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Abstract. Generally speaking, the probability of a differential path de-
termines an upper bound for the expected workload and thus for the
true risk potential of a differential attack. In particular, if the expected
workload seems to be in a borderline region between practical feasibility
and non-feasibility it is desirable to know the path probability as exact
as possible.
We present a generally applicable approach to determine at least almost
exact probabilities of differential paths where we focus on (near-)collision
paths for Merkle-Damgard-type hash functions. Our results show both
that the number of bit conditions provides only a rough estimate for the
true path probability and that the IV may have significant impact on the
path probability. For MD5 we verified the effectivity of our approach ex-
perimentally. An abbreviated version [GIS4], which in particular omits
proofs, technical details and several examples, will appear in the pro-
ceedings of the security conference ’Sicherheit 2008’.
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1 Introduction

The efficiency of differential attacks on cryptographic primitives (block ciphers,
stream ciphers, hash functions etc.) is closely related to the probability that
pairs of intermediate values follow a particular differential path. From the de-
signer’s point of view the efficiency of an attack implies its risk potential. Hence
it is clearly desirable to know the probabilities of differential paths as exact as
possible, especially if the estimated path probability implies a workload which
appears to be ”between” practical feasibility and infeasibility.

Primarily, one is interested in conditional probabilities

Prob
(
(Xn, X

′
n) ∈ Bn | (X0, X

′
0) ∈ B0

)
. (1)



Usually, the exact computation of such probabilities is practically infeasible.
Instead, one usually considers the probability of a particular differential path

Prob
(
(Xn, X

′
n)∈Bn,(Xn−1, X

′
n−1)∈Bn−1, . . . ,(X1, X

′
1)∈B1 |(X0, X

′
0)∈ B0

)
(2)

which provides a lower bound for (1). (Note that different differential paths
might end in the set Bn.) Here X0, . . . , Xn, X

′
0, . . . , X

′
n denote random variables

that assume values on a finite set Ω (typically, Ω = {0, 1}v) while the subsets
B0, . . . , Bn ⊆ Ω × Ω characterize conditions that define the differential path.
The conditional probability (2) equals a product of conditional probabilities

Prob
(
(Xi, X

′
i)∈ Bi |(Xi−1, X

′
i−1)∈Bi−1, . . . ,(X0, X

′
0)∈B0

)
for i∈{1, . . . , n}. (3)

Usually, due to their long ’history’ also these conditional probabilities cannot
be computed exactly, in particular since the pairs (Xi, X

′
i), (Xi−1, X

′
i−1), . . . are

usually not independent, at least not in a strict sense, which causes further com-
putational difficulties. Moreover, the random variables Xi and X ′i are strongly
correlated, which complicates concrete calculations additionally unless |Ω| is
very small or the sets Bi are extremely simple. For these reasons the conditional
probabilities (3) usually are only roughly estimated. For hash collision paths the
subsets Bi typically define conditions on particular bits, and 2−(#affected bits)

serves as an approximator for the unknown conditional probability (3).
Generally speaking we propose to study ’primitives’

Prob
(
(Z,Z ′) ∈ B3 | (X,X ′) ∈ B1, (Y, Y ′) ∈ B2

)
(4)

that are tailored to the real-world problem. (Depending on the concrete problem
it may be necessary to considered a longer history.) If the range of thses ran-
dom variables is small (4) can be determined by exhaustion. For hash functions
X,X ′, Y, Y ′, Z, Z ′ typically assume values in {0, 1}32 or {0, 1}64, which requires
more sophisticated methods.

The understanding of suitable primitives can help to simplify conditional
probabilities (3) of random vectors assuming values on the product space Ω×Ω
with strongly correlated components to conditional probabilities on Ω, which
clearly is an enormous advantage. Another goal is to find sufficient conditions
that the conditional random variable (Y3, Y

′
3) | B3 is independent of (Y2, Y

′
2) | B2.

Depending on the concrete situation this may allow to reduce the relevant part
of the ’history’ in (3), which also simplifies calculations.

Hash functions are used by many cryptographic applications. Strong hash
functions should meet the one-way property and the second pre-image property.
Many applications (as digital signatures) additionally demand that the hash
function shall be collision resistant , i.e. it shall not be feasible in practice to find
bit strings M 6= M ′ with identical hash values.

In [WLFCY], [WY] and [WYuY] efficient collision search methods are de-
scribed for the hash functions HAVAL, RIPEMD, MD4 and MD5 and SHA-0;
for improvements see [St], [SNKO], [LiLa], [Kli1], [Kli2], [BCH] , [SLW], [DR].
In [WYiY] a collision attack on SHA-1 is sketched with a predicted workload
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of 269 SHA-1 calculations (or more precisely: the workload shall be equivalent
to the calculation of 269 hash values) and [WYaYa] announce an improvement
with a workload of only 263 SHA-1 calculations. For a reduced SHA-1 version
(70 instead of 80 steps) [DMR] presents a collision with workload of 244 hash
calculations. In [SLW] and [DR] collision search methods for differing prefixes
have been developed.

The core of any dedicated hash function H: {0, 1}∗ → {0, 1}t is the compres-
sion function

h : {0, 1}t × {0, 1}s −→ {0, 1}t. (5)

The compression function h itself consists of a large number of elementary step
functions hi : {0, 1}t × {0, 1}s → {0, 1}t (which can be processed efficiently on
32-bit architectures) and a final modular addition of 32-bit words (postaddition).
All the widely-used dedicated hash functions are of Merkle-Damgard type where
the hash value H(M) is computed as follows: According to a specified padding
scheme the message M is first expanded to a bit string whose length is a mul-
tiple of s bits. The extended bit string is segmented into non-overlapping s-bit
blocks: m(1)||m(2)|| . . . ||m(r). Beginning with a (fixed) initialization vector IV
one iteratively computes

h1 := h(IV,m(1)), h2 := h(h1,m(2)), . . . , hj+1 := h(hj ,m(j+1)), . . . (6)

Finally, H(M) := hr. A 2-block collision is a pair (m(1)||m(2),m
′
(1)||m

′
(2)) with

m(i),m
′
(i) ∈ {0, 1}

s and (m(1)||m(2)) 6= (m′(1)||m
′
(2)) with

h2 = h(h(IV,m(1)),m(2)) = h(h(IV,m′(1)),m
′
(2)) = h′2 . (7)

Note that appending arbitrary blocks m(3),m(4), . . . to both m(1)||m(2) and
m′(1)||m

′
(2) clearly implies hj = h′j for all j ≥ 2. All the attacks mentioned above

aim at 2-block collisions. Generically, two-block collision search algorithms (as
in [WY] and [WYiY], for instance) work as follows:

1. (first block) Pairs of blocks (m(1),m
′
(1)) are generated in a specific manner

(a part of this procedure is referred to as ”message modification”) until a
pair of chaining value (h1 := h(IV,m(1)), h′1 := h(IV,m′(1))) is found that is
at least ’similar’, satisfying specified conditions.

2. (second block) Depending on the chaining values (h1, h
′
1) message blocks

(m(2),m
′
(2)) are generated in a specific manner until one pair satisfies (7).

[WY] and [WYiY] list sets of conditions on the intermediate results during the
step-by-step calculation of the value h2 = h(h(IV,m(1)),m(2)) (called ’sufficient
conditions’ in [WY] and [WYiY]). If these conditions are fulfilled h1 and h′1
meet specific bit conditions, and finally h2 = h′2. Additionally, these conditions
(shall) ensure that intermediate values follow a specified differential path (a
so-called collision path, resp. a near-collision path for the first block). A more
precise definition of the term ’differential path’ will be given later. Basically it
is a combination of a 32-bit word modular differential path and a kind of signed
XOR differential path.
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We point out that, at least for fixed differential schemes (cf. Sects. 2 and 4),
the IV may influence the success probability considerably (→ postadditions).
This phenomenon was first quantified in [GIS2] (and almost at the same time
qualitatively mentioned in [St]) although it is non-negligible. The impact of the
IV may be relevant for ’prefix’ attacks as described in [DL] and [GIS1].

In Section 3 we prove three technical theorems that will turn out to be
very useful later. In Section 4 the effectiveness of our approach is confirmed by
practical experiments with three near-collision paths (specified in the appendix)
for the MD5 hash function. Based on a stochastic model with mild assump-
tions on the mixing properties of the MD5 step function the before-mentioned
theorems on the primitives are applied. The ’theoretically’ derived path prob-
abilities matched with empirical results. Compared with the ’straight-forward’
approximators for the path probabilities (obtained by ’classical’ bit counting) we
obtained non-negligible ’correction factors’ between 1/12 and 5, which in turn
imply ’correction factors’ between 1/5 and 12 on the expected workload of the
collision attack.

We mention that our approach can be adjusted to compute the actual ex-
pected workload (e.g.) for specific SHA-1 collision paths (cf. Subsect. 4.4), for
instance. In this case ’correction factors’ of, let’s say, one or two (positive or
negative) powers of 2 were surely relevant.

Reference [GIS3] is a pre-version of this paper. An abbreviated version [GIS4],
which omits technical details and all proofs from Section 3 and several examples
from Section 4 but focuses on the understanding and the application of our
approach, will appear in the proceedings of the security conference ’Sicherheit
2008’ which will be held in Saarbrücken (Germany) in April 2008.

2 The Goal

Generically, the compression function h: {0, 1}t×{0, 1}s → {0, 1}t of a dedicated
hash function H consists of the following steps:

1. (Input) chaining value r(0) (first block: IV ) and message block m
2. (Message Expansion) m = (m1, . . . ,ms/32) 7→ m̃ = (m̃1, . . . , m̃N )
3. (Initialization of the registers) for i = 1 to k do
r−k+i := r(0),i ∈ {0, 1}32
where r(0),i denotes a particular word of the IV , resp. the chaining value.

4. (Step functions) for i = 1 to N do
ri := Fi(ri−1, . . . , ri−k, m̃i)

5. (Postadditions) for i = N − k + 1 to N do
rp
i := ri + ri−N (mod232)

6. (Output) (rp
N−k+1, . . . , r

p
N ) (new chaining value)

Remark 1. (i) (Example) MD5: (s, t,N, k) = (512, 128, 64, 4), SHA-1: (s, t,N, k) =
(512, 160, 80, 5), SHA-256: (s, t,N, k) = (512, 256, 64, 8).
(ii) The step function Fi usually depends on the Step number i.
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(iii) The widespread dedicated hash functions usually perform arithmetic on 32-
bit words. Although our results can immediately be transferred from Z232 to any
other modulus Z2v we assume v = 32 in the following. For the sake of readability
we do not introduce a further parameter v.

For any hash function H a (one-block) collision can be found with complexity
O(2t/2) (”birthday paradox”). Roughly speaking, the goal of a collision attack is
to determine sufficient conditions on related message blocks (m,m′) and on the
intermediate register values (r1, r′1), . . . , (rN , r′N ), (rp

N−k+1, r
p′
N−k+1), . . . , (rp

N ,
rp′

N ) such that h(c,m) = h(c,m′) (collision) or at least that h(c,m) and h(c,m′)
are ’similar’, assuming a determined difference (near-collision) and ’preparing’
a collision in one of the next blocks. Usually, there exists a number N1 < N
such that a suitable (random) choice of (m,m′) guarantees the conditions on
the register values (rj , r′j) and the expanded message blocks (m̃j , m̃

′
j) in steps

j ≤ N1 (message modification). The conditions specified after step N1 shall be
satisfied with a considerably larger probability than 2−t/2.

From Step N1 +1 to N (including the postadditions) the attacker just checks
whether the intermediate register values (and possibly the expanded message
blocks) fulfil the given sufficient conditions (with the option of stopping the cal-
culation of (h(c,m), h(c,m′)) early), or at least whether h(c,m) and h(c′,m′)
meet certain properties. In fixed differential schemes ([WY], [Kli1] etc.) the suf-
ficient conditions for all blocks are determined before the attack is started and
remain fixed for any repetition of the attack. In contrast in variable differen-
tial schemes ([DR],[DMR]) the (near-)collision path in block i depends on the
chaining values after step i− 1. This saves bit conditions on the chaining values
(i.e. on the postadditions) but requires the search of a new (near-)collision paths
whenever the attack is applied.

In this paper we are interested in the probabilities of (near-)collision paths,
or more precisely, in the probability that the sufficient conditions after Step
N1 (end of the message modification) are fulfilled. We interpret the register
values and the extended message blocks as values that are assumed by random
variables, which we denote with the respective capital letters. By the example
MD5 we formulate and justify a stochastic model and demonstrate how to apply
the theorems from Section 3 to determine (almost) exact path probabilities.
Note that the exact probability of a collision path follows from the conditional
probabilities (= transition probabilities)

Prob((Ri, R
′
i) | Ri−1, R

′
i−1, . . . , M̃i, M̃

′
i , . . .) and (8)

Prob((Rp
i , R

′p
i ) | Ri, R

′
i, Ri−N , R

′
i−N , . . .) (postaddition), (9)

where the random vectors are contained in particular subsets (cf. (3)). The con-
ditional parts comprise the history up to Step i where the random variables
Ri, R

′
i, . . . meet specific path-dependent requirements. The following section is

rather technical but provides three very useful theorems that support our goals
which were formulated after (4).
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3 Three Useful Theorems

In this section we prove three theorems that will be very useful in Section 4.
Although our results can immediately be transferred to any other additive group
Z2v we restrict our attention to Z232 (cf. Remark 1).

During the first reading the reader may skip the lemmata and the proofs
within this section. To follow Section 4 it suffices to be familiar with the notation
and the statements of the three theorems.

Definition 1. For M ∈ IN the term ZM stands for {0, 1, . . . ,M − 1}. In the
following w[j] denotes the jth bit of a 32-bit word w. Numbering starts at the
least significant bit with 1.

For a, b ∈ Z232 the term ∆(a, b) denotes the modulo 232-difference of a and
b, i.e. ∆(a, b) := (b − a)(mod 232). Similarly as in [WY] we define ∆B(a, b) :=
[±j1, . . . ,±jk] where j1, . . . , jk denote those bit positions where a and b are dif-
ferent. Here ’+j’, resp. simply ’j’, means that (a[j], b[j]) = (0, 1) while ’−j’
means that (a[j], b[j]) = (1, 0).

Let X denote a random variable that assumes values on Z232 , and assume
Prob(X ∈ A) > 0. Then X | A denotes the conditional random variable, which
is given by Prob((X | A) = x) = Prob(X = x)/Prob(X ∈ A) for all x ∈ A and
= 0 else. If Prob(X = a) = Prob(X ∈ A)/|A| for each a ∈ A then (X | A) is
uniformly distributed on A. If it is non-ambiguous we also loosely say that X is
uniformly distributed on A.

In the following F+, F−, F0, F1 ⊆ {1, . . . , 32} and F32,6= ⊆ {32} denote dis-
joint subsets. Further, F= := {1, . . . , 32} \ (F+ ∪ F− ∪ F0 ∪ F1 ∪ F32,6=).

There exist obvious 1-1-correspondences between the index sets F+, . . . , F=

and the subsets S+, . . . , S= ⊆ Z232 × Z232 defined below:

S+ := {(m,m′) ∈ Z232 × Z232 | (m[j],m′[j]) = (0, 1) for all j ∈ F+} (10)
S− := {(m,m′) ∈ Z232 × Z232 | (m[j],m′[j]) = (1, 0) for all j ∈ F−} (11)
S0 := {(m,m′) ∈ Z232 × Z232 | (m[j],m′[j]) = (0, 0) for all j ∈ F0} (12)
S1 := {(m,m′) ∈ Z232 × Z232 | (m[j],m′[j]) = (1, 1) for all j ∈ F1} (13)

S32,6= :=
{
{(m,m′) ∈ Z232 × Z232 | m[32] 6= m′[32]} if F32, 6= = {32}
Z232 × Z232 if F32, 6= = {} (14)

S= := {(m,m′) ∈ Z232 × Z232 | m[j] = m′[j] for all j ∈ F=} (15)

In the notation of [WY] the index sets F+, F−, F0, F1, F32,6=, F= express bit con-
ditions. Note that (a, b) ∈ S(F+, F−, F0, F1, F32,6=, F=)
:= S+ ∩ S− ∩ S0 ∩ S1 ∩ S32,6= ∩ S= iff (a, b) meets the bit conditions implied by
F+, F−, F0, F1, F32,6=, F=. Example 1 and Table 1 illustrate the connection be-
tween bit conditions and the notion of F sets.

Example 1. The bit conditions (∆B(a, b) = [30,−26]; a[4] = b[4] = 1) cor-
respond to F+ = {30}, F− = {26}, F0 = {}, F1 = {4}, F32,6= = {}, F= =
{1, . . . , 32} \ {4, 26, 30}.
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F+ F− F0 F1 F32,6= F=

[32] {32} ∅ ∅ ∅ ∅ {1, . . . , 32} \ {32}
[−30] ∅ {30} ∅ ∅ ∅ {1, . . . , 32} \ {30}

[32,−30] {32} {30} ∅ ∅ ∅ {1, . . . , 32} \ {32, 30}
a[2] = b[2] = 0 ∅ ∅ {2} ∅ ∅ {1, . . . , 32} \ {2}
a[7] = b[7] = 1 ∅ ∅ ∅ {7} ∅ {1, . . . , 32} \ {7}

[∗32] ∅ ∅ ∅ ∅ {32} {1, . . . , 32} \ {32}
Table 1. Bit conditions vs. the notion of F -sets

Definition 2. Let

∆(F+, F−, F32,6=32) :=
∑

j∈F32, 6=

231 +
∑

j∈F+

2j−1 −
∑

j∈F−

2j−1(mod 232). (16)

In analogy to the sets F+, . . . , F= we assume that the subsets G0, G1 ⊆ {1, . . . , 32}
are disjoint.

Similarly as above, for q ∈ {0, 1}

Tq := {m ∈ Z232 | m[j] = q for all j ∈ Gq} (17)

implies a 1-1-correspondence between the index set Gq and Tq ⊆ Z232 . Further,
T (G0, G1) := T0 ∩ T1.

The following lemma collects important facts that will be needed later in this
section.

Lemma 1. (i) The mappings

(F+, F−, F0, F1, F32,6=, F=) 7→ (18)
S(F+, F−, F0, F1, F32,6=, F=) = S+ ∩ S− ∩ S0 ∩ S1 ∩ S32,6= ∩ S=

and
(G0, G1) 7→ T (G0, G1) = T0 ∩ T1. (19)

are injective.
(ii) For any (a, b) ∈ S(F+, F−, F0, F1, F32,6=, F=)

∆(a, b) ≡ b− a ≡
∑

j∈F32, 6=

231 +
∑

j∈F+

2j−1 −
∑

j∈F−

2j−1(mod 232) (20)

= ∆(F+, F−, F6=).

In particular, the function ∆(·, ·) is constant on the set S+ ∩ S− ∩ S32,6= ⊇
S(F+, F−, F0, F1, F32, 6=, F=), assuming a value ∆(F+, F−, F32,6=).
(iii) Let pr1: Z232 × Z232 → Z232 denote the projection onto the first component.
Then

pr1(S(F+, F−, F0, F1, F32,6=, F=)) = T (F+ ∪ F0, F− ∪ F1). (21)
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(iv) The mapping

(F+, F−, F0, F1, F32, 6=, F=) 7→ (∆(F+, F−, F32, 6=), (F+ ∪ F0, F− ∪ F1)) (22)

is injective.

(v) (a, b) ∈ S(F+, F−, F0, F1, F32,6=, F=)⇐⇒ (23)(
(b− a ≡ ∆(F+, F−, F32,6=)(mod 232)) , (a ∈ T (F+ ∪ F0, F− ∪ F1))

)
.

(vi) Let X,X ′ denote random variables that assume values on Z232 , and let
S := S(F+, F−, F0, F1, F32,6=, F=), ∆ := ∆(F+, F−, F32,6=) and T := T (F+ ∪
F0, F− ∪ F1) for the moment. Then

Prob((X,X ′) ∈ S) = Prob(X ′−X ≡ ∆( mod 232) | X ∈ T )·Prob(X ∈ T ). (24)

Proof. Assertions (i) and (ii) are obvious since +231 ≡ −231(mod232). As-
sertion (iii) is true since j ∈ F+ ∪ F0 implies m[j] = 0 for all (m,m′) ∈
S+ ∩ S0 ⊇ S(F+, F−, F0, F1, F32,6=, F=) etc. The ”⇒” direction of (v) is ob-
vious from (ii) and (iii). To verify the inverse direction note that because of
(iii) for every a ∈ T (F+ ∪ F0, F− ∪ F1) there is at least one b with (a, b) ∈
S(F+, F−, F0, F1, F32,6=, F=), but (ii) implies that there is only one, namely, with
b−a ≡ ∆(F+, F−, F32,6=)( mod 232). Assertion (iv) follows from (v) and also (vi)
is an immediate consequence of (v) and the definition of conditional probabilities.

Under mild and reasonably justifiable stochastic assumptions Theorem 1 to
Theorem 3 below allow to move the calculation of transition probabilities of
hash collision paths from the product space Z232 × Z232 to Z232 (cf. (8), (9) and
(44)), which constitutes an enormous improvement; see Section 4 for details.
For the moment we merely mention that in Section 4 the sets S(·) and T(·) will
characterize bit conditions while the random variables X, Y and Z correspond
to intermediate values or to register values. Note that under the certain condi-
tions the step transition probability indeed equals 2−#bit conditions, the value
obtained by simple bit condition counting, (cf. Theorem 1(ii) and Theorem
2(ii)).

Definition 3. For the remainder of this section we use the abbreviations S(i) :=
S(F(i)+, F(i)−, F(i)0, F(i)1, F(i)32,6=, F(i)=), ∆(i) := ∆(F(i)+, F(i)−, F(i)32,6=) and
T(i) := T (F(i)+ ∪ F(i)0, F(i)− ∪ F(i)1). The index i ranges from 1 to 3.

For 0 ≤ sh < 32 the term w<<<sh denotes the cyclic shift of the word w by
sh positions to the left. Similarly (w,w′)<<<sh stands for (w<<<sh, w′

<<<sh).
Analogously, F<<<sh

∗ results from adding the integer sh to each element in F∗,
where the integers 33, 34, . . . are interpreted as 1, 2, . . ..

Remark 2. (i) Clearly, if F32,6= = {} the image S(F+, F−, F0, F1, F32, 6=, F=)<<<sh

equals S(F<<<sh
+ , F<<<sh

− , F<<<sh
0 , F<<<sh

1 , {}, F<<<sh
= ). We have j ∈ F∗

iff j + sh, resp. j + sh − 32 ∈ F<<<sh
∗ . The latter term means the set This
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condition is not very restrictive since the set S(F+, F−, F0, F1, {32}, F=) equals
the disjoint union S(F+ ∪ {32}, F−, F0, F1,
{}, F=) ∪ S(F+, F− ∪ {32}, F0, F1, {}, F=).
(ii) Note that ∆(F+, F−, {}) = ∆(F ′+, F

′
−, {}) does not necessarily imply

∆(F<<<sh
+ , F<<<sh

− , {}) = ∆(F ′<<<sh
+ , F ′

<<<sh
− , {}).

Counterexample: F+ = {20}, F ′+ = {21}, F ′− = {20}, sh = 12. Then∆({20}, {}, {})
= 219 = ∆({21}, {20}, {}) but ∆({20}<<<12, {}, {}) = ∆({32}, {}, {}) = 231

whereas ∆({21}<<<12 , {20}<<<12 , {}) = ∆({1}, {32}, {}) ≡ −231 + 1 ≡ 231 +
1(mod 232).

Theorem 1. Let X,X ′, Y, Y ′ denote random variables that assume values in
Z232 , where (X,X ′) and (Y, Y ′) are independent. Further, assume that 0 ≤ sh <
32 and F(1)32,6= = {}.
(i) Setting ∆̃(1) := ∆(F<<<sh

(1)+ , F<<<sh
(1)−

, {}) the conditional probability

Prob
([

(X,X ′)<<<sh + (Y, Y ′)
]

(mod 232) ∈ S(3) | (X,X ′) ∈ S(1), (Y, Y ′) ∈ S(2)

)
(25)

equals
Prob

([
X<<<sh + Y

]
(mod 232) ∈ T(3) | (X,X ′) ∈ S(1), (Y, Y ′) ∈ S(2)

)
if ∆(3) ≡ ∆̃(1) +∆(2)(mod 232)

0 else
(26)

(ii) If (X,X ′) and X are uniformly distributed on S(1) and T(1), resp., the con-
dition ’(X,X ′) ∈ S(1)’ in (26) may be replaced by ’X ∈ T(1)’.
If additionally T(1) = Z232 under the conditions of (26) the random variable
Z := (

[
X<<<sh + Y

]
(mod232 is uniformly distributed on Z232 , and (Z,Z ′)

is uniformly distributed on S(3). Further, Z | T(3) and Y | T(2) as well as
(Z,Z ′) | S(3) and (Y, Y ′) | S(2) are independent, and the first line in (26) equals
2−|F(3)+∪F(3)0∪F(3)−∪F(3)1|.
The corresponding assertions (with interchanged roles of X and Y ) hold if (Y, Y ′)
and Y are uniformly distributed on S(2) and T(2), respectively.
(iii) Assume that in (i) (X,X ′), X, (Y, Y ′), Y are uniformly distributed on the
sets S(1), T(1), S(2) and T(2), respectively. Then (26) simplifies to

Prob
([
X<<<sh + Y

]
(mod 232) ∈ T(3) | X ∈ T(1), Y ∈ T(2)

)
if ∆(3) ≡ ∆̃(1) +∆(2)(mod 232)

0 else
(27)

Proof. To simplify notation we use the abbreviations (X̃, X̃ ′) := (X,X ′)<<<sh

and S̃(1) := S̃<<<sh
(1) and T̃(1) := pr1(S̃(1)) within this proof. We note that

(X̃, X̃ ′) ∈ S̃(1) iff (X,X ′) ∈ S(1) since F32, 6= = {} (cf. Remark 2(i)), and similarly
X̃ ∈ T̃(1) iff X ∈ T(1).
We assume Prob((X,X ′) ∈ S(1), (Y, Y ′) ∈ S(2)) > 0 since otherwise the con-
ditional probability (25) may be defined arbitrarily. Obviously, this conditional
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probability is zero if ∆(3) 6≡ ∆̃(1) + ∆(2)(mod 232). We assume ∆(3) ≡ ∆(1) +
∆(2)(mod 232) in the remainder of this proof. Using the above equivalences
Lemma 1(v) verifies (26), which equals∑

(x̃,x̃′)∈S̃(1),(y,y′)∈S(2)

Prob
([
X̃ + Y

]
(mod 232) ∈ T(3) | (X̃, X̃ ′) = (x̃, x̃′), (Y, Y ′) = (y, y′)

)
×

× Prob((X̃, X̃ ′) = (x̃, x̃′), (Y, Y ′) = (y, y′))

Prob((X̃, X̃ ′) ∈ S̃(1), (Y, Y ′) ∈ S(2))
.

To any (x̃, y) ∈ T̃(1) × T(2) there exists a unique quadruple (x̃, x̃′, y, y′) ∈ S̃(1) ×
S(2). Assume that (X,X ′) and X are uniformly distributed on S(1) and T(1),
repectively. Then (X̃, X̃ ′) and X̃ are uniformly distributed on S̃(1) and T̃(1),
respectively. Since (X̃, X̃ ′) and (Y, Y ′) are independent the above term simplifies
to ∑

x̃∈T(1),y∈T(2)

Prob
([
X̃ + Y

]
(mod 232) ∈ T(3) | X̃ = x̃, Y = y

)
×

×Prob((X̃, X̃ ′) = (x̃, x̃′))

Prob((X̃, X̃ ′) ∈ S̃(1))
· Prob((Y, Y ′) = (y, y′))

Prob((Y, Y ′) ∈ S(2))

=
∑

x̃∈T(1),ỹ∈T(2)

Prob
([
X̃ + Y

]
(mod 232) ∈ T(3) | X̃ = x̃, Y = y

)
×

× Prob(X̃ = x̃)

Prob(X̃ ∈ T̃(1))
· Prob((Y, Y ′) = (y, y′))

Prob((Y, Y ′) ∈ S(2))

= Prob
([
X̃ + Y

]
(mod 232) ∈ T(3) | X̃ ∈ T̃(1), (Y, Y ′) ∈ S(2)

)
If additionally T(1) = Z232 (= T̃(1)) for any (y, y′) ∈ S(2) the random vari-
able Zy := X̃ + y is uniformly distributed on Z232 since X and (Y, Y ′) are
independent. Since Z ′y = Zy + ∆̃(1) + ∆(2)(mod 232) by Lemma 1(v) the ran-
dom vector (Zy, Z

′
y) is uniformly distributed on S(3) (with total mass zero if

∆(3) 6≡ ∆̃(1) + ∆(2)(mod232)). Since (y, y′) was arbitrary, (Z,Z ′) | S(3) and
(Y, Y ′) | S(2) are independent, and for similar reasons also Z | T(3) and Y | T(2)

are independent. Since Z is uniformly distributed on Z232 the conditional prob-
ability in (26) equals |T(3)|/|Z232 |. Mimicking this proof verifies the second part
of (ii) and (iii).

Corollary 1. For sh = 0 we may drop the condition F(1)32 6= = {} in Theorem 1.

The proof of Theorem 1 can be adapted in a straight-forward way to verify
Corollary 1. The case sh = 0 is of particular interest (→ postadditions; cf.
Section 4).

Definition 4. For a, b, c ∈ Z232 and 0 ≤ sh < 32 we define the set M(a, b, c, sh)
:= {u ∈ Z232 | ∆((u, u+ a(mod 232))<<<sh) + b ≡ c(mod 232)}.
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Theorem 2. Let X,X ′, Y, Y ′ denote random variables that assume values in
Z232 , where (X,X ′) and (Y, Y ′) are independent. Further, 0 ≤ sh < 32.
(i) Let ∆[1] ∈ Z232 . Assume further that (X,X ′) and X are uniformly distributed
on {(x, x+∆[1](mod 232)) | x ∈ Z232} and on Z232 , respectively. Then

Prob
([

(X,X ′)<<<sh + (Y, Y ′)
]

(mod 232) ∈ S(3) | ∆(X,X ′) = ∆[1], (Y, Y ′) ∈ S(2)

)
= Prob

([
X<<<sh + Y

]
(mod 232) ∈ T(3) | X ∈M(∆[1], ∆(2), ∆(3), sh), (Y, Y ′) ∈ S(2)

)
×

×Prob(X ∈M(∆[1], ∆(2), ∆(3), sh)). (28)

(ii) If M(∆[1], ∆(2), ∆(3), sh) = Z232 the random vector (Z := X<<<sh +Y ( mod
232), Z ′ := X ′<<<sh + Y ′(mod 232)) and the random variable Z are uniformly
distributed on S(3) and T(3), respectively. In particular, Z | T(3) and Y | T(2)

as well as (Z,Z ′) | S(3) and (Y, Y ′) | S(2) are independent, and (28) equals
2−|F(3)+∪F(3)0∪F(3)−∪F(3)1|.
(iii) Assume that in (i) the random vector (Y, Y ′) and the random variable Y are
uniformly distributed on S(2) and T(2), respectively. For any M(∆[1], ∆(2), ∆(3), sh)
the right-hand-side of (28) simplifies to

Prob
([
X<<<sh + Y

]
(mod 232) ∈ T(3) | X ∈M(∆[1], ∆(2), ∆(3), sh), Y ∈ T(2)

)
×

×Prob(X ∈M(∆[1], ∆(2), ∆(3), sh)). (29)

If T(2) = Z232 the random vector (Z,Z ′) and Z are uniformly distributed on S(3)

and Z232 . In particular, (29) further simplifies to

2−|F(3)+∪F(3)0∪F(3)−∪F(3)1| · Prob(X ∈M(∆[1], ∆(2), ∆(3), sh)). (30)

Proof. We first note that the set M(∆[1], ∆(2), ∆(3), sh) is well-defined. As in
the proof of Theorem 1(i) we may assume that Prob((Y, Y ′) ∈ S(2)) > 0 in the
remainder. Due to Lemma 1(v) the left-hand side in (28) equals

Prob
([
X<<<sh + Y

]
(mod 232) ∈ T(3) | ∆(X,X ′) = ∆[1], X ∈M(· · ·), (Y, Y ′) ∈ S(2)

)
×

×
Prob(∆(X,X ′) = ∆[1], X ∈M(· · ·))

Prob(∆(X,X ′) = ∆[1])

Due to the uniformity assumptions on (X,X ′) and X the second factor equals
Prob(X ∈ M(· · ·)). If additionally (Y, Y ′) and Y are uniformly distributed on
S(2) and T(2), resp., the above term simplifies to∑

x∈M(···),y∈T(2)

Prob
([
X<<<sh + Y

]
(mod 232) ∈ T(3) | X = x, Y = y

)
×

×
Prob((X,X ′) = (x, x+∆[1]))

Prob((X,X ′) : X ∈M(· · ·), ∆(X,X ′) = ∆[1])
·

Prob((Y, Y ′) = (y, y +∆(2)))
Prob((Y, Y ′) ∈ S(2))

×

× Prob(X ∈M(· · ·))
=

∑
x∈M(···),y∈T(2)

Prob
([
X<<<sh + Y

]
(mod 232) ∈ T(3) | X = x, Y = y

)
×

× Prob(X = x)
Prob(X ∈M(· · ·))

· Prob(Y = y)
Prob(Y ∈ T(2))

· Prob(X ∈M(· · ·))
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which proves (29). Apart from the fact that the ratio Prob((Y, Y ′) = (y, y +
∆(2)))/Prob((Y, Y ′) ∈ S(2)) is not replaced by Prob(Y = y)/Prob(Y ∈ T(2))
formula (28) follows analogously. The remaining assertions can be proved with
similar techniques as used in the proof of Theorem 1.

In the remainder of this section we derive a characterization of the set
M(∆[1], ∆(2), ∆(3), sh) which is more suitable for concrete computations (cf.
Sect. 4).

Definition 5. For a ∈ Z and n ∈ N we set a div n to be ba/nc where brc
denotes the largest integer that is ≤ r.
For a ∈ Z the term a(modM) stands for the representative of a+ Z/MZ in ZM,
i.e. for that element in ZM that is congruent to the integer a modulo M . For
0 ≤ sh < 32 we define ca(a1, . . . , ak; sh) := (a1 + · · ·+ ak) div 232−sh (’carry’).

Lemma 2. Within this lemma let x′ ∈ Z232 with x′ ≡ x + ∆(mod232) for
fixed ∆ ∈ Z. Assume further that 0 ≤ sh < 32 and x = x1 · 232−sh + x0 and
x′ = x′1 · 232−sh + x′0 with 0 ≤ x0, x

′
0 < 232−sh and 0 ≤ x1, x

′
1 < 2sh. Further,

we decompose ∆ = ∆1 · 232−sh + ∆0 where ∆0 and ∆1 may assume arbitrary
integer values. This implies:
(i) For a ∈ Z and n ∈ N we have a(modn) = a− (a div n)n.
(ii) For a ∈ Z and n,m ∈ IN we have (a(modn))m = am(mod nm).
(iii) x<<<sh = x0 · 2sh + x1.
(iv) x′ = ((x1+∆1+ca(x0, ∆0; sh))( mod 2sh))·232−sh +(x0+∆0)( mod 232−sh)
(integer equation!)
(v) x′<<<sh ≡

[
x0 +∆0 −

(
(x1 +∆1 + ca(x0, ∆0; sh)) div 2sh

)]
· 2sh+

x1 +∆1 + ca(x0, ∆0; sh) (mod 232).
(vi) Let k·232−sh ≤ ∆0 < (k+1)232−sh for a particular k ∈ Z. Then ca(x0, ∆0; sh)
∈ {k, k + 1}.

Proof. Assertion (i) follows from its definition, and (a(modn))m =
(a−[a div n]n)m = am−[a div n]nm = am( mod nm). Assertions (iii), (iv) and
(vi) are obvious. From (iv) we immediately obtain

x′
<<<sh ≡

[
(x0 +∆0) (mod 232−sh)

]
·2sh+(x1 +∆1 + ca(x0, ∆0; sh)) ( mod 2sh).

Applying (i) to the right-hand summand and (ii) to the left-hand summand
proves (v).

Theorem 3. (Continuation of Theorem 2) Assume that ∆(3) −∆(2) ≡(
∆̃0 · 2sh + ∆̃1

)
(mod 232) and ∆[1] ≡

(
∆1 · 232−sh +∆0

)
(mod 232) with inte-

gers ∆̃0, ∆̃1, ∆0, ∆1, which need not be nonnegative.
(i) Then

x = x1 · 232−sh + x0 ∈M(∆[1], ∆(2), ∆(3), sh) (31)
iff

∆̃0 · 2sh + ∆̃1 ≡
(
∆0 − [x1 +∆1 + ca(x0, ∆0; sh)] div 2sh

)
· 2sh + (32)

[∆1 + ca(x0, ∆0; sh)] (mod 232)
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(ii) In particular,

ca(x0, ∆0; sh) ≡ ∆̃1 −∆1(mod 2sh) and (33)
ca(x0, ∆0; sh) ∈ {∆0 div 232−sh, ∆0 div 232−sh + 1}.

(iii) For 0 < sh < 32 the relations (33) determine ca(x0, ∆0; sh) uniquely.
(iv) For sh = 0 trivially M(∆[1], ∆(2), ∆(3), 0) = Z232 iff ∆[1]+∆(2) ≡ ∆(3)( mod
232) and = ∅ else.

Proof. To prove Theorem 3(i) recall the definition of M(∆[1], ∆(2), ∆(3), sh). By
assumption, the left-hand side of (32) equals ∆(3) − ∆(2). The right-hand side
follows immediately from Lemma 2(iii) and (v), which are applied to the first
and the second component of ∆(u := x1 · 232−sh + x0, u + ∆[1]), respectively.
Applying Lemma 2(vi) to (32) yields the second assertion of (33), reducing this
congruence modulo 2sh proves the first assertion. The proof of (iii) and (iv) is
obvious.

Theorem 3 provides the promised alternative characterization of the set
M(∆[1], ∆(2), ∆(3), sh), which is more convenient for concrete computations. In
particular, (33) provides an inequality for x0. Due to Theorem3(iii) ca(x0, ∆0, sh)
is unique. Substituting this value into (32) provides a relation that determines
the ’upper’ part x1; see Section 4 for illustrating examples. We mention that the
term ca(x0, ∆; sh) compensates the ’non-uniqueness’ of the values ∆0, ∆1.

Remark 3. All three theorems will be very useful in the next section. We point
out that they can be extended to handle bit conditions that affect (Y, Y ′) and
(Z := X<<<sh + Y (mod232), Z ′ := X ′

<<<sh + Y (mod232)) simultaneously.
For instance, the (additional) condition Y [3] = Y ′[3] = Z[3] = Z ′[3] can be de-
composed into two disjoint cases, namely into Y [3] = Y ′[3] = 0 = Z[3] = Z ′[3],
and Y [3] = Y ′[3] = 1 = Z[3] = Z ′[3], respectively. Both cases can be expressed in
the form S(F+, F−, F0∪{3}, F1, F32,6=, F=) and S(F+, F−, F0, F1∪{3}, F32, 6=, F=)
with suitable subsets F+, F−, F0, F1, F32,6=, F=.

4 Example: Concrete Collision paths in MD5

In this section we demonstrate the use and the usefulness of the theorems proved
in Section 3 by three MD5 near-collision paths for which an experimental verifi-
cation is possible. These paths may not be optimal (i.e., not the most probable
ones) but this is irrelevant for our purpose.

The 512-message block m(1) (resp., m(2)) is segmented into 16 words m1, . . . ,
m16 of length 32. (We omit the index (1) to simplify notation.) This sequence
is extended to 64 words m̃1, . . . , m̃64 as follows (message extension). For i ≤ 16
we set m̃i := mi, and m̃17, . . . , m̃32, resp. m̃33, . . . , m̃48, resp. m̃49, . . . , m̃64 are
permutations of m1, . . . ,m16. After the initialization of four registers by the
IV = (IV0, IV1, IV2, IV3)

r−3 := IV0, r−2 := IV3, r−1 := IV2, r0 := IV1 (34)
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the MD5 algorithm processes 64 steps. (For the second block m(2) the IV has
to be replaced by the chaining value h1.) In Step i the MD5 step function has
the form

(Step i) ri ≡ ri−1+(Φi(ri−1, ri−2, ri−3)+ri−4+m̃i+consti)<<<sh(i)( mod 232)
(35)

where Φi: Z232 × Z232 × Z232 → Z232 is a bit-oriented, step-dependent function
(cf. Appendix). Also the constant consti and the number of shift positions sh(i)
depend on the particular step. Finally, the four registers are updated by

(postaddition) rp
i ≡ ri + ri−64(mod 232) i ∈ {61, 62, 63, 64} (36)

The known MD5 attacks are two-block attacks (see, e.g. [WY,Kli2,YaSh]), i.e.
after block 1 the pairs (rp

61, r
′p
61), (rp

62, r
′p
62), (rp

63, r
′p
63), (rp

64, r
′p
64) shall meet spec-

ified bit conditions that shall ’prepare’ a collision after the compression of the
second block. E.g. in [WY,Kli2,YaSh,Th] conditions on the message blocks, the
register bits and intermediate values are formulated that shall ensure this goal.
The conditions for the first 20 steps can be guaranteed by a (sophisticated) ran-
dom choice of the message blocks, the so-called message modification ([WY,Kli2]
etc.). Our goal is to compute the probability for concrete (near-)collision paths
from Step 21 to Step 64 (including the postadditions).

4.1 Step Transition Probabilities

Definition 6. In this section we denote random variables by capital letters, their
realizations, i.e., values assumed by these random variables, by the respective
small letters.

Since at least large parts of the message blocks m1, . . . ,m16 are chosen randomly
we interpret the register values r−3, . . . , r0, r1, . . . , r

p
64 and the extended message

blocks m̃1, . . . , m̃64 as realizations of random variables R−3, . . . , R0, R1, . . . , R
p
64

and M̃1, . . . , M̃64. (The random variables R−3, . . . , R0 assume constant values
(cf. (34).) In the notion of random variables (35) and (36) read

Ri≡Ri−1+(Φi(Ri−1, Ri−2, Ri−3)+Ri−4+M̃i+consti)<<<sh(i)( mod 232) (37)

and
Rp

i ≡ Ri +Ri−64(mod 232) i ∈ {61, 62, 63, 64} (38)

Note that if we replaced consti by an independent random variable Ci that is
uniformly distributed on Z232 the terms Ri−1 and (· · ·)<<<sh(i) were independent
and the latter was uniformly distributed on Z232 . Although consti assumes a
constant value the following stochastic model is reasonable.

Definition 7. In the following we use the abbreviations from Definition 3 and
Definition 4 but the indices (i) now denote the number of the step of the com-
pression function (i.e., i ∈ {−3, . . . , 64}).
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Stochastic Model. For i ≤ 64 we assume that the pairs of random variables
(Ri−1, R

′
i−1), (Ri−2, R

′
i−2), . . . follow a particular near-collision path, i.e. that

they meet specified sufficient conditions. Let
Xi :=

(
Φi(Ri−1, Ri−2, Ri−3) +Ri−4 + M̃i + consti

)
(mod 232) and

X ′i :=
(
Φi(R′i−1, R

′
i−2, R

′
i−3) +R′i−4 + M̃ ′i + consti

)
(mod 232).

We assume that

– (a) the pairs (Xi, X
′
i) and (Ri−1, R

′
i−1) are independent

– (b) Xi is uniformly distributed on Z232

– (c) (Xi, X
′
i) | {(x, x+∆[i](mod 232)) | x ∈ Z232} is uniformly distributed.

(The difference ∆[i] ∈ Z232 is determined by the (near-)collision path.)

Justification of the Stochastic Model. (i) We addRi−4 and M̃i, which have
no ’obvious’ (at least no linear) dependencies with Ri−1, to Φ(Ri−1, Ri−2, Ri−3)
(merging the last three register values in a non-linear manner), while the modu-
lar addition is a Z232 -linear operation on Z232 . As the same argumentation holds
for the related message M ′ instead of M this justifies Condition (a).
(ii) Even under weak heuristic assumptions the modular sum of three random
variables is very close to the uniform distribution, justifying (b). (Note that at
least Ri−4 and Φi(Ri−1, Ri−2, Ri−3) should be nearly uniformly distributed on
’large’ subsets of Z232 (determined by the collision path), and also the extended
message block M̃i contains some randomness.)
(iii) Assumption (c) grounds on the fact that the register values ’spread’ rapidly
for different messages. For ’purely’ random input M and M ′ (without message
modification) and neglecting any bit condition up to step i−1 we would assume
that (X,X ′) is uniformly distributed on Z232 × Z232 . In our scenario, i.e. where
we focus on the small subset of (near-collision) paths that fulfil a sequence of
bit conditions, it is reasonable only to assume the weaker assumption which is
formulated in (c).

Recall that we are interested in the computation of conditional probabilities
that were defined in (8) and in (9). Since (Xi, X

′
i) and in particular the difference

∆[i] result from (M̃i, M̃
′
i) and the sets S(i−1), . . . , S(i−4) we may extend the

conditional part in (8) to

Prob((Ri, R
′
i)∈ S(i) |(Xi, X

′
i) ∈ {(u, u+∆[i])| u ∈ Z232}, (Ri−1, R

′
i−1)∈S(i−1),×

× . . . , M̃i, M̃
′
i , . . .). (39)

By assertion (a) of the stochastic model the random vectors (Xi, X
′
i) and

(Ri−1, R
′
i−1) are independent, and (b), (c) specify the distribution of Xi and

(Xi, X
′
i) . Since (Ri, R

′
i) computes from (Ri−1, R

′
i−1) and (Xi, X

′
i) we omit the

remainder of the conditional part, and in place of (39) we consider the conditional
probability

Prob((Ri, R
′
i)∈S(i) |(Xi, X

′
i)∈{(u, u+∆[i])|u∈Z232}, (Ri−1, R

′
i−1) ∈ S(i−1)) (40)
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where (Xi, X
′
i) and (Ri−1, R

′
i−1) satisfy the conditions formulated in the stoch-

astic model. This allows to apply Theorem 2 and Theorem 3 in the following.
Remark 4 and Lemma 3(ii) collect useful facts.

Remark 4. (i) If
M(i) := M(∆[i], ∆(i−1), ∆(i), sh(i)) (41)

equals Z232 by Theorem 2(ii) (Ri, R
′
i) and Ri are uniformly distributed on S(i)

and T(i), respectively. Additionally, (Ri, R
′
i) | S(i) and (Ri−1, R

′
i−1) | S(i−1) are

independent.
(ii) For our three near-collision paths the difference ∆[i] follows deterministically
from M̃i, M̃

′
i , S(i−1), . . . , S(i−4). Our approach can be adjusted to more general

situations where a certain difference ∆[i] is only assumed with a particular prob-
ability.

Lemma 3. (i) The differential paths specified in Table 3 satisfy

M(i) = Z232 for i ∈ {21, . . . , 64} \ {23, 35, 62} and (42)
M(i) 6= Z232 for i ∈ {23, 35, 62} (43)

(ii) Theorem 2(ii) can be applied in Step i ∈ {21, . . . , 64}\{23, 35, 62}. In partic-
ular, for these i the exact transition probabilities coincide with the value obtained
by bit condition counting.
(iii) Theorem 2(iii) (resp., formula (29)) can applied in Step i ∈ {23, 35, 62}.

Proof. Applying Theorem 3 to Steps 21 to 64 verifies (i); see Example 2 and Ex-
ample 3 for illustration. Theorem 2 clearly can be applied in all steps. Assertion
(ii) then follows immediately from (42). In particular, (Ri−1, R

′
i−1) and Ri−1

are uniformly distributed on S(i−1) and T(i−1), respectively, for i ∈ {23, 35, 62},
which proves (iii).

All examples in Section 4 refer to the three near-collision paths, which are
given in Table 3. In the present subsection we consider the step transition prob-
abilities, i.e. the conditional probabilities in (8). Our goal is to apply Theo-
rem 2 with ∆[1] := ∆i, S(2) = S(i−1), S(3) = S(i), (X,X ′) := (Xi, X

′
i) and

(Y, Y ′) := (Ri−1, R
′
i−1). The bit conditions from Step 21 to Step 64 are listed

in Table 3. For i > 21 the sets S(i), and for i ≥ 61 also the S(i)p can be
expressed in the form S(i) := S(F(i)+, F(i)−, F(i)0, F(i)1, F(i)32,6=, F(i)=), resp.
S(i),p := S(F(i)+,p, F(i)−,p, F(i)0,p, F(i)1,p, F(i)32,6=,p, F(i)=,p) (cf. Sect. 3). In Step
21 we have a specific equality condition (r21[18] = r′21[18] = r20[18] = r′20[18])
which yet can also be handled with Theorem 2 and Theorem 3 (see Remark 3).

Example 2. (Step 48) Following Theorem 3 we decompose x(48) = x1·232−sh(48)+
x0 with 0 ≤ x0 < 232−sh(48) and 0 ≤ x1 < 2sh(48). Considering the bit condi-
tions in Table 3 elementary considerations give X[48] = X ′48−X48 ≡ 0( mod 232)
since Φ48 is given by the bitwise XOR-addition. Further, ∆(48) −∆(47) ≡ 231 ±
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231 ≡ 0(mod 232), where ”+” holds for Path 1 and ”-” for Path 2 and 3. Us-
ing the notation from Theorem 3 (with (Xi, X

′
i), (Ri−1, R

′
i−1), (Ri, R

′
i) corre-

sponding to (X,X
′), (Y, Y ′), (Z,Z ′)) we conclude ∆0 = ∆1 = ∆̃0 = ∆̃1 = 0.

In particular, ca(x0, ∆0; sh(48)) = ca(x0, 0; sh(48)) = 0 for all x0, and (32)
simplifies to 0 ≡ −(x1 div 2sh(48)) · 2sh(48) + 0(mod 232) which obviously is ful-
filled for all 0 ≤ x1 < 2sh(48). In other words, M(∆[48], ∆(47), ∆(48), sh(48)) =
M(0,±231, 231, 23)) = M(0, 231, 231, 23)) = Z232 since 231 ≡ −231(mod232),
and S(48) = ({32}, {}, {}, {}, {}, {1, . . . , 31}). Theorem 2 (ii) yields the condi-
tional probability (transition probability) Prob((R48, R

′
48) ∈ S(48) | ∆(X48, X

′
48)

= ∆[48], (R47, R
′
47) ∈ S(47)) = 2−|F(48)+| = 2−1. Analogously, one obtains the

same transition probablity 2−1 for path 2 and path 3.

Since M(48) = Z232 by Theorem 2(ii) the exact transition probability in
Step 48 equals the value that follows from simple ’condition counting’. We point
out that the conditions in Steps 36 to 45 are fulfilled with probability 1 (no
’real’ bit conditions), which is obvious, resp. can be verified with formula (28).
(Note that formally ∆[i] = ∆(Xi, X

′
i) = 0 and ∆(i−1) = ∆(i) = ±231 = 231

in these steps.) The situation in Step 64 is different from that in the other
steps since r64 has no impact on any other register. Hence only the modulo 232-
difference (r′64 − r64)(mod 232) is relevant (cf. Example 4(iv)). Since ∆[64] :=
∆(X64, X

′
64) = 0 and ∆(63) = ∆(64) this modulo 232 condition is fulfilled with

probability 1.
Due to (40) the path transition probability from Step 21 to 64 (before postad-

ditions) reads∏
i∈{21,...,63}\{23,35,62}

2−|F(i)+∪F(i)0∪F(i)−∪F(i)1|
∏
i=64

1× (44)

∏
i∈{23,35,62}

(
Prob(X<<<sh(i)

i +Ri−1(mod 232) ∈ T(i) | Xi ∈M(i), Ri−1 ∈ T(i−1))×

×Prob(Xi ∈M(i))
)
.

Example 3 treats the exceptional steps 23, 35 and 62 (cf. Remark 4 and Lemma 3).

Example 3. (i) (Step 23): As sh(23) = 14 following Theorem 3 we decom-
pose x(23) = x1 · 218 + x0 with 0 ≤ x0 < 218 and 0 ≤ x1 < 214. Elemen-
tary calculations give ∆[23] = X ′(23) − X(23) ≡ 231 + 231 + 217 ≡ 217(mod 232)
and ∆(23) − ∆(22) ≡ 0 − 231 ≡ 231(mod232). We conclude ∆0 = 217, ∆1 =
0, ∆̃0 = 217, ∆̃1 = 0. From (33) we obtain the condition ca(x0, ∆0; sh(23)) =
ca(x0, 217; 14) = 0, or equivalently, 0 ≤ x0 < 217. Substituting into (32) we ob-
tain 231 ≡ (217− (x1 + 0 + 0) div 214)) · 214 + 0 ≡ 231 + 0(mod 232) for all x1. In
other words, M(23) := M(∆[23], ∆(22), ∆(23), sh(23)) = M(0, 231, 0, 14) = {x ∈
Z232 | x[18] = 0}. Hence Prob(X(23) ∈ M(23)) = 0.5. Note that F(22)+ = {32}
and F(23)0 = {32}. To finally apply (28) it remains to determine the conditional
probability Prob([X<<<14 + R22](mod232) < 231 | R22 < 231, X ∈ M(23)}
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= Prob(X2 + Y2(mod 232) < 231) with independent uniformly distributed ran-
dom variables X2 and Y2 with range Z231 . Hence the last term equals 0.5. (To be
precise, the precise value is 0.5 + 2−32, but the correction term 2−32 is negligi-
ble.) Hence Prob((R23, R

′
23) ∈ S(23) | (R22, R

′
22) ∈ S(22), ∆(X23, X

′
23) = 217) =

2−1 · 2−1 = 2−2.
(ii) (Step 35): In Step 35 we have sh(35) = 16 and M(35) := {x ∈ Z232 |
x[16] = 0}. As in (i) we obtain Prob(X35 ∈ M(35)) = 0.5. For i = 35 we have
F32,6= = {32} and F= = {1, . . . , 31}, which gives T(35) = Z232 , i.e. R35 need not
satisfy any condition. Hence the transition probability from Step 34 to Step 35
equals 2−1.
(iii) (Step 62): sh(62) = 10. Similarly as for Step 23 and Step 35 we conclude
that x = x1 ·222 +x0 ∈M(62) iff 0 ≤ x0 < 222−215. Hence Prob(X62 ∈M(62)) =
1 − 2−7. Since F(62)+ = {26, 32} and F(62)= = {1, . . . , 32} \ {26, 32} we imme-
diately obtain Prob([X<<<10 + R61](mod 232) ∈ T(62) | R61 ∈ T(61)) = 2−2 by
Theorem 2(ii). For path 1 we further compute Prob([X<<<10+R61]( mod 232) ∈
T(62) | X /∈ M(62), R61 ∈ T(61)) = Prob(127 · 225 + X2 + 227Y3 + 225 + Y2(mod
232) ∈ T(62)) = Prob(X2 + Y2 + 227Y3(mod 232) ∈ T(62)) = Prob(X2 + Y2 <
225) · Prob(Y3 < 16) where X2, Y2, Y3 denote independent uniformly distrib-
uted random variables with range Z225 , Z225 , and Z24 , respectively. Hence this
probability equals 2−1 · 1 = 2−1. Analogously, for path 2 and 3 the last prob-
ability equals Prob(Y3 + 16(mod32) < 16) = 0, and thus the product is 0.
Finally, note that Prob(· | X62 ∈ M(62), R61 ∈ T(61))127/128 = Prob(· | R61 ∈
T(61)) − Prob(· | X62 /∈ M(62), R61 ∈ T(61))1/128, yielding the values 63/254,
64/254 and 64/254, respectively. Finally, the respective transition probabilities
are 63/256, 64/256 = 1/4 and 64/256 = 1/4. Interestingly, for path 2 and 3 the
transition probabilities coincide with the values from bit condition counting.

4.2 The Impact of the Postadditions on Path Probabilities

In this subsection we quantify the impact of bit conditions for the chaining
values on the probabilities of hash collision paths. In the previous subsection
we approximated the conditional probabilities (39) with regard to our stochastic
model by conditional probabilities (40), which allowed to apply Theorem 2 and
Theorem 3. Using a similar in Step 61 to 63 we consider conditional probabilities

Prob((Rp
i , R

′p
i ) ∈ S(i),p | (Ri, R

′
i) ∈ S(i), (Ri−64, R

′
i−64) = (ri−64, r

′
i−64) (45)

which allows to apply Theorem 1 with (X,X ′) = (Ri, R
′
i), (Y, Y

′) = (ri−64, r
′
i−64),

S(1) = S(i), S(2) = {(ri−64, r
′
i−64)} and S(3) := S(i),p. In Step 64 we apply The-

orem 2(ii) with ∆[1] = ∆(R64, R
′
64) and sh = 0. In the first message block

ri−64 = r′i−64.
For the last block of a multiblock collision (i.e., the first block in a one-

block collision) we have S(i),p = S(· · ·) with F(i)=,p = {1, . . . , 32} and hence
T(i),p = Z232 . Consequently, we have

Prob
(
(Rp

i , R
′p
i ) ∈ S(i),p | (Ri, R

′
i) ∈ S(i), (Ri−64, R

′
i−64) = (ri−64, r

′
i−64)

)
= 1,
(46)
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provided, of course, that ∆(i) + ∆[i−64] ≡ ∆(i),p = 0(mod232). In contrast,
for near-collisions Rp

(i) 6= R′
p
(i) for at least one i ∈ {N − k + 1, . . . , N}. Un-

equal register pairs fulfil certain modulo 232-conditions and / or bit condi-
tions. The probabilities in Example 4(i) to (iii) refer to the standard IV =
(0x 67452301, 0x efcdab89, 0x 98badcfe, 0x 10325476), i.e. r−3 = 0x 67452301,
r−2 = 0x 10325476, r−1 = 0x 98badcfe, and r0 = 0x efcdab89.

Example 4. (i) (Postaddition in Step 61): We first note that collision path 1
(see Table 3) fulfils ∆(61) + ∆(−3) ≡ ∆(61),p(mod 232), and Lemma 3 and Re-
mark 4 imply that (R(61), R

′
(61)) is uniformly distributed on S(61). As S(−3) is

singleton we may apply (27) from Theorem 1 with F(61)+ = {32}, F(61)0 =
{27}, F(61)1 = {26} and F(61)+,p = {32}. It remains to determine the probability
Prob([X + r−3](mod 232) ∈ [0, 231 − 1) | X[26] = 1, X[27] = X[32] = 0} for uni-
formly distributed random variable X. Let X1 and X3 denote independent uni-
formly distributed random variables with range Z225 , resp. Z24 . The last probabil-
ity can be rewritten to Prob([X1 + 225 + 227X3 + r−3](mod232) ∈ [0, 231)). Sim-
ilarly, r−3 = c1 + c2225 + c3227 + c4231 with c1 ∈ [0, 225), c2 ∈ [0, 4), c3 ∈ [0, 16),
and c4 ∈ [0, 2). For the standard IV we have c2 = 3, c3 = 12, and c4 = 0. Since
r−3 < 231 the above probability simplifies to Prob((X1 +c1)+(X3 +12+1)227 ∈
[0, 231)). As 0 < c1 + X1 < 226 this expression equals Prob((X3 + 12 + 1)227 ∈
[0, 231)) = Prob(X3 + 13 < 16) = 3/16 = 0.1875. For collision path 2 and colli-
sion path 3 from Table 3 we have F(61)− = {32} instead of F(61)+ = {32}. The
same argumentation as above then yields Prob((X1+c1)+(X3+12+1)227+231 ∈
[232, 232 +231)) which can be reduced to Prob(X3 +13 ≥ 16) = 13/16 = 0.81250.
(ii) (Postaddition in Step 62): As M(62) 6= Z232 (Example 3(iii)) the random
vector (R62, R

′
62) may not be uniformly distributed on S(62). However, since

|M(62)|/|Z232 | = 1 − 2−7 and since (R61, R
′
61) is uniformly distributed on S(61)

we may assume that (R62, R
′
62) is at least ’almost’ uniformly distributed on S(62).

For this reason we yet applied (27) (instead of (26), which was correct in a strict
sense) to simplify calculations. Similar techniques as in (i) yield the transition
probability 0.789 for all three paths.
(iii) (Postaddition in Step 63): Similar techniques as in (i) yield the transition
probabilities 0.034, 0.148 and 0.516 for path 1, path 2 and path 3.
(iv) (Postaddition in Step 64): Theorem 2(ii) implies that the postaddition tran-
sition probability equals 2−4 for all paths.
(v) The probabilities for the postadditions change when IV s are used that are
not standard-conformant. For collision path 2, for example, for IV=(0x 80000000,
0x efcdab89, 0x 82000000, 0x 00000000) the joint transition probability for the
postadditions in Step 61 - 63 equals 0.5. In contrast, IV=(0x 00000000, 0x efcdab89,
0x 80000000, 0x 82000000) gives the joint transition probability 0 (impossible
transition).

Example 4 underlines the impact of the IV, or more precisely of the com-
bination of the IV (resp., the previous chaining value) with bit conditions
∆B(Rp

i , R
′p
i ) on the transition probabilities, at least for fixed differential schemes,

favouring prefix attacks. However, also variable differential schemes may not ac-
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cept bit differences ∆B(· · ·) with large Hamming weight as this complicates the
message modification in the next block.

4.3 Overall Collision Path Probabilities

The results from Subsections 4.1 and 4.2 yield the overall probabilities for the
near-collision paths 1, 2, and 3 (cf. Table 3) after message modification. Table 2
below contains the probabilities for the exceptional steps 23, 35 and 62 (Ex-
ample 3) and the postadditions (Example 4), the theoretically computed path
probabilities (’theor. prob.’) for the MD5 standard IV, the relative frequencies
obtained by practical experiments (’rel. frequency’) and the number of bit con-
ditions per collision path (’bit cond.). The relative frequencies were computed
from 241.866 many samples. (Of course, this sample size is too small to provide
stable relative frequencies for path 1.)

Table 2 underlines that there are significant differences between the true
probabilities and their coarse estimates gained from bit condition counting. In-
terestingly, although near-collision path 3 demands one bit condition more than
the near-collision paths 1 and 2 (39 in place of 38; giving the coarse probability
estimate 2−39 and 2−38) it is the most probable one.

steps 23 35 62 61p 62p 63p 64p rest
theor.
prob.

rel.
frequency

bit
cond.

Path 1 2−2 2−1 63/256 0.1875 0.789 0.034 2−4 2−25 2−41.65 2−40.86 38

Path 2 2−2 2−1 2−2 0.8125 0.789 0.148 2−4 2−25 2−37.40 2−37.11 38

Path 3 2−2 2−1 2−2 0.8125 0.789 0.516 2−4 2−26 2−36.60 2−36.25 39
Table 2. Transition probabilities for the three paths in Table 3

Our experiments showed that also other (slightly different) near-collision
paths as listed in Table 2 may lead to the near-collisions that satisfy the bit
conditions after the postadditions. As already pointed out, the path probabil-
ties of concrete near-collision paths only give upper bounds for the workload of
collision attacks. Usually, this effect should relax the impact of the IV .

The probabilities of the collision paths in the second block are significantly
larger than the probabilities of the near-collision paths in the first block. This
is due to the fact that the modulo 232 differences of the chaining values of the
first block and the modulo 232 differences of the register values 61, . . . , 64 of the
second block shall add up to 0 (cf. (46)), defining unique bit conditions. We just
note that a particular sample path after message modification in Steps 1 to 20
occurs with probability 2−30.01.
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4.4 Applicability to SHA-1

The SHA-1 step function reads

ri ≡ ri−1
<<<5 + Φi(ri−2, ri−3, ri−4) + ri−5 + m̃i + consti(mod 232) (47)

ri−2 := ri−2
<<<30.

In analogy to the MD5 case we may set X := Φi(Ri−2, Ri−3, Ri−4) +Ri−5 +
M̃i + consti(mod 232) and Y := Ri−1, and apply a pendant of Theorem 2 with
interchanged roles of X and Y (concerning the shift operations). In fact, (X,X ′)
and X may be assumed to be uniformly distributed on {(x, x+∆[1](mod 232) |
x ∈ Z232} and Z232 , resp., whereas (Y, Y ′) assumes values in a particular set
S(2) := S(· · ·). The shift in the second line of (47) just transforms an ’S(· · ·)’-
set into another ’S(· · ·)’-set (Remark 2(i)) and hence does not cause principal
problems.

5 Conclusion

We developed a new methodology to compute probabilities of differential paths
that is based on a thorough analysis of two-dimensional random vectors that
assume values in the product space Z232 ×Z232 . We proved three stochastic the-
orems that allow to simplify special types of conditional probabilities of random
vectors to conditional probabilities of their projections onto the first component.
This facilitates concrete computations considerably, especially since the compo-
nents of the random vectors are strongly correlated. For MD5 we illustrated the
use of this approach, and we confirmed experimentally that these theorems sup-
port the effective computation of probabilities for given (near-)collision paths
after message modification. In particular, the computed path probabilities were
found to be in conformance with experimental results. Our method is not a
ready-to-use tool but it is applicable to a wide class of collision attacks. It may
be expected that similar calculations deliver reliable results (e.g.) for SHA-1 col-
lision paths, too, where the knowledge of exact probabilities is certainly more
relevant. An interesting observation is the significant impact of the postadditions
and the IV, especially on fixed differential schemes.

Acknowledgement: We would like to thank Søren Thomsen for making his
paper [Th] available to us.
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Appendix

Table 3 contains bit conditions for three MD5-near-collision paths for block 1.
If the conditions for Step i are the same for each path the three columns are
merged to a single column. The terms [j] and [-j] were already defined in Sect. 3.
Further, ri,j denotes the jth bit of ri, and [*32] stands for ri,32 6= r′i,32. The
additional conditions in Step 23, Step 35, and Step 62 (e.g., x0 < 217 in Step 23;
cf. Example 3) are not mentioned in Table 3. The conditions for Step 1 to Step
20 are as in [WY] (apart from additional conditions as in Steps 21, 35 and 62).
Path 1 corresponds to the published bit conditions in [WY] while their published
collision satisfies the bit conditions of path 2.

The mapping Φi: Z232 × Z232 × Z232 → Z232 is bit-oriented, i.e. Φi(a, b, c) =
(Φi;b(a32, b32, c32), . . . , Φi;b(a1, b1, c1)) with Φi;b: Z2×Z2×Z2 → Z2. In particular,

Φi,b(aj , bj , cj) := (aj ∧ bj) ∨ (¬aj ∧ cj) for i = 1, . . . , 16
Φi,b(aj , bj , cj) := (aj ∧ cj) ∨ (bj ∧ ¬cj) for i = 17, . . . , 32
Φi,b(aj , bj , cj) := (aj + bj + cj)(mod 2) for i = 33, . . . , 48
Φi,b(aj , bj , cj) := bj + (aj ∨ ¬cj)(mod 2) for i = 49, . . . , 64.
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Step Shift Path 1 Path 2 Path 3

19 14 [18, 32]

20 20 [32]

21 5 [32] , r21,18 = r20,18

22 9 [32]

23 14 r23,32 = 0 = r′23,32

24 20 r24,32 = 1 = r′24,32

25. . . 34 . . .

35 16 [∗32]

36 23 [∗32]

37 4 [∗32]

38 11 [∗32]

39 16 [∗32]

40 23 [∗32]

41 4 [∗32]

42 11 [∗32]

43 16 [∗32]

44 23 [∗32]

45 4 [∗32]

46 11 [32]

47 16 [32] [−32] [−32]

48 23 [32]

49 6 [32] [−32] [−32]

50 10 [−32]

51 15 [32] [−32] [−32]

52 21 [−32]

53 6 [32] [−32] [−32]

54 10 [−32]

55 15 [32] [−32] [−32]

56 21 [−32]

57 6 [32] [−32] [−32]

58 10 [−32]

59 15 [32] [−32] [−32]

60 21 [32] , r60,26 = 0 = r′60,26

61 6 [32] [−32] [−32]
61 r61,27 = 0 = r′61,27, r61,26 = 1 = r′61,26

62 10 [32, 26]

63 15 [32, 26] [−32, 26] [−32, 27,−26]

64 21 r′64 − r64 = 231 + 225 (mod 232)

61,p [32]

62,p [32, 26]

63,p [32, 27,−26]

64,p [32, 26] , rp
64,27 = 0 = r′

p
64,27, rp

64,6 = 0 = r′
p
64,6

Table 3. Three MD5 near-collision paths in the 1st block (message modification ends
with Step 20)


