
General Certificateless Encryption

and Timed-Release Encryption

Sherman S.M. Chow1⋆, Volker Roth2, and Eleanor G. Rieffel2

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

2 FX Palo Alto Laboratory
3400 Hillview Avenue

Palo Alto, CA 94304, USA
{vroth, rieffel}@fxpal.com

Abstract. While recent timed-release encryption (TRE) schemes are
implicitly supported by a certificateless encryption (CLE) mechanism,
the security models of CLE and TRE differ and there is no generic
transformation from a CLE to a TRE. This paper gives a generalized
model for CLE that fulfills the requirements of TRE. This model is se-
cure against adversaries with adaptive trapdoor extraction capabilities,
decryption capabilities for arbitrary public keys, and partial decryption
capabilities. It also supports hierarchical identifiers. We propose a con-
crete scheme under our generalized model and prove it secure without
random oracles, yielding the first strongly-secure security-mediated CLE
and the first TRE in the standard model. In addition, our technique of
partial decryption is different from the previous approach.

Key words: security-mediated certificateless encryption, timed-release
encryption, standard model

1 Introduction

In identity-based encryption (IBE) [30], encryption is done with respect to any
arbitrary string viewed an identifier (ID). Since the birth of practical IBE con-
structions, this idea has been used to achieve other security goals, such as cer-
tificateless encryption (CLE) [1, 15, 17] and timed-release encryption (TRE) [3].

CLE is intermediate between IBE and traditional public key encryption
(PKE). Traditional PKE requires a certification infrastructure but allows users
to create their own public/private key pairs so that their private keys are truly
private. Conversely, IBE avoids the need for certificates at the expense of adding
a trusted key generation center (KGC) that generates the private keys, which
means the KGC has the capability to decrypt all messages. CLE combines the

⋆ This research is done while the first author was a research intern of FXPAL. We
thank Wolfgang Polak for helpful discussions and the reviewers for their feedback.

2 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

advantages of both: no certificates are needed and messages can only be de-
crypted by the recipient. Generally, CLE is constructed by combining IBE and
PKE. The existence of the PKE component means that the KGC cannot de-
crypt messages. Instantaneous revocation is difficult for typical CLE schemes.
Security-mediated certificateless encryption (SMCLE) addresses this issue.

In TRE, a message is encrypted under a public key and a time; both the
private key and a time-dependent trapdoor are needed for decryption. A time-
server is trusted to keep a trapdoor confidential until an appointed time. Apart
from delayed release of information, TRE supports many other applications due
to its small trapdoor size and its commitment provision (see [13, 19]).

1.1 The difficulty of converting between CLE and TRE

A practical TRE requires system parameters to be small relative to the number of
supported time periods. IBE supports an efficient time-based unlock mechanism
by treating the identities as time periods [4, 27]. This approach supports only
universal disclosure of encrypted documents since one trapdoor can decrypt all
ciphertexts for a specific time; the inherent key-escrow property of IBE prohibits
the encryption for a designated receiver.

Since CLE is an “escrow-free version” of IBE, and both TRE and CLE are a
kind of double-encryption, it is natural to think CLE is what we are looking for to
realize a TRE. While most recent TRE schemes can be viewed as containing an
implicit CLE mechanism, a generic transformation from CLE to TRE is unlikely
to be provable secure [7]. Difficulty in reducing the confidentiality of TRE to that
of CLE arises when the adversary is a “curious” time-server. In CLE, an identity
is associated with only one public key, so a curious KGC is not allowed to replace
the public key associated with an identifier arbitrarily (otherwise, decryption is
trivial since it holds both parts of secrets). On the other hand, in TRE a time
identifier is never bound to any public key, so the public key associated with a
time identifier can be replaced. There is no way to simulate this implicit public
key replacement when CLE is viewed as a black box.

There is another subtle difference in modeling of curious users. In a secure
multi-user system, the security of a user is preserved even if other users are
compromised. In CLE, the user secret key together with the trapdoor given by
the KGC give the full private key. With the assumption that the user secret key
will be securely deleted after the combination, most CLE models assume the
adversary can get only trapdoors and full private keys. For most CLE schemes
under this model (e.g. [18]), the user secret key cannot be recovered from the
trapdoor and the full private key. Moreover, some CLE formulations [2, 25, 31]
do not have user secret keys at all. In TRE, user secret keys are held by each
user, which makes it impossible to reduce the security of TRE to that of CLE.

1.2 Our Contributions

Our generalized model for CLE overcomes the aforementioned difficulties and
has sufficient power to fulfill the requirements of TRE. Our model is secure

General Certificateless Encryption and Timed-Release Encryption 3

against an adversary with adaptive trapdoor extraction capabilities for arbitrary
identifiers (instead of selective identifiers, e.g. [4, 28]), decryption capabilities for
arbitrary public keys (as considered in strongly-secure CLE [18]) and partial
decryption capabilities (as considered in security-mediated CLE [14]). Our model
also supports hierarchical identifiers which have not been considered formally for
CLE and TRE. Design choices behind our formulation are justified.

All previous concrete TRE schemes [3, 7–9, 12, 16, 19, 22, 24], and the only
concrete SMCLE scheme [14], were proven in the random oracle model. Our
model is strong but achievable: our proposed scheme is the first strongly-secure
SMCLE. With our security-preserving transformation from a general CLE to a
TRE, it also yields the first TRE in the standard model.

This work enriches the study of SMCLE by providing a novel partial de-
cryption technique which is different from that in [14], and enriches TRE by
supporting a new business model for the time-server. Finally, hierarchy of iden-
tifiers makes decryption of ciphertext for passed periods more manageable.

2 Related Work

2.1 Timed-Release Encryption

Early TRE schemes require interaction with the time-server. Rivest, Shamir and
Wagner’s idea [29] require senders to reveal the release-time of the messages
in their interactions with the server, so the senders cannot be anonymous to
the server. In Di Crescenzo, Ostrovsky and Rajaopalan ’s scheme [16], it is the
receiver who interacts with the time-server by invoking a “conditional oblivious
transfer protocol”, which is computationally intensive.

Blake and Chan made the first attempt to construct a non-interactive TRE
[3]. The formal security model of message confidentiality was later considered
independently by Cheon et al. [12] and Cathalo, Libert and Quisquater [7]. The
former focuses on authenticated TRE. The latter also formalizes the release-time
confidentiality. The recovery of past time-dependent trapdoors from a current
trapdoor was studied in [9] and [27], which employs a hash chain and a tree
structure [6] respectively. The study of the pre-open capability in TRE was
initiated in [24] and improved by [19]. Recently, Chalkias, Hristu-Varsakelis and
Stephanides proposed an efficient TRE scheme [8] with random oracles.

2.2 Certificateless Encryption

Al-Riyami and Paterson [1] proposed certificateless encryption in 2003. Exten-
sive surveys of CLE security models and constructions can be found in [15, 17].
Two types of adversaries are considered in certificateless encryption. A Type-I
adversary models coalitions of rogue users without the master secret. Due to the
lack of a certificate, the adversary is allowed to replace the public keys of users.
A Type-II adversary models a curious KGC who has the master key but cannot
replace the public keys of any users. In Al-Riyami and Paterson’s security model

4 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

for encryption [1], a Type-I adversary can ask for the decryption of a cipher-
text under a replaced public key. Schemes secure against such attacks are called
“strongly-secure” [18], and the oracle is termed a “strong decryption oracle”. A
weaker type of adversary, termed Type-I−, can only obtain a correct plaintext
if the ciphertext is submitted along with the corresponding user secret key.

The Al-Riyami and Paterson scheme [1] is secure against both Type-I and
Type-II adversaries in the random oracle model. It was believed [25, 26, 28] that
[26] gave the first CLE in the standard model. However, it is possible to in-
stantiate a prior generic construction in [14] with a PKE and an IBE in the
standard model to obtain a secure CLE without random oracles. Both [26] and
the instantiation of [14] are only secure against Type-I− attacks. Based on [20], a
selective-ID secure CLE without random oracles was proposed [28]. This scheme
cannot be efficiently extended to a TRE since the user’s public key is depen-
dent on the identity, which is never coupled with a fixed time-identifier in TRE.
Recently, the first strongly-secure CLE in the standard model is proposed [18].

Al-Riyami and Paterson give an extension for hierarchical CLE [1]. However,
no security model is given. We are not aware of any literature with formal work
on hierarchical CLE, particularly none proven secure in the standard model.

Baek et al. proposed the first CLE that does not use pairings [2]. The CLE
proposal [25] uses similar ideas, but their security proof ignores the public key
replacement of the target user being attacked. This limitation is removed in Sun,
Zhang and Baek’s work [31]. To replace the pairing, these schemes make part of
the user’s public key dependent on the identity-specific trapdoor given by the
KGC, which means TRE cannot be obtained trivially from these constructions.

Security-mediated certificateless encryption (SMCLE), introduced by Chow,
Boyd and González Nieto [14], adds a security-mediator (SEM) who performs
partial decryption for the user by request. This idea gives a more general treat-
ment of the decryption queries in the CLE paradigm: the adversary can ask for
partial decryption results under either the SEM trapdoor generated by the KGC
or the user secret key A concrete construction in the random oracle model and
a generic construction in the standard model are proposed in [14]. Prior to our
work, no strongly-secure SMCLE existed in the standard model.

3 General Security-Mediated Certificateless Encryption

3.1 Notation

We use an ID-vector
»

ID = (ID1, ID2, · · · , IDL) to denote a hierarchy of identifiers

(ID1, ID2, · · · , IDL). The length of
»

ID is denoted by |
»

ID| = L. Let
»

ID||IDr denote

the vector (ID1, ID2, · · · , IDL, IDr) of length |
»

ID|+1. We say that
»

ID is a prefix

of
»

ID′ if |
»

ID| ≤ |
»

ID′| and IDi = ID′
i for all 1 ≤ i ≤ |

»

ID|. We use ∅ to denote
an empty ID-vector where |∅| = 0 and ∅||IDr = IDr. Finally, we use the notation
({0, 1}n)≤h to denote the set of vectors of length less than or equal to h, where
each component is a n-bit long bit-string.

General Certificateless Encryption and Timed-Release Encryption 5

3.2 Syntax

We propose a new definition of the (security-mediated) certificateless encryption,
which also extends the definition of a 1-level SMCLE scheme in [14] to h levels.

Definition 1. An h-level SMCLE scheme for identifiers of length n is defined
by the following sextuple of PPT algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 1λ, outputs a master secret key Msk (which can also be denoted as
d∅), and the global parameters Pub (which include h = h(λ) and n = n(λ)
implicitly) We assume all other algorithms take Pub implicitly as an input.

– Extract (run by the server or any one who holds a trapdoor) is a possibly
probabilistic algorithm which takes a trapdoor d # »

ID corresponding to an h-level

identifier
»

ID ∈ ({0, 1}n)≤h , and a string IDr ∈ {0, 1}n, outputs a trapdoor

key d # »

ID||IDr
associated with the ID-vector

»

ID||IDr. The master secret key
Msk is a trapdoor corresponding to a 0-level identifier.

– KGen (run by a user) is a probabilistic algorithm which generates a pub-
lic/private key pair (pku, sku).

– Enc (run by a sender) is a probabilistic algorithm which takes a message m

from some implicit message space, an identifier
»

ID ∈ ({0, 1}n)≤h, and the
receiver’s public key pku as input , returns a ciphertext C.

– DecS (run by any one who holds the trapdoor, either a SEM in SMCLE or a
receiver in CLE) is a possibly probabilistic algorithm which takes a ciphertext
C and a trapdoor key d # »

ID, returns either a token D which can be seen as a
partial decryption, or an invalid flag ⊥ (which is not in the message space).

– Dec
U (run by a receiver) is a possibly probabilistic algorithm which takes the

ciphertext C, the receiver’s secret key sku and a token D as input, returns
either the plaintext, an invalid flag ⊥D denoting D is an invalid token, or
an invalid flag ⊥C denoting the ciphertext is invalid.

For correctness, we require that DecU (C, sk, DecS(C, Extract(Msk,
»

ID))) = m

for all λ ∈ N, all (Pub, Msk)
$
← Setup(1λ), all (pk, sk)

$
← KGen, all message m,

all ID-vector
»

ID in ({0, 1}n)≤h and all C
$
← Enc(m,

»

ID, pk).

3.3 Security

Each adversary has access to the following oracles:

1. An ExtractO oracle that takes an ID-vector
»

ID ∈ ({0, 1}n)≤h as input and
returns its trapdoor d # »

ID.
2. An UskO oracle that takes a public key pk as input and returns its corre-

sponding private key sk.
3. A DecOS oracle that takes a ciphertext C and an ID-vector

»

ID, and outputs
DecS(C, d # »

ID). Note that C may or may not be encrypted under
»

ID.

4. A DecOU oracle that takes a ciphertext C, a public key pk and a token D,
and outputs DecU (C, sk, D) where sk is the secret key that matches pk.

6 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

5. A DecO oracle that takes a ciphertext C, an ID-vector
»

ID, and a public
key pk; outputs DecU (C, sk, D) where sk is the secret key that matches pk,

D = DecS(C, d # »

ID) and C may or may not be encrypted under
»

ID and pk.

Following common practice, we consider the two kinds of adversaries.

1. A Type-I adversary that models any coalition of rogue users, and who aims
to break the confidentiality of another user’s ciphertext.

2. A Type-II adversary that models a curious KGC, who aims to break the
confidentiality of a user’s ciphertext3.

We use the common security model in which the adversary plays a two-
phased game against a challenger. The game is modeled by the experiment below,
X ∈ {I, II} denotes whether an PPT adversary A = (Afind,Aguess) is of Type-I or
II, and determines the allowed oracle queries O and the auxiliary data Aux.

Definition 2. Experiment ExpCCA−X
A (λ)

(Pub, Msk)
$
← Setup(1λ)

(m0, m1, pk∗,
»

ID∗, state)
$
← AO

find(Pub, Aux)

b
$
← {0, 1}, C∗ $

← Enc(mb,
»

ID∗, pk∗)

b′
$
← AO

guess(C
∗, state)

If (|m0| 6= |m1|) ∨ (b 6= b′) then return 0 else return 1

O is a set of oracles ExtractO(·), UskO(·), DecOS(·, ·), DecOU (·, ·, ·), DecO(·, ·, ·).

Variables marked with ∗ refer to challenges by the adversary. The adversary
chooses a public key pk

∗ and an ID-vector
»

ID∗ to be challenged with, and
the challenger returns a challenge ciphertext C∗. The following two definitions
prohibit the adversary from trivially using the oracles to query for the answer
to (parts of) the challenge.

Definition 3. A hierarchical security-mediated certificateless encryption scheme
is (t, qE , qD, ǫ) CCA-secure against a Type-I adversary if |Pr[ExpCCA−I

A (λ) =
1]− 1

2 | ≤ ǫ for all t-time adversary A making at most qE extraction queries and
qD decryption queries (of any type), subjects to the following constraints:

1. Aux = ∅, i.e. no auxiliary information is given to the adversary.
2. No ExtractO(

»

ID′) query throughout the game, where
»

ID′ is a prefix of
»

ID∗.
3. No UskO(pk) query throughout the game for any pk.

4. No DecOS(C∗,
»

ID∗) query throughout the game.

5. No DecO(C∗,
»

ID∗, pk
∗) query throughout the game.

All public keys in the game are chosen by the adversary. It is natural to
assume the adversary knows the corresponding secret keys.

3 A rogue SEM is weaker than a Type-II adversary.

General Certificateless Encryption and Timed-Release Encryption 7

Definition 4. A hierarchical security-mediated certificateless encryption scheme
is (t, qK , qD, ǫ) CCA-secure against a Type-II adversary if |Pr[ExpCCA−II

A (λ) =
1]− 1

2 | ≤ ǫ for all t-time adversary A making at most qD decryption queries (of
any type), subjects to the following conditions:

1. Aux = (Msk, {pk∗1, · · · , pk∗qK
}), i.e. A is given the master secret and a set of

challenge public keys.
2. pk∗ ∈ {pk∗1, · · · , pk∗qK

}, i.e. the challenge public key must be among the set
given by the challenger.

3. No UskO(pk) query throughout the game if pk /∈ {pk∗1, · · · , pk∗qK
} or pk = pk∗.

4. No DecOU (C∗, pk∗, D) query throughout the game, where D is outputted by
the algorithm DecS(C∗, d # »

ID∗).

5. No DecO(C∗,
»

ID∗, pk∗) query throughout the game.

Since Msk is given to the adversary, the challenge public key must be in the
set given by the challenger.

3.4 Discussions on Our Choices for Definition

This section explains the intuitions behind the choices made in formulating our
definition and highlights the relationship between existing definitions and ours.

User key generation. In order to support more general applications like TRE,
the interface for the algorithms needs a more general syntax. A subtle change is
that our user key generation algorithm KGen only takes the system parameter as
input but not the identifier. In some CLE schemes [2, 25, 28, 31] the inclusion of
the identifier, or the trapdoor for an identifier, is essential for the generation of
the user public key. For these schemes, KGen can be executed only after Extract,
so straightforward adaption results in inefficient TREs in which the size of the
user public key grows linearly with the number of supported time periods.

Simplification of Type-I adversary. In existing models for 1-level CLE [1,

18], ExtractO query of
»

ID∗ is allowed; if such a query is issued, the challenge
public key pk∗ can no longer be chosen by the adversary. In our discussion, we
separate this behavior from the Type-I model and consider this type of adver-
sarial behavior (ExtractO(

»

ID′) where
»

ID′ is a prefix of
»

ID∗) as a weaker variant
of, and hence covered by, a Type-II adversary. It is true that our resulting def-
inition for Type-I adversary is weaker, but the “missing part” is not omitted
from the security requirement since CLEs must consider Type-II adversaries;
this simplification was justified and adopted in [23, Section 2.3].

Existing models also allow full private key extraction for the public keys
prepared by the challenger. In our Type-I game, all of the public keys to be
attacked are generated by the adversary, so UskO query is prohibited. The re-
maining scenario, where the adversary intends to attack a public key given by
the challenger, is also a weaker variant of our Type-II model. To conclude, we
keep the essence of the existing models, and include the adversarially chosen
public keys (for Type-I) and UskO (for Type-II) to match with TRE.

8 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

Strong decryption oracle. In our definition, the decryption oracle works even
if the public key is adversarially chosen but the secret key is not supplied. The
original definition of CLE [1] does not allow a strong decryption oracle for curious
KGC adversary, but it is considered in recent work [18]. Adding the following
restriction weakens Definition 4 to correspond to a Type-II− attack:

5. (Type-II−) No DecO(C,
»

ID, pk) query throughout the game for any C if pk /∈
{pk∗1, · · · pk∗qK

}, unless the corresponding secret key sk is supplied when the
DecO query is made.

The Type-I− game can be obtained by adding Aux = {pk∗1, · · · pk∗qK
} and the

above restriction to Definition 3, but with a restriction on UskO as in Definition 4.

Implicit public key replacement. In our generalization of CLE, we “remove”
(i.e. make implicit) the oracle for replacing the public key corresponding to an
identifier. This change may affect the following choices:

1. The adversary’s choice of the victim user it wishes to be challenged with,
2. The choice of user in decryption oracle queries.

However, there are other “interfaces” in our model such that the adversary can
still make the above choices. Our model still allows the adversary to choose which
identifier/public key it wants to attack. For decryption queries, the adversary
can just supply different combination of identifier and public key to the DecOS

and DecOU oracles. In this way, implicit replacement is done. In other words,
when compared with the original model [1], the security model is not weakened,
but generalized to cover applications of CLE such as TRE.

Reason for “removing” public key request and replacement oracles.
In traditional definitions of CLE [1], oracles for retrieving and replacing public
key depend upon the fact that an identifier is always bound to a particular
user. Replacing a user’s public key means changing the public key associated
with a certain identifier. In TRE, identifiers correspond to policies governing the
decryption, so a single identifier may be “shared” among multiple users. For this
reason, our model must be free from the concept of “user = identifier”.

Alternative definition of public key replacement. What about allowing
a restricted public key replacement, such that a public key associated with an
identifier can be replaced by a public key associated with another identifier, but
not an arbitrary one supplied by the adversary? This definition still requires an
identifier to belong to a single user. Moreover, this definition makes the treatment
of a strong decryption oracle complicated: the idea of restricted replacement
among a fixed set of public keys does not match well with decrypting under
adversarially chosen public keys.

SMCLE is more general than plain CLE. The two separate decryption
oracles in the SMCLE model provide a more general notion than CLE:

1. Some CLE schemes are not CCA-secure when the adversary has access to a
partial decryption oracle (see [14]).

General Certificateless Encryption and Timed-Release Encryption 9

2. Since the decryption oracle is separated in two, the SMCLE model does not
have the notion of a “full” private key which is present in previous CLE
models (a full private key is a single secret for the complete decryption of
the ciphertext). On the ground that separated secrets can always be concate-
nated into a single full one, this simplification (of private key) has already
been adopted in more recent models [23].

Difference with the previous SMCLE definition. Our user decryption
oracle DecO

U returns different invalid flags for the cases of invalid token from
the SEM or invalid ciphertext. This distinction was not captured in [14].

User decryption oracle in SMCLE. To exclude trivial attacks, our Type-II
adversary model disallows the challenge ciphertext C∗ to be decrypted by the
decryption oracle under the challenge public key and a token D obtained from the
algorithm (not the oracle) DecS(C∗, ID∗), where ID∗ is the challenge identifier.
To implement this restriction, our new SMCLE definition checks whether a token
D is a valid token, corresponding to a ciphertext and an identifier.

While our security definition is tightly coupled with the ability to check the
token, we think that it is natural for the user to be able to perform such a test
(especially if the user pays for each token). Even without an explicit testing
algorithm, the challenger may do the test as well since it simulates the scheme’s
execution. It gives a weaker definition if we prohibit any decryption query for
the challenge ciphertext under the challenge public key, irrespective of the token.

Justifications for our definition of hierarchical CLE. In the hierarchical
scheme of [1], an entity at level k derives a trapdoor for its children at level
k + 1 using both its trapdoor and its secret key. In our proposed model, a level
k entity uses only the trapdoor obtained from its parent at level k − 1 to derive
keys for its children. We do not see any practical reason for requiring the secret
key in the trapdoor derivation. Our definition avoids certain complications: for
example, in [1], the decryption requires the public keys of all the ancestors.

We do allow the decryption of the ciphertext under
»

ID′ which is a prefix of
»

ID∗. This is stronger than the counterpart in some hierarchical IBE models [21].

Theorem 1 If there exists a secure 1-level SMCLE scheme under Definition 3
and 4, there exists a CLE scheme which is secure under the definition of [1].

Proof. Our aim is to build a simulator B which uses an adversary A of CLE
to break the security of our 1-level SMCLE scheme. The simulator basically
forwards everything (the system parameters, the oracle queries and responses,
and the guess) back and forth between its own SMCLE challenger and the CLE
adversary. Faced with a Type-II adversary of CLE, the simulator acts as a Type-
II security of 1-level SMCLE. For a Type-I adversary of CLE, B flips a fair coin to
determine its guess whether A will issue an ExtractO query of

»

ID∗. If it guesses
not, B just plays the Type-I game as usual. If it guesses so, B will try to use A to
win the Type-II game of SMCLE instead. The ExtractO query can be answered
by B because it owns Msk now. The reduction tightness is reduced by a factor
of 2. This simple trick is also used in [18, Appendix B, Game 4].

10 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

We omit the details for most queries, but focus on the distinctions that involve
public key requests and replacement. The simulator must maintain a table to
store the binding between an identifier and a public key. Whenever a Type-I

adversary issues a public key request query, B executes (pk, sk)
$
← KGen, stores

sk (so B can reply if A asks for it), and returns pk. For a Type-II adversary,
B picks a random public key from {pk∗1, · · · , pk∗qK

} and assigns it as the public
key of the queried ID. When A makes a key replacement query, the simulator
updates its own table. For every other request regarding a particular identifier,
the simulator retrieves the corresponding public key from its table and queries
its own challenger accordingly. Finally, decryption queries of the CLE adversary
are answered by combining results from the two partial decryption oracles. ⊓⊔

4 Our Proposed Construction

4.1 Preliminaries

Let G and GT be multiplicative groups of prime order p for which there exists
an efficiently computable bilinear map ê : G×G→ GT such that

1. Bilinearity: For all u, v ∈ G and r, s ∈ Zp, ê(ur, vs) = ê(u, v)rs.
2. Non-degeneracy: ê(u, v) 6= 1GT for all u, v ∈ G \ {1G}.

Our scheme’s security relies on the intractability of the following problems:

Definition 5. The Decision 3-Party Diffie-Hellman Problem (3-DDH) in G is
to decide if T = gβγδ given (g, gβ, gγ , gδ, T) ∈ G5. Formally, defining the advan-
tage of a PPT algorithm D, Adv3−DDH

D (λ), as

| Pr[1
$
← D(g, gβ, gγ , gδ, T)|T ← gβγδ ∧ β, γ, δ

$
← Z∗

p]

−Pr[1
$
← D(g, gβ, gγ , gδ, T)|T

$
← G ∧ β, γ, δ

$
← Z∗

p]|.

We say 3-DDH is intractable if Adv3−DDH
D (λ) is negligible in λ for all PPT D.

Compared with the Bilinear Diffie-Hellman (BDH) problem, the problem
instance of 3-DDH is purely in G while that of BDH contains an element t̂ ∈ GT .
If BDH problem is solvable, one can solve 3-DDH by feeding (g, gβ, gγ , gδ, ê(g, T))
to a BDH oracle. The above assumption has been employed in [18].

We introduce a variant of the weak Bilinear Diffie-Hellman Inversion (wB-
DHI) assumption [4] below in the favor of 3-DDH. The original h-wBDHI prob-

lem in (G, GT) [4] is to decide whether t̂ = ê(g, gγ)αh+1

. The term “inversion”
comes from the equivalence to the problem of deciding whether t̂ = ê(g, gγ)1/α.

Definition 6. The h-Weak Diffie-Hellman Inversion Problem (h-wDHI) in G

is to decide if T = gγαh+1

given (g, gγ , gα, gα2

, · · · , gαh

, T) ∈ Gh+3. Formally,
defining the advantage of a PPT algorithm D as

Advh−wDHI
D (λ) = |Pr[1

$
← D(g, gγ , gα, gα2

, · · · , gαh

, T)|T ← gγαh+1

∧ α, γ
$
← Z

∗
p]

− Pr[1
$
← D(g, gγ , gα, gα2

, · · · , gαh

, T)|T
$
← G ∧ α, γ

$
← Z

∗
p]|.

General Certificateless Encryption and Timed-Release Encryption 11

We say h-wDHI is intractable if Advh−wDHI
D (λ) is negligible in λ for all PPT D.

We require a family of collision resistant hash functions H too.

Definition 7. A hash function H
$
← H(λ) is collision resistant if

AdvCR
C (λ) = Pr[H(x) = H(y) ∧ x 6= y|(x, y)

$
← C(1λ, H) ∧H

$
← H(λ)]

is negligible as a function of the security parameter λ for all PPT algorithms C.

4.2 Proposed Construction

Our construction is an h-level generalization of the concrete construction for
1-level in [18]. While [18] uses the technique of [5] to achieve strong decryp-
tion oracle, we use the same technique for a different purpose, which is a new
way (other than the only known way in [14]) to support partial decryption oracle.

Setup(1λ, n): Let G, GT be two multiplicative groups with a bilinear map ê as
defined before. They are of the same order p, which is a prime and 2λ < p < 2λ+1.

– Encryption key: choose two generators g, g2 ∈R G.
– Master public key: choose an exponent α ∈R Zp and set g1 = gα.
– Hash key for identifier-based key derivation: choose h many (ℓ + 1)-

length vectors
#»

U 1, · · · ,
#»

Uh ∈R Gℓ+1, where each
#»

U j = (u′
j , uj,1, · · · , uj,ℓ),

1 ≤ j ≤ h. ℓ is a tunable parameter which is a factor of n and 1 ≤ ℓ ≤ n.
Each vector

#»

U j (1 ≤ j ≤ h) corresponds to the j-th level of the hierarchy.

We use the notation
»

ID = (ID1, · · · , IDj , · · · , IDk) to denote a hierarchy
of k n-bit string IDj ’s. We write IDj as ℓ blocks each of length n/ℓ bits

(IDj,1, · · · , IDj,ℓ). We define F #»

U j
(IDj) = u′

j

∏ℓ
i=1 u

IDj,i

j,i .

– Hash key for ciphertext validity: choose an (n + 1)-length vector
#»

V =
(v′, v1, · · · , vn) ∈R Gn+1. This vector defines the hash function F #»

V (w) =
v′

∏n
j=1 vj

bj where w is a n-bit string b1b2 · · · bn.
– Hash function: pick a function H : {0, 1}∗ → {0, 1}n from a family of

collision-resistant hash functions according to the parameter λ.

The public parameters Pub and the master secret key Msk are given by

Pub = (λ, p, G, GT , ê(·, ·), n, ℓ, g, g1, g2,
#»

U 1, · · · ,
#»

Uh,
#»

V , H(·)), Msk = gα
2 .

We require the discrete logarithms (with respect to g) of all G elements in Pub

except g, g1 to be unknown to the KGC. In practice, these elements can be gen-
erated from a pseudorandom function of a public seed.

Extract(d # »

ID, IDr): For
»

ID = (ID1, · · · , IDk) for k ≤ h, a trapdoor is in the form:

d # »

ID = (a1, a2,
#»z k+1, · · · ,

#»z h) = (gα
2 · (

k
∏

j=1

F #»

U j
(IDj))

r, gr, (
#»

U k+1)
r
, · · · , (

#»

Uh)
r
),

12 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

where r ∈R Z∗
p and (

#»

U j)
r

= ((u′
j)

r
, (uj,1)

r
, · · · , (uj,ℓ)

r
).

Note that (a1, a2) is sufficient for decryption, while #»z k+1, · · · ,
#»z h can help

the derivation of the trapdoor for (ID1, · · · , IDk, IDk+1) for any n-bit string IDk+1

and k+1 ≤ h. To generate d # »

ID||IDr
parse d # »

ID = (a1, a2, (zk+1, zk+1,1, · · · , zk+1,ℓ),

· · · , (zh, zh,1, · · · , zh,ℓ)) and parse IDr as ℓ blocks (IDr,1, · · · , IDr,ℓ) where each
block is of length n/ℓ bits, pick t ∈R Z

∗
p and output

d # »

ID||IDr
= (a1·zk+1

ℓ
∏

i=1

(zk+1,i)
IDr,i ·(

k+1
∏

j=1

F #»

U j
(IDj))

t, a2·g
t, #»z k+2·(

#»

U k+2)
t
· · · , #»z h·(

#»

Uh)
t

where the multiplication of two vectors are defined component-wise, i.e. #»z j ·
#»ν j =

(zj ·νj , zj,1 ·νj,1, · · · , zj,ℓ ·νj,ℓ). d # »

ID becomes shorter as the length of
»

ID increases.

KGen(): Pick sk ∈R Z∗
p, return pk = (X, Y) = (gsk, gsk

1) and sk as the key pair.

Enc(m,
»

ID, pk): To encrypt m ∈ GT for
»

ID = (ID1, · · · , IDk) where k ≤ h,
parse pk as (X, Y), then check that it is a valid public key by verifying4 that
ê(X, g1) = ê(g, Y). If equality holds, pick s ∈R Z∗

p and compute

C = (C1, C2, τ, σ) = (m · ê(Y, g2)
s,

k
∏

j=1

F #»

U j
(IDj)

s
, gs, F #»

V (w)s)

where w = H(C1, C2, τ,
»

ID, pk).

DecS(C, d # »

ID): Parse C as (C1, C2, τ, σ), and d # »

ID as (a1, a2, · · ·). First check

if ê(τ,
∏k

j=1 F #»

U j
(IDj) · F #»

V (w′)) = ê(g, C2 · σ) where w′ = H(C1, C2, τ,
»

ID, pk).
Return⊥ if inequality holds or any parsing is not possible, otherwise pick t ∈R Z

∗
p

and return
D = (D1, D2, D3) = (a1 · F #»

V (w′)t, a2, g
t).

DecU (C, sk, D): Parse C as (C1, C2, τ, σ) and check if ê(τ,
∏k

j=1 F #»

U j
(IDj)·F #»

V (w′)) =

ê(g, C2 · σ) where w′ = H(C1, C2, τ,
»

ID, pk). If equality does not hold or pars-
ing is not possible, return ⊥C . Next, parse D as (D1, D2, D3) and check if

ê(g, D1) = ê(g1, g2)ê(D2,
∏k

j=1 F #»

U j
(IDj))ê(D3, F #»

V (w′))5. If equality does not
hold or parsing is not possible, return ⊥D. Otherwise, return

m← C1 ·

(

ê(C2, D2)ê(σ, D3)

ê(τ, D1)

)sk

.

4 One pairing computation can be saved by a trick adopted in [18]: pick ξ ∈R Z
∗

p and

compute C1 = m · ê(Y, g2 · g
ξ)s/ê(X, gsξ

1
).

5 The same trick for minimizing the number of pairing computations involved in check-
ing the ciphertext and the token can be incorporated to the final decryption step.
The modified decryption algorithm only uses 4 pairing computations; however, it
gives a random message (instead of an invalid flag ⊥) for an invalid ciphertext.

General Certificateless Encryption and Timed-Release Encryption 13

4.3 Analysis

Similar to [4], the ciphertext size of our scheme is independent of the hierarchy
length. This is also beneficial when it is used as a TRE (see Section 5.5).

In the concrete SMCLE scheme of Chow, Boyd and González Nieto [14],
partial decryption uses the pairing function ê(·, ·) to pair part of the ciphertext
and the ID-based private key. To make this partial decryption result verifiable
requires turning a generic interactive proof-of-knowledge non-interactive. Our
scheme employs a different technique such that the token generated by the partial
decryption is publicly and non-interactively verifiable.

Our scheme’s security is asserted by Theorem 2; Appendix A contains a
proof.

Theorem 2 Our scheme is secure against Type-I attack and Type-II attack
(Definition 3 and 4) if h-wDHI problem and 3-DDH problem is intractable.

5 Applying General Certificateless Encryption to TRE

5.1 Syntax of Timed-Release Encryption

For ease of discussion, consider only 1-level of time-identifiers as in [7]. It can be
shown that our results hold for an h-level analog.

Definition 8. A TRE scheme for time-identifiers of length n (n is a polynomially-
bounded function) is defined by the following sextuple of PPT algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 1λ, outputs a master secret key Msk, and the global parameters
Pub. We assume that λ and n = n(λ) are implicit in Pub and all other
algorithms take Pub implicitly as an input.

– Extract (run by the server) is a possibly probabilistic algorithm which takes
the master secret key Msk and a string ID ∈ {0, 1}n, outputs a trapdoor key
dID associated with the identifier ID.

– KGen (run by a user) is a probabilistic algorithm which generates a pub-
lic/private key pair (pku, sku).

– Enc (run by a sender) is a probabilistic algorithm which takes a message
m from some implicit message space, an identifier ID ∈ {0, 1}n, and the
receiver’s public key pku as input, returns a ciphertext C.

– DecS (run by any one who holds the trapdoor, either a SEM or a receiver) is
a possibly probabilistic algorithm which takes a ciphertext C and a trapdoor
key dID as input, returns either a token D which can be seen as a partial
decryption of C, or an invalid flag ⊥ (which is not in the message space).

– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the
ciphertext C, the receiver’s secret key sku and a token D as input, returns
either the plaintext, an invalid flag ⊥D denoting D is an invalid token, or
an invalid flag ⊥C denoting the ciphertext is invalid.

14 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

For correctness, we require that DecU (C, sk, DecS(C, Extract(Msk, ID))) = m

for all λ ∈ N, all (Pub, Msk)
$
← Setup(1λ), all (pk, sk)

$
← KGen, all message m,

all identifier ID in {0, 1}n and all C
$
← Enc(m, ID, pk).

5.2 Timed-Release Encryption from Certificateless Encryption

Given a SMCLE scheme {SMC.Setup,SMC.Extract,SMC.KGen,SMC.Enc,
SMC.DecS ,SMC.DecU}, a TRE scheme {T RE .Setup, T RE .Extract, T RE .KGen,
T RE .Enc, T RE .DecS , T RE .DecU} can be built as below.

T RE .Setup(1λ, n): Given a security parameter λ and the length of the time-
identifier n, execute (Msk, Pub)← SMC.Setup(1λ, n), retain Msk as the master
secret key and publish Pub as the global parameters.

T RE .Extract(Msk, ID): For a time-identifier ID ∈ {0, 1}n, the time-server returns
dID ← SMC.Extract(Msk, ID).

T RE .KGen(): Return (sk, pk)← SMC.KGen() as the user’s key pair.

T RE .Enc(m, ID, pk): To encrypt m ∈ GT for pk under the time ID ∈ {0, 1}n,
return SMC.Enc(m, ID, pk), which may be ⊥ if pk is an invalid public key.

T RE .DecS(C, dID): To partially decrypt C by a time-dependent trapdoor dID,
return D ← SMC.Dec

S(C, dID).

T RE .DecU (C, sk, D): To decrypt C by the secret key sk and the token D, just
return SMC.DecU (C, sk, D).

Theorem 3 If SMC is an 1-level SMCLE scheme which is CCA-secure against
Type-I adversary (Definition 3), T RE is CCA-secure against Type-I adversary.

Theorem 4 If SMC is an 1-level SMCLE scheme which is CCA-secure against
Type-II adversary (Definition 4), T RE is CCA-secure against Type-II adversary.

Proof. The security models of TRE can be found in Appendix B. We prove by

contradiction. Suppose A is a Type-X adversary such that |Pr[ExpCCA′−X
A (λ) =

1] − 1
2 | > ǫ, we construct an adversary B with |Pr[ExpCCA−X

B (λ) = 1] − 1
2 | > ǫ

in the face of a SMCLE challenger C where the running times of B and A are
equal.

Setup: When C gives B (Pub, Aux), B just forwards it to A. The public key
to be passed to A is either chosen from the a set of public key in Aux (in Type-II
game), or chosen by B itself (in Type-I game).

First Phase of Queries: B forwards every request of A to the oracles of its
own challenger C. From the description of T RE , we can see that every legitimate
oracle query made by A can be answered faithfully.

General Certificateless Encryption and Timed-Release Encryption 15

Challenge: When A gives B (m0, m1, pk∗, ID∗), B just forwards it to C.
Second Phase of Queries: Again, B just forwards every request of A to

the oracles of its own challenger C. From the description of T RE , it is easy to
see that every oracle query which does not violate the restriction enforced by A
also does not violate the restriction enforced by C.

Output: Finally, A outputs a bit b, B forwards it to C as its own answer.
The probability for A to win the TRE experiment simulated by B is equal to
the probability for B to win the SMCLE game played against C. It is easy to see
that the running times of A and B are the same. ⊓⊔

These theorems show that the scheme presented in section 4 can be instan-
tiated as a TRE scheme without a random oracle.

5.3 Certificateless Encryption from Timed-Release Encryption

One may expect that a general CLE can be constructed from any TRE. The
usage of time-identifiers, however, is only one specific instantiation of the timed-
release idea. Other formulations of TRE, different from Definition 8, exist; for
example, in [9], time is captured by the number of repeated computations of one-
way hash function. Also, the notion of CLE supports an exponential number of
arbitrary identifiers6, so a CLE scheme cannot be realized by a TRE if the total
number of time periods supported is too few.

There is an important difference in the definitions of security between CLE
and TRE: the public keys in TRE are certified while there is no certification in
CLE, so public keys can be chosen adversarially. Typically in TRE [3, 8, 12, 19,
24], a single public key is given to the adversary as the target of attack. However,
the non-standard TRE formulation in [7] does allow uncertified public keys.

5.4 Security-Mediator in Timed-Release Encryption

The introduction of a security-mediator to the TRE paradigm gives a new busi-
ness model for the time-server due to the support for partial decryption. Tradi-
tional TRE allows the time-server to release only a system-wide time-dependent
trapdoor. The time-server can charge for each partial decryption request of a
ciphertext by the time-dependent trapdoor; the partial decryption of one ci-
phertext would not help the decryption of any other ciphertext.

5.5 Time Hierarchy

Since each identifier corresponds to a single time period, the server must publish
t private keys once t time-periods have passed. The amount of data that must
be posted can be reduced given a hierarchical CLE by using the Canetti, Halevi
and Katz (CHK) forward secure encryption [6] in reverse [4]. For a total of T

6 Even though the scheme may be insecure when more than a polynomial number of
trapdoors are compromised by a single adversary.

16 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

time periods, the CHK framework is set up as a tree of depth log T . To encrypt a
message for time t < T , the time identifier is the CHK identifier for time period
T−t. Release of trapdoor is done in the same manner: the private key for the time
period T − t is released on the tth time period. This single private key enables
anyone to derive the private keys for CHK time periods T − t, T − t + 1, · · · , T ,
so the user can obtain trapdoors for times 1, · · · , t. This trick enables the server
to publish only a single private key of O(log2 T) group elements at any time.

6 Conclusions

Cryptographers seek and try to achieve the strongest possible security definition.
Previous models of certificateless encryption (CLE) were too restrictive: they
could not give the desired security properties when instantiated as timed-release
encryption (TRE). Our generalized CLE model supports the requirements of
TRE; all future CLE proposals in our general model automatically give secure
TRE schemes. Our model is defined against full-identifier extraction, decryption
under arbitrary public key, and partial decryption, to achieve strong security. Our
concrete scheme yields the first strongly-secure (hierarchical) security-mediated
CLE and the first TRE in the standard model.

References

1. Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless Public Key Cryp-
tography. In ASIACRYPT 2003, volume 2894 of LNCS, pages 452–473. Springer,
2003. Full version at http://eprint.iacr.org/2003/126.

2. Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Certificateless Public
Key Encryption Without Pairing. In Information Security Conference, ISC 2005,
volume 3650 of LNCS, pages 134–148. Springer, 2005.

3. Ian F. Blake and Aldar C-F. Chan. Scalable, Server-Passive, User-Anonymous
Timed Release Cryptography. In ICDCS 2005, pages 504–513. IEEE Computer
Society, 2005.

4. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based Encryp-
tion with Constant Size Ciphertext. In EUROCRYPT 2005, volume 3494 of LNCS,
pages 440–456. Springer, 2005.

5. Xavier Boyen, Qixiang Mei, and Brent Waters. Direct Chosen Ciphertext Security
from Identity-based Techniques. In ACM CCS 2005, pages 320–329, 2005.

6. Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key En-
cryption Scheme. Journal of Cryptology, 20(3):265–294, 2007.

7. Julien Cathalo, Benôıt Libert, and Jean-Jacques Quisquater. Efficient and Non-
interactive Timed-Release Encryption. In Information and Communications Secu-

rity, ICICS 2005, volume 3783 of LNCS, pages 291–303. Springer, 2005.
8. Konstantinos Chalkias, Dimitrios Hristu-Varsakelis, and George Stephanides. Im-

proved Anonymous Timed-Release Encryption. In ESORICS 2007, volume 4734
of LNCS, pages 311–326. Springer, 2007.

9. Konstantinos Chalkias and George Stephanides. Timed Release Cryptography
from Bilinear Pairings Using Hash Chains. In Communications and Multimedia

Security, CMS 2006, volume 4237 of LNCS, pages 130–140. Springer, 2006.

General Certificateless Encryption and Timed-Release Encryption 17

10. Sanjit Chatterjee and Palash Sarkar. New Constructions of Constant Size Ci-
phertext HIBE Without Random Oracle. In Information Security and Cryptology,

ICISC 2006, volume 4296 of LNCS, pages 310–327. Springer, 2006.
11. Sanjit Chatterjee and Palash Sarkar. On (Hierarchical) Identity Based Encryption

Protocols with Short Public Parameters (With an Exposition of Waters’ Artificial
Abort Technique). Cryptology ePrint Archive, Report 2006/279, 2006.

12. Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Timed-
Release and Key-Insulated Public Key Encryption. In Financial Cryptography and

Data Security, FC 2006, volume 4107 of LNCS, pages 191–205. Springer, 2006.
13. Sherman S. M. Chow. Token-Controlled Public Key Encryption in the Standard

Model. In Information Security Conference, ISC 2007, volume 4779 of LNCS,
pages 315–332. Springer, 2007.

14. Sherman S. M. Chow, Colin Boyd, and Juan Manuel González Nieto. Security-
Mediated Certificateless Cryptography. In Public Key Cryptography - PKC 2006,
volume 3958 of LNCS, pages 508–524. Springer, 2006.

15. Sherman S.M. Chow. Certificateless Encryption. In Identity-Based Cryptography.
IOS Press, 2008. To appear.

16. Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan.
Conditional Oblivious Transfer and Timed-Release Encryption. In EUROCRYPT

’99, volume 1592 of LNCS, pages 74–89. Springer, 1999.
17. Alexander W. Dent. A Survey of Certificateless Encryption Schemes and Security

Models. Cryptology ePrint Archive, Report 2006/211, 2006.
18. Alexander W. Dent, Benoit Libert, and Kenneth G. Paterson. Certificateless En-

cryption Schemes Strongly Secure in the Standard Model. In Public Key Cryp-

tography - PKC 2008, volume 4939 of LNCS, pages 344–359. Springer, 2008. Full
version at http://eprint.iacr.org/2007/121.

19. Alexander W. Dent and Qiang Tang. Revisiting the Security Model for Timed-
Release Public-Key Encryption with Pre-Open Capability. In Information Security

Conference, ISC 2007, volume 4779 of LNCS, pages 158–174. Springer, 2007.
20. Craig Gentry. Practical Identity-Based Encryption Without Random Oracles. In

EUROCRYPT 2006, volume 4004 of LNCS, pages 445–464. Springer, 2006.
21. Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In ASI-

ACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer, 2002.
22. Dimitrios Hristu-Varsakelis, Konstantinos Chalkias, and George Stephanides. Low-

cost Anonymous Timed-Release Encryption. In Symposium on Information As-

surance and Security, pages 77–82. IEEE Computer Society, 2007.
23. Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang, and Xiaotie Deng. Certificateless

Signature: A New Security Model and An Improved Generic Construction. Designs,

Codes and Cryptography, 42(2):109–126, 2007.
24. Yong Ho Hwang, Dae Hyun Yum, and Pil Joong Lee. Timed-Release Encryption

with Pre-open Capability and Its Application to Certified E-mail System. In In-

formation Security Conference, ISC 2005, volume 3650 of LNCS, pages 344–358.
Springer, 2005.

25. Junzuo Lai and Weidong Kou. Self-Generated-Certificate Public Key Encryption
Without Pairing. In Public Key Cryptography, PKC 2007, volume 4450 of LNCS,
pages 476–489. Springer, 2007.

26. Joseph K. Liu, Man Ho Au, and Willy Susilo. Self-Generated-Certificate Pub-
lic Key Cryptography and Certificateless Signature / Encryption Scheme in the
Standard Model. In ASIACCS 2007. ACM, 2007.

27. Deholo Nali, Carlisle M. Adams, and Ali Miri. Hierarchical Time-based Information
Release. International Journal of Information Security, 5(2):92–104, 2006.

18 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

28. Jong Hwan Park, Kyu Young Choi, Jung Yeon Hwang, and Dong Hoon Lee. Cer-
tificateless Public Key Encryption in the Selective-ID Security Model (Without
Random Oracles). In Pairing-Based Cryptography 2007, volume 4575 of LNCS,
pages 60–82. Springer, 2007.

29. Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock Puzzles and
Timed-release Crypto. Technical Report MIT/LCS/TR-684, Massachusetts Insti-
tute of Technology, 1996.

30. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,
pages 47–53, 1984.

31. Yinxia Sun, Futai Zhang, and Joonsang Baek. Strongly Secure Certificateless
Public Key Encryption Without Pairing. In Cryptology and Network Security,

CANS, 2007, volume 4856 of LNCS, pages 194–208. Springer, 2007.
32. Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In

Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer, 2005.

A Formal Security Proof for Our Proposed Construction

We now define a series of games where each one is an interactive game between
a simulator S and an adversary A, which is either an insider attacker (Type-I
adversary) or a curious server (Type-II adversary), depending on the allowed
queries. The skeleton of the proof is based on the proof given in [18].

Game 1 (The Original Game). This game is the one played between a simu-
lator S and an adversaryA as specified in the experiment ExpCCA−X. We use the
following notation: For the queries, let T = {

»

ID1, · · · ,
»

IDqE} denote the trap-
doors extraction queries and W = {w1, · · · , wqD} be the set of strings involved

in decryption queries where wj = H(C1, C2, τ,
»

IDj , pkj). For the challenges, let
»

ID∗ and pk∗ denote the challenge identifier and the challenge public key respec-
tively, and let C∗ = (C∗

1 , C∗
2 , τ∗, σ∗) be the returned challenge ciphertext and

let w∗ = H(C∗
1 , C∗

2 , τ∗,
»

ID∗, pk∗). The random bit ι is chosen by S in order to
select which message is encrypted.

Game 2 (Change of Public Parameters). Let Zi = (g)αi

, 1 ≤ i ≤ h + 1.
This game is the same as Game 1 except that the generation of the parameters
is changed. S picks α, β ∈R Zp, and set g1 = Z1, g2 = Zh · gβ.

If mode = II, A should obtain Aux = Msk, {pk∗1, · · · pk∗qK
} from S. S computes

Msk = αh + β. For public keys, S randomly chooses θi from Zp, and computes
pk∗i = (X∗

i , Y ∗
i) = (gθi , (gα)θi), ∀i ∈ {1, · · · , qK}.

The simulator also changes the vectors as follows. Let ρu and ρv be integers
such that ρu(n + 1) < p and ρv(n + 1) < p. The exact choices of ρu and ρu will
be determined later. The simulator randomly selects

– κu1 , · · · , κun , κv from {0, · · · , ℓ(n1/ℓ − 1)},
– h many (ℓ + 1)-length vectors #»x 1, · · · ,

#»xh from Zρu ,
where each #»x j = (x′

j , xj,1, · · · , xj,ℓ).

General Certificateless Encryption and Timed-Release Encryption 19

– h many (ℓ + 1)-length vectors #»y 1, · · · ,
#»y h from Zp,

where each #»y j = (y′
j , yj,1, · · · , yj,ℓ).

– (x′
v, xv,1, · · · , xv,n) from Zn+1

ρv

– (y′
v, yv,1, · · · , yv,n) from Zn+1

p .

The hash keys for the identifier-based derivation, for 1 ≤ j ≤ h, are set as:

u′
j = Z

(p+ρuκj−x′

j)

h−j+1 · gy′

j , uj,i = Z
−x′

j,i

h−j+1 · g
yj,i for 1 ≤ i ≤ ℓ.

The hash key for the ciphertext validity is set as (note that g2 = Zh · gβ):

v′ = g
(p+ρvκv−x′

v)
2 · gy′

v , vi = g
−xv,i

2 gy′

v,i for 1 ≤ i ≤ n.

Define the below functions which take IDj = (IDj,1, · · · , IDj,ℓ) or w = b1 · · · bn.

Ju1(ID1) = p + ρuκ1 − x′
1 −

ℓ
∑

i=1

x1,iID1,i, Ku1(ID1) = y′
1 +

∑ℓ
1=1 y1,iIDh,i,

...
...

Juh
(IDh) = p + ρuκh − x′

h −
ℓ

∑

i=1

xh,iIDh,i, Kuh
(IDh) = y′

h +
∑ℓ

1=1 yh,iIDh,i,

Jv(w) = p + ρvκv − x′
v −

ℓ
∑

i=1

xv,ibi, Kv(w) = y′
v +

∑ℓ
1=1 yv,ibi,

The settings above give

F #»

U j
(IDj) = u′

j

ℓ
∏

i=1

u
IDj,i

j,i = Z
Juj

(IDj)

h−j+1 · g
Kuj

(IDj), j ∈ {1, · · · , h}

F #»

V (w) = v′
n

∏

j=1

vj
bj = g

Jv(w)
2 · gKv(w)

These changes do not change the distribution of the public parameters, so
we have Pr[S2] = Pr[S1].

Game 3 (Elimination of Hash Collisions). The simulator aborts and as-
sumes A outputs a random bit in this game if A submits a decryption query
(C,

»

ID, pk = (gsk, gsk
1)) for a well-formed ciphertext C = (C1, C2, τ, σ) where

w = H(C1, C2, τ,
»

ID, pk) is either equal to the same value as a previously sub-
mitted ciphertext or w∗ of the challenge ciphertext.

For such a decryption query to be legal, we have C 6= C∗ or (
»

ID, pk) 6=

(
»

ID∗, pk∗). In either case, this implies a collision for H , which means we can
construct an adversary C against the collision resistance of H such that |Pr[S3]−
Pr[S2]| ≤ AdvCR

C (λ).

20 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

Game 4 (Preparation for the Simulation of the Challenge Ciphertext).

Let
»

ID∗ = (ID∗
1, · · · , ID

∗
k) where k ≤ h. This time S aborts if Juj (ID

∗
j) 6= 0 mod p

for any j ∈ {1, · · · , k} or Jv(w∗) 6= 0 mod p.
Since the values determining these functions are information theoretically

hidden from A, such ID∗ and w∗ can only be produced by chance. Therefore

Pr[Jv(w
∗) = 0 mod p]

= Pr[Jv(w
∗) = 0 mod p|Jv(w

∗) = 0 mod ρv] · Pr[Jv(w
∗) = 0 mod ρv]

=
1

ρv(n + 1)

Unless S aborts, Game 3 and Game 4 are identical and we have |Pr[S4] −
Pr[S3]| ≤

1
(ρu)hρv(ℓ+1)h+1 by a similar computation (n ≥ ℓ). The significance of

this extra abort condition will be manifested in Game 8.

Game 5 (Artificial Abort for Consistent View of Adversary). Now S

aborts if Ju1(ID
′
1) = · · · = Juk

(ID′
k) = 0 mod ρu for some

»

ID′ = (ID′
1, · · · , ID

′
k) ∈

T or Jv(w
′) = 0 mod ρv for some w′ ∈ W .

Since A’s power is dependent on the extraction and decryption queries, the
above abort event is not independent of S4, and we cannot relate the probability
of S4 and S5 in a similar way as before.

This problem can be circumvented by the “re-normalization” technique due
to Waters [32], such that “artificial aborts” are added to make sure that the
probability of aborts is exactly equal to some negligible upper bound for the
probability that E occurs for any set of oracle queries.

Conditioning on the event Jv(w
∗) = 0 mod p, the theoretical lower bound of

Pr[Jv(w∗) 6= 0 mod p] is (1 − qD

ρv
). Setting ρv = 2qD and will make it bounded

by 1/2. On the other hand, a lower bound on the probability for the first event
is 1

2(4ℓqE2n/ℓ)h by setting ρu = 4qE [10].

We estimate the probability that A’s oracle queries will cause S to abort by
repeatedly sampling values determining Ju1(·), · · · , Juh

(·), Jv(·). This would not
involve re-running A as A’s view (of the public parameters) remains unchanged
by assuming y’s are changing accordingly. Waters [32] has shown that a polyno-
mial number of trials is sufficient to give an estimate of the abort probability η
to within a negligible error term.

If S did not abort, we force an artificial abort with probability

(η − 1/(4(4ℓqE2n/ℓ)h))/η,

and S will abort with probability sufficiently close to 1
4(4ℓqE2n/ℓ)h . Now we can

say Pr[S5] = Pr[S4]/4(4ℓqE2n/ℓ)h. An exposition of Waters’ technique can be
found at [11].

Game 6 (Simulation of Extraction and Decryption). This game changes
the simulation of all A’s queries for trapdoor extractions, partial decryptions,

General Certificateless Encryption and Timed-Release Encryption 21

and complete decryptions. We will have Pr[S6] = Pr[S5].

Trapdoor extraction: For trapdoor key extraction query of
»

ID = (ID1, · · · , IDk)
where k ≤ h. Let j′ ∈ {1, · · · , k} be a minimum one such that Juj′

(IDj′) 6= 0.
There exists such a j′ or S has aborted in Game 5. S needs to return d # »

ID =
(a1, a2,

#»z k+1, · · · ,
#»z h).

We first show how to compute a1|j′ , a “trapdoor for only IDj′” (without any
appearance of any elements from other levels); then we will show how to compute
a trapdoor (a1, a2,

#»z k+1, · · · ,
#»z h) that matches the same implicit random factor

used in a1|j′ . Recall that F #»

U j′
(IDj′) = Z

Ju
j′

(IDj′)

h−j′+1 ·g
Ku

j′
(IDj′). S picks r ∈ Z∗

p and
computes

a1|j′ = (Zβ
1 · Zj′

−
Ku

j′
(ID

j′
)

Ju
j′

(ID
j′

)
) · (Z

Ju
j′

(IDj′)

h−j′+1 · g
Ku

j′
(IDj′))r

The second component of a1|j′ is only for randomization. We will show the first

component of a1|j′ is in the form of gα
2 (F #»

U j′
(IDj′))

− αj′

Ju
j′

(ID
j′

)
, which means a1|j′

is in the form of gα
2 (F #»

U j′
(IDj′))

r̃ where r̃ = r − αj′

Ju
j′

(IDj′)
.

gα
2 (F #»

U j′
(IDj′))

− αj′

Ju
j′

(ID
j′

)

= (Zh · g
β)α(Z

Ju
j′

(IDj′)

h−j′+1 · g
Ku

j′
(IDj′))

− αj′

Ju
j′

(ID
j′

)

= Zh+1 · Z
β
1 · Z

−
Ju

j′
(ID

j′
)

Ju
j′

(ID
j′

)

h+1 · Z
−

Ku
j′

(ID
j′

)

Ju
j′

(ID
j′

)

j′

= Zβ
1 · Zj′

−
Ku

j′
(ID

j′
)

Ju
j′

(ID
j′

)

To compute a1 = gα
2 · (

∏k
j=1 F #»

U j
(IDj))

r̃, S needs to compute F #»

U j
(IDj)

r̃ =

(Z
Juj

(IDj)

h−j+1)r̃ ·(gKuj
(IDj))r̃ for j 6= j′. We would like to compute it without knowing

α and Zh+1, but with the help of (Z1, · · · , Zh). Now the only difficulty comes

from the fact that αj′ in r̃ is unknown. Note that the second term (gKuj
(IDj))αj′

can be computed from Zj′ . We can see how the first term can be obtained by
considering two different cases.

1. j < j′: Juj (IDj) = 0 by the choice of j′.

2. j > j′: Zαj′

h−j+1 = Zh+1−(j−j′), note that 1 ≤ j − j′ ≤ h− 1.

By similar reasoning, since k + 1 > j′, it is easy to see that #»z k+1, · · · ,
#»z h

can also be computed from (Z1, · · · , Zh). This completes the simulation of the
trapdoor queries.

SEM partial decryption: S performs the usual validity checking to reject any
invalid ciphertext C that is purported to be encrypted under

»

ID and pk. For

22 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

decrypting a valid ciphertext with hash w by the trapdoor of
»

ID, if d # »

ID =
(a1, a2, · · ·) is computable by S, it is easy to generate (a1F #»

V (w)t, a2, g
t) for a

random t ∈ Z
∗
p.

S cannot generate the trapdoor for d # »

ID only if Ju1(ID1) = · · · = Juk
(IDk) =

0 mod ρu. Note that Jv(w) 6= 0 mod ρv or S has aborted in Game 5. Under this
condition, S can generate the token similar to the generation of the trapdoor
before. Recall that F #»

V (w) = (Zh · gβ)Jv(w) · gKv(w), we have

gα
2 (F #»

V (w))−
α

Jv(w)

= (Zh · g
β)α(Z

Jv(w)
h · (gβ)Jv(w) · gKv(w))−

α
Jv(w)

= Zh+1 · Z
β
1 · Z

−Jv(w)
Jv(w)

h+1 · Z
−β Jv(w)

Jv(w)

1 · Z
−Kv(w)

Jv(w)

1

= Z
−Kv(w)

Jv(w)

1

This means Z
−Kv(w)

Jv(w)

1 gives a token with the implicit random factor equals
to − α

Jv(w) . Randomization can be done easily by multiplying the above term by

(F #»

V (w))r where r ∈ Z∗
p. Since Ju1(ID1) = · · · = Juk

(IDk) = 0 mod ρu, all α
Jv(w)

power terms appear in the construction of the token can be computed from Z1.

User partial decryption: A queries S’s oracle DecOU (C, pk, D). S performs the
usual ciphertext validity checking to reject any invalid ciphertext C that is pur-
ported to be encrypted under

»

ID and pk, and the token validity checking to
reject any invalid token D that is purported to be a partial decryption of C.
These validity checks prevent loss of information about the secret key sk. In par-
ticular, without the token checking, it is trivial for a Type-II adversary to derive
the message in the challenge ciphertext by asking DecOU (C∗, pk∗, D′) where D′

is some invalid token derived from a valid one.
Suppose C is a valid ciphertext and D is valid for C and

»

ID, DecOU (C, pk, D)
should give a correct decryption. For decrypting a valid ciphertext (C1, C2, τ, σ)
with hash w, we have τ = gs and σ = F #»

V (w)s for some s ∈ Z∗
p, i.e. σ =

g
s·Jv(w)
2 · (gs)Kv(w). S can get gs

2 by (σ/τKv(w))
1

Jv(w) , ê(Y, g2)
s can thus be com-

puted easily. Note that the secret key sk that matches pk is never explicitly used.

Complete decryption: If validity checking is passed, S returns

m = C1/ê(Y, (σ/τKv(w))
1

Jv(w)).

Game 7 (User Secret Key Extraction). If mode = II, A may issue UskO

query on some public key pku ∈ {pk∗1, · · · pk∗qK
}. S picks a random integer q′ from

{1, · · · , qK}. If A issues the query UskO(pk∗q′), S aborts; returns θi for i 6= q′.
This gives Pr[S7] = Pr[S6] for mode = I and Pr[S7] = Pr[S6]/qK for mode = II.

Game 8 (Simulation of the Ciphertext / Embedding of the Problem
Instance). Depending on whether the adversary is an insider or the server, we

General Certificateless Encryption and Timed-Release Encryption 23

have different modes of simulations. Now S introduces a variable γ ∈R Z∗
p and

sets τ∗ = gγ .
If mode = I, g1 is set to Z1 = gα.A chooses an identifier

»

ID∗ = (ID∗
1, · · · , ID

∗
k),

a public key pk∗ = (X∗, Y ∗) to be challenged with. S proceeds if ê(Y ∗, g) =

ê(X∗, g1). Let T = (gαh+1

)γ , S computes C∗
1 by

mι · ê(X
∗, T) · (Y ∗, gγ)β

= mι · ê(X
∗, (gαh+1

)γ) · (Y ∗, gγ)β

= mι · ê(Y
∗, gαh

)γ · (Y ∗, gβ)γ

= mι · ê(Y
∗, Zh · g

β)γ

= mι · ê(Y
∗, g2)

γ

Note that it is the first time in the simulation that β is used directly (i.e. not in
the form of gβ) except the computation of Msk, which is fine since S does not
need to compute it explicitly for a Type-I adversary.

If mode = II, S introduces a variable δ ∈R Z∗
p, and computes (X∗

q′ , Y ∗
q′)

by ((gδ)θq′ , (gδ)θq′α) instead. Under the artificial abort in Game 7, S correctly
guessed the public key A wants to attack. Let T = gβγδ, S computes C∗

1 by

mι · (ê(g
δ, gγ)αh+1

· ê(gα, T))θi

= mι · (ê(g
δ, gαh+1

)γ · ê(gα, gβγδ))θi

= mι · ê(g
δθiα, gαh

)γ · ê(gδθiα, gβ)γ

= mι · ê(Y
∗, Zh · g

β)γ

= mι · ê(Y
∗, g2)

γ

Note that it is the first time in the simulation that α is used directly (i.e. not in

the form of gα, · · · , gαh

).

In both modes, S sets C∗
2 =

∏k
j=1 (gγ)Kuj

(ID∗

j), σ∗ = (gγ)Kv(w∗) where w∗ =

H(C∗
1 , C∗

2 , τ∗,
»

ID∗, pk∗) for the rest of the challenge, which is a perfect simulation
if S did not abort in Game 4. We have Pr[S8] = Pr[S7].

Game 9 (The Indistinguishability Cards). If mode = I, S forgets (α, γ). If
mode = II, S forgets (β, γ, δ). S can simulate the game in both modes as long as

(gα, · · · , gαh

, gγ) are known for mode = I or (gβ, gγ , gδ) are known for mode = II,
except computing the term T . Now S just picks a T ∈R G. The transition from
Game 8 to Game 9 is based on the intractability of either h-wDHI or 3-DDH.
Both games are equal unless there exists a PPT algorithm D that distinguishes T
from random. Therefore, we have |Pr[S9]−Pr[S8]| ≤ AdvX

D(λ) where X is either
h-wDHI or 3-DDH. Finally, C∗

1 perfectly hides mι from A, we have Pr[S9] = 1/2.

B Security Models of Timed-Release Encryption

We following the typical TRE formulation [3, 8, 12, 19, 24] such that public key
is certified and the typical TRE security model [8, 12, 19, 24] such that only a

24 Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

single public key is considered. However, we extend the existing notion such that
partial decryption by a security-mediator is supported.

We consider the two kinds of adversaries. A Type-I adversary models any
coalition of rogue users, and who aims to break the confidentiality of another
user’s ciphertext. A Type-II adversary that models a curious time server, who
aims to break the confidentiality of a user’s ciphertext. Security against these ad-
versaries are modeled by the experiment below for X ∈ {I, II}, denoting whether
an PPT adversary A = (Afind,Aguess) is of Type-I or Type-II. The allowed oracle
queries O and the auxiliary information Aux depends on X.

Definition 9. Experiment ExpCCA′−X
A (λ)

(Pub, Msk)
$
← Setup(1λ)

(pk∗, sk∗)
$
← KGen

(m0, m1, ID
∗, state)

$
← AO

find(Pub, Aux, pk∗)

b
$
← {0, 1}, C∗ $

← Enc(mb, ID
∗, pk∗)

b′
$
← AO

guess(C
∗, state)

If (|m0| 6= |m1|) ∨ (b 6= b′) then return 0 else return 1

O is a set of oracles ExtractO(·), DecO
S(·, ·), DecO

U (·, ·, ·), DecO(·, ·, ·) as below.

1. An ExtractO oracle that takes an identifier ID ∈ {0, 1}n as input and returns
its trapdoor dID.

2. A DecOS oracle that takes a ciphertext C and an identifier ID, and outputs
Dec

S(C, dID). Note that C may or may not be encrypted under ID.
3. A DecOU oracle that takes a ciphertext C, a public key pk and a token D,

and outputs DecU (C, sk, D) where sk is the secret key that matches pk.
4. A DecO oracle that takes a ciphertext C, an identifier ID, and a public key

pk, and outputs DecU (C, sk, D) where sk is the secret key that matches pk

and D = DecS(C, dID). Note that C may not be encrypted under ID and pk.

Definition 10. A timed-release encryption scheme is (t, qE , qD, ǫ) CCA-secure

against a Type-I adversary if |Pr[ExpCCA′−I
A (λ) = 1] − 1

2 | ≤ ǫ for all t-time
adversary A making at most qE extraction queries and qD decryption queries
(of any type), subjects to the following constraints:

1. Aux = (sk∗), i.e. the user secret key is given to the adversary.
2. No ExtractO(ID∗) query throughout the game.
3. No DecOS(C∗, ID∗) query throughout the game.
4. No DecO(C∗, ID∗, pk∗) query throughout the game.

Definition 11. A timed-release encryption scheme is (t, qD, ǫ) CCA-secure against

a Type-II adversary if |Pr[ExpCCA′−II
A (λ) = 1]− 1

2 | ≤ ǫ for all t-time adversary
A making at most qD decryption queries, under the following conditions:

1. Aux = (Msk), i.e. the master secret key is given to the adversary.
2. No DecOU (C∗, pk∗, D) query throughout the game, where D is outputted by

the algorithm DecS(C∗, d∗ID).
3. No DecO(C∗, ID∗, pk∗) query throughout the game.

