
Detection of Algebraic Manipulation with
Applications to Robust Secret Sharing and Fuzzy Extractors

February 6, 2008

Ronald Cramer1,2, Yevgeniy Dodis3, Serge Fehr2, Carles Padró4, and Daniel Wichs3

1 Mathematical Institute, Leiden University, The Netherlands
2 CWI Amsterdam, The Netherlands
{cramer,fehr}@cwi.nl

3 New York University
{dodis,wichs}@cs.nyu.edu

4 Universitat Politècnica de Catalunya, Barcelona, Spain
cpadro@ma4.upc.edu

Abstract. Consider an abstract storage deviceΣ(G) that can hold a single elementx from a fixed, publicly known
finite groupG. Storage is private in the sense that an adversary does not have read access toΣ(G) at all. However,
Σ(G) is non-robust in the sense that the adversary can modify its contents by adding some offset∆ ∈ G. Due to the
privacy of the storage device, the value∆ can only depend on an adversary’sa priori knowledge ofx. We introduce
a new primitive called analgebraic manipulation detection(AMD) code, which encodes a sources into a valuex
stored onΣ(G) so that any tampering by an adversary will be detected, except with a small error probabilityδ. We
give a nearly optimal construction of AMD codes, which can flexibly accommodate arbitrary choices for the length
of the sources and security levelδ. We use this construction in two applications:

– We show how to efficiently convert any linear secret sharing scheme into arobust secret sharing scheme, which
ensures that nounqualified subsetof players can modify their shares and cause the reconstruction of some value
s′ 6= s.

– We show how how to build nearly optimalrobust fuzzy extractorsfor several natural metrics. Robust fuzzy ex-
tractors enable one to reliably extract and later recover random keys from noisy and non-uniform secrets, such
as biometrics, by relying only onnon-robust public storage. In the past, such constructions were known only
in the random oracle model, or required the entropy rate of the secret to be greater than half. Our construction
relies on a randomly chosen common reference string (CRS) available to all parties.

1 Introduction

We consider an abstract storage deviceΣ(G) that can hold a single elementx from a fixed, publicly known
finite (additive) groupG. Storage is private in the sense that an adversary does not have read access toΣ(G)
at all. However,Σ(G) allows tampering in the sense that an adversary may manipulate the stored valuex
by adding some offset∆ ∈ G of his choice. As a result,Σ(G) stores the elementx + ∆ ∈ G. Due to the
privacy of the storage device, the value∆ can only depend on an adversary’sa priori knowledge ofx. For
instance, one-time-pad encryption can be understood as such a storage device: it hides the message perfectly,
but an adversary can add (bitwise-xor) a string to the message without being detected. Of course, by itself,
this example is not very interesting, since it requires someadditional private and tamper-proof storagefor
the one-time pad key.5 However, in the two applications discussed below, no other private or tamper-proof
storage is available and hence we will need to useΣ(G) alone to achieve authenticity.

5 For example, by using a slightly longer secret key containing a key to a one-time MAC in addition to the one-time-pad key, one
can trivially add authentication to this application.

1.1 Linear Secret Sharing Schemes

In a linear secret sharing scheme(e.g. Shamir’s secret sharing [26] and many others) a secrets is distributed
amongn players so that each player gets some algebraicshareof the secret. Anyqualified subset of the
players can pool their shares together and recovers by means of a linear transformation over the appropriate
domain while anyunqualifiedsubset gets no information abouts. Unfortunately, the correctness of the
recovery procedure is guaranteed only if all the shares are correct. In particular, if a qualified subset of the
players pools their shares for reconstruction, but the honest players among them form an unqualified set,
then the dishonest players (possibly just one!) can cause the reconstruction of a modified secret. Moreover,
the difference between the correct secrets and the reconstructed secrets′ is controlled by the corrupted
players, due to the linearity of the scheme. Luckily, this is“all” that the corrupted players can do: (1) by
the privacy of the secret sharing scheme, the noise introduced by the corrupted players can only depend on
their prior knowledge of the secret and (2) by the linearity of the secret sharing scheme, for any attempted
modification of their shares, the corrupted players must “know” the additive difference betweens ands′. In
essence, a linear secret sharing scheme ofs can be viewed as storings on our abstract deviceΣ(G).

To deal with this problem, we introduce the notion of analgebraic manipulation detection(AMD) code.
This is a probabilistic encoding of a sources from a given setS as an element of the groupG, with unique
decodability. The security of the code ensures that, when the encoding is stored inΣ(G), any manipulation
of contents by an adversary will be detected except with a small error probabilityδ. The guarantee holds
even if the adversary has full a priori knowledge of the source states. No secret keys are required since we
rely on the privacy ofΣ(G) instead.

Using an AMD code, we can turn any linear secret sharing scheme into arobust secret sharing scheme[28],
which ensures that no unqualified subset of players can modify their shares and cause the reconstruction of
some values′ 6= s. The transformation is very simple: apply the linear secretsharing scheme to the encoding
of s rather thans itself.

In terms of parameters, we obtain robust secret sharing schemes which are nearly as efficient as their
non-robust counterparts, since the overhead added by encoding a source will be very small. More precisely,
to achieve security2−κ, we build an AMD code where the length of the encoding of au-bit values is only
2κ + O(log(u/κ)) bits longer than the length ofs. This construction is close to optimal since we prove a
lower bound of2κ on the amount of overhead that an AMD encoding must add to the size of the source. As
a concrete example, in order to robustly secret share a 1 megabyte message with security levelδ = 2−128,
our best construction adds fewer than 300 bits by encoding the message, whereas previous constructions
(described below) add nearly 2 megabytes.

Relation to Prior Work on Secret Sharing.Although AMD codes were never formally defined in previous
work, some constructions of AMD codes have appeared, mostlyin connection with making secret sharing
robust [20, 7, 21]. Although some of these constructions areessentially optimal, all of them are largely
inflexible in that the error probabilityδ is dictated by the cardinality of the source spaceS: δ ≈ 1/|S|.
In particular, this implies that when the cardinality ofS is large, the known constructions may introduce
significantly more overhead than what is needed to achieve a particular security threshold. In contrast, our
constructions can accommodate arbitrary choices of security δ and message lengthu.

For example, Cabello, Padró and Sáez [7] (see also [23, 22]) proposed an elegant construction of a robust
secret sharing scheme which implicitly relies on the following AMD code. For any finite fieldF of orderq,
the encoding of the secrets ∈ F is a triple(s, x, x · s), wherex ∈R F. This code achieves securityδ = 1/q
and optimal message overhead2 log(q) = 2 log(1/δ) for this value ofδ. However, as already mentioned,
it is far from optimal when we only desire a security levelδ ≫ 1/q, making this construction inflexible

2

for many applications. Similarly, Ogata and Kurosawa [20] proposed an inflexible construction of aweakly
robust secret sharing scheme (the scheme is robust only if the shared secret is uniformly random) that
implicitly defines what we call aweakAMD code. We describe this construction and argue its inflexibility
in Appendix C.3. In Appendix D, we also show a natural generictransformation of weak AMD codes
to (ordinary “strong”) AMD codes, observing that such a transformation can never achieve the optimal
overhead (nearly) achieved by our direct construction. AMDcodes are also very useful for several other
related applications. Indeed, in Section 3 we point their applications to robust information dispersal, secure
private storage and anonymous message transmission.

In the context of robust secret sharing, the inflexibility issue mentioned above has recently been ad-
dressed in a paper by Obana and Araki [19], where aflexible robust secret sharing scheme (in fact, an
AMD code in our terminology) was proposed and claimed to be “proven” secure. However, as we discuss in
Appendix B, the proposed robust secret sharing scheme (respectively AMD code) is completelyinsecure.

1.2 Fuzzy Extractors

A less obvious example comes from the domain offuzzy extractors[10]. A fuzzy extractor extracts a uni-
formly random keyR from some non-uniform secretw (e.g., biometric data) in such a way that this key
can be recovered from anyw′ sufficiently close tow in some appropriate metric space.6 To accomplish this
task, the fuzzy extractor also computes a publichelper stringP in addition to the extracted keyR, and then
recoversR usingw′ andP . Unfortunately, the original notion of a fuzzy extractor critically depends on the
value ofP being stored on a tamper-proof (though public) device. As observed by Boyen et al. [6, 5], this
severely limits the usability of the concept. To address this problem, [6, 5] introduced a stronger notion of
a robust fuzzy extractor, where any tampering ofP will be detected by the user, even with an imperfect
readingw′ of w! Thus,P can be stored on a potentially untrusted server without the fear that a wrong key
R̃ 6= R will be extracted.

Before describing the new and prior results on robust fuzzy extractors, let us give some intuition on how
this setting is related to our abstract storage device. As wewill show (extending the previous observation of
[11]), for “appropriately designed” (non-robust) fuzzy extractors, the effect of modifying the helper string
P into P̃ can be essentially subsumed by giving the attacker the ability to control the difference between the
original keyR extracted fromw, and the “defective” keỹR extracted fromw′ andP̃ . Thus, on a very high
level, storing the public helperP on a public and unprotected storage can be viewed as implicitly storing
the extracted keyR on a deviceΣ(G) that ensures privacy but allows tampering.

Unfortunately, in this application one does not have the freedom of storing some encoding ofR on
Σ({0, 1}u), so AMD codes are not directly applicable. Instead, we introduce a related notion called a(one-
time) message authentication code with key manipulation security (KMS-MAC). Abstractly, this authentica-
tion code is keyed by a random element of some finite groupG, and remains secure even if the key is stored
in Σ(G). The message and the authentication tag can be stored in insecure storage that is neither private
nor tamper-proof. The adversary, who gets to see one valid message/tag pair and modify the key stored on
Σ(G), will be unable to produce an alternative message/tag pair that verifies under the modified key, except
with some small error probabilityδ. We show how to construct KMS-MACs using appropriate AMD codes.
Combined with our nearly optimal AMD construction, we get KMS-MACs that essentially achieve the same
parameters as ordinary (one-time) MACs: to authenticate anu-bit message with substitution security2−κ,
one uses a key of size2κ +O(log(u/κ)) and a tag of sizeκ +O(log(u/κ)).

6 For now and much of the paper, we will concentrate on the Hamming space over{0, 1}n, later pointing out how to extend our
results to related metrics.

3

We use KMS-MACs to add robustness to fuzzy extractors. As we mentioned, the public helperP is
stored on a public unprotected storage and we can think of theextracted keyR as being stored inΣ({0, 1}u).
Surprisingly, we can use the keyR (which is derived fromP) to authenticateP itself! The idea is to split
the extracted keyR into two partsRmac andRout. The “long” Rout will be the new extracted key, while the
“short” Rmac will be sacrificed and used as the key to the KMS-MAC applied tothe original helper string
P (so that the new helper string will containP and the tag). An adversary that replacesP with P ′ implicitly
adds a known offset toRmac but, by the security of the KMS-MAC, is then unable to computea valid tag for
P ′ under the modified key. As a result, for the first time, we obtain robustfuzzy extractors for the Hamming
(and related) metrics, which do not rely on random oracles (or other computational assumptions) and achieve
nearly the same optimal parameters as their non-robust counterparts. However, as we explain shortly, this
result is obtained in the Common Reference String model. Indeed, a setup assumption is necessary as our
result breaks the impossibility result of [12] for the plainmodel.

Relation to Prior Work on Fuzzy Extractors. In their original paper, Dodis et al. [10] gave several nearly
optimal constructions for (non-robust) fuzzy extractors for the Hamming and several other metrics. Boyen
et al. [5] gave a generic transformation which makes a fuzzy extractor robustin the random oracle model,
without considerably sacrificing any of the parameters. Unfortunately, in the plain model Dodis et al. [11]
showed that robustness can only be achieved if the initial secretw contains an entropy rate of at least one
half (i.e. the entropy of the secret is at least half the length of the secret). In fact, this holds even if no errors
are allowed [12] (i.e.,w = w′). Moreover, even when the secret does meet this threshold, robustness is only
achieved at a large cost in the length of the extracted randomkey, as compared to the optimal non-robust
extractors for the same entropy threshold.

In this work we overcome this pessimistic state of affairs bybuilding robust fuzzy extractors in the
Common Reference String(CRS) model. The common reference string can be chosen once when the system
is designed and can be hardwired/hardcoded into all hardware/software implementing the system. Moreover,
the CRS can be published publicly and we allow the attacker toobserve (but not modify) it.7 Our CRS is a
random bitstring - it has no trapdoors and we do not require any ability to “program” it. Since most users do
not create their own hardware/software but instead assume that a third party implementation is correct, the
assumption that this implementation also contains an honestly generated random string does not significantly
increase the amount of trust required from users. We do assume that the probability distribution from which
the secretw is chosen is independent of the CRS. This is a very natural assumption for biometrics and many
other scenarios. However, it also means that our scheme is not applicable in the setting of exposure resilient
cryptography (see [9]) where the attacker can learn some function of the secret after seeing the CRS.

What our result shows, however, is that this seemingly minoraddition not only allows us to achieve
robustness without additional restrictions on the entropyrate of the secret, but also tonearly match the
extracted key length of non-robust fuzzy extractor constructions(or the robust fuzzy extractor constructions
in the random oracle model [5]).

On a technical level, it is also interesting to compare our model and techniques with those of Dodis et al.
[11], who built robust fuzzy extractors in the plain model (with the necessarily poor parameters mentioned
above). The work of [11] could be viewed (in our language) as reducing the question of building robust fuzzy
extractors to that of using thethe original secretw stored inΣ(G), for authentication purposes. In partic-
ular, the authors had to build a message authentication code(in fact, one secure against key manipulation

7 We remark that assuming tamper-proof storage of the CRS, which can be shared by many users, is very different than assuming
tamper-proof storage of a “user-specific” helper stringP . Indeed, the former can be hardwired into the system, and thelatter can
not.

4

attacks) using thenon-uniformstringw as the key. Authentication codes keyed by non-uniform randomness
imply non-trivial parameter degradation in the plain model[12] and all the (necessary) inefficiencies of [11]
followed from this fact. In contrast, the addition of the CRSreduces the question of building robust fuzzy
extractors to that of using uniformly randomextracted randomnessR, stored onΣ(G), for authentication
purposes (this implication is non-trivial and forms one of the contributions of this work). As a consequence,
we can use much more efficient KMS-MACs relying onuniformly randomsecret keys and, therefore, obtain
nearly optimal robust fuzzy extractors in the CRS model.

2 Algebraic Manipulation Detection Codes

Definition 1. An (S,G, δ)-algebraic manipulation detection code, or (S,G, δ)-AMD code for short, is a
probabilistic encodingmapE : S → G from a setS of sizeS into an (additive) groupG of orderG, together
with a (deterministic)decodingfunctionD : G → S∪{⊥} such thatD(E(s)) = s with probability 1 for any
s ∈ S. The security of an AMD code requires that for anys ∈ S,∆ ∈ G, Pr[D(E(s) + ∆) 6∈ {s,⊥}] ≤ δ.

An AMD code is calledsystematicif S is a group, and the encoding is of the form

E : S → S × G1 × G2, s 7→ (s, x, f(x, s))

for some functionf andx ∈R G1. The decoding function of a systematic AMD code is naturallygiven by
D(s′, x′, σ′) = s′ if σ′ = f(x′, s′) and⊥ otherwise.

Intuitively, E(s) can safely be stored on a private storage deviceΣ(G) so that an adversary who manipulates
the stored value by adding an offset∆, cannot cause it to decode to somes′ 6= s. It is also possible to define
a weakAMD code where security only holds for arandoms ∈ S rather than an arbitrary one. We focus of
regular (strong) AMD codes and mention some constructions and applications of weak AMD codes in the
appendices.

From a practical perspective, it is typically not sufficientto have one particular code, but rather one
would like to have a class of codes at hand such that for every choiceu for the bit-length of the sources and
for every choiceκ of the security level, there exists a code that “fits” these parameters. This motivates the
following definition:

Definition 2. An AMD codefamily is a class of AMD codes such that for anyκ, u ∈ N there exists an
(S,G, δ)-AMD code in that class withS ≥ 2u andδ ≤ 2−κ.

We point out that in this definition, the groupG can be different for every AMD code in the family and is
left unspecified. In our constructions the groupG will often be the additive group of the vector spaceF

d for
some fieldF. Specifically, we will often focus on the fieldF2d (as an additive group, this is equivalent toF

d
2)

so addition (and subtraction) is just bitwise-xor ofd bit long strings.
We would like the construction of an AMD code to be close to optimal in thatG should not be much

larger thanS . We consider thetag size̟ of a (S,G, δ)-AMD code defined as̟ = log(G) − log(S).
Intuitively, this denotes the number of bits that the AMD code appends to the source. More generally we
define the efficiency of an AMD code family as follows.

Definition 3. Theeffective tag size̟ ∗(κ, u) with respect toκ, u ∈ N of an AMD code family is defined
as ̟∗(κ, u) = min{log(G)} − u where the minimum is over all(S,G, δ)-AMD codes in that class with
S ≥ 2u andδ ≤ 2−κ.

In Appendix A, we prove the following lower bound on the effective tag size of an AMD code family.

Theorem 1. Any AMD code family has an affective tag size lower bounded by̟∗(κ, u) ≥ 2κ − 2−u+1 ≥
2κ− 1.

5

2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes which is both optimal and flexible. As noted in
the introduction, a similar, but more complicated construction appeared in [11], though it was presented as
part of a larger construction, and its properties were not stated explicitly as a stand-alone primitive. The two
constructions were discovered concurrently and independently from each other.

Let F be a field of sizeq and characteristicp, and letd be any integer such thatd + 2 is not divisible by
p. Define the functionE : F

d → F
d × F× F by E(s) = (s, x, f(x, s)) where

f(x, s) = xd+2 +

d∑

i=1

six
i

Theorem 2. The given construction is a systematic(qd, qd+2, (d + 1)/q)-AMD code with tag size̟ =
2 log q.

Proof. We wish to show that for anys ∈ F and∆ ∈ F
d+2: Pr[D(E(s) + ∆) 6∈ {s,⊥}] ≤ δ. It is enough to

show that for anys′ 6= s and any∆x,∆f ∈ F: Pr[f(x, s) + ∆f = f(x + ∆x, s′)] ≤ δ. Hence we consider
the event

xd+2 +

d∑

i=1

six
i + ∆f = (x + ∆x)

d+2 +

d∑

i=1

s′i(x + ∆x)i (1)

We rewrite the right hand side of (1) asxd+2 +(d+2)∆xxd+1 +
∑d

i=1 s′ix
i +∆x ·p(x), wherep(x) is some

polynomial of degree at mostd in x. Subtracting this term from both sides of equation (1),xd+2 cancels out
and we get

−(d + 2)∆xxd+1 +

d∑

i=1

(si − s′i)x
i −∆x · p(x) + ∆f = 0 (2)

We claim that the left side of equation 2 is anon-zeropolynomial of degree at mostd + 1. To see this,
let us consider two cases:

1. If ∆x 6= 0, then the leading coefficient is−(d+2)∆x 6= 0 (here we use the fact thatd+2 is not divisible
by the characteristic of the field).

2. If ∆x = 0, then (2) simplifies to
∑d

i=1(si − s′i)x
i + ∆f = 0, which is not identically zero since we

assumed thats 6= s′.

This shows that (2) has at mostd + 1 solutionsx. Let B be the set of such solutions so|B| ≤ d + 1. Then

Pr[D(E(s) + ∆) 6∈ {s,⊥}] = Pr
x←F

[x ∈ B] ≤
d + 1

q

⊓⊔

Notice, the elements of the range groupG = F
d × F× F can be conveniently viewed as elements ofZ

t
p, for

somet (recall,p is the characteristic ofF). Thus, addition inG simply corresponds to element-wise addition
modulop. Whenp = 2, this simply becomes the XOR operation.

Quantifying the above construction over all fieldsF and all values ofd (such thatd + 2 is not divisible
by p), we get a very flexible AMD family. Indeed, we show that the effective tag size of the family is nearly
optimal.

6

Corollary 1. The effective tag size of the AMD code family is̟∗(κ, u) ≤ 2κ+2 log(u
κ

+3)+2. Moreover,
this can be achieved with the range groupG being the group of bitstrings under the bitwise-xor operation.8

Proof. For a givenκ andu, choosed andq as follows: letd be the smallest positiveodd integer such that
u ≤ d(κ + log(d + 1)), and chooseq = 2⌈κ+log(d+1)⌉. Note thatd + 2 is not divisible by2, which is the
characteristic ofFq. Furthermoreu ≤ d log(q), and thus we can restrict the source spaceF

d, viewed as
{0, 1}d log(q), to the subsetS = {0, 1}u and the rangeFd × F × F to the subgroupG = S × F × F. The
resulting(S,G, δ)-AMD code fitsκ andu in thatS ≥ 2u andδ = (d + 1)/q ≤ 2−κ. The effective tag size
is given by:

log(G) − u = log(|S × F× F|)− u = 2 log(q) ≤ 2κ + 2 log(d + 1) + 2

≤ 2κ + 2 log(u
κ

+ 3) + 2 .

Thus̟∗(κ, u) ≤ 2κ + 2 log(u
κ

+ 3) + 2. ⊓⊔

3 Application to Robust Secret Sharing

A secret sharing schemeis given by two probabilistic functions. The functionShare maps a secrets from
some groupG to a vectorS = (S1, . . . , Sn) where thesharesSi are in some groupGi. The functionRecover

takes as input a vector of sharesS̃ = (S̃1, . . . , S̃n) whereS̃i ∈ Gi ∪ {⊥} and outputs̃s ∈ G ∪ {⊥}. A secret
sharing schemes is defined over somemonotone access structurewhich maps subsetsB ⊆ {1, . . . , n} to
a status:qualified,unqualified,⊥. The correctness property of such a scheme states that for any
s ∈ G and anyqualifiedsetB, the following is true with probability1. If S ← Share(s) andS̃ is defined to
beS̃i = Si for eachi ∈ B andS̃i = ⊥ for eachi 6∈ B, thenRecover(S̃) = s. Similarly, the privacy of such
a scheme states that for anyunqualifiedsubsetA, the shares{Si}i∈A reveal no information about the secret
s (this is formalized using standard indistinguishability).

Thus, qualified sets of players can recover the secret from their pooled shares, while unqualified subsets
learn no information about the secret. Sets of players whichare neither qualified nor unqualified might not
be able to recover the secret in full but might gain some partial information about its value.

A linear secret sharing scheme has the property that theRecover function is linear: given anys ∈ G,
anyS ∈ Share(s), and any vectorS′ (possibly containing some⊥ symbols), we haveRecover(S + S′) =
s + Recover(S′), where vector addition is defined element-wise and additionwith ⊥ is defined by⊥+ x =
x +⊥ = ⊥ for all x.

Examples of linear secret sharing schemes include Shamir’ssecret sharing scheme [26] where the access
structure is simply a threshold on the number of players, or ascheme for a general access structure in [16].

We consider a setting where an honest dealer uses a secret sharing scheme to share some secrets among
n players. Later, an outside entity called thereconstructorcontacts some qualified subsetB of the players,
collects their shares and reconstructs the secret. The security of the scheme ensures that, as long as the set
A ⊆ B of players corrupted by an adversary is unqualified, the adversary gets no information about the
shared secret. However, if thehonestplayersB\A also form an unqualified subset, then the adversary can
enforce the reconstruction of an incorrect secret by handing in incorrect shares. In fact, if the reconstructor
contacts aminimalqualified subset of the players, then even a single corruptedplayer can cause the recon-
struction of an incorrect secret. Robust secret sharing schemes (defined in [28, 4]) ensure that such attacks

8 We can also imagine situations where the “base” fieldF
′ of some characteristicp is given to us, and our freedom is in choosing

the extension fieldF and the appropriate value ofd so thatS can be embedded intoFd. Under such restrictions, the effective tag
size becomes roughly2κ + 2 log(u) + O(log p).

7

can’t succeed: as long as the adversary corrupts only an unqualified subset of the players, the reconstructor
will never recover a modified version of the secret.

Definition 4. A secret sharing scheme isδ-robust if for any unbounded adversaryA who corrupts an un-
qualified set of playersA ⊆ {1, . . . , n} and anys ∈ G, we have the following. LetS ← Share(s) and S̃ be
a value such that, for each1 ≤ i ≤ n,

S̃i =

{
A(i, s, {Si}i∈A) if i ∈ A
Si or ⊥ if i 6∈ A

ThenPr[Recover(S̃) 6∈ {s,⊥}] ≤ δ.

We note that in a (non-robust) linear secret sharing scheme,when the adversary modifies shares by
settingS̃i = Si + ∆i then, by linearity of the scheme, the adversary also knows the difference∆ = s̃ − s
between the reconstructed secrets̃ and the shared secrets. This implies that we can think ofs as being stored
in an abstract storage deviceΣ(G), which is private for an adversary who corrupts an unqualified subset of
the players, yet is not-robust in that the adversary can specify additive offsets so thatΣ(G) storess + ∆.
This immediately implies that we can turn any linear secret sharing scheme into anδ-robust secret sharing
scheme using AMD codes.

Theorem 3. Let (Share,Recover) denote a linear secret sharing scheme with domainG of orderG, and let
(E ,D) be an(S,G, δ)-AMD code with rangeG. Then the scheme(Share∗,Recover∗) given byShare∗(s) =
Share(E(s)), Recover∗(S̃) = D(Recover(S̃)) is anδ-robust secret sharing scheme.

Proof. Let S = Share∗(S) and letS̃ be a vector meeting the requirements of Def. 4. LetS′ = S̃ − S. The
vectorS′ contains0 for honest players,⊥ for absent players, and arbitrary values for dishonest players. We
have:

Pr[Recover∗(S̃) 6∈ {s,⊥}] = Pr[D(Recover(S) + Recover(S′)) 6∈ {s,⊥}]

= Pr[D(E(s) + ∆) 6∈ {s,⊥}]

where the value∆ = Recover(S′) is determined by the adversarial strategyA. By the privacy of the secret
sharing scheme, it is only based on the adversary’s a-prioriknowledge of the shared secret and is otherwise
independent of the valueE(s). The conclusion then follows immediately from the definition of AMD codes.

⊓⊔

For Shamir secret sharing (and similar schemes), where the groupG can be an arbitrary field of sizeq ≥ n,
we can use the optimal and flexible AMD code construction fromSection 2.1. In doing so, each player’s
share would increase by roughly2 log(1/δ)+2 log u bits (whereu in the length of the message) as compared
to the non-robust case.

ROBUST INFORMATION DISPERSAL. Systematic AMD codes have an additional benefit in that the encod-
ing leaves the original values intact. This could be beneficial in the scenario where players do not care about
the privacy ofs, but only about its authenticity. In other words, it is safe to useinformation dispersalon s
or, alternatively,s can be stored in some public non-robust storage. Using a systematic AMD code which
mapss to (s, x, f(x, s)), the players can just secret share the authentication information (x, f(x, s)) and
use it later to authenticates. As long as the corrupted players form an unqualified set, theauthentication
information(x, f(x, s)) remains private and hence an adversary who changess to s′ (and trivially knows

8

the offset∆s = s − s′) still cannot come up with an offset to(x, f(x, s)) so that it authenticatess′ in-
stead ofs. The values might be very large but the authentication information(x, f(x, s)) remains relatively
small, and hence secret sharing only the authentication information (rather than the entire encoding) gives
us significant gains in efficiency. Concretely, to authenticate anu-bit secrets, we only need to secret share
roughly2(log(1/δ) + log u) bits.

SECURE AND PRIVATE STORAGE / SECURE MESSAGETRANSMISSION. Consider again the problem of
reconstructing a shared secret in the presence of faulty shares. However, now the goal is not only to prevent
the reconstruction of an incorrect secret by detecting foulplay, but to ensure that reconstruction always suc-
ceeds in producing the correct secret (except with small probability). In other words we do not want to allow
the option of reconstructing⊥. We still assume the dealer to be honest and that reconstruction is towards
one player. However, now we additionally assume that among the players participating in reconstruction, the
honest players form aqualifiedset. The dishonest players are still assumed to form anunqualifiedset. This
problem is known under the name (unconditional)secure information dispersal[24, 17] or non-interactive
secure message transmission[14, 13]. There is a generic, though for large player sets computationally inef-
ficient, construction based on a robust secret sharing [8]: for every qualified subset of the involved players,
invoke the robust reconstruction until for one set of sharesno foul play is detected and a secret is recon-
structed. If the robust secret sharing scheme is1/2κ+n-secure, then this procedure succeeds in producing
the correct secret except with probability at most1/2κ.

ANONYMOUS MESSAGETRANSMISSION. In recent work [3], Broadbent and Tapp explicitly used the no-
tion of AMD codes introduced in this paper (and our construction of them) in the setting of unconditionally
secure multi-party protocols with a dishonest majority. Specifically, AMD codes allowed them to obtain
robustness in their protocol for anonymous message transmission. This protocol, and with it the underlying
AMD code, was then used in [2] as a building block to obtain a protocol for anonymous quantum commu-
nication.

4 Message Authentication Codes with Key Manipulation Security

As a notion related to AMD codes, we define message authentication codes which remain secure even if the
adversary can manipulate the key. More precisely, we assumethat (only) the key of the authentication code
is stored on an abstract private deviceΣ(G) to which the adversary has algebraic manipulation access, but
the message and theauthentication tagare stored publicly and the adversary can modify them at will. This
is in contrast to AMD codes where the entire encoding of the message is stored inΣ(G).

Definition 5. An (S,G, T, δ)-message authentication code with key manipulation security (KMS MAC) is
a functionMAC : S ×G → T which maps asource messagein a setS of sizeS to a tag in the setT of size
T using akey from a groupG of orderG. We require that for anys 6= s′ ∈ S, anyσ, σ′ ∈ T and any∆ ∈ G

Pr[MAC(s′,K + ∆) = σ′ |MAC(s,K) = σ] ≤ δ

where the probability is taken over a uniformly random keyK ∈R G.

Intuitively, the adversary get some message/tag pair(s, σ). The adversary wins if he can produce an offset
∆ and a messages′ 6= s along with a tagσ′ such that the pair(s′, σ′) verifies correctly under the keyK +∆.
The above definition guarantees that such an attack succeedswith probability at mostδ. In fact, the definition
is slightly stronger than required, since we quantify over all possible tagsσ of the messages (rather than

9

just looking at a randomly generated one). However, since the above definition is achievable and simpler to
state, we will consider this stronger notion only. We can also think of a KMS-MAC as a generalization of a
standard message authentication code, which only guarantees security for∆ = 0.

As with AMD codes, we will consider the notion of a KMS-MAC family. For efficiency, we are inter-
ested in minimizing the tag sizelog(T) and the key sizelog(G). The following well known lower bounds
on standard message authentication codes (e.g., see [27]) obviously also apply to the stronger notion of a
KMS-MAC.

Lemma 1. For any authentication code with securityδ ≤ 2−κ, the key sizelog(G) must be at least2κ, and
the tag sizelog(T) must be at leastκ.

We now give a construction of a KMS-MAC out of any systematic AMD code.

Theorem 4. LetE : S → S × G1 × G2, s 7→ (s, x, f(x, s)) be a systematic
(|S|, |S|||G1||G2|, δ)-AMD code. Then the functionMAC : S×(G1×G2)→ G2 yields a(|S|, |G1||G2|, |G2|, δ)-
KMS-MAC:

MAC(s, (x1, x2)) = f(x1, s) + x2

Proof. AssumeK = (x1, x2) ∈ G1 × G2 is chosen uniformly at random, and consider arbitrary∆ =
(∆1,∆2) ∈ G1 × G2, σ, σ′ ∈ G2, ands, s′ ∈ S, wheres 6= s′.

The eventMAC(s,K) = σ is the eventf(x1, s)+x2 = σ, which is the same asx2 = −f(x1, s)+σ. Let
us call this eventE1. Similarly, the eventMAC(s′,K+∆) = σ′ is the eventf(x1+∆1, s

′)+(x2+∆2) = σ′,
which is the same asf(x1 + ∆1, s

′) = −x2 + σ′ −∆2. Let us call this eventE2. Thus, we need to bound
Pr[E2 | E1].

Let us denote∆f = −σ +σ′−∆2 and define an auxiliary eventE′2 asf(x1 +∆1, s
′) = f(x1, s)+∆f .

We claim thatPr[E2 | E1] = Pr[E′2 | E1]. Indeed, ifx2 = −f(x1, s) + σ, then

−x2 + σ′ −∆2 = −(−f(x1, s) + σ) + σ′ −∆2 = f(x1, s) + (−σ + σ′ −∆2) = f(x1, s) + ∆f

Finally, notice thatE′2 andE1 areindependent. Indeed, sinceE′2 does not depend onx2, andx2 is chosen at
random fromG2, whether or notx2 is equal to−f(x1, s) + σ does not affect any other events not involving
x2. Thus,Pr[E′2 | E1] = Pr[E′2]. Therefore, we have

Pr[MAC(s′,K + ∆) = σ′ |MAC(s,K) = σ] = Pr[f(x1 + ∆1, s
′) = f(x1, s) + ∆f] ≤ δ

where the last inequality follows directly from the security of the AMD code, sinces 6= s′. ⊓⊔

Using the systematic AMD code family constructed in Section2.1, we get a nearly optimal KMS-MAC
family. In particular, plugging in the systematic AMD code family from Theorem 2 and using the parameters
obtained in Corollary 1, we get:

Corollary 2. There is a KMS-MAC family such that, for anyκ, u ∈ N, the family contains an(S,G, T, δ)-
KMS-MAC (with respect to XOR operation) withδ ≤ 2−κ, S ≥ 2u and

log(G) ≤ 2κ + 2 log (u/κ + 3) + 2

log(T) ≤ κ + log (u/κ + 3) + 1

10

5 Application to Robust Fuzzy Extractors

We start by reviewing the some basic definitions needed to define the notion of fuzzy extractors from [10].

M IN-ENTROPY. Themin-entropyof a random variableX is
H∞(X) = − log(maxx PrX [x]). Following [10], we define the (average) conditional min-entropy of X
givenY asH̃∞(X | Y) = − log(Ey←Y (2−H∞(X|Y =y))) (here the expectation is taken overy for which
Pr[Y = y] is nonzero). This definition is convenient for cryptographic purposes, because the probability

that the adversary will predictX givenY is 2−
eH∞(X|Y). Finally, we will use [10, Lemma 2.2], which states

thatH̃∞(X | Y) ≥ H∞((X,Y))− λ, where2λ is the number of elements inY .

SECURESKETCHES. LetM be a metric space with distance functiondis. Informally, a secure sketch enables
recovery of a stringw ∈M from any “close” stringw′ ∈Mwithout leaking too much information aboutw.

Definition 6. An (m,m′, t)-secure sketch for a metric spaceM is a pair of efficient randomized proce-
dures (SS,Rec) s.t.:

1. The sketching procedureSS on inputw ∈ M returns a bit strings ∈ {0, 1}∗. The recovery procedure
Rec takes an elementw′ ∈M ands ∈ {0, 1}∗.

2. Correctness:If dis(w,w′) ≤ t thenRec(w′,SS(w)) = w.
3. Security:For any distributionW overM with min-entropym, the (average) min-entropy ofW condi-

tioned ons does not decrease very much. Specifically, ifH∞(W) ≥ m thenH̃∞(W | SS(W)) ≥ m′.

The quantitym−m′ is called theentropy lossof the secure sketch.

As already mentioned in Footnote 6, we will concentrate on the Hamming metric over{0, 1}n, later
extending our results to several related metrics. For this metric we will make use of thesyndrome construc-
tion from [10], which we review in Appendix E (this construction appeared as a component of protocols
earlier, e.g., in [1]). For our current purposes, though, weonly need to know that this construction is alinear
transformationoverFn

2 .

STATISTICAL DISTANCE. Let X1,X2 be two probability distributions over some spaceS. Theirstatistical
distanceis SD (X1,X2)

def
= 1

2

∑
s∈S |PrX1

[s]− PrX2
[s]|. If

SD (X1,X2) ≤ ε, we say they areε-close, and writeX1 ≈ε X2. Note thatε-close distributions cannot
be distinguished with advantage better thanε even by a computationally unbounded adversary. We use the
notationUd to denote (fresh) uniform distribution over{0, 1}d.

RANDOMNESS EXTRACTORS FOR AVG. M IN ENTROPY. A randomness extractor, as defined in [18], ex-
tracts a uniformly random string from any secret with high enough entropy using some randomness as a
seed. Here we include a slightly altered definition to ensurethat we can extract randomness from any secret
with high enoughaveragemin-entropy.

Definition 7. A functionExt : {0, 1}n × {0, 1}d → {0, 1}ℓ is called a(m, ℓ, ε)-extractor if for all random
variablesX andY such thatX ∈ {0, 1}n andH̃∞(X | Y) ≥ m, andI ← Ud, we have

SD ((Y,Ext(X; I), I) , (Y,Uℓ, Ud)) ≤ ε

It was shown by [10, Lemma 2.4] that universal hash functionsare good extractors in the above sense. In
particular, the constructionExt : {0, 1}n × {0, 1}n → {0, 1}ℓ, defined byExt(x, i)

def
= [x · i]ℓ1 is a(m, ℓ, ε)-

extractor for anyℓ ≤ m − 2 log(1/ε). Here the multiplicationx · i is performed in the fieldF2n and the
notation[z]ℓ1 denotes the firstℓ bits ofz.

11

FUZZY EXTRACTORS. A fuzzy extractor extracts a uniformly random key from somesecretw in such a
way that the key can be recovered from anyw′ close tow. The notion was first defined in [10]. Here we alter
the definition to allow for a public common reference string (CRS).

Definition 8. An (m, ℓ, t, ε)-fuzzy extractor for a metric spaceM is defined by randomized procedures
(Init,Gen,Rep) with the following properties:

1. The procedureInit takes no inputs and outputs a stringCRS ∈ {0, 1}∗.
2. The generation procedureGen, on inputw ∈ M,CRS ∈ {0, 1}∗, outputs an extracted stringR ∈
{0, 1}ℓ and a helper stringP ∈ {0, 1}∗. The reproduction procedureRep takesw′ ∈M andP,CRS ∈
{0, 1}∗ as inputs. It outputs̃w ∈M∪ {⊥}.

3. Correctness:If dis(w,w′) ≤ t and(R,P)← Gen(w,CRS), thenRep(w′, P,CRS) = R.
4. Privacy:For any distributionW with min-entropym over the metricM , the stringR is close to uniform

even conditioned on the value ofP . Formally, ifH∞(W) ≥ m and(R,P)← Gen(W,CRS), then
(R,P,CRS) ≈ε (Uℓ, P,CRS).

Composing an(m,m′, t)-secure sketch with a(m′, ℓ, ε)-extractorExt : M × {0, 1}d → {0, 1}ℓ (as
defined in Def. 7) yields a(m, ℓ, t, ε)-fuzzy extractor [10]. The construction of [10] has an emptyCRS and
setsP = (SS(w), i) andR = Ext(w; i) for a randomi. However, it is easy to see that the construction
would remain secure if the extractor seedi was contained in theCRS andP was justSS(w). One advantage
of such approach would be that theGen andRep algorithms are then deterministic which might make them
easier to implement in hardware. Another advantage is that it would eventually allow us to overcome the
impossibility barrier of robust fuzzy extractors (defined next) in the plain model.

5.1 Definition of Robust Fuzzy Extractor in CRS Model

Fuzzy extractors allow one to revealP publicly without sacrificing the security of the extracted randomness
R. However, there are no guarantees when an active attacker modifies P . To prevent such attacks, robust
fuzzy extractors were defined and constructed in [5, 11]. Here we define robust fuzzy extractors in the CRS
model.

For two (correlated) random variablesW,W ′ over a metric spaceM, we say
dis(W,W ′) ≤ t if the distance betweenW andW ′ is at mostt with probability one. We call(W,W ′) a
(t,m)-correlated pairif dis(W,W ′) ≤ t andH∞(W) ≥ m. It will turn out that we can get more efficient
constructions if we assume that the random variable∆ = W −W ′ indicating the errors betweenW and
W ′ is independent ofW (this was the only case considered by [5]). However, we do notwant to make this
assumption in general since it is often unlikely to hold. We define the familyFall

t,m to be the family of all

(t,m)-correlated pairs(W,W ′) and the familyF indep
t,m to be the family of(t,m)-correlated pairs for which

∆ = W −W ′ is independent ofW .

Definition 9. An (m, ℓ, t, ε, δ)-robust fuzzy extractorfor a metric spaceM and a familyF of (t,m)-
correlated pairs is an(m, ℓ, t, ε)-fuzzy extractor overM such that for all(W,W ′) ∈ F and all adversaries
A

Pr

[
Rep(P̃ , w′,CRS) 6= ⊥

P̃ 6= P

∣∣∣∣
CRS← Init(), (w,w′)← (W,W ′)

(P,R)← Gen(w,CRS), P̃ ← A(P,R,CRS)

]
≤ δ

We call the above notionpost-application robustness and it will serve as our main definition. We also con-
sider a slightly weaker notion, calledpre-application robustness where we do not giveR to the adversary
A.

12

The distinction betweenpre-application andpost-application robustness was already made in [5, 11]. In-
tuitively, when a user Alice extracts a key using a robust fuzzy extractor, she may use this key for some
purpose such that the adversary can (partially) learn the value of the key. The adversary can then mount an
attack that modifiesP based on this learned value. For post-application security, we insist that robustness
is preserved even in this setting. For pre-application security, we assume that the adversary has no partial
information about the value of the key.

5.2 Construction

We are now ready to construct robust fuzzy extractors in the CRS model. First, let us outline a general idea
for the construction using an extractorExt, a secure sketch (SS,Rec) and a one-time (information-theoretic)
message authentication codeMAC. A pictorial representation of the construction is shown inFigure 1 and
pseudo-code is given below.

Init() outputs a random seedi for the extractorExt as a shared CRS.
Gen(w, i) does the following:

R← Ext(w, i) which we parse asR = (Rmac, Rout).
s← SS(w), σ ← MAC(s, Rmac), P := (s, σ).
Output(P, Rout).

Rep(w′, P̃ , i) does the following:
ParseP̃ = (s̃, σ̃). Let w̃← Rec(w′, s̃). If d(w̃, w′) > t then output⊥.
Usingw̃ andi, computeR̃ and parse it as̃Rout, R̃mac.
Verify σ̃ = MAC(s̃, R̃mac). If equation holds output̃Rout, otherwise output⊥.

The idea is fairly intuitive. First, we extract randomness from w using the public extractor seedi. Then
we use part of the extracted randomnessRout as the output, and the remaining partRmac as the key for the
one-time information-theoretic MAC to authenticate the secure sketchs of w.

However, in arguing robustness of the reconstruction phase, we notice that there is a problem. When an
adversary modifiess to some valuẽs then this will force the user to incorrectly recoverw̃ 6= w, which in
turn leads to the reconstruction ofR̃ 6= R andR̃mac 6= Rmac. So the keyR̃mac, which is used to verify the
authenticity ofs, will itself be modified whens is!

To break the circularity, we will need to us special linearity properties of the secure sketch and extractor
constructions, which we specify in section 5.3. We will argue in that an adversary who modifiess to s̃ will
know the offset∆ such thatR̃mac = Rmac + ∆. AlthoughR̃mac is derived fromw′, s̃ and theCRS, we can
think of Rmac as being stored in an abstract deviceΣ(G) which is private but only weakly robust in that the
adversary can specify an additive offset by modifyings. We can then use a KMS-MAC to get security even
when the key is stored on such a device. Hence, the adversary will not be able to come up with a valid pair
(s̃, σ̃) wheres̃ 6= s.

5.3 Linearity of modifying P

In this section, we specify the properties of our secure sketch and extractor constructions to ensure that an
adversary who knows∆ = w′ − w and modifiess to s̃, will know the offsetR∆̃ = R̃ − R between the
original extracted key and the recovered key.

Secure Sketch Linearity Property: Let(SS,Rec) be an(m,m′, t)-secure-sketch andw,w′ be values such
thatdis(w,w′) ≤ t. Let∆ = w′−w ands = SS(w). For anys̃, let w̃ := Rec(w′, s̃) and∆̃ = w̃−w. Then,

13

Rout

Rmac

s
σ PSS s

Mac
Ext

w
i

Rout

macR
~P

�
�
�
�

Rec
s

Ext
~w

w’

~
yes/no

/i
~Rout

~
~ Ver
σ~

Generation Reconstruction

Fig. 1.Construction of Robust Fuzzy Extractor

we say that the secure sketch is linear if∆̃ is completely determined by∆, s ands̃. Formally∆̃ = f(∆, s, s̃)
wheref is a deterministic function.

Lemma 2. The syndrome based construction of a secure sketch meets theabove linearity property.

This lemma follows easily from the properties of the syndrome construction and we give a proof in Appendix
F. It was also implicitly used in [11].

Extractor Linearity Property: The extractorExt is linear if for anya, b and i, we haveExt(a − b, i) =
Ext(a, i) − Ext(b, i).

It is easy to see that the extractor defined byExt(w, i)
def
= [w · i]ℓ1 has the required linearity property. We

also notice that several other extractors (e.g., [29, 25]) with shorter seed lengths also satisfy this property.
As it turns out, it is precisely this property of extractors,not useful in the plain model setting of [11], that
would allow us to obtain the following key Lemma what we will use in the CRS model.

Lemma 3. Assume a secure sketch(SS,Rec) and an extractorExt meet the respective linearity properties
above. Consider anyw,w′, i, s̃ and lets = SS(w), R = Ext(w, i), w̃ = Rec(w′, s̃), R̃ = Ext(w̃, i). Finally,

denote∆ = w′−w andR∆̃ = R̃−R. Then, there is a deterministic functiong such thatR∆̃ = g(∆, s, s̃, i).
Namely, one can computeR∆̃ by knowing only the difference∆ betweenw andw′, the sketchs, the modified
sketch̃s and the public CRSi.

Proof. Using Lemma 2, there is a deterministic functionf(∆, s, s̃) = ∆̃ = w̃ −w. If we let g(∆, s, s̃, i)
def
=

Ext(f(∆, s, s̃), i) then

g(∆, s, s̃, i) = Ext(f(∆, s, s̃), i) = Ext(w̃ − w, i) = Ext(w̃, i)− Ext(w, i)

= R̃−R = R∆̃

⊓⊔

5.4 Security of Construction and Parameters

We are now show that the construction outlined in Section 5.2indeed satisfies the definition of a robust
fuzzy extractor.

Let (SS,Rec) be a(m,m′, t)-secure sketch satisfying the secure sketch linearity property and letu be
an upper bound on the size ofSS(w). Let MAC be a(S,G, T, δ)-KMS-MAC, such thatS ≥ 2u. Assume
that the keys come from a groupG = {0, 1}k under the XOR operation so thatG = 2k. LetF be a class of
(t,m)-correlated variables(W,W ′) and letm̂ be the largest value such thatm̂ ≤ H̃∞(W |SS(W),W−W ′)
for any (W,W ′) ∈ F . Lastly, letExt be a(m̂, ℓ, ε)-strong randomness extractor satisfying the extractor
linearity property and seeded by randomnessi of lengthd.

14

Theorem 5. When instantiated with the primitivesExt, MAC and (SS,Rec), our construction yields a
(m, ℓ− k, t, 2ε, δ + ε)-robust-fuzzy extractor for the familyF .

Proof. The correctness property of the fuzzy extractor is guaranteed by the correctness of the secure sketch.
The privacy property follows from the security of the randomness extractor. Recall, that the adversary can
observei, s, σ. Since, by definition,̂m ≤ H̃∞(W |SS(W)), the distribution(i, s,Rmac, Rout) can be distin-
guished from(i, s, Uk, Uℓ−k) with probability at mostε. In particular,

(i, s,Rmac, Rout) ≈ε (i, s, Uk, Uℓ−k) ≈ε (i, s,Rmac, Uℓ−k)

and so(i, s,Rmac, Rout) ≈2ε (i, s,Rmac, Uℓ−k) by the triangle inequality. An adversary giveni, s, σ is
weaker than an adversary giveni, s,Rmac and even this latter adversary can distinguishRout from Rℓ−k

with probability at most2ε.
For robustness, consider any pair(W,W ′) ∈ F and any adversaryA attacking the robustness of the

scheme. Then

Pr[A succeeds] = Pr

Rep(P̃ , w′,CRS) 6= ⊥

andP̃ 6= P

∣∣∣∣∣∣

CRS← Init(), (w,w′)← (W,W ′)
(P,R)← Gen(w,CRS)

P̃ ← A(CRS, P,R)

= Pr

MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) 6= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i← Ud, (w,w′)← (W,W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s,Rmac)
(s̃, σ̃)← A(i, s, σ,Rout)

w̃ := Rec(w′, s̃), (R̃mac, R̃out) := Ext(w̃, i)

Now we use Lemma 3 which defines the deterministic functiong such that

Pr[A succeeds] = Pr

MAC(s̃, R̃mac) = σ̃
(s̃, σ̃) 6= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i← Ud, (w,w′)← (W,W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s,Rmac)
(s̃, σ̃)← A(i, s, σ,Rout)

∆ := w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)

On the right hand side of the inequality, the pair(w,w′) and the valuei determine the values∆, s,Rmac, Rout.
But the distributions(∆, s, i,Rmac, Rout) and(∆, s, i, Uℓ) can be distinguished with probability at mostε,
by the security of the extractor and the fact thatm̂ ≤ H̃∞(W |SS(W),∆).

Hence we have:

Pr[A succeeds]

≤ ε + Pr

MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) 6= (s, σ)

∣∣∣∣∣∣∣∣

i← Ud, Rmac ← Uk, (w,w′)← (W,W ′)
s := SS(w), σ := MAC(s,Rmac)

(s̃, σ̃)← A(i, s, σ, Uℓ−k)

∆← w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)

 (3)

≤ ε + max
R∆

mac,s̃ 6=s,σ,σ̃
Pr

MAC(s̃, R̃mac) = σ̃

∣∣∣∣∣∣

Rmac ← Uk

σ := MAC(s,Rmac)

R̃mac := Rmac + R∆
mac

≤ ε + δ

Where the last inequality follows from the security of the KMS-MAC. ⊓⊔

15

The above theorem is stated with generality in mind. We now examine the parameters we get when
plugging in the optimal implementation of a KMS-MAC and using the “multiplication” extractor
Ext(x, i)

def
= [x · i]v1.

Corollary 3. Using given constructions of strong randomness extractorsand KMS-MACs, we get a(m, ℓ, t, ε, δ)-
robust fuzzy extractor for the familyF and for anym, t, ε andδ ≥ ε. The extracted key length is

ℓ ≈ m̂− 2 log

(
2(u + 3)

ε(δ − ε)

)
− 2

Recall, thatu is the length of the secure sketch,n is the length of the secretw, andm̂ ≤ H̃∞(W |SS(W),W−
W ′) for any(W,W ′) ∈ F .

Moreover, for the familyFall
(t,m) of all (t,m) correlated pairs,

m̂ ≥ m− u− t
(
log

(n

t

)
+ log e

)

For the familyF indep

(t,m) of all (t,m)-correlated pairs for which∆ = W − W ′ and W are independent

m̂ = m′ ≥ m− u.

Proof. The strong randomness extractor construction we looked at previously, extracts(Rmac, Rout) of
lengthm̂ − 2 log(1/ε′) to achieve securityε′. We wantε′ = ε/2. This impliesℓ ≈ m̂ − 2 log(2/ε) − k
wherek is the size ofRmac. By the bounds on key-lengths of the KSM-MAC construction given in 2, if
we want to get securityδ − ε and authenticate messages of lengthu, we can use a key of lengthk ≤
2 log(1/(δ − ε)) + 2 log(u + 3) + 2 Putting these together we see

ℓ ≥ m̂− 2[log(2/ε) + log(1/(δ − ε)) + log(u + 3)]− 2 ≥ m̂− 2 log

(
2(u + 3)

ε(δ − ε)

)
− 2

This proves the first part of the corollary. To boundm̂, we noticeH̃∞(W |SS(W),W −W ′) ≥ H∞(W)−λ
where2λ is the number of possible values of the pairSS(W),W −W ′. The number of possible values of
SS(W) is 2u, sinceu is a bound on the size ofSS(W). The number of possible values of∆ = W ′ −W
of a (t,m) correlated pair(W,W ′) is the volume of the ball of elements of lengthn that are at a distancet
from each other. The log of this volume is derived in [11] and is t

(
log

(
n
t

)
+ log e

)
. This gets us the first

bound onm̂. When∆ andW are independent theñH∞(W |SS(W),W −W ′) = H̃∞(W |SS(W)) = m′ ≥
H∞(W)− u which derives the second bound. ⊓⊔

So far, all of our bounds are for post-application robustness. We now show that for pre-application robustness
the bounds for the familiesFall

(t,m) andF indep

(t,m) are essentially equivalent. This is because, for pre-application
robustness, the adversary does not get to seeRout when mounting a key-manipulation attack. Hence, for
robustness, we no longer need to ensure that there is enough residual min entropy left over inw after the
adversary sees∆ ands to extractRout as well asRmac.

Corollary 4. For pre-application robustness only, we get a(m, ℓ, t, ε, δ)-robust fuzzy extractor for any
(t,m)-correlated familyF and for anym, t, ε andδ ≥ ε with

ℓ ≈ m′ − 2 log

(
2(u + 3)

ε(δ − ε)

)
− 2

16

as long as

m̂ ≥ 2 log

(
u + 3

ε(δ − ε)

)
− 2

Proof. The first condition on the size of the extracted key follows from Theorem 5 and bounds on the length
k of the KMS-MAC key. In Theorem 5, inequality 3, for pre-application robustness the adversary does not
getRout. This means that inequality 3 holds as long as(∆, s, i,Rmac) and(∆, s, i, Uk) can be distinguished
with probability at mostε. Now we notice that the extractorExt(w, i)

def
= [w ·i]v1 has the property that the first

H∞(W)− 2 log(1/ε) bits ofExt(w, i) areε close to random no matter how largev is. This means we only
needRmac to be indistinguishable in this case, and hence we have the weaker conditionk ≤ m̂−2 log(1/ε)
rather thanℓ ≤ m̂− 2 log(1/ε) in Theorem 5. Substituting the bounds onk we get

2 log((u + 3)/(δ − ε)) + 2 ≤ m̂− 2 log(1/ε)

which derives the condition stated in the corollary. This condition is very weak and likely to be satisfied in
practice. Hence, for pre-application robustness, we can essentially ignore the fact that∆ andW might not
be independent. ⊓⊔

COMPARISON WITH PREVIOUS CONSTRUCTIONS: Recall that the “non-robust” construction of [10] ex-
tractsℓ ≤ m′ − 2 log

(
1
ε

)
bits. On the other hand, the robust construction of [11] requires:

ℓ ≤
1

3

(
2m− n− u− 2t log

(en

t

)
− 2 log

(n

ε2δ

))
−O(1)

The bounds achieved in this paper are significantly closer tothe non-robust version. In essence we show that
the price of robustness can be cheap if we allow random publicsystem parameters.

5.5 Extension to Other Metrics

We note that the above construction can be extended for othermetric spaces and secure sketches. For ex-
ample, we can easily extend our discussion of the hamming distance over a binary alphabet to an alphabet
of sizeq whereFq is a field. The secure sketch simply uses an error correcting code forFq (possibly even
allowing us to use the optimal Reed-Solomon codes ifq ≥ n). For the extractor we work over the fieldFqn

and the truncation function[x]ℓ1 is defined as truncating symbols ofF (where elements ofFqn are viewed as
n dimensional vectors overFq) rather than bits.

Finally, we note that our construction extends to the set difference metric in exactly the same way as the
construction of [11].

17

References

1. C. H. Bennett, G. Brassard, C. Crépeau, and M.-H. Skubiszewska. Practical quantum oblivious transfer. In J. Feigenbaum,
editor, Advances in Cryptology—CRYPTO ’91, volume 576 ofLNCS, pages 351–366. Springer-Verlag, 1992, 11–15 Aug.
1991.

2. G. Brassard, A. Broadbent, J. Fitzsimons, S. Gambs, and A.Tapp. Anonymous quantum communication. InAdvances in
Cryptology — ASIACRYPT 2007, volume 4833 ofLNCS, pages 460–473. Springer-Verlag, 2007.

3. A. Broadbent, and A. Tapp. Information-theoretic security without an honest majority. InAdvances in Cryptology — ASI-
ACRYPT 2007, volume 4833 ofLNCS, pages 410–426. Springer-Verlag, 2007.

4. C. Blundo and A. De Santis. Lower bounds for robust secret sharing schemes.Information Processing Letters, 63(6), 1997.
5. X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure remote authentication using biometric data. In R. Cramer,

editor,Advances in Cryptology—EUROCRYPT 2005, volume 3494 ofLNCS, pages 147–163. Springer-Verlag, 2005.
6. X. Boyen. Reusable cryptographic fuzzy extractors. In11th ACM Conference on Computer and Communication Security.

ACM, Oct. 25–29 2004.
7. S. Cabello, C. Padró, and G. Sáez. Secret sharing schemes with detection of cheaters for a general access structure.Designs,

Codes and Cryptography 25 (2002) 175-188. Earlier version in Proceedings12th International Symposium on Fundamentals
of Computation Theory (FCT), volume 1233 ofLecture Notes in Computer Science. Springer, 1999.

8. R. Cramer, I. B. Damgård, and S. Fehr. On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In
Advances in Cryptology—CRYPTO ’01, volume 2139 ofLecture Notes in Computer Science. Springer, 2001.

9. Y. Dodis Exposure Resillient Cryptography. Ph.D. Thesis, MIT 2000
10. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics and other

noisy data. Technical Report 2003/235, Cryptology ePrint archive,http://eprint.iacr.org, 2006. Previous version
appeared atEUROCRYPT 2004.

11. Y. Dodis and J. Katz and L. Reyzin and A. Smith. Robust Fuzzy Extractors and Authenticated Key Agreement from Close
Secrets. InAdvances in Cryptology—CRYPTO ’06, volume 4117 ofLecture Notes in Computer Science. Springer, 2006.

12. Y. Dodis and J. Spencer. On the (non-)universality of theone-time pad. In43rd Annual Symposium on Foundations of Computer
Science, pages 376–385. IEEE, 2002.

13. Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. InAdvances in Cryptology—EUROCRYPT ’92,
volume 658 ofLecture Notes in Computer Science. Springer, 1992.

14. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission.Journal of the ACM, 40(1), 1993.
15. T. Johansson, G. Kabatianskii, and B. Smeets. On the relation between A-codes and codes correcting independent errors. In

Advances in Cryptology—EUROCRYPT ’93, volume 765 ofLecture Notes in Computer Science. Springer, 1993.
16. M. Karchmer and A. Wigderson. On span programs. In8th Annual Conference on Structure in Complexity Theory (SCTC

’93). IEEE, 1993.
17. H. Krawczyk. Distributed fingerprints and secure information dispersal. In12th ACM Symposium on Principles of Distributed

Computing (PODC). ACM Press, 1993.
18. N. Nisan and D. Zuckerman. Randomness is linear in space.Journal of Computer and System Sciences, 52(1):43–53, 1996.
19. S. Obana and T. Araki. Almost Optimum Secret Sharing Schemes Secure Against Cheating for Arbitrary Secret Distribution.

In ASIACRYPT ’06, volume 4284 ofLecture Notes in Computer Science. Springer, 2006.
20. W. Ogata and K. Kurosawa. Optimum secret sharing scheme secure against cheating. InAdvances in Cryptology—

EUROCRYPT ’96, volume 1070 ofLecture Notes in Computer Science. Springer, 1996.
21. W. Ogata, K. Kurosawa, D.R. Stinson, and H. Saido. New combinatorial designs and their applications to authentication codes

and secret sharing schemes. Discrete Mathematics 279 (2004), 383-405.
22. C. Padró, G. Sáez, J.L. Villar. Detection of cheaters in vector space secret sharing schemes. Designs, Codes and Cryptography

16 (1999) 75-85.
23. C. Padró. Robust vector space secret sharing schemes. Information Processing Letters 68 (1998) 107-111.
24. M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.Journal of the ACM, 36(2),

1989.
25. R. Raz, O. Reingold, S. Vadhan. Extracting all the Randomness and Reducing the Error in Trevisan’s Extractors. InProceedings

of the thirty-first annual ACM symposium on Theory of computing — STOC ’99. ACM Press 1999.
26. A. Shamir. How to share a secret.Communications of the Association for Computing Machinery, 22(11), 1979.
27. G.J. Simmons. Authentication theory/Coding Theory. InAdvances in Cryptology—CRYPTO ’84, volume 196 ofLecture Notes

in Computer Science. Springer, 1985.
28. M. Tompa and H. Woll. How to share a secret with cheaters.Journal of Cryptology, 1(3), 1988.
29. Luca Trevisan. Extractors and Pseudorandom Generators. J. of the ACM, 48(4):860-879, 2001.

18

A Lower Bounds

Theorem 6. Any weak, respectively regular (strong),(S,G, δ)-AMD code satisfies

G ≥
S − 1

δ
+ 1 respectively G ≥

S − 1

δ2
+ 1 .

Let (E ,D) be an(S,G, δ)-AMD code, withE : S → G andD : G → S ×{⊥}. For anys ∈ S, consider
the setD−1(s) = {e ∈ G : D(e) = s}. Clearly,D−1(s) ∩D−1(s′) = ∅ and|D−1(s)| ≥ 1 for anys 6= s′.

Consider first the case where the AMD code isweaklysecure. Lets be uniformly distributed overS.
Sample∆ 6= 0 at random fromG, independently ofs. The probability thatD(E(s) + ∆) 6= {s,⊥} is upper
bounded byδ. This implies that

δ ≥ Pr
[
E(s)+∆ ∈

⋃
s′ 6=sD

−1(s′)
]

=

∣∣⋃
s′ 6=sD

−1(s′)
∣∣

G− 1
≥

S − 1

G− 1

where the first inequality follows by considering∆ fixed, and the first equality follows by considerings
fixed, and realizing that if the (in)equality holds for any fixed value then it also holds for a random value.

Consider now the case where the AMD code isstrongly secure. Then, for anys ∈ S, it holds that
|D−1(s)| ≥ 1/δ. This follows from the fact that if one guessesE(s) correctly (knowings) then it is easy to
come up with a∆ such thatD(E(s) + ∆)) 6∈ {s,⊥}. Similar to above, it hence follows that

δ ≥ Pr
[
E(s)+∆ ∈

⋃
s′ 6=sD

−1(s′)
]

=

∣∣⋃
s′ 6=sD

−1(s′)
∣∣

G− 1
≥

(S − 1)/δ

G− 1

which implies the claimed bound. Note that here the probability is taken over a random∆ and over the
randomness used by the encoding functionE for a givens. ⊓⊔

Note that similar bounds were found in [20] for robust secretsharing schemes. This is no coincidence,
since we show in the paper that AMD codes can be used to construct robust secret sharing schemes. The
following bounds on the tag size now follow quite easily. It shows that it is unavoidable that the message
grows byκ respectively2κ bits if one wants to have weak respectively strong2−κ-security.

Corollary 5. The effective tag size of a weak, respectively strong, AMD code is lower bounded by

̟∗(κ, u) ≥ κ− 2−u+1 ≥ κ− 1 respectively ̟∗(κ, u) ≥ 2κ− 2−u+1 ≥ 2κ− 1

Proof. For any weak(S,G, δ)-AMD code with withS ≥ 2u andδ ≤ 2−κ

log(G)− u ≥ log(G)− log(S) ≥ log
(G− 1

S − 1

S − 1

S

)
= log

(G− 1

S − 1

)
+ log

(
1−

1

S

)
≥ κ−

2

S

where the last inequality follows from Theorem 6 and the bound log(1 − x) ≥ −2x for 0 ≤ x ≤ 1
2 .9

Similarly, for a strongly secure AMD code, the argument proceeds analogously but the last inequality is

replaced bylog
(

G−1
S−1

)
+ log

(
1− 1

S

)
≥ 2κ− 2

S
. ⊓⊔

9 The bound follows from the fact that the two sides coincide when evaluated atx = 0 and atx = 1

2
, and that−2x has constant

slope whereaslog(1− x) has strictly decreasing slope (as can be seen from its secondderivative) i.e. makes a “right turn“.

19

B An Insecure AMD code

Consider the systematic AMD codeE : F
d → F

d × F × F, s → (s, x, f(x, s)) with x ∈R F, where
f(x, s) = s1x + · · · + sdx

d. This AMD code, respectively the resulting robust secret sharing scheme, was
proposed and “proven” to be secure in [19]. However, it is easy to see that this AMD code isnot secure.
This can easily be seen by observing that

f(x + ∆x, s) =

d∑

i=1

si(x + ∆x)i =

d∑

i=1

s′ix
i + ∆f = f(x, s′) + ∆f

for somes′ = (s1, . . . , sd) and some∆f ∈ F, where boths′ and∆f can (efficiently) be computed when
givens and∆x. Recall that when consideringstrongsecurity, the adversary is assumed to knows. Hence,
adding∆x to x, ∆f to f(x, s), and replacings by s′ allows the adversary to break the AMD code with
probability 1. The “proof” given in [19] is very complicated, and thus it is difficult to point to what exactly
was argued incorrectly. We note that this mistake was later noted and fixed by the authors independently of
our work. However, we feel that the error nicely highlights the advantage of the abstract notion of an AMD
code: it allows for a much simpler (in the above case we may even saytrivial) analysis than, for instance,
when considering fully-fletched robust secret sharing schemes.

C The Combinatorics of AMD Codes

C.1 Weakly Secure AMD Codes

Let G be a group of finite orderG.

Definition 10. A subsetV ⊆ G of sizeS is a(S,G, t)-bounded difference setif the list of differencesvi−vj ,
wherevi, vj ∈ V , contains every non-zero element ofG at mostt times.

Note that the standard notion of a difference set requires the list of differences to contain every non-zero
elementexactlyt times. We call an AMD code(E ,D) deterministicif the (in general probabilistic) mapping
E is deterministic. The following equivalence holds.

Theorem 7. If V ⊂ G is a (S,G, t)-bounded difference set then the AMD-code

E : V → G, s 7→ s , and D(s) =

{
s if s ∈ V
⊥ otherwise

is a (deterministic) weakly secure(S,G, δ)-AMD code withδ = t/S. And, vice versa, for an arbitrary
deterministicweak(m,n, δ)-AMD code(E ,D), the subsetV = E(S) = {E(s) : s ∈ S} ⊂ G is a (S,G, t)-
bounded difference set witht = δS.

Proof. It is clear that(E ,D) as constructed is a weak(S,G, δ)-AMD code. It remains to argue the value ofδ.
By the property ofV , for every non-zero∆ ∈ G, there exist at mostt elementss ∈ V such thats + ∆ ∈ V .
For a uniformly distributess ∈ V , and for∆ chosen independent ofs, this means thats + ∆ ∈ V holds at
most with probabilityt/S. The other implication is argued similarly. ⊓⊔

20

C.2 Strongly Secure AMD Codes

LetG be a finite group of orderG. LetS be a finite set of cardinalityS. For simplicity writeS = {1, . . . , S}.
Let V1, . . . , VS be disjoint non-empty subsets ofG.

Definition 11. We call(G, V1, . . . , VS) a differential structure.

The parameters of interest related to a differential structure are as follows. For anyi we write ti for the
maximal overlap between any translation ofVi and the union of the otherVj ’s:

ti = max
∆∈G

∣∣∣∣(Vi+∆) ∩
⋃

j 6=i

Vj

∣∣∣∣ .

For a given differential structure(G, V1, . . . , VS) consider the following AMD code.

E : {1, . . . , S} → G, s 7→ s̃

with
s̃ ∈R Vs ,

i.e., s̃ is chosen with uniform distribution onVs and independently of anything else, and

D(s̃) =

{
s if ∃ s : s̃ ∈ Vs

⊥ otherwise.

This AMD code iswith uniform selectionin that for everys ∈ S, the encodingE(s) is uniformly distributed
overD−1(s) = {e ∈ G : D(e) = s}. All natural AMD codes we are aware of are with uniform selection.

Theorem 8. If (G, V1, . . . , VS) is a differential structure with parameterst1, . . . , tS , then the above code
(E ,D) is a (strong)(S,G, δ)-AMD code (with uniform selection) whereδ = maxi ti/|Vi|. And, vice versa,
for any (S,G, δ)-AMD codewith uniform selection, the setsVs = D−1(s) for s ∈ S form a differential
structure wherets ≤ δ|Vs|.

Proof. Let s be an arbitrary fixed source. Lets̃ be its probabilistic encoding, uniformly distributed inVs, and
let ∆ be the difference added tõs by the adversary, independent ofs̃. Then,s̃ + ∆ is uniformly distributed
in Vs + ∆, and thus the probability that it lies in aVj with j 6= s is at mostts/|Vs|. The other implication is
argued similarly. ⊓⊔

An AMD code issystematicif the source setS is a group and the encoding is of the form

E : S → S × G1 × G2, s 7→ (s, x, f(x, s))

for some functionf , and wherex ∈R G1. All our new constructions are systematic, and thus in particular
with uniform selection. The decoding function of a systematic AMD code is naturally given by

D(s, x, e) =

{
s if e = f(x, s)
⊥ otherwise

and we usually leave it implicit. The following lemma is trivial.

21

Lemma 4. For a systematic AMD code, the underlying differential structure(G, V1, . . . , VS), we have
ti = max∆∈G

j 6=i

|(Vi+∆) ∩ Vj | for i = 1 . . . S.

Our results above can be viewed as supporting the view that combinatorics that is “ugly and non-smooth
or non-symmetric” from a combinatorics point of view may sometimes lead to “stronger cryptography”.
Indeed, by requiring only certain relevant bounds on the parameters of a combinatorial construct with cryp-
tographic relevance (like theboundedcompared to the ordinary “strict” notion of a difference set), a much
wider class of mathematical approaches to its constructionmay become available. Note that there are other
areas in cryptography that have seen this phenomenon as well, e.g., authentication codes.

C.3 Relation to Earlier Work

Our combinatorial approach must be discussed with respect to earlier work by Ogata and Kurosawa [20] and
Ogata, Kurosawa, Stinson and Saido [21]. In [20] the idea of using the classical notion of planar difference
sets is introduced, and applications to (in our terminology) weakly secure AMD codes are given. The con-
struction is based on the following AMD code. Letq be a prime so thatp = q2 + q + 1 is a prime as well,
and letB ⊂ {0, . . . , p− 1} be aplanar difference setof sizeq + 1. This means that the(q + 1)q = p − 1
pairwise differences modulop of the elements inB are exactly the numbers1, . . . , p − 1. It is known that
such a difference set exists (see e.g. [20] and the references therein). Then,E : B → Zp, s 7→ s is a weak
(q +1, q2 + q +1, 1/(q +1))-AMD code. The tag size equals̟ = log(q2 + q +1)− log(q +1), which lies
betweenlog(q) andlog(q + 1). See also [21] for a more general approach. As before, the error probability
is determined by the source space and hence the approach is not flexible.

Motivated by this, the above approach is extended in [21] to using external difference families(EDF),
as introduced there. A(G, c, λ) S-EDF consists consists of a groupG of orderG andS disjoint non-empty
subsetsV1, . . . , VS , each of sizec, such that every non-zero element ofG occursexactlyλ timesas the
difference between somevi and somevj wherevi andvj come from different setsVi andVj, respectively.
This abstract notion of an EDF (withλ = 1) leads to a weakly secure AMD code with a minimal tag size
for a source space of sizeS and withδ = 1

cS
. However, no general construction has been proposed to design

EDF’s, and thus it is not clear how fruitful this approach is,and in particular how good it is with respect
to theeffectivetag size, i.e., whenu andκ are given and a weakly secure(S,G, δ)-AMD code needs to be
found withm ≥ 2u andδ ≤ 2−κ. Furthermore, we feel that the case that is more important for practice is
the case where the size of the source space islarger than the inverse of the allowed error probability.

As to stronglysecure AMD codes, with this notion of a(G, c, λ) m-EDF one could at best guarantee
an error of at mostλ

c
, since it seems that one cannot rule out that there is a∆ ∈ G and aVi such that the

intersection betweenVi + ∆ and some otherVj has cardinalityλ.

In conclusion, our notion of differential structures, though somewhat related to external difference fam-
ilies, captures exactly the case of strongly secure AMD codes and it also paves the way for a wider class of
mathematical constructions due to its relaxed conditions.

D From Weak AMD Codes to Strong AMD Codes

We show how to construct a strong AMD code from any weak AMD code and a (standard) message authen-
tication code MAC. Consider a systematic10 message authentication codeA : S × K → T where we may

10 The restriction tosystematiccodes is not crucial, but it allows to simplify the exposition.

22

assume, without loss of generality, thatS andT are groups (e.g. sets of bitstrings of a given length with xor).
In the standard setting, such a code is used to authenticate asources ∈ S by appending the tagσ = A(k, s)
with a randomly sampled secret keyk ∈ K (known to sender and receiver); integrity of a (possibly modi-
fied) pair(s̃, σ̃) is then checked by verifying if̃σ = A(k, s̃) holds. LetpS be the success probability of the
substitution attack, i.e., the maximum over alls 6= s′ ∈ S of the probability of successfully substituting
the authenticateds by s′.11 Furthermore, letE ′ : S ′ → G′ be aweaklysecure(S′, G′, δ′)-AMD code with
S ′ = K. Consider the following AMD code.

E : S → S × G′ × T , s 7→
(
s,E′(k), A(k, s)

)
.

for k ∈R K. The decoding functionD is obvious:D(s, e′, σ) outputss if and only if D′(e′) 6= ⊥ and
σ = A(D′(e′), s).

Theorem 9. The codeE is a (S,G, δ)-AMD code withS = |S|, G = |S||G′||T | and δ = δ′ + pS . If the
underlying AMD codeE ′ is systematic, thenδ = max{δ′, pS}.

Proof. Obviously, the sizes of the domain and range ofE are as claimed. It remains to determineδ. Fix
an arbitrarys ∈ S, and an arbitrary translation∆ = (∆s,∆e′ ,∆σ) ∈ S × G′ × T with ∆s 6= 0. Let
e = (s, e′, σ) = E(s) = (s, E ′(k), A(k, s)) for a randomk. By assumption onE ′, the probability that
D′(e′+∆e′) 6∈ {k,⊥} is at mostδ′. Furthermore, by assumption on the authentication code, the probability
thatσ + ∆σ = A(k, s + ∆s) is at mostpS . It follows thatD(e) = s + ∆s with probability at mostδ′ + pS.

In case of a systematicE ′, the encodinge′ hask as first component, and we can make a case distinction
of whether the corresponding first component∆k of ∆e′ is zero or not: if∆k 6= 0 thenD′(e′) = ⊥ except
with probabilityδ′, and if∆k = 0 thenσ + ∆σ 6= A(k, s + ∆s) except with probabilitypS . ⊓⊔

We now show that this approach is still doomed to give a sub-optimal AMD code with an effective tag
size separated from the lower bound by essentially2κ.

Proposition 1. For any strongly secure AMD code obtained via Theorem 9, the effective tag size satisfies
̟∗(κ, u) ≥ 4κ− 2−2κ+1.

Proof (of Proposition 1).In order to achieve an error probabilityδ ≤ 2−κ, by Lemma 1, the tagσ must be
of bit-size at leastκ and the keyk of at least2κ. But then, by Corollary 5, the elements inG′ must be of
bit-size at least3κ − 2−2κ+1 (namely2κ bits for the sourcek plusκ − 2−2κ+1 for the tag size ofE ′). This
adds up to the claimed bound. ⊓⊔

E Syndrome Based Construction of Secure Sketch

For completeness, we review the secure sketch constructionbelow.
Recall that an efficiently decodable[n, k, 2t + 1]-error-correcting (binary) codeC over{0, 1}n consists

of 2k codewordsC = {z | Hz = 0}, whereH is the(n − k) × n parity check matrixof C (addition and
multiplication overGF (2)). Namely,H defines(n − k) linear constraints which are satisfied precisely by
the codewords inC. Moreover,H is chosen in such a way that the Hamming distance between any two
distinct codewordsz1, z2 ∈ C is at least2t + 1 (recall, the Hamming distance betweena, b ∈ {0, 1}n is the

11 We would like to point out that there is some ambiguity in howpS may be precisely defined, with regard to the attacker’s control
over the sources to be substituted and over the sources′ with which he substitutess. The definition used here, which controls
theworst case, is necessary for our application.

23

number of symbolsi such thatai 6= bi). This means, in principle, that any codewordz ∈ C can be recovered
from any “corrupted” stringz′ within Hamming distance at mostt from z. In an efficiently decodable code
C, this procedure of recoveringz from z′ can be done efficiently.

As it turns out, for our purposes we will only need to know the following well known fact about such
efficiently decodable[n, k, 2t + 1]-codes: ifz ∈ C anddis(z, z′) ≤ t, then there is an efficient procedure
Decode that can determine the “error vector”z′− z from the(n− k)-bit quantityHz′. This quantityHz′ is
also called thesyndrome ofz′ and denotedsyn(z′).

Coming back to the syndrome construction of the secure sketches from [10], the sketchs = SS(w) of
w ∈ {0, 1}n consists of thek-bit syndrome ofw with respect to some (efficiently decodable)[n, n− k, 2t+
1]-error-correcting codeC: SS(w) = syn(w) = s. Notice,s is a (deterministic)linear functionof w, and
that the entropy loss of this construction is at most|s| = n − k. To see the correctness of this cosntruction,
we notice that the recovery functionRec of w from the sketchs and anyw′ of Hamming distance at mostt
from w is computed as follows:

Rec(w′, s) = w′ − Decode(syn(w′)− s)

We should also note that this construction extends to the setdifference metric through sublinear-time encod-
ing and decoding [10] .

F Proof of Lemma 2

Recall that the secure sketch for hamming distance is given by two functionsyn, Decode

SS(w) = syn(w) = s
Rec(w′, s) = w′ − Decode(syn(w′)− s)

and thatsyn is linear. Hence

∆̃ = w̃ − w = Rec(w′, s̃)− w

= w′ − Decode(syn(w′)− s̃)− w

= ∆− Decode(syn(w + ∆)− s̃)

= ∆− Decode(s + syn(∆)− s̃)

= f(∆, s, s̃)

wheref is deterministic.

24

