correctness consider a ciphertext (c1, c2, c3) generated for identity id that gets decrypted
with a valid user secret key PRIid = (d1, d2, s1, s2) by computing the symmetric key K as follows

K = ê(c1, d
t
1d2) · cs1t+s2

2

= ê(g(x−id)r, g
(y1−s1)t+(y2−s2)

x−id ) · ê(g, g)(s1t+s2)r

= ê(gr, gy1t+y2)

= (vt
1v2)

r,

as in the encryption algorithm.

5.2 Security

Theorem 5.1 Assume TCR is a target collision resistant hash function and (E,D) is a AE-OT-secure
symmetric scheme. Let q = qx +1, where qx is the number of key-derivation queries. Under the truncated
q-ABDHE assumption relative to generator G, the IBE scheme IBE2 is IND-CCA secure. In particular,
we have

AdvCCA
IBE2,t,qx,qd

(k) ≤ Adv
q-abdhe
G,t (k) + AdvTCR

TCR,t(k) + 2qd · AdvCT-INT
SE,t (k) + AdvIND

SE,t(k) +
qd

p
.

The proof of Theorem 5.1 will be given in Appendix A.2. We give some intuition why the scheme is
IND-CCA secure. First, the proof of Gentry [23] can be used to show that user secret-key queries, as
well as consistent decryption queries for the challenge identity id∗ are basically useless for an adversary
attacking the scheme (unless it can efficiently solve the q-ABDHE problem). However, inconsistent
decryption queries with respect to the challenge identity id∗ may leak information about the hidden bit
b. Here we use a Cramer-Shoup argument. The idea is that the user secret-key PRIid∗ = (d∗1, s

∗
1, d

∗
2, s

∗
2)

used to answer such decryption queries contains some internal randomness (s1, s2) ∈ Z
2
p that is initially

hidden from the adversary’s view. During the simulation of the IND-CCA environment the challenge
ciphertext will leak (in an information-theoretic sense) one linear equation on the hidden randomness
(s∗1, s

∗
2). Decryption queries of inconsistent ciphertexts will use a key K for symmetric decryption that

is computed as a linear equation in s∗1, s
∗
2 which is linearly independent from the equation the adversary

knows. Hence, one single key K is uniformly distributed over GT . By the ciphertext authenticity
property of SE the adversary will not be able to come up with an inconsistent ciphertext (c1, c2, c3) such
that DK(c3) does not reject. Consequently, all inconsistent ciphertext will get rejected by the scheme.

5.3 Extensions

Using techniques from [1] it is further possible to prove IBE2 anonymous in the sense that the ciphertext
does not leak any information about the sender’s identity. This property has recently proved useful in
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the area of public-key encryption with keyword search [1].
We remark that in contrast to the IBE construction from Section 4 it is not possible to trade algebraic

consistency checks for a weaker symmetric encryption scheme. In general, the class of inversion-based IBE
schemes are less versatile than the commutative-blinding IBE schemes; for example, adding extensions
like hierarchical key delegation to inversion-based IBE schemes seems a difficult task.

6 Comparison

In this section we compare our schemes with known CCA-secure IBE schemes from the literature.

6.1 Considered schemes

We consider the following standard-model IBE schemes.

IBE1: Our scheme from Section 4 with the shorter public-parameters. See Section 4.3.1 for details.

IBE2: Our scheme from Section 5.

KG: The scheme from Kiltz and Galindo [30].

Gentry: The scheme from Gentry [23] (IND-CCA variant).

We furthermore consider the following three IBE schemes that only have a proof in the random-oracle
model. All of them are currently in submission for the IEEE1363.3 standardization project [27].

BF: The (FullIdent) scheme from Boneh and Franklin [12].

BB1: The scheme from Boneh and Boyen [8] in its “hashed identities” variant [14].

KS: The scheme from Kasahara and Sakai [36] as described in [18].

We remark that when assuming the interactive gap Bilinear Diffie-Hellman (gap-BDH) assumption effi-
ciency of BF and BB1 can be further improved [14]. Due to the strong assumption we will not consider
those schemes.

6.2 Security reductions

For determining the parameters of the compared schemes, we make the following assumptions, most of
the are conservative towards the efficiency of our new schemes. For k = 80 bit security we estimate
(following Bellare and Rogaway [5]) the number of (random oracle) hash queries as qH = 250. This seems
reasonable since a hash function is in the hand of an adversary and can be attacked offline. Similar
to signatures schemes we think that a reasonable estimate for the number of key-derivation queries is
qx ≈ 225. This is much smaller than the number of hash queries since key-derivation queries can only be
made online, in interaction with the system. In practice it is easy to limit the number of key-derivation
queries.

The IBE schemes IBE1 and KG have two additional integer parameters: n, l. Parameter n = 2k
resembles the bit size n = 160 ≈ 27 of the identity space and l(k) defines the tradeoff between public
parameters and security-reduction (cf. Section 4.3.1). We choose l = 18 to obtain a security loss of
218+7+25 = 250 = qH . This explains our choice of l(k): it is chosen such that the security loss of the
above schemes matches the one of all random-oracle schemes.

The concrete security reductions are given in Figure 4. For a fair comparison the security reductions of
the random-oracle based schemes are given relative to the respective decisional assumption (e.g., BDDH
instead of BCDH for BB1). We note that the two schemes IBE2 and Gentry have a tight security reduction
to a much stronger security assumption. Due to the recent attacks by Cheon [19] it seems reasonable that
the q-xxxx assumption are

√
q times “less secure” than the BDDH assumption. This in particular implies

(by Lemma 3.1) that we can treat the mBDDH assumption as “as secure” as the BDDH assumption. To
simplify the comparison we make the conservative assumption that all the above schemes with the given
parameters have the same security loss with respect to the BDDH assumption.
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Scheme Standard Assumption Security reduction
Model? Bounds concrete (k = 80)

IBE1

√
mBDDH 2lnqx 250

IBE2

√
q-ABDHE 1 1

KG
√

BDDH 2lnqx 250

Gentry
√

q-ABDHE 1 1
BF — BDDH > qH 250

BB1 — BDDH qH 250

KS — q-BDDHI q3

H ≫ 250

Figure 4: Security assumptions and (concrete) reduction factors for IBE schemes.

6.3 Implementation details and curves

In pairing based cryptography efficiency always depends on the chosen curve and how well the scheme
can be adapted to it. In particular, in asymmetric pairing groups the bilinear mapping is defined as
ê : G × Ĝ → GT , where elements in Ĝ need much larger representations than in G. We optimize all
schemes with respect to short ciphertext sizes. See Figure 5 for concrete values.

We note that whenever the IBE scheme can be proved secure when using a CCA-secure symmetric
schemes, we assume it is instantiated with a redundancy-free scheme (cf. Section 2).

Boyen [14] computes estimated relative timings for all atomic asymmetric operations (exponentiations
and pairings) and representation sizes for group elements when instantiated in super-singular curves [12]
with 80 bits security (symmetric pairing groups) and MNT curves with 80 bits security [32, 13] (asym-
metric pairing groups). In Figure 5 (right side) we recall the values from [14]. Here a ratio of pairings
(sometimes also called multi-pairing) denotes the product of two pairings. For simplicity we decided not
to take into account possible savings when performing fixed-based or multi exponentiations.

Table 5 gives concrete values of encryption/decryption operations and ciphertext expansion for the

considered IBE schemes. We note that for IBE1 and KG, computing H (id)r = (h0

∏n/l
i=1 hidi

i )r (id i ∈
{0, 1}l) is counted as two exponentiations.

6.4 Results

A comparison with concrete timing values from Boyen [14] is carried out in Figure 1 (Section 1) and
Figure 6. Ciphertext overhead represents the difference (in bits) between the ciphertext length and the
message length. All timings are given in multiplicative factors relative to one exponentiation in G. As
usual, all symmetric operations (cryptographic hash function, symmetric encryption, etc) are ignored.
All schemes come with a security proof based on different security assumption, furthermore introducing
a different loss of security in the reduction, depending on several system parameters. A high loss in the
security reduction reduces the real-world efficiency of the scheme by making it necessary to increase the
size of the groups for any given security level. In order not to compare apples with pears, we attempted
to pick the parameters (in particular the parameter l for IBE1 and KG) such that we obtain the same
concrete security reduction for all schemes.

We conclude that our schemes are the most efficient chosen-ciphertext secure IBE schemes in the
standard model. Furthermore its performance and ciphertext expansion seems comparable to the known
random-oracle based schemes, in particular to the one by Boneh and Franklin which is intensively used
in practice (see, e.g., http://www.voltage.com).
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Scheme IBE1 IBE2 KGGentry BF BB1 KS MNT/80 SS/80
Ciphertext expansion Repr. factor (bits)
G 2 1 3 1 1 2 1 171 512

Ĝ 1026 512
GT 1 2 1026 1024
Zp/RO 1 1 1 160 160
MAC 1 1 80 80
Public-Key size
G 10 1 9 1 1 2 1 171 512

Ĝ 1026 512
GT 1 2 1 3 1 1026 1024
Encryption cost Cost factor (relative)
Exp in G 4 2 5 2 1 3 2 1 1

Hash to Ĝ 1 36 1
Exp in GT 1 3 1 4 1 1 36 4
Pairing 1 150 20
Decryption cost
Exp in G 1 1 2 1 1

Exp in Ĝ 1 1 5 1 36 1
Exp in GT 1 2 1 36 4
Pairing 1 2 1 1 150 20
Ratio of pairings 1 1 1 180 24

Figure 5: Efficiency of encryption/decryption operations plus ciphertext expansion (left side). Cost of
group operations (normalized to one exponentiation in G) and representation sizes from [14] (right side).
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A Proofs

A.1 Proof of Theorem 4.1

We will start by defining the first game to be the experiment which is described in the definition of CCA
security.

Game 1. Game 1 is the experiment of CCA security. At some point during the game the adversary
chooses a challenge identity, we will refer to this identity as id∗. In the challenge phase a challenge
encryption is generated and is given to the adversary. We will refer to the challenge ciphertext as
C∗ = (c∗1, c

∗
2, c

∗
3). We will also use ∗ to mark intermediate values that were used in generating the

challenge ciphertext. Let X1 be the event that A is successful in Game 1. Our goal is to put an
upper bound on AdvCCA

IBE1,A,t(k) ≡
∣

∣Pr[X1] − 1
2

∣

∣. For each of the following experiments we will call
Xi the event that the adversary is successful in Game i.

Game 2. We define Game 2 to be the same as Game 1 except that if the adversary makes a decryption
query with

c1 6= c∗1 and t = t∗
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the decryption oracle outputs “reject” (or ⊥). Furthermore, if the adversary makes a decryption
query with c1 = c∗1 before seeing the challenge, then the experiment is stopped and a random
outcome is chosen. Let F2 be the event that the experiment is stopped, and let F ′

2 be the event
that a ciphertext was rejected in Game 2 by the decryption oracle but would not have been rejected
in Game 1. Game 1 and Game 2 proceed identically unless event F2 ∨ F ′

2 occurs; in particular, the
events X1 ∧ ¬(F2 ∨ F ′

2) and X2 ∧ ¬(F2 ∨ F ′
2) are the same. Therefore we have:

|Pr[X2] − Pr[X1]| ≤ (F2 ∨ F ′
2)

It is easy to see that Pr[F2] ≤ qd/p. Also, we have that Pr[F ′
2] ≤ AdvTCR

TCR,t(k), otherwise we could

break the target collision resistance of TCR with a bigger advantage than AdvTCR
TCR,t(k).

Game 3. We call a ciphertext C = (c1, c2, c3) ill-formed with respect to identity id if ê(g, c2) 6=
ê(c1,H (id)·ut) where t = H(c1). It is equivalent to saying that C is of the form (gr, (H (id)·ut)r′

, c3)
and r 6= r′. We call a decryption query ill-formed if it contains an ill-formed ciphertext.

Game 3 is the same as Game 2 except that we add the restriction that the adversary is not allowed
to ask ill-formed decryption queries. We define a new adversary A3 that simulates A and whenever
A makes an ill-formed decryption query, A3 responds with reject. To see how the probabilities of
success of A3 and A are related we define F3 to be the event that A makes an ill-formed decryption
query which would not have been rejected in Game 2 but is rejected in Game 3. Clearly, if event
F3 does not occur then A3 simulates A perfectly, therefore we get |Pr[X3] − Pr[X2]| ≤ Pr[F3].

Claim A.1 Pr[F3] ≤ qd · AdvCT-INT
SE,A,t (k) + q2

d/p.

Proof: Let (id , C), where C = (c1, c2, c3), be an ill-formed decryption query. Let’s consider the
process of decrypting the ciphertext C. The value K is computed using the ciphertext and some
private key PRIid∗ = (α · H (id∗)s, g−s, us) of the challenge identity in the following way:

K = ê(c1, d1 · dt
3) · ê(c2, d2)

= ê(gr, α(H (id∗))s · ust) · ê((H (id∗) · ut)r′

, g−s)

= ê(g, αr(H (id∗) · ut)rs) · ê(g, (H (id∗) · ut)−r′s)

= ê(g, α)r · ê(g, (H (id∗) · ut)rs) · ê(g, (H (id∗) · ut)−r′s)

= zr · ê(g, (H (id∗)) · ut)(r−r′)s

The value s represents the randomness in the private key PRIid∗ . Notice that for well formed
ciphertexts the intermediate key K is independent of s (it only depends on zr). Thus, the adversary
did not gain any information about s from any well-formed decapsulation queries that he has made.
Now, consider previously failed ill-formed decryption queries. For each such query the adversary
learns at best one Zp value which is not equal to s. Thus, after a polynomial number of failed
ill-formed decryption queries, s remains almost uniformly distributed in Zp in the adversary’s view.
Using this, and the fact that c2 6= 1 we obtain that in the adversary’s view K is distributed almost
uniformly in GT . That is, the distance between the uniform distribution on GT and the distribution
on K is ≤ q/p where q is the number of decryption queries that the adversary asks.

Now, we know that the probability of A3 generating an AE ciphertext c3 such that it does not
decrypt as “reject” when using a random K is ≤ AdvCT-INT

SE,A,t (k). Thus, when using the almost
random K that is obtained from decrypting as above we get that the probability of the ciphertext
not decrypting as “reject” is ≤ AdvCT-INT

SE,A,t (k) + qd/p. Since the adversary may attempt to generate

such a ciphertext qd times, the total probability of success is ≤ qdAdvCT-INT
SE,A,t (k) + q2

d/p.
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Game 4. Game 4 is the same as Game 3 except for the following changes:

• To generate u, α, z two random exponents are chosen a, b ← Zp, and the following values are
assigned: u ← gb; α ← gab; z ← ê(ga, gb).

• Let q = qx + qd be the total number of queries (private key and decryption) that the adversary
makes. To generate h0, h1, ..., hn compute: m ← 4q; w ←R [0, n]; x′, x1, ..., xn ←R [0, q − 1];
y′, y1, ..., yn ←R [0,m − 1]; h0 ← (ga)p−wm+y′

(gb)−t∗gx′

; for 1 ≤ i ≤ n, hi ← gxi(ga)yi .

• (Forced abort) For an identity id let

x(id)
def
= x′ +

n
∑

i=1

xidi

i

and

y(id)
def
= p − km + y′ +

n
∑

i=1

yidi

i

We call F4 the event that one of the following two conditions is true. If F4 occurs then the
experiment is aborted and the outcome is chosen randomly.

1. The adversary asks a private key query for an identity id such that y(id) ≡ 0 mod q.

2. The adversary chooses a challenge identity id∗ such that y(id∗) 6≡ 0 mod q.

• (Artificial Abort) Let viewA be the adversary’s random tape, and the transcript of its interac-
tions with its oracles in the current run of the experiment of Game 4. Let Y = (y′, y1, ..., yn, k)
where the random variables y′, y1, ..., yn, k are distributed as described above. Clearly, if we
fix viewA and rerun the experiment the random variable Y has the same distribution as for a
run of the experiment without a fixed view of the adversary. This is true due to the random
“masks” xi ∈ Zp. We define

η(viewA)
def
= Pr

Y
[F4|viewA]

Let λ = 1/4(n + 1)q, and let 0 < ρ(k) ≤ 1 be a function in k which will be specified later.
At the end of the experiment, before comparing the output b′ of the adversary to b, 1/2 ·
λ−2 · (ρ(k)/r)−2 ln((λρ)−1) samples of Y are taken, and an estimate η′(viewA) for η(viewA)
is computed. If η′(viewA) > 1/4q(n + 1) then the experiment is aborted, that is, a random
value b′′ is chosen instead of b′ and b′′ is compared with b.

Note that the values u, α, z, h0, h1, ..., hn as they are computed in Game 4 are distributed identically
to the corresponding values in Game 3.

Claim A.2 Let q be the total number of private key and decryption queries made by the adversary.
Then, |Pr[X3] − (1/2 + (Pr[X4] − 1/2) · 4q(n + 1))| ≤ ρ(k).

Proof: The proof of this claim is somewhat technical, and is omitted here. We refer the reader to
[30] for the proof (which is originally due to Waters [41]).

Game 5. Game 5 is the same as Game 4 except that we change the way that private keys are computed,
and the way that decryption queries are answered.

1. The private key and decryption oracles generate private keys as follows. Choose a random
exponent s′ ←R Zp, compute

d1 ← (ga)s′·y(id)(gb)−x(id)/y(id)−s′t∗(gb2)t∗/y(id)gs′·x(id)

d2 ← (gb)−1/y(id)gs′

d3 ← (gb2)−1/y(id)(gb)s′
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and output (d1, d2, d3). In the above calculation, a and b are the exponents that were chosen
during the setup stage, as described in the definition of Game 4. Notice that we only need to
be able to compute private keys for identities for which y(id) 6≡ 0 mod m.

2. Answering decryption queries: let (c1, c2, c3) be a decryption query. Compute

K ← ê(c2/c
x(id)
1 , ga)(t−t∗)−1

and return DK(c3).

Following a technical argument it is easy to check that the private keys and decryptions in games
3 and 4 are distributed identically. Thus, the probabilities of success in both games are equal:
Pr[X4] = Pr[X5].

Game 6. Game 6 is the same as Game 5 except that the value K∗ is replaced by a random value
K̃ ∈ GT which is chosen at the setup stage. Recall that K∗ in Game 4 is zr for some r ∈ Zp

which is chosen randomly at the challenge stage. For clarity we will describe the computation of
the challenge encryption from scratch:

b∗ ←R {0, 1}; r∗ ←R Zp; c∗1 ← gr∗

; t∗ ← H(c∗1); c∗2 ←
(

H (id) · ut∗
)r∗

; K̃ ←R GT ; c∗3 ← EK̃(Mb∗);
C∗ ← (c∗1, c

∗
2, c

∗
3); Return C∗.

Claim A.3 |Pr[X5] − Pr[X6]| ≤ Advmbddh
G,t̃ (k).

Proof: The idea of the proof is the following. We are given ga, gb, gb2 , gc and Z which is either
a random element of GT or ê(g, g)abc. We simulate the adversary. Notice that since Game 5 the
exponents a and b are not necessary for the simulation except for decrypting ciphertexts in which
(c1, c2) = (c∗1, c

∗
2). The answers to the private key queries and decryption queries can be computes

using ga, gb, gb2 . To compute the challenge ciphertext we set c∗1 = gc, and we use Z as the key for
the symmetric encryption. Now, if Z = ê(g, g)abc then we simulate the adversary perfectly in Game
5. If Z is random then we simulate the adversary in Game 6. Thus, if the adversary distinguishes
between games 5 and 6, then we distinguish between the two possible values for Z with the same
probability.

The proof of the following claim follows directly from the definition of ciphertext indistinguishability
for AE:

Claim A.4 |Pr[X6] − 1/2| ≤ AdvIND
SE,t̃(k)

Summary. We now summarize the above statements into a bound on the advantage of the ad-
versary in the CCA game:

Pr[X1] ≤ 1/2 + (AdvIND
SE,t̃(k) + Advmbddh

G,t̃ (k)) · 4q(n + 1)+

AdvTCR
TCR,t(k) + qd · AdvCT-INT

SE,t (k) + 2q2
d/p + ρ(k) .

Now, if we set ρ(k)
def
= (Advmbddh

G,t̃ (k)) · 4q(n + 1) then we obtain

Pr[X1] ≤ 1/2 + (AdvIND
SE,t̃(k) + 2Advmbddh

G,t̃ (k)) · 4q(n + 1) + AdvTCR
TCR,t(k) + qd · AdvCT-INT

SE,t (k) + 2q2
d/p

≤ 1/2 + (AdvIND
SE,t̃(k) + Advmbddh

G,t̃ (k)) · 10nq + +AdvTCR
TCR,t(k) + qd · AdvCT-INT

SE,t (k) + 2q2
d/p

The only additional computation that we are required to perform to transform an adversary that
breaks the CCA security of the IBE to a distinguisher for the mBDDH problem is the sampling of
Y that is described in the “artificial abort” stage of game 4. Thus,

t ≥ t̃ −O(ε̃−2(k) · ln(ε̃−1(k)) + qd + qx)

where ε̃(k) = Advmbddh
G,t̃ (k).
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A.2 Proof of Theorem 5.1

We make the following definition. Fix public key PUB and identity id . For a tuple (c1, c2) ∈ G × GT we
consider r1 = logug−id (c1), r2 = loggT

(c2), where t = TCR(c1, c2). We say that (c1, c2) is consistent with
id if r1 = r2 and inconsistent otherwise. With the knowledge of x ∈ PRI the latter one can be efficiently

checked by verifying if ê(c
1/(x−id)
1 , g) = c2. We say that a tuple (c1, c2) yields the symmetric key K under

identity id , where K is defined as K = ê(c1, d
t
1d2) · cs1t+s2

2 and (d1, d2) ← KeyGen(PRI, id).
Let A be an adversary on the IND-CCA security of IBE2. We will consider a sequence of games, Game

1, Game 2, . . . , each game involving A. Let Xi be the event that in Game i, it holds that b = b′, i.e.,
that the adversary succeeds.

Game 1. Let Game 1 be the CCA security experiment run with adversary A, i.e., we have

AdvCCA
IBE2,A = |Pr[X1] − 1/2| .

We assume adversary A makes exactly qx = q−1 key generation queries, all with distinct identities.
We further assume that A makes exactly qd decryption queries (id∗, Ci), all with respect to the
challenge identity id∗.

Game 2. We now change the generation of the challenge ciphertext C∗ for id∗ as follows. The experi-
ment first internally generates a random instance of the user secret key PRIid∗ = (d∗1, s

∗
1, d

∗
2, s

∗
2) ←R

KeyGen(PRI, id∗). Then it picks a random r1 ∈ Zp and computes

c∗1 = (ug−id∗

)r1 , c∗2 = ê(g, g)r1 . (1)

The symmetric key K∗ is then computed as in decryption as

K∗ = ê(c∗1, d
∗
1
t∗d∗2) · c∗2s∗

1t∗+s∗

2 (2)

where t∗ = TCR(c∗1, c
∗
2). Finally, c∗3 is computed as c3 ← EK∗(mb). Since this change is purely

conceptional,
Pr[X2] = Pr[X1].

Game 3. In this game the experiment stops if the adversary queries the challenge ciphertext in the
first phase. Since c∗2 is generated as c∗2 = ê(g, g)r1 , independently from A’s view until it sees the
challenge ciphertext, we have

|Pr[X2] − Pr[X3]| ≤ qd

p
.

Game 4. For generation of the challenge ciphertext the experiment proceeds as follows. The experiment
now generates c∗2 from Equation (1) by picking r2 ←R Zp \ {r1} and computing c∗2 = ê(g, g)r2 .

Lemma A.5 |Pr[X3] − Pr[X4]| ≤ Adv
q-abdhe
G,t (k).

Proof: We show that there exists an adversary B with tB ≈ tA such that Adv
q-abdhe
G,B (k) = |Pr[X2]−

Pr[X4]|. Adversary B inputs a truncated q-ABDHE instance

(g, gx, . . . , gxq

, gz, gzxq+2

, T ) , (3)

and has to distinguish T = ê(gz, g)xq+1

from a random element in GT . For key-generation B picks
two random degree q polynomial f1(X), f2(X) and defines

u = gx, v1 = ê(g, g)f1(x), v2 = ê(g, g)f2(x),

using the values g, gx, . . . , gxq

from Equation (3). Note that this does not change the distribution
of the public-key PUB = (u, v1, v2). This implicitly defines the secret key values as y1 = f1(x) and
y2 = f2(x). Adversary A1 is run on PUB.
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For a key-derivation query KeyGen(·) for identity id i ∈ Zp (1 ≤ i ≤ qx = q − 1), B defines the two
degree q − 1 polynomials

F1,idi
(X) =

f1(X) − f1(id i)

X − id i
, F2,idi

(X) =
f2(X) − f2(id i)

X − id i

and returns

d1,idi
= gF1,idi

(x), s1,idi
= f1(id i), d2,idi

= gF2,idi
(x), s2,idi

= f2(id i) (4)

as the user secret key PRIidi
= (d1,idi

, d2,idi
, s1,idi

, s2,idi
) of id i, which can be computed from the

values from Equation (3). This is a correct user secret key since (for j = 1, 2), dj,idi
= gFj,idi

(x) =

g
yj−sj,idi

x−idi .

Let id∗ be the challenge identity. For a decryption query Dec(id∗, ·), adversary B first computes
the user secret key for the challenge identity id∗ as PRIid∗ = (d∗1, d

∗
2, s

∗
1, s

∗
2), using Equation (4)

and answers all the decryption query as in the IND-CCA experiment. In total B will compute
qx + 1 ≤ q user secret keys: qx for the key-derivation queries and one for the challenge identity id∗.
Since f1(X) and f2(X) are random degree q polynomials, for all qx + 1 ≤ q key-derivation queries
the values sj,idi

= fj(id i) are uniform elements in Zp and hence the established user secret keys
have the correct distribution.

For generation of the challenge ciphertext for id∗ ∈ Zp, B proceeds as follows. It defines the degree
q + 1 polynomial

F ∗(X) =
Xq+2 − id∗q+2

X − id∗ =

q+1
∑

i=0

F ∗
i Xi.

The challenge ciphertext C∗ = (c∗1, c
∗
2, c

∗
3) is

c∗1 = gzxq+2 · (gz)id
∗q+2

, c∗2 = TF∗

0 · ê(gz,

q
∏

i=1

(gxi

)F∗

i ), c∗3 = DK∗(mb) (5)

where the challenge key K∗ is computed from c∗1, c
∗
2 as in Equation (2) and b is a random bit. Note

that the challenge ciphertext can be entirely computed from B’s input values from Equation (3).
Adversary B runs A2 on input (C∗,St), answering all oracle queries as above, and inputing a bit b′.
Finally, B outputs 1 if b = b′ and 0, otherwise.

We make the following claim that completes the proof of the lemma: if T = ê(gz, g)xq+1

then A’s
view is the same as in Game 2. If T ∈ GT , then A’s view is the same as in Game 4.

To prove the claim we have to consider the distribution of the challenge ciphertext in Games 2 and
4. Note that the element T only leaks through B’s simulation in the element c∗2 from the challenge
ciphertext. We write c∗1 as

c∗1 = gzxq+2 · (gz)(id
∗)q+2

= gz(x−id
∗)F∗(x) = (ug−id

∗

)r1 ,

for r1 = zF ∗(x). If T = ê(gz, g)xq+1

, then

c∗2 = TF∗

0 · ê(gz,

q
∏

i=1

(gxi)F∗

i ) = ê(gz, gF∗(x)) = ê(g, g)r1 .

is a consistent ciphertext for identity id∗, as in Game 2. On the other hand, if T is a uniform
element in GT so is c∗2, as in Game 4. This proves the claim.
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Game 5. Let (c∗1, c
∗
2, c

∗
3) be the challenge ciphertext for id∗ and let t∗ = TCR(C∗). In this game the

experiment changes the answers to the decryption oracle as follows. If, for a query Dec(id∗, C =
(c1, c2, c3)) it holds that (c1, c2) 6= (c∗1, c

∗
2) but TCR(c1, c2) = t 6= t∗ then the experiment aborts.

We claim that there exists an adversary F with tF ≈ tA such that

|Pr[X5] − Pr[X4]| ≤ AdvTCR
TCR,F (k).

Game 6. Game 6 is like Game 5 with the difference that all decryption queries Dec(id∗, C = (c1, c2, c3))
for which (c1, c2) is inconsistent with id∗ get rejected.

Lemma A.6 |Pr[X6] − Pr[X5]| ≤ qd · AdvIND
SE,t(k).

Proof: Let (d∗1, s
∗
1, d

∗
2, s

∗
2) be the uniquely defined and fixed user secret-key for id∗. We first

claim that in the view of adversary A, one single decryption query (c1, c2, c3) for which (c1, c2)
is inconsistent with id∗ yields a uniform symmetric key K ∈ GT . The consequence is as follows.
In Game 5 the decryption oracle returns ⊥ (reject) if DK(c3) = ⊥. Since K is uniform in GT ,
this happens exactly with probability PrK′←RGT

[DK′(c3) = ⊥] which equals the advantage of a
suitable adversary in the ciphertext integrity experiment of the symmetric ciphertext SE. On the
other hand, in Game 6 such a query gets always rejected. A standard argument [2, 25] shows that
considering all qd decryption queries one obtains

|Pr[X6] − Pr[X5]| ≤ qd · AdvIND
SE,t(k) .

To prove the above claim, consider the hidden randomness (s∗1, s
∗
2) ∈ Z

2
p from generating the user

secret key PRIid∗ = (d∗1, d
∗
2, s

∗
1, s

∗
2) that is used by the experiment when generating the challenge

ciphertext. At the time of their generation, s∗1 and s∗2 are two independent random elements, uni-
formly distributed over Zp. Consider the symmetric key K∗ which is obtained from the inconsistent
challenge ciphertext (c∗1 = (ug−id

∗

)r∗

1 , c∗2 = ê(g, g)r∗

2 ) by computing

K∗ = ê(c∗1, d
∗
1
t∗d∗2) · c∗2s∗

1t∗+s∗

2

= ê(g, g)r∗

1 (y1t∗+y2)+(r∗

2−r∗

1 )(s∗

1t∗+s∗

2).

Now we consider the knowledge A can obtain from the the challenge ciphertext (c∗1, c
∗
2, c

∗
3) and the

challenge key K∗ in an information-theoretic sense. A knows r∗1 , r∗2 , t∗, and k∗
1 = loggT

K∗
1 =

r∗1(y1t
∗ + y2) + (r∗2 − r∗1)(s∗1t

∗ + s∗2). Hence the knowledge A has about the hidden randomness
(s∗1, s

∗
2) ∈ Z

∗
p is a values l∗ ∈ Zp such that

l∗ = s∗1t
∗ + s∗2,

which is a point on the 2-dimensional plane.

Now consider the virtual key K that is computed from an ciphertext (c1, c2, c3) of a decapsulation
query such that (c1, c2) is not consistent with id∗. We claim that in the view of A, K is a uniform
element in GT . Assume c1 = (ug−id)r1 and c2 = ê(g, g)r2 with r1 6= r2 (since (c1, c2) is inconsistent
with id∗). The key K is computed as K = ê(c1, d

∗
1
td∗2) · c2

s∗

1t+s∗

2 . Again we consider k = loggT
K =

r1(y1t + y2) + (r2 − r1)(s
∗
1t + s∗2), where r1 6= r2 and t = TCR(c1, c2) 6= t∗. Linear algebra shows

that as long as t 6= t∗, in the view of A,

l = s∗1t + s∗2

is a uniform element in Zp and hence the virtual key K is a uniform element in GT . This proves
the claim.
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Game 7. The challenge key K∗ is replaced with the random challenge key K∗ (instead of computing
K∗ as in Equation (2)). The proof of Lemma A.6 essentially shows that from the adversary’s point
of view, K∗ looks like a uniform element in GT and hence

Pr[X7] = Pr[X6].

Finally, in Game 7 the adversary A basically carries out a chosen-ciphertext attack on the symmetric
cipher since A is still allowed to query ciphertext of the form (c∗1, c

∗
2, ∗) which are answered using a

uniform key K∗ ∈ GT . Consequently, using the fact that chosen-ciphertext security is implied by
AE-OT security we obtain

Pr[X7] = qd · AdvCT-INT
SE,t (k) + AdvIND

SE,t(k) .

Collecting the probabilities proves the theorem.

B Relations between the Assumptions

B.1 The BDDH assumption

Let PG be the description of bilinear groups and let g ∈ G be a random element from group G of prime
order p. Consider the following problem formalized by Boneh and Franklin [11]: Given (g, ga, gb, gc,W ) ∈
G

4 × G2 as input, output yes if W = ê(g, g)abc and no otherwise. The corresponding BDDH assumption
can be formalized the same way as the modified BDDH assumption.

B.2 The q-BDDHI assumptions

Let PG as above and let z ∈ G be a random element from group G. Let q = q(k) be a function polynomial
in the security parameter. Associated to q the following problem introduced by Boneh and Boyen [8]:

Given (h, ha, h(a2), . . . , h(aq),W ) ∈ G
q+1 × G2 as input, output yes if W = ê(h, h)1/a and no otherwise.

B.3 Proof of Lemma 3.1

Proof: The implications BDDH ≤ mBDDH and 1-BDDHI ≤ 2-BDDHI ≤ 3-BDDHI ≤ . . . are easy to
show. To prove “modified BDDH assumption ≤ 2-BDDHI assumption”, assume there exists an adversary
A that breaks the modified BDDH assumption. We show that then there exists an adversary B with
oracle access to A that breaks the 2-BDDHI assumption. Let (h, ha, ha2

,W ) be an input instance of the
2-BDDHI problem given to B. B’s goal is to find out if W = ê(h, h)1/a or W is random. B picks two
random values y0, z0 and defines its output bit as γ := γ′, where γ′ is input from A as

γ′ ← A(ha2

, ha, h, hy0 , hz0 ,W ′ = W y0z0).

We now show correctness. Defining g := ha2

, x = 1/a, y = y0/a2, and z = z0/a2, we have ha = g1/a = gx

and h = g1/a2

= gx2

. Consequently, (ha2

, ha, h, hy0 , hz0) = (g, gx, gx2

, gy, gz). If W = ê(h, h)1/a, then

W ′ = W y0z0 = ê(h, h)1/a·y0·z0 = ê(g, g)1/a5·y0z0 = ê(g, g)1/a·y0/a2·z0/a2

= ê(g, g)xyz.

If W is a random element, so is W ′. This proves the lemma.
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