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Abstract. The innovative HB+ protocol of Juels and Weis [10] extends
device authentication to low-cost RFID tags. However, despite the very
simple on-tag computation there remain some practical problems with
HB+ and despite an elegant proof of security against some limited active
attacks, there is a simple man-in-the-middle attack due to Gilbert et

al. [8]. In this paper we consider improvements to HB+ in terms of both
security and practicality. We introduce a new protocol that we denote
random-HB#. This proposal avoids many practical drawbacks of HB+,
remains provably resistant to attacks in the model of Juels and Weis,
and at the same time is provably resistant to a broader class of active
attacks that includes the attack of [8]. We then describe an enhanced
variant called HB# which offers practical advantages over HB+.
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1 Introduction

The deployment of low-cost RFID tags is gathering pace. One familiar applica-
tion is the inventory tracking of consumer items such as clothes, media products,
and pharmaceuticals. However since blank tags can be programmed, there are
opportunities for an attacker to clone an RFID tag and to introduce counter-
feit goods into the supply chain. Thus, in this and other application areas there
is much interest in deploying mechanisms for cryptographic tag authentication.
However the physical demands for the deployment of cryptography on a cheap
tag are substantial. Not only is space limited [10], but the peak and average
power consumption often pose a demanding barrier for a tag that derives its
power from a reader. Furthermore, since RFID tags pass fleetingly past a reader
and are used in multi-tag and multi-reader environments, the communication is
limited and its coordination complex.

Juels and Weis introduced HB+, a three-pass symmetric key authentication
protocol, at Crypto 2005 [10]. HB+ is computationally lightweight—requiring
only simple bit-wise operations—and it is supported by a proof of security [10].
There are, however, some practical deficiencies in HB+ and the value of the proof
of security has been somewhat limited by a simple active attack due to Gilbert
et al. [8] which we will refer to as the GRS attack. Nevertheless, the simplicity



Tag (secret x,y) Reader (secret x, y)
ν ∈R {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k
b

−−−−−−−−→
a

←−−−−−−−− Choose a ∈R {0, 1}k

Let z = a · xt ⊕ b · yt ⊕ ν
z

−−−−−−−−→ Check a · xt ⊕ b · yt = z

Fig. 1. One single round of HB+ [10]. The entire authentication process requires r

rounds and, in this basic form, each round consists of the three passes shown. Provided
the tag fails less than some threshold t number of rounds, the tag is authenticated.

of both the original proposal and the active attack have led to a number of
HB-related publications (see Section 2.2).

In this paper we propose solutions that improve on the practical problems
of HB+ while providing resistance to the GRS attack. The two simple proposals
random-HB# and HB# provide more practical error rates than the original
HB+ and reduce the communication payload by a factor of around 20 (depending
on the parameter sets). The protocol random-HB# is provably secure in the
detection-based model, the adversarial model used in all current proofs of security
for HB+ and its variants. But random-HB# is also provably secure against
the GRS attack and more generally in what we term the grs-mim model, an
adversarial model that permits an active adversary to manipulate messages from
the reader. The related protocol HB# then gives a truly efficient scheme. While
the same proofs do not immediately extend in their entirety to HB#, we can still
say a surprising amount about the scheme in both theory and practice.

Our paper is organised as follows. First we describe HB+ and some variants.
Then, in Section 3, we introduce random-HB# and provide full security proofs.
In Section 4 we describe HB# and its security and practical performance. We
then highlight future work and draw our conclusions. Throughout we aim to use
established notation. There will be some interplay between vectors x ∈ {0, 1}k

(which we always consider to be row vectors) and scalars in GF(2). We use bold
type x to indicate a row vector while scalars x are written in normal text. The
bitwise addition of two vectors will be denoted ⊕ just as for scalars. We denote
the Hamming weight of x by Hwt(x).

2 HB+ Variants and Tag Authentication

There are now several protocols based on HB+ and these offer a variable level
of security and practicality. We start by reviewing the original protocol. HB+

is a three-pass authentication protocol built on the conjectured hardness of the
Learning from Parity with Noise (LPN) problem [10].

LPN Problem. Let A be a random (q × k)-binary matrix, let x be a
random k-bit vector, let η ∈]0, 1

2 [ be a noise parameter, and let ν be



a random q-bit vector such that Hwt(ν) ≤ ηq. Given A, η, and z =
A · xt ⊕ νt, find a k-bit vector yt such that Hwt(A · yt ⊕ z) ≤ ηq.

The HB+ protocol is outlined in Figure 1. One doesn’t need to look long to
see that the goal of low on-tag computation has been achieved. Leaving aside
generating b and the bit ν, computation on the tag is reduced to a dot-product
(which can be computed bit-wise) and a single bit exclusive-or. Also HB+ is ac-
companied by a proof of security. The adversarial model for this proof is referred
to as the detection-based model [10] and requires that the adversary queries a
tag q times and then attempts to pass the HB+ authentication process by in-
teracting with the reader once. Some commentators are not convinced that this
adversarial model is sufficiently strong and an active attack against HB+ exists
when the adversary can interact with both the tag and the reader before at-
tempting to impersonate the tag [8]. That said, the proof of security still has
considerable value. The original proof [10] was rather sophisticated and applied
to an adversary attempting to fool the reader over a single round of HB+. This
was extended by Katz and Shin [12] who also considered the parallel version of
HB+ with communications batched into one round of a three-pass protocol.

2.1 Some problems with HB+

While HB+ is computationally lightweight it still has some practical defects. The
possibility of a legitimate tag being rejected has been commented on [12], but
other issues such as the complex and extensive tag-reader communication would
make HB+ difficult to use. First, however, we highlight the fact that methods to
solve the LPN problem have improved since the original presentation of HB+.

LPN security and parameter choices. When considering the security and
implementation of HB+ there are four parameters that we need to set:

k : the length of the secrets, η : the noise level,
r : the number of rounds, t : the threshold for tag acceptance.

The first two parameters, k and η, quantify the resistance of the underlying LPN
problem to attack. In [11] it is suggested that the parameter sets k = 224 and
η = 0.25 provide around 80-bit security. Katz and Shin [12] propose k ≈ 200
with η = 0.125, but we note that the reduced level of noise means that the LPN
problem instance becomes easier and would necessitate an increase1 to k.

Since the publication of HB+ the LPN problem has been studied in more
detail and the BKW algorithm cited in [10,12] has been improved. Fossorier et
al. [6] show that the parameter choices used by [10] offer a level of security no
greater than 261 operations rather than the 280 claimed. However, this has been
superseded by the work of Levieil and Fouque [16] which suggests that the real
security level offered by the parameters in [10] is no more than 252 operations.

1 However [12] is concerned with security proofs and specific parameter choices are
somewhat orthogonal to their work.



Table 1. Error rates and transmission costs for different parameter sets in HB+. The
threshold t = rη is proposed in [10] so we use ⌈rη⌉ in this table. For the other pa-
rameters, [10] suggest k = 224 and η = 0.25 (leaving r unspecified) while [12] suggests
k ≈ 200, η = 0.125, with 40 ≤ r ≤ 50. Based on the work of [16], we also consider the
data transmission costs when k = 512 in the last column.

False reject False accept Transmission cost (bits)
r η k rate (PFR) rate (PFA) [k as given] [k = 512]

80 0.25 224 0.44 4× 10−6 35, 920 82, 000
60 0.25 224 0.43 6× 10−5 26, 984 61, 500
40 0.25 224 0.42 1× 10−3 17, 960 41, 000

50 0.125 200 0.44 2× 10−8 20, 050 51, 250
40 0.125 200 0.38 7× 10−9 16, 040 41, 000

Considering [16] we propose alternative parameter values in Section 4.2 that
are more consistent with the intended security level. In particular we propose
k = 512 and η = 0.125 or, more conservatively, k = 512 and η = 0.25.

Error rates. A false rejection, a legitimate tag being rejected by a legitimate
reader, occurs when the number of incorrect authentications exceeds the thresh-
old t. A false acceptance takes place when an illegitimate tag is accepted by a
legitimate reader. This occurs when t or fewer verification errors take place and
we assume the illegitimate tag is reduced to guessing the reply z at random. The
probability of a false rejection, PFR, and a false acceptance, PFA, are given by

PFR =

r∑

i=t+1

(
r

i

)
ηi(1− η)r−i and PFA =

t∑

i=0

(
r

i

)
2−r.

Note that both the false rejection and acceptance rate are independent of k, the
size of the secrets, while the false acceptance rate is also independent of the noise
level η used in HB+. In the original descriptions of HB+ a threshold of t = rη is
suggested. However (see Table 1) such a choice gives an unacceptably high false
rejection rate. It is hard to imagine any practical scenario where a probability
higher than 1% of rejecting a legitimate tag could be tolerated.

Transmission costs. HB+ is a three-pass protocol that runs over r rounds.
This requires the exchange of 2k + 1 bits per round and 2rk + r bits in total. In
the parallel version of the protocol, the data transmission requirements are the
same but the data is packed into three passes of rk, rk, and r bits respectively.
A three-pass protocol is considerably more practical than a 3r-pass protocol
(this was also mentioned in [12] as a justification for parallel HB+). However
the total amount of data transferred in both cases remains unacceptably high.
In Table 1 we provide some estimates for the transmission costs in using HB+.
In particular we use parameter values that cover those proposed in [10,12]. We



Tag (secret x,y) Reader (secret x, y)
ν ∈ {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k
b

−−−−−−−−→

a′ = a⊕ δ
←−−−−−−−−−−−− · · ·

a
←−−−−− Choose a ∈R {0, 1}k

Let z′ = a′ · xt ⊕ b · yt ⊕ ν
z′

−−−−−−−−→ Check a · xt ⊕ b · yt = z′

Fig. 2. The attack of Gilbert et al. [8] on HB+. The adversary modifies the commu-
nications between reader and tag (by adding some perturbation δ) and notes whether
authentication is still successful. This reveals one bit of secret information.

also include the transmission costs if we were to use parameter sizes that come
closer to providing the intended 80-bit level of security.

An active attack. A simple active attack on HB+ was provided in [8]. There
it is assumed that an adversary can manipulate challenges sent by a legitimate
reader to a legitimate tag during the authentication exchange, and can learn
whether such manipulation gives an authentication failure. The attack consists
of choosing a constant k-bit vector δ and using it to perturb the challenges
sent by a legitimate reader to the tag; δ is exclusive-or’ed to each authentication
challenge for each of the r rounds of authentication. If the authentication process
is successful then we must have that δ · xt = 0 with overwhelming probability.
Otherwise δ ·xt = 1 with overwhelming probability and acceptance or rejection
by the reader reveals one bit of secret information. The attack is illustrated in
Figure 2 for one round of the HB+ protocol. To retrieve the k-bit secret x, one
can repeat the attack k times for linearly independent δ’s and solve the resulting
system. Conveniently, an adversary can choose δ’s with a single non-zero bit.
With x an attacker can impersonate the tag by setting b = 0. Alternatively,
an attacker can emulate a false tag using x, send a chosen blinding factor b to
a legitimate reader, and return a · xt to the challenge a. If authentication is
successful b · yt = 0, otherwise b · yt = 1, with overwhelming probability, and y

can be recovered with k linearly independent b.
Whether or not the attack is technically easy to mount it is certificational.

The attack is mathematically simple and fully compromises HB+. Protocols that
resist this attack, while maintaining the computational simplicity of HB+, would
therefore be very attractive.

2.2 Other work on HB+ and tag authentication

The novelty of the HB+ protocol has generated considerable interest and much
research. We have already mentioned the work of Katz and Shin [12] that closed
gaps and extended the original proof of security. Follow-on work by Katz and
Smith [13] has further extended these theoretical results to a larger range of
noise levels 1

4 ≤ η < 1
2 whereas previous work [12] was only valid for η < 1

4 .



Other researchers have considered the active attack of Gilbert et al. [8].
Among them Bringer et al. [2] have outlined a protocol named HB++. However
the resulting protocol has some practical drawbacks. The data transmission costs
of HB+ remain and the on-tag computation now includes bit-wise rotations and
a small-block permutation f . Furthermore, an additional pre-protocol involving
a universal hash function h is required to derive new tag/reader secrets at the
start of each authentication. All this requires additional hardware and moves
away from the essential simplicity of the HB+ protocol. Piramuthu [20] pro-
poses a modification to HB++ in which the bit-wise rotations are varied for each
round of the authentication and the message flow is simplified (saving one bit
per authentication round). However the exact security claims are unclear. The
variant HB∗ is proposed by Duc and Kim [4] while another prominent protocol
is HB-MP [19]. While both claim to be resistant to the attacks of [8], linear time
attacks by the authors [7] show that this is not the case.

Naturally, research into other mechanisms for unilateral and mutual authen-
tication continue in parallel. Schemes based on symmetric cryptography might
use a lightweight block cipher [1,21] in a challenge-response protocol while other
schemes might use asymmetric techniques such as GPS [9,18]. Other proposals
include squash [22] which might be viewed as a dedicated MAC, though the
security goals appear to be somewhat reduced when compared to HB+ and the
proposals random-HB# and HB# in this paper.

But this parallel work only serves to emphasize the interest in tag authen-
tication and the importance of understanding the limits of proposals like HB+.
Despite the mixed success of current proposals in the literature, HB+ still holds
much promise. This is due to the exceptionally low on-tag computational re-
quirements and the fact that a proof of security, even if the model is weaker
than we might ideally like, is a positive attribute.

3 The Proposal random-HB#

We now introduce random-HB# (random-HB-sharp). This goes a long way to
fixing many of the practical problems of HB+. Like many other HB+-variants,
we prove the security of random-HB# in the detection-based model, referred to
in what follows as the det-model. But we go further and prove the security of
random-HB# against a class of attacks that includes the GRS attack in what we
term the grs-mim-model. More details are given in Section 3.1, but this model
allows an active attacker to change any message from the reader in any way that
they wish and observe the decision of the reader of whether to accept or not.

In random-HB# we generalise HB+ and change the form of the secrets x and
y from k-bit vectors into (kX ×m)- and (kY ×m)-binary matrices X and Y . We
illustrate random-HB# protocol in Figure 3. One way of looking at random-
HB# is to observe that it is equivalent to m iterations of HB+, but each column
of X and Y in random-HB# effectively represents a different HB+ secret x and
y. However, while random-HB# carries much of the appearance of the HB+

protocol, there are important differences. In particular, the final verification by



Parameters: (kX , kY , m, η, u)

Tag (secret X, Y ) Reader (secret X, Y )
ν ∈R {{0, 1}m|

Prob.(νi = 1) = η for 1 ≤ i ≤ m}

Choose b ∈R {0, 1}kY
b

−−−−−−−−→
a

←−−−−−−−− Choose a ∈R {0, 1}kX

Let z = a ·X ⊕ b · Y ⊕ ν
z

−−−−−−−−→ Check
Hwt(a ·X ⊕ b · Y ⊕ z) ≤ um

Fig. 3. The random-HB# authentication protocol where the secrets X and Y are
binary random matrices and the protocol has a single round. The verification step
requires the comparison of two vectors and yields a pass/fail verdict.

the reader consists of the comparison of two m-bit vectors a ·X ⊕ b · Y and z.
For reader-verification we merely count the number of positions e that are in
error and if e ≤ t for some threshold t = um, where u ∈]η, 1

2 [, then we deduce

that the tag is authentic. Thus random-HB# and HB# (see Section 4) consist
of a single round.

3.1 Security results for random-HB#

We now provide security proofs for random-HB# in two models. The first is
the det-model used in much of the founding work on HB+ [10,12]. Here the
adversary is only allowed to query an honest tag without access to the reader.
The second permits an active attacker to manipulate messages sent by the reader
and will be referred to as the grs-mim-model.

Security definitions. In the following, the security parameter will be k, to
which the number of rows of the secret matrices X and Y are related by kX =
Θ(k) and kY = Θ(k). We will say that a function (from positive integers to
positive real numbers) is negligible if it approaches zero faster than any inverse
polynomial, and noticeable if it is larger than some inverse polynomial. An algo-
rithm will be efficient if it is a Probabilistic Polynomial-Time Turing machine.
By saying that LPN is a hard problem, we mean that any efficient adversary
solves it with only negligible probability.

We will let TX,Y,η denote the algorithm run by an honest tag in the random-

HB# protocol and RX,Y,u the algorithm run by the tag reader. We will prove

the security of random-HB# in two models:

– The det-model, defined in [10,12], where attacks are carried out in two
phases: the adversary first interacts q times with the honest tag. Then the
adversary interacts with the reader and tries to impersonate the valid tag.



– The grs-mim-model: in a first phase, the adversary can eavesdrop on all
communications between an honest tag and an honest reader (including the
reader-decision of whether to accept or not) and in addition the attacker
can modify any message from the reader to the tag for q executions of the
protocol. Then the adversary interacts only with the reader and tries to
impersonate the valid tag.

Note that the det-model is a restriction of the grs-mim-model as any attack
in the det-model can easily be converted into an attack in the grs-mim-model.
By replying at random to a challenge, the probability an adversary imperson-
ating a tag will succeed is the false acceptance rate PFA = 2−m

∑um
i=0

(
m
i

)
. This

quantity is the best soundness we can achieve for random-HB#. Note that it is
a function of m and u and not of the security parameter k, which will only set
how close to PFA the advantage of an adversary is bound to be. Note also that
PFA is negligible for any u ∈]η, 1

2 [ and any m = Θ(k). We define the advantage

of an adversary against the random-HB# protocol in the det and grs-mim

models as its overhead success probability over PFA in impersonating the tag:

Advdet
A (kX , kY , m, η, u, q)

def
=

Pr
[
X

$
←−MX , Y

$
←−MY , ATX,Y,η (1k) : 〈A,RX,Y,u〉 = acc

]
− PFA;

Advgrs-mim
A (kX , kY , m, η, u, q)

def
=

Pr
[
X

$
←−MX , Y

$
←−MY , ATX,Y,η ,RX,Y,u(1k) : 〈A,RX,Y,u〉 = acc

]
− PFA.

where MX and MY denote resp. the sets of (kX × m)- and (kY × m)-binary
matrices and acc denotes “accept”.

Proof methods. We do not reduce the security of random-HB# directly to
the LPN problem. A preliminary step of our analysis is to define a natural
matrix-based extension of the LPN problem and to prove its hardness. For this
we appeal to the theory of “weakly verifiable puzzles”. This is a notion introduced
by Canetti, Halevi, and Steiner [3] and, informally, refers to a situation where
only the entity that generates the puzzle holds secret information enabling the
correctness of a candidate solution to be efficiently verified. As noticed by Katz
and Shin [12], attacking the one-round HB protocol [10] in the passive model
(that is, given q noisy samples (ai, ai·x

t⊕νi), where x is a secret k-bit vector and
the ai are random k-bit vectors, and a random challenge a, guess a ·xt) may be
viewed as a weakly verifiable puzzle. The result by Juels and Weis [10, Lemma 1]
asserts, in essence, that this puzzle is (1− 1

2 )-hard if we assume the hardness of
the LPN problem, which means that any efficient adversary trying to solve it has
a success probability that is negligibly close (in k) to 1

2 . Canetti et al. [3] proved
that if no efficient algorithm can solve a puzzle with probability more than ǫ,
then no efficient algorithm can solve m independent puzzles simultaneously with
probability more than ǫm. Thus, we define an extension of the HB puzzle that we



call the MHB puzzle: given q noisy samples (ai, ai ·X⊕νi), where X is a secret
(k×m)-matrix and the ai are random k-bit vectors, and a random challenge a,
guess a ·X . Using Canetti et al.’s result, we prove that any efficient adversary
trying to solve it has a success probability that is negligibly close (in k) to 1

2m

(see Appendices A and B).
The security analysis is carried out in two steps. First we reduce the security

of random-HB# in the det-model to the MHB puzzle. Then we reduce the
security in the grs-mim-model to the security in the det-model.

Theorem 1 (Security of random-HB# in the det-model). Let A be an ad-
versary attacking the random-HB# protocol with parameters (kX , kY , m, η, u) in
the det-model, interacting with the tag in at most q executions of the random-
HB# protocol, running in time T , and achieving advantage greater than δ. Then
there is an adversary A′, running in time at most 2mLq(2 + log2 q)T , solv-
ing the MHB puzzle with parameters (kY , m, η, q′), where q′ = mLq(2 + log2 q)
and L = 512

δ4(1−2u)4 (ln m − ln ln 2), with success probability >
(

1
2m + δ

4

)
. Hence,

assuming the hardness of the LPN problem, the advantage of any efficient det-
adversary against the random-HB# protocol is negligible in k. As a consequence,
for parameters m = Θ(k), the probability of any efficient det-adversary to im-
personate a valid tag is negligible in k.

Proof. We slightly adapt the proof of Juels and Weis [11, Appendix C]. We
denote by {(bi, zi)}1≤i≤q′ the set of samples obtained by A′ from the MHB
puzzle generator with secret matrix Y and b the challenge vector for which A′

aims to output z = b ·Y . A′ uses its samples to simulate a tag algorithm TX,Y,η

where X is random with one line equal to z. A′ proceeds as follows:

1. Choose a random j, 1 ≤ j ≤ kX , and construct the kX ×m matrix X ′ where
all rows are random except the j-th one which is undefined (say, equal to
zero). Let xl denote the l-th row of X ′.

2. Divide the q′ = mLq(1+ r) samples {(bi, zi)}1≤i≤q′ into mL sets of q(1+ r)
samples. For each bit position s = 1 to m, repeat the following L times,
considering a fresh set of q(1 + r) samples each time:

(a) For i = 1 to q repeat the following: draw a random bit αi (this is a guess
at the j-th bit of the challenge a+

i which will be sent by the adversary

A). If αi = 0, send to A the blinding vector b
+
i = bi, if αi = 1, send to

A the blinding vector b+
i = bi ⊕ b. A sends back the challenge a+

i . If

the guess was right (i.e. αi = a
+
i [j]), then answer with the vector

z
+
i =

⊕

l 6=j

(
a

+
i [l] · xl

)
⊕ zi.

Otherwise rewind adversary A to the beginning of its i-th query and try
with a new (bi′ , zi′) chosen among the rq supplementary samples.

(b) If the rq samples are exhausted before the simulation of the query phase
of A ends, randomly guess z[s].



(c) Otherwise, go to the cloning phase of A: A sends a blinding vector b̂.
Choose two random challenge vectors â1 and â2 such that they differ
in their j-th bit. Transmit â1 to A, record its response ẑ1, rewind the
adversary, transmit â2 to A, and record its response ẑ2 as well.

(d) Compute the guess for z[s] as

ẑ1[s]⊕ ẑ2[s]⊕


⊕

l 6=j

(â1[l]⊕ â2[l]) · xl[s]


 .

3. Once L guesses have been made for each m bits of z, take the majority
outcome for each of them and output the answer accordingly.

Let us analyse what A′ achieves. The repeated experiments on A share some
common randomness ω (namely X and Y ). Let us denote by ω′ the randomness
“renewed” at each experiment (that is the randomness used to simulate the tag,
the random challenge â, and A’s internal randomness). By a standard averaging
argument, it holds that with probability greater than PFA+ δ

2 over ω, the answer
returned by A is correct in at least m − t positions with probability greater2

than δ
2 over ω′. Let us assume that this is the case and show that A′ returns a

correct answer z with probability greater than 1
2 . The theorem will follow since

PFA > 2
2m as soon as t > 1 and the overall probability of success for A′ will be

greater than PFA

2 + δ
4 > 1

2m + δ
4 .

First we will show that, during phase 2(a), A′ simulates a tag algorithm
TX,Y,η, where X is the X ′ matrix with z as j-th row. To see this, observe that

when αi = a
+
i [j] = 0, then

z
+
i = a

+
i ·X ⊕ bi · Y ⊕ νi = a

+
i ·X ⊕ b

+
i · Y ⊕ νi,

whereas when αi = a
+
i [j] = 1, then

z
+
i = a

+
i ·X⊕z⊕bi ·Y ⊕νi = a

+
i ·X⊕ (bi⊕b) ·Y ⊕νi = a

+
i ·X⊕b

+
i ·Y ⊕νi.

Let us now analyse the advantage A′ enjoys during a single guess for one bit
of z during phase 2. First, one can upper bound the probability that A′ enters
phase 2(b) by the probability that any one of the q experiments results in the
discarding of r pairs of the extra challenge-response pairs, which is q2−r. Taking
r = log2 q + 1 yields a probability not greater than 1/2.

Consider phase 2(d) for a fixed bit position s. The guess of A′ is right when
both bits ẑ1[s] and ẑ2[s] are correct, or when they are both incorrect. Hence we
are interested in lower bounding the probability p′ of this event. First, we will
lower bound the probability p over ω′ that the s-th bit of the answer returned
by A is correct. We will assume w.l.o.g. that this probability is the same in all
positions (otherwise one can “symmetrize” A by applying a random permutation

2 Otherwise the probability of success of the adversary would be upper bounded by
(1− PFA −

δ

2
) δ

2
+ PFA + δ

2
< δ + PFA, contradicting the hypothesis on A.



of {1, . . . , m} to the problem). We can lower bound p as follows. Suppose we
draw a random bit position s. Clearly, this bit is correct with probability p over
the choice of s and ω′. At the same time, conditioned on the fact that more than
m−t bits are correct, the s-th bit of the answer is correct with probability greater
than 1− u. Consequently, the overall probability for the s-th bit to be correct is
greater than (1−u) δ

2 + 1
2 (1− δ

2 ), hence p ≥ 1
2 + ǫ where ǫ = δ

2 (1
2 −u). Juels and

Weis proved [10, Lemma 2] that in this case, the probability, conditioned on the
fact that â1 and â2 differ in a single bit j, that both bits ẑ1[s] and ẑ2[s] are
correct or incorrect at the same time, is greater than 1

2 + ǫ3/2 − (ǫ3 + 1)/kX .
However one can improve on their analysis by using Jensen’s inequality3. Let
γ denote the randomness except for â in the experiment ω′ we are considering.
For a fixed γ, let pγ denote the probability over â that the s-th bit of the answer
from A is correct. We’ve just proved that

∑
γ pγ ≥

1
2 + ǫ. Let p′γ denote for a

fixed γ, the probability, conditioned on the fact that â1 and â2 differ in a single
bit j, that both bits ẑ1[s] and ẑ2[s] are correct or incorrect at the same time.
Following the proof of [10, Lemma 2] we have p′γ ≥ φ(pγ) where

φ(x) = x2

(
kX + log2 x− 1

kX

)
+ (1− x)2

(
kX + log2(1− x) − 1

kX

)
.

As φ is convex, one has the following inequalities:

p′ =
∑

γ

p′γ ≥
∑

γ

φ(pγ) ≥ φ(
∑

γ

pγ) = φ(p) ≥ φ(
1

2
+ ǫ) ≥

1

2
+ 2ǫ2 −

1

kX

.

As A′ enters phase 2(b) with probability less than 1/2, the probability that A′

guesses bit z[s] correctly is lower-bounded by 1
4 + p′

2 ≥
1
2 + ǫ′, with ǫ′ = ǫ2− 1

2kX
.

Using the Chernoff bound, taking the majority outcome of the L experiments
allows A′ to guess bit s with probability greater than

π =

(
1− e

−Lǫ′2

1+2ǫ′

)
≥

(
1− e

−Lǫ′2

2

)
.

All m bits will be correct with probability greater than πm ≥
(
1− e

−Lǫ′2

2

)m

.

A probability of success greater than 1
2 can be attained by taking

L =
2

ǫ′2
ln

(
1

1− e−
ln 2
m

)
∼

512

δ4(1− 2u)4
(lnm− ln ln 2).

Hence, any efficient det-adversary achieving a noticeable advantage against the
random-HB# protocol can be turned into an efficient solver of the MHB puzzle
with a success probability greater than 1

2m + δ′, where δ′ is noticeable. This
contradicts (Lemma 5 in Appendix B) the assumption that LPN is hard. �

3 Note that this will also improve the security reduction for HB+.



Theorem 2 (Security of random-HB# in the grs-mim-model). Let A be
an adversary attacking the random-HB# protocol in the grs-mim-model, mod-
ifying at most q executions of the protocol between an honest tag and an honest
reader, running in time T , and achieving advantage greater than δ. Then, under
an easily met condition on the parameter set (see the proof and Section 4.2),
there is an adversary A′ attacking the random-HB# protocol in the det-model,
interacting at most q times with an honest tag, running in time O(T ), and im-
personating a valid tag with success probability greater than (PFA + δ)(1− qǫ) for
some negligible function ǫ. Hence, assuming the hardness of the LPN problem, the
advantage of any efficient grs-mim-adversary against the random-HB# proto-
col is negligible in k. As a consequence, for parameters m = Θ(k), the probability
of any efficient grs-mim-adversary to impersonate a valid tag is negligible in k.

Proof. As A′ has access to an honest tag that it can query freely, there is no
difficulty in simulating an honest tag to A. The main challenge comes with the
task of simulating the honest reader. Recall that in the grs-mim-model, the
adversary is only allowed to modify the messages from the reader to the tag. A′

launches the first phase of the adversary A and simulates the tag and the reader
for q times as follows:

1. A′ obtains from the real tag TX,Y,η a blinding vector bi; A
′ sends bi as the

blinding vector of the simulated tag to the simulated reader.
2. A′ sends a random vector ai as the challenge of the simulated reader. A

modifies it into a′

i = ai ⊕αi. A
′ forwards a′

i to the real tag.
3. The real tag returns an answer zi = a′

i ·X ⊕ bi · Y ⊕ νi to A′ which uses it
as the answer of the simulated tag to the simulated reader.

4. If αi was the all zero vector, A′ outputs “accept” as the answer of the
simulated reader, otherwise it outputs “reject”.

After this first phase, A′ launches the cloning phase of A and replicates its be-
haviour with the real reader. From the point of view of A, the tag TX,Y,η is
perfectly simulated by A′. Let Simi denote the event that the reader RX,Y,u is
correctly simulated by A during the i-th execution of the protocol, and Sim be
the event that the reader is correctly simulated for all the q executions of the
protocol, Sim = ∩q

i=1Simi. Conditioning on this event Sim, the success proba-
bility of A′ is the same as the success probability of A, i.e. PFA + δ. Hence, we
have to lower bound the probability of Sim.

Consider one execution of the disturbed protocol. When αi = 0, A′ clearly
fails at simulating the reader with a probability equal to the probability of
wrongly rejecting an honest tag, i.e. PFR. For the case αi 6= 0 we make the
following reasoning. Assume that the error vector αi · X added by A has a
Hamming weight d. This vector is added before the Bernoullian noise added by
the tag, so that νi is independent of αi · X . Consequently, the resulting error
vector νi ⊕αi ·X has a Hamming weight distributed as the sum of d Bernoulli
variables taking the value 1 with probability 1 − η and 0 with probability η,
and m− d Bernoulli variables taking the value 1 with probability η and 0 with
probability 1 − η. Hence, the mean value of the Hamming weight of the error



vector is µ(d) = d(1− η)+ (m−d)η, and by the Chernoff bound, when µ(d) > t,

this weight is less than t with probability less than e−
(µ−t)2

2µ , which remains true
for any d′ ≥ d. Consequently, if the matrix X is such that for any α 6= 0,
Hwt(α · X) is high enough, outputting “reject” as soon as αi 6= 0 will be a
successful strategy. We formalize this as follows.

Let dmin(X) = minα6=0 (Hwt(α ·X)) denote the minimal distance of the
matrix X . We recall the following classical result of coding theory:

Lemma 1. Let d be an integer in [1..
⌊

m
2

⌋
] and let H be the entropy function

H(x) = −x log2(x)− (1 − x) log2(1− x). Then

Pr
X

[dmin(X) ≤ d] ≤ 2
−

(
1−

kX
m

−H( d
m

)
)

m
.

This is a simple consequence of the following upper bound on the number of m-bit
vectors of Hamming weight less than d:

∑d
i=0

(
m
i

)
≤ 2mH( d

m
). For any non-zero

vector α, α · X is uniformly distributed, and hence has Hamming weight less

than d with probability less than 2m(H( d
m

)−1). The lemma follows by a union
bound.

Let d̃ be the least integer such that µ > t, i.e. d̃ = 1 +
⌊

t−ηm
1−2η

⌋
. Then for any

d ≥ d̃ when αi 6= 0, one can write

Pr
X,νi

[Simi] = Pr
νi

[Simi | dmin(X) > d] · Pr
X

[dmin(X) > d]

+ Pr
νi

[Simi | dmin(X) ≤ d] · Pr
X

[min(X) ≤ d]

≤ Pr
νi

[Simi | dmin(X) > d] + Pr
X

[dmin(X) ≤ d]

≤ e−
(µ−t)2

2µ + 2
−

(
1−

kX
m

−H( d
m

)
)

m
.

For this upper bound to be useful, the coefficient
(
1− kX

m
−H( d

m
)
)

must be

positive for some d ≥ d̃, in particular for d̃ as it is a decreasing function of d.
This is a condition which is easily met for typical values of the parameters (see
Section 4.2). Note also that for the asymptotic reduction we have to define d̃ as
the least integer such that µ(d̃) > (1 + c)t for some c > 0 in order to ascertain
that the first term in the upper bound will be negligible. This way one has, for

all d ≥ d̃, e−
(µ−t)2

2µ ≤ e−
uc2

2(1+c)
m.

Together we have Pr[Simi] ≤ ǫ, where ǫ is a negligible function given by

ǫ = max

{
PFR, min

d≥d̃

(
e−

(µ−t)2

2µ + 2
−

(
1−

kX
m

−H( d
m

)
)

m

)}
.

Consequently, Pr[Sim] ≥ (1 − qǫ) and A′ has a success probability greater than
(PFA + δ)(1− qǫ).

If δ is noticeable then qǫ(PFA + δ) ≤ δ/2 for k big enough, and the success
probability of A′ is greater than PFA + δ

2 . This contradicts Theorem 1. �



With random-HB# we have a surprisingly successful proposal. It is as com-
putationally efficient as HB+ since it consists of a series of bitwise dot-product
computations. At the same time it is simpler in terms of communication since
there is only a single round and the total amount of data transmitted is much
less than for HB+. It also possesses a proof of security in the detection-based
model, exactly like HB+, but also against man-in-the-middle adversaries of the
type used in the GRS attack. However there remains one drawback: storage. We
show how to remedy this situation in the next section.

4 The Proposal HB#

In random-HB# the tag is required to store two random (kX×m)- and (kY ×m)-
binary matrices X and Y where kX , kY and m are three-digit figures. The storage
costs on the tag would be insurmountable. With this in mind we propose the
protocol HB#. This has very modest storage requirements while preserving the
computational efficiency of HB+. While there are some subtle technical issues
that mean we cannot transfer all the provably security results from random-
HB# to HB# we can transfer some. These, together with a plausible conjecture,
allow us to claim that HB# is secure in the grs-mim-model. HB# depends
on the notion of a Toeplitz matrix. These were used by Krawczyk in message
authentication proposals where their good distribution properties and efficient
implementation were noted [14,15].

A (k×m)-binary Toeplitz matrix M is a matrix for which the entries on every
upper-left to lower-right diagonal have the same value. Since the diagonal values
of a Toeplitz matrix are fixed, the entire matrix is specified by the top row and
the first column. Thus a Toeplitz matrix can be stored in k + m− 1 bits rather
than the km bits required for a truly random matrix. For any (k + m − 1)-bit
vector s, we denote by Ts the Toeplitz matrix whose top row and first column
are represented by s. HB# is defined exactly as random-HB# except that X
and Y are now two random (kX ×m) and (kY ×m)-binary Toeplitz matrices.

4.1 Security results for HB#

While there is every indication that HB# is secure in the det-model, this re-
mains to be shown. A first obvious step in this direction would be to prove that
the Toeplitz variant of the MHB puzzle remains hard. We state the following
conjecture to stimulate further research:

Conjecture 1 (Hardness of the Toeplitz-MHB puzzle). Let k be a security param-
eter, η ∈]0, 1/2[, and m and q be polynomials in k. Let X be a random secret
(k×m)-binary Toeplitz matrix, and (a1, . . . , aq) be q random vectors of length
k. Then any efficient algorithm, on input q noisy samples (ai, ai ·X⊕νi), where
each bit of νi is 1 with probability η, and a random vector a of length k, outputs
z = a ·X with probability negligibly close to 1

2m .

Just as for random-HB#, we can relate the security of the HB# protocol in
the grs-mim-model to its security in the det-model.



Table 2. Practical parameters for HB#.

HB# False reject False accept Transmission Storage
kX kY m η t rate (PFR) rate (PFA) (bits) (bits)

80 512 1164 0.25 405 2−45 2−83 1, 756 2, 918
80 512 441 0.125 113 2−45 2−83 1, 033 1, 472

Theorem 3 (Security of HB# in the grs-mim-model). Let A be an ad-
versary attacking the HB# protocol in the grs-mim-model, modifying at most q
executions of the protocol between an honest tag and an honest reader, running
in time T , and achieving advantage greater than δ. Then, under an easily met
condition on the parameter set (see proof of Theorem 2 and Section 4.2), there
is an adversary A′ attacking the HB# protocol in the det-model, interacting at
most q times with an honest tag, running in time O(T ), and impersonating a
valid tag with success probability greater than (PFA+δ)(1−qǫ) for some negligible
function ǫ.

Proof. (Outline) The proof is analogous to that of Theorem 2 and given in
Appendix C. It relies on the observation that Lemma 1 remains true when the
probability is taken over the set of random (kX ×m)-Toeplitz matrices. ⊓⊔

Hence, the security of HB# in the det-model (which we believe to be a likely
conjecture) would directly transfer to the grs-mim-model.

4.2 Parameter values for HB#

When considering the error rates in HB#, we have considerable flexibility in how
we set the acceptance threshold t. Recall that the false rejection rate depends on
m, t, and η and the false acceptance rate depends on m and t only. The overall
security of the scheme depends on kX , kY and η. However, as already noted by
Levieil and Fouque [16] for HB+, and as is clear from the proof of Theorem 1,
kX and kY play two different roles: only kY is related to the difficulty of the
LPN problem, while kX need only be 80-bit long to achieve 80-bit security.

Some example parameters for different noise levels η are given by Levieil and
Fouque [16]. These give very reasonable error rates of PFR < 2−40 and PFA <
2−80. When combined with the larger values of kY required for good security
with the LPN problem, the HB# protocol compares very favourably to HB+.
The practical characteristics are summarised in Table 2. The condition necessary
for Theorems 2 and 3 to hold is verified for both sets of parameters: for the first

one, d̃ = 229 and
(
1− kX

m
−H( d̃

m
)
)
≃ 0.216, while for the second one d̃ = 78

and
(
1− kX

m
−H( d̃

m
)
)
≃ 0.145. The storage cost of HB# is (kX + kY + 2m− 2)

bits which is larger than the 2k bits required for HB+. However, depending on
the choice of m this is not necessarily a substantial increase. The given parameter
choices offer 80-bit security (using the latest results on the LPN problem), the



false acceptance and rejection rates are less than 2−80 and 2−40 respectively,
and the total communication requirements are around 1,500 bits. This should
be compared to error rates of 2−1 and 2−20 and transmission costs of up to
80,000 bits in the case of HB+ (48,000 bits when x is only 80-bit long) for
corresponding parameters. HB# requires simple bit operations on-the-tag and
thus remains computationally simple.

5 Further work and HB# variants

General MIM adversaries. The result of Theorem 3 shows that an adversary
successfully mounting an attack on HB# must either (i) break HB# in the det-
model (which we believe is highly improbable), or (ii) break the LPN problem,
or (iii) use an undiscovered active attack involving more than manipulation of
the messages from the reader. This raises the question of the security of HB#

against general man-in-the-middle adversaries allowed to perturb any message
of the protocol. Though we do not have a formal proof of such a result, we
can make the following heuristic analysis. To provide an appropriate context we
might recall earlier work by Krawczyk [14,15]. Let us denote by HT , where T
stands for “random Toeplitz” matrix, the (k, m)-family of k-bit to m-bit linear
functions a 7→ a ·Ts associated with the set of k×m binary Toeplitz matrices Ts,
each associated with a (k + m− 1)-bit vector s, and equipped with the uniform
probability. The work of Krawczyk [15], which in turn references related work
by Mansour et al. [17], in effect establishes that HT is 1

2m -balanced. In other
words, for any non-zero vector a, a · Ts is uniformly distributed over {0, 1}m.
This results from the fact that if a is a non-zero vector then a · Ts can be re-
written as the product of s with a (k + m− 1)×m matrix derived from a that
has rank m.

We can use this property of Toeplitz matrices to argue in favour of the resis-
tance of HB# against arbitrary man-in-the-middle adversaries. Consider an at-
tack where the adversary perturbs a, b and z by adding respectively three distur-
bance vectors α, β, γ. The modified error vector is then ν′ = ν⊕α·X⊕β ·Y ⊕γ.
When α 6= 0 or β 6= 0, then due to the 1

2m -balance of HT , ν′ is uniformly dis-
tributed and the probability that modifications of the communication between
tag and reader result in successful authentication is the false acceptance prob-
ability PFA. The reader’s decision has negligible entropy and hence yields no
information on X or Y to the adversary. On the contrary, when (α, β) = (0,0),
the answer z returned by the tag is uniformly random so that γ may be consid-
ered as independent of X and Y . The reader’s decision depends only on ν ⊕ γ

and again yields no information on X or Y to the adversary. It is helpful to
note the essential difference between a man-in-the-middle attack on HB# and
the same attack on HB+. When attacking HB+, e.g. as is done in the GRS at-
tack, the adversary gains 1 bit of information on x at every tag and reader HB+

authentication (independently of whether it is successful or not), leading to a
linear-time attack. By contrast, in the case of HB#, whatever the strategy for
choosing (α, β, γ), the mutual information between the reader’s decision and the



matrices X and Y is negligible and no efficient adversary can gather noticeable
information on X or Y . Though we believe that these observations can be made
rigorous, it remains an open problem to extend the technique used in proof of
Theorems 2 and 3 to arbitrary man-in-the-middle attacks and to find the right
way of simulating the reader when the adversary can also modify b and z.

Variants and optimisations. Independently of this theoretical work, there
are interesting variants to HB# that might be of practical value. One interesting
option, also mentioned in [12], is for the legitimate tag to test that the noise
vector ν contains no more than t ones before using it. This means the probability
of a false rejection would fall to zero. The main advantage of this approach
would be to allow the size of m to decrease while maintaining a reasonable false
acceptance rate. For instance, with m = 256, η = 0.125, and t = 48 we would
ordinarily have that PFA ≈ 2−81 while PFR ≈ 2−9. However, this relatively high
false rejection rate can be eliminated by allowing the tag to check ν before use.

Another possibility to decrease storage and communication costs is to re-
duce kY ; for this, it might be interesting to consider the effect of using a larger
noise level, i.e. to have η > 1

4 . In such circumstances kY could be reduced—
while maintaining the same level of security—thereby leading to storage and
communications savings. While it is not immediately clear that this would be
a successful approach, when coupled with restrictions to the noise vector ν this
may be worth exploring. Another optimisation could be to use techniques in-
spired by Krawczyk [14,15] to efficiently re-generate the Toeplitz matrices (e.g.
by using a LFSR). We leave such proposals as topics for future research.

6 Conclusions

In this paper we have presented two new lightweight authentication protocols.
While close variants of HB+, these new protocols offer considerable advan-
tages over related work in the literature. random-HB# is provably secure in
the detection-based model, just like HB+, but it is also provably resistant to a
broader class of attacks that includes [8]. The protocol HB# trades some of the
theoretical underpinnings to random-HB# and attains a truly practical perfor-
mance profile. Both random-HB# and HB# offer practical improvements over
HB+, and this remains the case even when using the problem sizes required after
recent progress on solving the underlying LPN problem.
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A Weakly Verifiable Puzzles [3]

Here we provide some background on weakly verifiable puzzles; more details
can be found in [3]. A (weakly verifiable) puzzle system is a pair of efficient
algorithms Z = (G, V ). The puzzle-generator algorithm G, on input the security
parameter 1k, outputs a random puzzle p with some secret check information

c, (p, c)
$
←− G(1k). The puzzle-verifier V is deterministic and on input a puzzle

p, check information c, and an answer a, either accepts or rejects. A solver for
this puzzle system is an efficient algorithm S that takes a puzzle p as input and
outputs an answer a. Its success probability is defined as

succZ [S]
def
= Pr

G,S

[
(p, c)

$
←− G(1k), a

$
←− S(p) : V (p, c, a) = acc

]
,

where the randomness is taken over G and S. A puzzle system is (1 − ǫ)-hard
(where ǫ is any function from N to ]0, 1[) if any efficient solver has success
probability upper bounded by ǫ + negl(k) where negl is a negligible function.

The m-fold repetition of the puzzle system Z = (G, V ) is the puzzle system
Zm = (Gm, V m) where Gm, on input the security parameter 1k, runs G m times
and outputs the m puzzles with their check information,

((p1, c1), . . . , (pm, cm))
$
←− Gm(1k).

The verifier V m accepts the answer (a1, . . . , am) of a solver if, and only if, V
accepts for all triplets (pi, ci, ai), 1 ≤ i ≤ m.

Attacking the one-round HB protocol can be viewed as a weakly verifiable
puzzle as follows.

Definition 1 (HB puzzle). Let η ∈]0, 1/2[, and q be a polynomial in k. On
input the security parameter 1k, the generator G draws a random secret key x

of length k, q random vectors (a1, . . . , aq) of length k, computes for 1 ≤ i ≤ q
the set of answers zi = ai · x

t ⊕ νi, where νi = 1 with probability η, and draws
a random vector a of length k constituting the challenge to the adversary. It
outputs {(ai, zi)}1≤i≤q and a. The solver returns a single bit z. The secret check
information is x, and the verifier V accepts if, and only if, z = a · xt.

The security result by Juels and Weis [10, Lemma 1] giving the security of
the one-round HB protocol, can be re-stated in terms of puzzles as:

Lemma 2 ([10], Lemma 1). Assume the LPN problem is hard. Then the HB
puzzle is (1− 1

2 )-hard.

B Hardness of the MHB Puzzle

Reducing the security of random-HB# directly to the LPN problem (or equiva-
lently, the HB puzzle) is cumbersome. Instead, we will define a natural extension
of the HB puzzle which we call MHB (Matrix-based HB) puzzle, and first prove
its hardness.



Definition 2 (MHB puzzle). Let η ∈]0, 1/2[, and m and q be polynomials in
k. On input the security parameter 1k, the generator G draws a random secret
(k ×m)-binary matrix X, q random vectors (a1, . . . , aq) of length k, computes
for 1 ≤ i ≤ q the set of answers zi = ai ·X ⊕ νi, where each bit of νi is 1 with
probability η, and draws a random vector a of length k constituting the challenge
to the adversary. It outputs {(ai, zi)}1≤i≤q and a. The solver returns a vector
z. The secret check information is X, and the verifier V accepts if, and only if,
z = a ·X.

We will use the results of Canetti et al. on hardness amplification to assert
the hardness of the MHB puzzle. However, the MHB puzzle is not the perfect
m-fold repetition of the HB puzzle. In the m-fold repetition of the HB puzzle the
challenge-sets {ai}1≤i≤q and a are different for each secret column of X , in the
MHB puzzle they are the same. Consequently we will need a slightly modified
lemma. We begin by recalling the concrete results of [3], slightly re-formulated
by combining their Lemma 1 and Section 3.3.

Lemma 3 ([3], Lemma 1). Fix efficiently computable functions, m : N → N,
and ǫ, δ : N→]0, 1[. Also fix a puzzle system Z = (G, V ). If there exists a solver
A for Zm with success probability ǫm + δ and running time T , then there exists
a solver A′ for Z with success probability greater than ǫ + δ

8m
and running time

T ′ polynomial in m, 1
δ
, 1

ǫm+δ
and the running times of A, G, and V .

We need to adapt this lemma to situations where the repeated puzzles share
some common randomness. To do this we generalize the repetition of puzzles
in the following way. We suppose that the puzzle generator is composed of two
independent algorithms G = (Gf , Gv) (for fixed and variable). The secret check
information is generated by Gv. The success probability C = succZ [S] of a solver
is defined as for a simple puzzle:

C = Pr
(Gf ,Gv),S

[
((pf , pv), c)

$
←− G(1k), a

$
←− S(pf , pv) : V ((pf , pv), c, a) = acc

]
.

We define the m-fold pseudo-repetition Z̃m of the puzzle Z = ((Gf , Gv), V ) as

follows: the generator algorithm G̃m, on input the security parameter 1k, runs

Gf a single time: pf
$
←− Gf , runs Gv m times: pi

v
$
←− Gv, 1 ≤ i ≤ m, and outputs

the m puzzles (pf , pi
v) with their check information

(((pf , p1
v), c1), . . . , ((pf , pm

v ), cm))
$
←− G̃m(1k).

The verifier Ṽ m accepts if, and only if, V accepts the answer to all the m puzzles.
The success probability of a solver for this puzzle Z̃m is defined naturally. We
now re-state Lemma 3 for the pseudo-repetition of puzzles.

Lemma 4. Fix efficiently computable functions m : N→ N and ǫ, δ : N→]0, 1[.
Also fix a puzzle system Z = ((Gf , Gv), V ). We make the hypothesis4 that a

4 This hypothesis is true for the HB puzzle with ǫ = 1
2
.



uniformly random answer has a probability ǫ of being accepted by V . If there
exists a solver A for Z̃m with success probability ǫm + δ′ and running time T ,

then there exists a solver A′ for Z with success probability ǫ + δ′2

32m
and running

time T ′ polynomial in m, 1
δ′

, 1
ǫm+δ′

and the running times of A, G, and V .

Proof. Let (pf , pv) be the input puzzle to A′. By a standard averaging argu-

ment we know that with probability greater than δ′

2 over pf , A solves the m-fold

pseudo-repetition of the puzzle with probability greater than ǫm + δ′

2 over the
sequence (p1

v, . . . , pm
v ) and A’s internal randomness. When this is the case, ac-

cording to Lemma 3, A′ can use the strategy described by Canetti et al. to solve
the puzzle with probability greater then ǫ + δ′

16m
. Saying it differently, when pf

is fixed, Gv can be viewed as a classical puzzle generator to which one can apply
Lemma 3 for its m-fold (classical) repetition. Otherwise, A′ outputs a random
answer. The overall success probability of A′ is then

δ′

2

(
ǫ +

δ′

16m

)
+ (1−

δ′

2
)ǫ = ǫ +

δ′2

32m
.

The running time of A′ is upper bound by a quantity which, as in Lemma 3, is
polynomial in m, 1

δ′
, 1

ǫm+δ′
and the running times of A, G, and V . ⊓⊔

We are now ready to state the hardness of the MHB puzzle.

Lemma 5. Assume the hardness of the LPN problem. Then the MHB puzzle is
(1− 1

2m )-hard.

Proof. Assume for a contradiction that there is an efficient adversary A solving
the MHB puzzle with probability greater than

(
1

2m + δ
)
, where δ is noticeable.

According to the definition of the pseudo-repetition of puzzles, the MHB puz-
zle is the m-fold pseudo-repetition of the HB puzzle where Gf generates the
challenges (a1, . . . , aq) and a, whereas Gv generates the secret x and the noise
bits (ν1, . . . , νq). Hence, according to Lemma 4, there is an efficient adversary
A′ solving the HB puzzle with success probability greater than 1

2 + δ′, where

δ′ = δ2

32m
is noticeable. Consequently the HB puzzle cannot be (1 − 1

2 )-hard
which (Lemma 2) contradicts the hardness of LPN. ⊓⊔

C Proof of Theorem 3

Let us denote by T the family of kX -bit to m-bit binary Toeplitz matrices Ts,
each associated with a (kX +m−1)-bit vector s, and equipped with the uniform
probability. Mansour et al. [17] showed that for any non-zero vector α, α · Ts

is uniformly distributed over {0, 1}m. This results from the fact that if α is
a non-zero vector then α · Ts can be re-written as the product of s with a
(kX + m− 1)×m matrix derived from a that has rank m.

Hence, one can prove exactly as was done for Lemma 1 that

Pr
X

$
←−T

[dmin(X) ≤ d] ≤ 2
−

(
1−

kX
m

−H( d
m

)
)

m
.

The proof then proceeds exactly as for Theorem 2.


