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Abstrat. Let E be an ellipti urve de�ned over a �nite �eld. Balasubrama-

nian and Koblitz have proved that if the ℓth roots of unity µℓ is not ontained

in the ground �eld, then a �eld extension of the ground �eld ontains µℓ if

and only if the ℓ-torsion points of E are rational over the same �eld extension.

We generalize this result to Jaobians of genus two urves. In partiular, we

show that the Weil- and the Tate-pairing are non-degenerate over the same

�eld extension of the ground �eld.

From this generalization we get a omplete desription of the ℓ-torsion

subgroups of Jaobians of supersingular genus two urves. In partiular, we

show that for ℓ > 3, the ℓ-torsion points are rational over a �eld extension of

degree at most 24.

1. Introdution

In [10℄, Koblitz desribed how to use ellipti urves to onstrut a publi key

ryptosystem. To get a more general lass of urves, and possibly larger group

orders, Koblitz [11℄ then proposed using Jaobians of hyperellipti urves. After

Boneh and Franklin [2℄ proposed an identity based ryptosystem by using the Weil-

pairing on an ellipti urve, pairings have been of great interest to ryptography [6℄.

The next natural step was to onsider pairings on Jaobians of hyperellipti urves.

Galbraith et al [7℄ survey the reent researh on pairings on Jaobians of hyperel-

lipti urves.

The pairing in question is usually the Weil- or the Tate-pairing; both pairings

an be omputed with Miller's algorithm [14℄. The Tate-pairing an be omputed

more e�iently than the Weil-pairing, f. [5℄. Let C be a smooth urve de�ned over

a �nite �eld Fq, and let JC be the Jaobian of C. Let ℓ be a prime number dividing

the number of Fq-rational points on the Jaobian, and let k be the multipliative

order of q modulo ℓ. By [8℄, the Tate-pairing is non-degenerate on JC(Fqk)[ℓ]. By
[20, Proposition 8.1, p. 96℄, the Weil-pairing is non-degenerate on JC [ℓ]. So if JC [ℓ]
is not ontained in JC(Fqk), then the Tate pairing is non-degenerate over a possible

smaller �eld extension than the Weil-pairing. For ellipti urves, in most ases

relevant to ryptography, the Weil-pairing and the Tate-pairing are non-degenerate

over the same �eld: let E be an ellipti urve de�ned over Fp, and onsider a prime

number ℓ dividing the number of Fp-rational points on E. Balasubramanian and

Koblitz [1℄ proved that

(1) if ℓ ∤ p− 1, then E[ℓ] ⊆ E(Fpk) if and only if ℓ | pk − 1.

2000 Mathematis Subjet Classi�ation. 11G20 (Primary) 11T71, 14G50, 14H45 (Seondary).

Key words and phrases. Jaobians, hyperellipti genus two urves, pairings, embedding degree,

supersingular urves.

Researh supported in part by a PhD grant from CRYPTOMAThIC.

1



2 C.R. RAVNSHØJ

By Rubin and Silverberg [19℄, this result also holds for Jaobians of genus two

urves in the following sense: if ℓ ∤ p − 1, then the Weil-pairing is non-degenerate

on U × V , where U = JC(Fp)[ℓ], V = ker(ϕ − p) ∩ JC [ℓ] and ϕ is the p-power
Frobenius endomorphism on JC .

The result (1) an also be stated as: if ℓ ∤ p− 1, then E(Fpk)[ℓ] is biyli if and

only if ℓ | pk−1. In [17℄, the author generalized this result to ertain CM redutions

of Jaobians of genus two urves. In this paper, we show that in most ases, this

result in fat holds for Jaobians of any genus two urves. More preisely, the

following theorem is established.

Theorem 6. Consider a genus two urve C de�ned over a �nite �eld Fq. Write

the harateristi polynomial of the qm
-power Frobenius endomorphism of the Jao-

bian JC as

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

where 2σ, 4τ ∈ Z. Let ℓ be an odd prime number dividing the number of Fq-rational

points on JC , and with ℓ ∤ q and ℓ ∤ q − 1. If ℓ ∤ 4τ , then

(1) JC(Fqm)[ℓ] is of rank at most two as a Z/ℓZ-module, and

(2) JC(Fqm)[ℓ] is biyli if and only if ℓ divides qm − 1.

If ℓ is a large prime number, then most likely ℓ ∤ 4τ , and Theorem 6 applies. In

the speial ase ℓ | 4τ we get the following result.

Theorem 7. Let notation be as in Theorem 6. Furthermore, let ωm be a qm
-Weil

number of JC (f. de�nition 4), and assume that ℓ is unrami�ed in K = Q(ωm).
Now assume that ℓ | 4τ . Then the following holds.

(1) If ωm ∈ Z, then ℓ | qm − 1 and JC [ℓ] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ℓ ∤ qm − 1, JC(Fqm)[ℓ] ≃ (Z/ℓZ)2 and JC [ℓ] ⊆ JC(Fqmk) if

and only if ℓ | qmk − 1.

By Theorem 6 and 7 we get the following orollary.

Corollary 10. Consider a genus two urve C de�ned over a �nite �eld Fq. Let ℓ be
an odd prime number dividing the number of Fq-rational points on the Jaobian JC ,

and with ℓ ∤ q. Let q be of multipliative order k modulo ℓ. If ℓ ∤ q − 1, then the

Weil-pairing is non-degenerate on JC(Fqk)[ℓ] × JC(Fqk)[ℓ].

For the 2-torsion part, we prove the following theorem.

Theorem 11. Consider a genus two urve C de�ned over a �nite �eld Fq of odd

harateristi. Let

Pm(X) = X4 + sX3 + tX2 + sqmX + q2m

be the harateristi polynomial of the qm
-power Frobenius endomorphism of the

Jaobian JC . Assume |JC(Fqm)| is even. Then

JC [2] ⊆
{

JC(Fq4m), if s is even;

JC(Fq6m), if s is odd.

Now onsider a supersingular genus two urve C de�ned over Fq; f. setion 6.

Again, let ℓ be a prime number dividing the number of Fq-rational points on the

Jaobian and let k be the multipliative order of q modulo ℓ. We know that k ≤ 12,
f. Galbraith [5℄ and Rubin and Silverberg [18℄. If ℓ2 ∤ |JC(Fq)|, then in many
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ases JC [ℓ] ⊆ JC(Fqk), f. Stihtenoth [21℄. Zhu [23℄ gives a omplete desription

of the subgroup of Fq-rational points on the Jaobian. Using Theorem 6 we get

the following expliit desription of the ℓ-torsion subgroup of the Jaobian of a

supersingular genus two urve.

Theorem 14. Consider a supersingular genus two urve C de�ned over Fq. Let ℓ
be a prime number dividing the number of Fq-rational points on the Jaobian JC ,

and with ℓ ∤ q. Depending on the ases in table 1 we get the following properties

of JC .

Case i: −q2 ≡ q4 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq4). If ℓ 6= 2, then JC(Fq)[ℓ]
is yli.

Case ii: q3 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq6 ) and JC(Fq) is yli. If ℓ 6= 3,
then q 6≡ 1 (mod ℓ).

Case iii: −q3 ≡ q6 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq6). If ℓ 6= 3, then JC(Fq)[ℓ]
is yli.

Case iv: q 6≡ q5 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq10) and JC(Fq) is yli.

Case v: q 6≡ q5 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq10) and JC(Fq) is yli.

Case vi: −q6 ≡ q12 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq24) and JC(Fq) is yli.

Case vii: q ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq2). If ℓ 6= 2, then JC(Fq)[ℓ] is
biyli.

Case viii: −q ≡ q2 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq2). If ℓ 6= 2, then JC(Fq)[ℓ]
is biyli.

Case ix: If ℓ 6= 3, then q 6≡ q3 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq3) and JC(Fq)[ℓ]
is biyli.

In partiular, it follows from Theorem 14 that if ℓ > 3, then the ℓ-torsion points

on the Jaobian JC of a supersingular genus two urve de�ned over Fq are rational

over a �eld extension of Fq of degree at most 24, and JC(Fq)[ℓ] is of rank at most

two as a Z/ℓZ-module.

Assumption. In this paper, a urve is an irreduible nonsingular projetive variety

of dimension one.

2. Genus two urves

A hyperellipti urve is a projetive urve C ⊆ Pn
of genus at least two with a

separable, degree two morphism φ : C → P1
. It is well known, that any genus two

urve is hyperellipti. Throughout this paper, let C be a urve of genus two de�ned

over a �nite �eld Fq of harateristi p. By the Riemann-Roh Theorem there exists

a birational map ψ : C → P2
, mapping C to a urve given by an equation of the

form

y2 + g(x)y = h(x),

where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; f. [3, hapter 1℄.
The set of prinipal divisors P(C) on C onstitutes a subgroup of the degree zero

divisors Div0(C). The Jaobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).
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Let ℓ 6= p be a prime number. The ℓn-torsion subgroup JC [ℓn] ⊆ JC of points of

order dividing ℓn is a Z/ℓnZ-module of rank four, i.e.

JC [ℓn] ≃ Z/ℓnZ × Z/ℓnZ × Z/ℓnZ × Z/ℓnZ;

f. [12, Theorem 6, p. 109℄.

The multipliative order k of q modulo ℓ plays an important role in ryptography,

sine the (redued) Tate-pairing is non-degenerate over Fqk ; f. [8℄.

De�nition 1 (Embedding degree). Consider a prime number ℓ 6= p dividing the

number of Fq-rational points on the Jaobian JC . The embedding degree of JC(Fq)
with respet to ℓ is the least number k, suh that qk ≡ 1 (mod ℓ).

Closely related to the embedding degree, we have the full embedding degree.

De�nition 2 (Full embedding degree). Consider a prime number ℓ 6= p dividing

the number of Fq-rational points on the Jaobian JC . The full embedding degree

of JC(Fq) with respet to ℓ is the least number κ, suh that JC [ℓ] ⊆ JC(Fqκ ).

Remark 3. If JC [ℓ] ⊆ JC(Fqκ ), then ℓ | qκ −1; f. [4, Corollary 5.77, p. 111℄. Hene,
the full embedding degree is a multiple of the embedding degree.

A priori, the Weil-pairing is only non-degenerate over Fqκ
. But in fat, as we

shall see, the Weil-pairing is also non-degenerate over Fqk .

3. The Weil- and the Tate-pairing

Let F be an algebrai extension of Fq. Let x ∈ JC(F)[ℓ] and y =
∑

i aiPi ∈ JC(F)
be divisors with disjoint supports, and let ȳ ∈ JC(F)/ℓJC(F) denote the divisor lass
ontaining the divisor y. Furthermore, let fx ∈ F(C) be a rational funtion on C
with divisor div(fx) = ℓx. Set fx(y) =

∏

i f(Pi)
ai
. Then eℓ(x, ȳ) = fx(y) is a

well-de�ned pairing

eℓ : JC(F)[ℓ] × JC(F)/ℓJC(F) −→ F×/(F×)ℓ,

it is alled the Tate-pairing ; f. [6℄. Raising the result to the power

|F×|
ℓ gives a

well-de�ned element in the subgroup µℓ ⊆ F̄ of the ℓth roots of unity. This pairing

êℓ : JC(F)[ℓ] × JC(F)/ℓJC(F) −→ µℓ

is alled the redued Tate-pairing. If the �eld F is �nite and ontains the ℓth roots

of unity, then the Tate-pairing is bilinear and non-degenerate; f. [8℄.

Now let x, y ∈ JC [ℓ] be divisors with disjoint support. The Weil-pairing

eℓ : JC [ℓ] × JC [ℓ] → µℓ

is then de�ned by eℓ(x, y) = êℓ(x,ȳ)
êℓ(y,x̄) . The Weil-pairing is bilinear, anti-symmetri

and non-degenerate on JC [ℓ] × JC [ℓ]; f. [15℄.

4. Matrix representation of the endomorphism ring

An endomorphism ψ : JC → JC indues a linear map ψ̄ : JC [ℓ] → JC [ℓ] by
restrition. Hene, ψ is represented by a matrix M ∈ Mat4(Z/ℓZ) on JC [ℓ]. Let

f ∈ Z[X ] be the harateristi polynomial of ψ (see [12, pp. 109�110℄), and let

f̄ ∈ (Z/ℓZ)[X ] be the harateristi polynomial of ψ̄. Then f is a moni polynomial

of degree four, and by [12, Theorem 3, p. 186℄,

f(X) ≡ f̄(X) (mod ℓ).
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Sine C is de�ned over Fq, the mapping (x, y) 7→ (xq , yq) is a morphism on C.
This morphism indues the q-power Frobenius endomorphism ϕ on the Jaobian JC .

Let P (X) be the harateristi polynomial of ϕ. P (X) is alled the Weil polynomial

of JC , and

|JC(Fq)| = P (1)

by the de�nition of P (X) (see [12, pp. 109�110℄); i.e. the number of Fq-rational

points on the Jaobian is P (1).

De�nition 4 (Weil number). Let notation be as above. Let Pm(X) be the hara-
teristi polynomial of the qm

-power Frobenius endomorphism ϕm on JC . Consider

a number ωm ∈ C with Pm(ωm) = 0. If Pm(X) is reduible, assume furthermore

that ωm and ϕm are roots of the same irreduible fator of Pm(X). We identify ϕm

with ωm, and we all ωm a qm
-Weil number of JC .

Remark 5. A qm
-Weil number is not neessarily uniquely determined. In general,

Pm(X) is irreduible, in whih ase JC has four qm
-Weil numbers.

Assume Pm(X) is reduible. Write Pm(X) = f(X)g(X), where f, g ∈ Z[X ] are
of degree at least one. Sine Pm(ϕm) = 0, either f(ϕm) = 0 or g(ϕm) = 0; if not,
then either f(ϕm) or g(ϕm) has in�nite kernel, i.e. is not an endomorphism of JC .

So a qm
-Weil number is well-de�ned.

5. Non-yli torsion

Consider a genus two urve C de�ned over a �nite �eld Fq. Let Pm(X) be

the harateristi polynomial of the qm
-power Frobenius endomorphism ϕm of the

Jaobian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m
,

where s, t ∈ Z. Let σ = s
2 and τ = 2qm + σ2 − t. Then

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

and 2σ, 4τ ∈ Z.

Theorem 6. Consider a genus two urve C de�ned over a �nite �eld Fq. Write

the harateristi polynomial of the qm
-power Frobenius endomorphism of the Jao-

bian JC as

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

where 2σ, 4τ ∈ Z. Let ℓ be an odd prime number dividing the number of Fq-rational

points on JC , and with ℓ ∤ q and ℓ ∤ q − 1. If ℓ ∤ 4τ , then

(1) JC(Fqm)[ℓ] is of rank at most two as a Z/ℓZ-module, and

(2) JC(Fqm)[ℓ] is biyli if and only if ℓ divides qm − 1.

Proof. Let P̄m ∈ (Z/ℓZ)[X ] be the harateristi polynomial of the restrition of

ϕm to JC [ℓ]. Sine ℓ divides |JC(Fq)|, 1 is a root of P̄m. Assume that 1 is a root of

P̄m of multipliity ν. Sine the roots of P̄m our in pairs (α, qm/α), also qm
is a

root of P̄m of multipliity ν.
If JC(Fqm)[ℓ] is of rank three as a Z/ℓZ-module, then ℓ divides qm − 1 by [4,

Proposition 5.78, p. 111℄. Choose a basis B of JC [ℓ]. With respet to B, ϕm is

represented by a matrix of the form

M =









1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4









.
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Now, m4 = detM ≡ degϕm = q2m ≡ 1 (mod ℓ). Hene, P̄m(X) = (X − 1)4. By

omparison of oe�ients it follows that 4τ ≡ 0 (mod ℓ), and we have a ontradi-

tion. So JC(Fqm)[ℓ] is of rank at most two as a Z/ℓZ-module.

Now assume that JC(Fqm)[ℓ] is biyli. If qm 6≡ 1 (mod ℓ), then 1 is a root of

P̄m of multipliity two, i.e. P̄m(X) = (X − 1)2(X − qm)2. But then it follows by

omparison of oe�ients that 4τ ≡ 0 (mod ℓ), and we have a ontradition. So

qm ≡ 1 (mod ℓ), i.e. ℓ divides qm − 1. On the other hand, if ℓ divides qm − 1, then
the Tate-pairing is non-degenerate on JC(Fqm)[ℓ], i.e. JC(Fqm)[ℓ] must be of rank

at least two as a Z/ℓZ-module. So JC(Fqm)[ℓ] is biyli. �

If ℓ is a large prime number, then most likely ℓ ∤ 4τ , and Theorem 6 applies. In

the speial ase ℓ | 4τ we get the following result.

Theorem 7. Let notation be as in Theorem 6. Furthermore, let ωm be a qm
-

Weil number of JC , and assume that ℓ is unrami�ed in K = Q(ωm). Now assume

that ℓ | 4τ . Then the following holds.

(1) If ωm ∈ Z, then ℓ | qm − 1 and JC [ℓ] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ℓ ∤ qm − 1, JC(Fqm)[ℓ] ≃ (Z/ℓZ)2 and JC [ℓ] ⊆ JC(Fqmk) if

and only if ℓ | qmk − 1.

Remark 8. A prime number ℓ is unrami�ed in K if and only if ℓ divides the dis-

riminant of the �eld extension K/Q; see e.g. [16, Theorem 2.6, p. 199℄. Hene,

almost any prime number ℓ is unrami�ed in K. In partiular, if ℓ is large, then ℓ is
unrami�ed in K.

The speial ase of Theorem 7 does our; f. the following example 9.

Example 9. Consider the polynomial P (X) = (X2+X+3)2 ∈ Q[X ]. By [13℄ and [9℄

it follows that P (X) is the Weil polynomial of the Jaobian of a genus two urve C
de�ned over F3. The number of F3-rational points on the Jaobian is P (1) = 25,
so ℓ = 5 is an odd prime divisor of |JC(F3)| not dividing q = p = 3. Notie that

P (X) ≡ X4 + 2σX3 + (2p+ σ2)X2 + 2σpX + p (mod ℓ) with σ = 1. The omplex

roots of P (X) are given by ω = −1+
√
−11

2 and ω̄, and ℓ is unrami�ed in K = Q(ω).

Sine 3 is a generator of (Z/5Z)×, it follows by Theorem 7 that JC(F3) ≃ (Z/ℓZ)2

and JC [ℓ] ⊆ JC(F81).

By Theorem 6 and 7 we get the following orollary.

Corollary 10. Consider a genus two urve C de�ned over a �nite �eld Fq. Let ℓ be
an odd prime number dividing the number of Fq-rational points on the Jaobian JC ,

and with ℓ ∤ q. Let q be of multipliative order k modulo ℓ. If ℓ ∤ q − 1, then the

Weil-pairing is non-degenerate on JC(Fqk)[ℓ] × JC(Fqk)[ℓ].

Proof. Let

Pk(X) = X4 + 2σX3 + (2qk + σ2 − τ)X2 + 2σqkX + q2k

be the harateristi polynomial of the qk
-power endomorphism on the Jaobian JC .

If ℓ | 4τ , then JC [ℓ] = JC(Fqk)[ℓ] by Theorem 7, and the orollary follows.

Assume ℓ ∤ 4τ . Let U = JC(Fq)[ℓ] and V = ker(ϕ− q) ∩ JC [ℓ], where ϕ is the q-
power Frobenius endomorphism on JC . Then the Weil-pairing eW is non-degenerate

on U × V by [19℄. By Theorem 6, we know that V = JC(Fqk)[ℓ] \ JC(Fq)[ℓ] and
that

JC(Fqk)[ℓ] ≃ U ⊕ V ≃ Z/ℓZ × Z/ℓZ.
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Now let x ∈ JC(Fqk)[ℓ] be an arbitrary Fqk -rational point of order ℓ. Write x = xU +
xV , where xU ∈ U and xV ∈ V . Choose y ∈ V and z ∈ U , suh that eW (xU , y) 6= 1
and eW (xV , z) 6= 1. We may assume that eW (xU , y)eW (xV , z) 6= 1; if not, replae
z with 2z. Sine the Weil-pairing is anti-symmetri, eW (xU , z) = eW (xV , y) = 1.
Hene,

eW (x, y + z) = eW (xU , y)eW (xV , z) 6= 1.

�

Proof of Theorem 7. We see that

Pm(X) ≡ (X2 + σX + qm)2 (mod ℓ);

sine Pm(1) ≡ 0 (mod ℓ), it follows that

Pm(X) ≡ (X − 1)2(X − qm)2 (mod ℓ).

Assume at �rst that Pm(X) is irreduible in Q[X ]. Let OK denote the ring of

integers of K. By [16, Proposition 8.3, p. 47℄, it follows that ℓOK = L2
1L

2
2, where

L1 = (ℓ, ωm − 1)OK and L2 = (ℓ, ωm − q)OK . In partiular, ℓ rami�es in K, and

we have a ontradition. So Pm(X) is reduible in Q[X ].
Let f ∈ Z[X ] be the minimal polynomial of ωm. If deg f = 3, then it follows as

above that ℓ rami�es in K. So deg f < 3. Assume that deg f = 1, i.e. that ωm ∈ Z.
Sine ω2

m = qm
, we know that ωm = ±qm/2

. So f(X) = X ∓ qm/2
. Sine f(X)

divides P (X) in Z[X ], either f(X) ≡ X − 1 (mod ℓ) or f(X) ≡ X − qm (mod ℓ).
It follows that qm ≡ 1 (mod ℓ). Thus, ωm ≡ ±1 (mod ℓ). If ωm ≡ −1 (mod ℓ),
then ϕm does not �x JC(Fqm)[ℓ]. This is a ontradition. Hene, ωm ≡ 1 (mod ℓ).
But then ϕm is the identity on JC [ℓ]. Thus, if ωm ∈ Z, then JC [ℓ] ⊆ JC(Fqm).

Assume ωm /∈ Z. Then deg f = 2. Sine f(X) divides P (X) in Z[X ], it follows
that

f(X) ≡ (X − 1)(X − qm) (mod ℓ);

to see this, we merely notie that if f(X) is equivalent to the square of a polynomial

modulo ℓ, then ℓ rami�es in K. Notie also that if qm ≡ 1 (mod ℓ), then ℓ rami�es

in K. So qm 6≡ 1 (mod ℓ).
Now let U = ker(ϕm − 1)2 ∩ JC [ℓ] and V = ker(ϕm − qm)2 ∩ JC [ℓ]. Then U and

V are ϕm-invariant submodules of the Z/ℓZ-module JC [ℓ] of rank two, and JC [ℓ] ≃
U ⊕ V . Now hoose x1 ∈ U , suh that ϕm(x1) = x1, and expand this to a basis

(x1, x2) of U . Similarly, hoose a basis (x3, x4) of V with ϕm(x3) = qx3. With

respet to the basis (x1, x2, x3, x4), ϕm is represented by a matrix of the form

M =









1 α 0 0
0 1 0 0
0 0 qm β
0 0 0 qm









.

Let qm
be of multipliative order k modulo ℓ. Notie that

Mk =









1 kα 0 0
0 1 0 0
0 0 1 kqm(k−1)β
0 0 0 1









.
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Hene, the restrition of ϕk
m to JC [ℓ] has the harateristi polynomial (X − 1)4.

Let Pmk(X) be the harateristi polynomial of the qmk
-power Frobenius endo-

morphism ϕmk = ϕk
m of the Jaobian JC . Then

Pmk(X) ≡ (X − 1)4 (mod ℓ).

Sine ωm is a qm
-Weil number of JC , we know that ωk

m is a qmk
-Weil number of JC .

Assume ωk
m /∈ Q. Then K = Q(ωk

m). Let h ∈ Z[X ] be the minimal polynomial

of ωk
m. Then it follows that h(X) ≡ (X − 1)2 (mod ℓ), and ℓ rami�es in K. So

ωk
m ∈ Q, i.e. h is of degree one. But then h(X) ≡ X − 1 (mod ℓ), i.e. ωk

m ≡ 1
(mod ℓ). So ϕk

m is the identity map on JC [ℓ]. Hene, Mk = I, i.e. α ≡ β ≡ 0
(mod ℓ). Thus, ϕm is represented by a diagonal matrix diag(1, 1, qm, qm) with

respet to (x1, x2, x3, x4). The theorem follows. �

For the 2-torsion part, we get the following theorem.

Theorem 11. Consider a genus two urve C de�ned over a �nite �eld Fq of odd

harateristi. Let Pm(X) = X4 + sX3 + tX2 + sqmX + q2m
be the harateristi

polynomial of the qm
-power Frobenius endomorphism of the Jaobian JC . Assume

|JC(Fqm)| is even. Then

JC [2] ⊆
{

JC(Fq4m), if s is even;

JC(Fq6m), if s is odd.

Proof. Sine q is odd,

Pm(X) ≡ X4 + sX3 + tX2 + sX + 1 (mod 2).

Assume at �rst that s is even. Sine Pm(1) is even, it follows that t is even; but
then

Pm(X) ≡ (X − 1)4 ≡ X4 − 1 (mod 2).

Hene, JC [2] ⊆ JC(Fq4m) in this ase.

Now assume that s is odd. Again t must be even; but then

Pm(X) ≡ (X2 − 1)(X2 +X + 1) (mod 2).

Sine f(X) = X2 +X + 1 has the omplex roots ξ = − 1
2 (1 ± i

√
3), and ξ3 = 1, it

follows that JC [2] ⊆ JC(Fq6m) in this ase. �

6. Supersingular urves

Consider a genus two urve C de�ned over a �nite �eld Fq of harateristi

p. C is alled supersingular, if JC has no p-torsion. From [13℄ we have the following

theorem.

Theorem 12. Consider a polynomial f ∈ Z[X ] of the form

f(X) = fs,t(X) = X4 + sX3 + tX2 + sqX + q2,

where q = pa
. If f is the Weil polynomial of the Jaobian of a supersingular genus

two urve de�ned over the �nite �eld Fq, then (s, t) belongs to table 1.

Remark 13. By [9℄, in eah of the ases in table 1 we an �nd a q suh that fs,t(X)
is the Weil polynomial of the Jaobian of a supersingular genus two urve de�ned

over Fq.
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Table 1. Conditions for f = X4 + sX3 + tX2 + sqX + q2 to be

the Weil polynomial of the Jaobian of a supersingular genus two

urve de�ned over Fq, where q = pa
.

Case (s, t) Condition

i (0, 0) a odd, p 6= 2, or a even, p 6≡ 1 (mod 8).
ii (0, q) a odd.

iii (0,−q) a odd, p 6= 3, or a even, p 6≡ 1 (mod 12).
iv (±√

q, q) a even, p 6≡ 1 (mod 5).
v (±√

5q, 3q) a odd, p = 5.
vi (±√

2q, q), a odd, p = 2.
vii (0,−2q) a odd.

viii (0, 2q) a even, p ≡ 1 (mod 4).
ix (±2

√
q, 3q) a even, p ≡ 1 (mod 3).

Using Theorem 6, 7 and 12 we get the following expliit desription of the ℓ-
torsion subgroup of the Jaobian of a supersingular genus two urve.

Theorem 14. Consider a supersingular genus two urve C de�ned over Fq. Let ℓ
be a prime number dividing the number of Fq-rational points on the Jaobian JC ,

and with ℓ ∤ q. Depending on the ases in table 1 we get the following properties

of JC .

Case i: −q2 ≡ q4 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq4). If ℓ 6= 2, then JC(Fq)[ℓ]
is yli.

Case ii: q3 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq6 ) and JC(Fq) is yli. If ℓ 6= 3,
then q 6≡ 1 (mod ℓ).

Case iii: −q3 ≡ q6 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq6). If ℓ 6= 3, then JC(Fq)[ℓ]
is yli.

Case iv: q 6≡ q5 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq10) and JC(Fq) is yli.

Case v: q 6≡ q5 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq10) and JC(Fq) is yli.

Case vi: −q6 ≡ q12 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq24) and JC(Fq) is yli.

Case vii: q ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq2). If ℓ 6= 2, then JC(Fq)[ℓ] is
biyli.

Case viii: −q ≡ q2 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq2). If ℓ 6= 2, then JC(Fq)[ℓ]
is biyli.

Case ix: If ℓ 6= 3, then q 6≡ q3 ≡ 1 (mod ℓ), JC [ℓ] ⊆ JC(Fq3) and JC(Fq)[ℓ]
is biyli.

Corollary 15. If ℓ > 3, then the full embedding degree with respet to ℓ of the

Jaobian JC of a supersingular genus two urve de�ned over Fq is at most 24,
and JC(Fq)[ℓ] is of rank at most two as a Z/ℓZ-module.

Proof of Theorem 14. In the following we onsider eah ase in table 1 separately.

Throughout this proof, assume that

f(X) = X4 + sX3 + tX2 + sqX + q2

is the Weil polynomial of the Jaobian JC of some supersingular genus two urve C
de�ned over the �nite �eld Fq of harateristi p, and let ℓ be a prime number

dividing f(1).
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The ase s = 0. First onsider the ases i, ii, iii, vii and viii of table 1.

Case i. If (s, t) = (0, 0), then f(1) = 1 + q2 ≡ 0 (mod ℓ), i.e. q2 ≡ −1 (mod ℓ).
So f(X) ≡ X4 − 1 (mod ℓ), q4 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq4). τ = 2q in

Theorem 6, so if ℓ 6= 2, then JC(Fq)[ℓ] is yli.

Case ii. If (s, t) = (0, q), then the roots of f modulo ℓ are given by ±1 and ±q.
Sine f(1) = q2 + q + 1 ≡ 0 (mod ℓ), we know that q ≡ 1

2 (−1 ±
√
−3) (mod ℓ). It

follows that q3 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq6). If ℓ = 2, then p 6= 2, and f(1) is
odd. So ℓ 6= 2. τ = q in Theorem 6, so JC(Fq) is yli.

Case iii. If (s, t) = (0,−q), then the roots of f modulo ℓ are given by ±1 and ±q.
Sine f(1) = q2 − q + 1 ≡ 0 (mod ℓ), we know that q ≡ 1

2 (1 ±
√
−3) (mod ℓ). It

follows that q6 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq6). As in ase ii, ℓ 6= 2. Now τ = 3q,
so if ℓ 6= 3, then JC(Fq)[ℓ] is yli.

Case vii. If (s, t) = (0,−2q), then q ≡ 1 (mod ℓ) and f(X) = (X2− q)2. Sine q is
an odd power of p, X2−q is irreduible over Q. So by [22, Theorem 2℄, JC ≃ E×E
for some supersingular ellipti urve E. It follows that JC [ℓ] ⊆ JC(Fq2). τ = 4q, so
if ℓ 6= 2, then JC(Fq)[ℓ] is biyli.

Case viii. If (s, t) = (0, 2q), then q ≡ −1 (mod ℓ) and f(X) = (X2 + q)2. Sine

X2 + q is irreduible over Q, it follows that JC ≃ E × E for some supersingular

ellipti urve E. So q2 ≡ 1 (mod ℓ) and JC [ℓ] ⊆ JC(Fq2). τ = 0 and ω = i
√
q

is a q-Weil number of JC . Sine q is an even power of p, K = Q(ω) = Q(i) is of

disriminant dK = −4. Hene, if ℓ 6= 2, then JC(Fq)[ℓ] is biyli by Theorem 7.

Case iv�vi. Now we onsider the ases iv, v and vi of table 1.

Case iv. If (s, t) = (
√
q, q), then 4τ = 5q in Theorem 6. Sine f(1) is odd, we know

that ℓ 6= 2. If ℓ divides 4τ , then ℓ = 5; ℓ ∤ q, sine C is supersingular. But then

f(1) = q2 + q
√
q + q +

√
q + 1 ≡ 0 (mod 5), i.e. q ≡ 2 (mod 5). Sine a is even

and 2 is not a quadrati residue modulo 5, this is impossible. So ℓ ∤ 4τ . If q ≡ 1
(mod ℓ), then f(1) ≡ 5 (mod ℓ), i.e. ℓ = 5. But then ℓ divides 4τ , a ontradition.

So JC(Fq) is yli by Theorem 6. From f(1) ≡ 0 (mod ℓ) it follows that q5 ≡ 1
(mod ℓ). Sine the omplex roots of f are of the form

√
qξ, where ξ is a primitive

5th root of unity, it follows that JC [ℓ] ⊆ JC(Fq10 ). The ase (s, t) = (−√
q, q) follows

similarly.

Case v. If (s, t) = (
√

5q, 3q) and p = 5, then 4τ is a power of 5 in Theorem 6. Sine

f(1) is odd, we know that ℓ 6= 2. If ℓ divides 4τ , then ℓ = 5. Sine C is supersingular

and de�ned over a �eld of harateristi p = 5, this is a ontradition. So ℓ ∤ 4τ .

If q ≡ 1 (mod ℓ), then f(1) ≡ 5 + 2
√

5 ≡ 0 (mod ℓ), and it follows that ℓ = 5.
So JC(Fq) is yli by Theorem 6. From f(1) ≡ 0 (mod ℓ) it follows that q5 ≡ 1
(mod ℓ). Sine the omplex roots of f are of the form

√
qξ, where ξ is a primitive

10th root of unity, it follows that JC [ℓ] ⊆ JC(Fq10 ). The ase (s, t) = (−√
5q, 3q)

follows similarly.
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Case vi. If (s, t) = (
√

2q, q) and p = 2, then 4τ = 3 · 2a
for some number a ∈ N.

Hene, if ℓ divides 4τ , then ℓ = 3. But 3 ∤ f(1); thus, ℓ ∤ 4τ . If q ≡ 1 (mod ℓ),

then f(1) ≡ 3 + 2
√

2 ≡ 0 (mod ℓ), and it follows that ℓ = 1. So JC(Fq) is yli

by Theorem 6. From f(1) ≡ 0 (mod ℓ) it follows that q6 ≡ −1 (mod ℓ). Sine the
omplex roots of f are of the form

√
qξ, where ξ is a primitive 24th root of unity,

it follows that JC [ℓ] ⊆ JC(Fq24). The ase (s, t) = (−√
2q, q) follows similarly.

Case ix. Finally, onsider the ase ix. Assume that (s, t) = (−2
√
q, 3q). We see

that f(X) = g(X)2, where g(X) = X2−√
qX+ q. Sine the omplex roots of g are

given by

1
2 (1±

√
−3)

√
q, g is irreduible over Q. So by [22, Theorem 2℄, JC ≃ E×E

for some supersingular ellipti urve E. Hene, either JC(Fq)[ℓ] is biyli or equals
the full ℓ-torsion subgroup of JC .

Assume JC(Fq)[ℓ] = JC [ℓ]. Then q ≡ 1 (mod ℓ), i.e.
√
q ≡ ±1 (mod ℓ). But

then f(1) ≡ 9 ≡ 0 (mod ℓ) or f(1) ≡ 1 ≡ 0 (mod ℓ), i.e. ℓ = 3.
Sine f(1) = (1 − √

q + q)2 ≡ 0 (mod ℓ), we know that q ≡ 1
2 (−1 ±

√
−3)

(mod ℓ). So q3 ≡ 1 (mod ℓ). Sine ℓ 6= 3, it follows that q 6≡ 1 (mod ℓ). Hene,

JC [ℓ] ⊆ JC(Fq3) by the non-degeneray of the Tate-pairing.

The ase (s, t) = (2
√
q, 3q) follows similarly. �
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