
Authenticating with Attributes

Dalia Khader

University of Bath

Abstract. Attribute based group signature (ABGS) is a a new gener-
ation of group signature schemes. In such a scheme the verifier could
define the role of a signer within the group. He determines the attributes
possessed by the member signing the document. In this paper we pro-
pose the first ABGS scheme with multi-authorities and define its security
notions. We construct an ABGS that is proved to be fully traceable and
fully anonymous. Our scheme is efficient and secure.

1 Introduction

Attribute Based Group Signature (ABGS) is a new paradigm of cryptography.
The idea behind it is authenticating that a person has certain credentials. The
following is a scenario were such a scheme is needed:
Alice requests a prescription from Bob’s pharmacy. Bob is willing to give her a
discount if she is a student, an elder, or an employee in his pharmacy. He also
wants a prove that an authorized public or private medical practice prescribed
the medicine for her. He needs to check that she has a national health insurance.
Alice and Bob have no previous knowledge about each other. Alice is sensitive
about her details. She does not want to tell Bob whether she goes to a private
practice or a public one. She definitely does not want her identity to be revealed.
She doesn’t want Bob to know whether she bought any medicine from him before.
Bob, on the other hand, is not willing to break his policy and wants to make
sure that any information he gets from Alice is true.
From this scenario we could derive the properties of the ABGS scheme:

– No previous knowledge. We can not assume that the communicators,
Alice and Bob, know information about each other.

– Attributes can not be forged. Alice should prove possession of attributes.
That prove must guarantee that the attributes Bob needs are included and
they belong to Alice only.

– Anonymity. Bob should not be able to reveal the identity of Alice.
– Linkability. If Alice buys twice from Bob. He should not be able to tell that

the first purchase and the second were done by her.
– Privacy. It is enough for Bob to know that Alice satisfies his policy. He

does not need to know how. For example, in our scenario Bob could accept
a prescription from a private or public practice. Alice should prove that she
does have such prescription without revealing who gave it.



A possible solution is to use digital signatures. Alice has a certificate for each
attribute she owns signed by trusted third party. Bob announces the attributes he
requires. Alice encloses the certificates she owns. Bob verifies each certificate and
makes a decision on whether Alice is eligible to have the medicine with a discount.
The drawback of such a solution is the need to run the verification algorithm
many times. Alice is sending the certificates she owns even though Bob requires
a proof of satisfying his policy only, therefore breaching here privacy. Moreover,
a colluding attack is possible. Alice may have some certificates Bob needs. She
could get together with another person who has the rest of the certificates and
they could pretend to be one person when dealing with Bob. Therefore, we could
conclude that this solution is not ideal.
Another suggestion would be using identity based signatures (IBS) which are
digital signatures that use the identity of the person in the verification process
rather than a public key. Such a scheme could be considered as the first attempt
to create attribute based signatures. Assume we concatenate identities in IBS
schemes to some attribute templates. This would limit the possibility of colluding
attacks. However, the verifier will need an identity of the signer in order to create
his verification request. The signer is forced to attach his identity to the signature
which leads to breaking the anonymity and linkability of the scheme.
To overcome the anonymity problem in the previous solutions, group signatures
could be used. Group signatures are digital signatures that allow any member
of a group to sign anonymously on behalf of others. We could present all owners
of a certain attribute as a group. For example, all students may belong to a
group. Even though, group signature solves one problem, it still requires the
number of verifications to be equal to the number of attributes needed from the
verifier. In other words Alice still has to enclose all certificates Bob needs. It is
also vulnerable to colluding attacks.
The shortcoming of all three suggestions, makes ABGS a new cryptographical
problem that requires creating a new scheme. In attribute based group signature,
a verifier could request the role of a signer within a group. That request is
presented as a verification key sent from the verifier to the group. The verification
key is built with a main public key base and many public attribute keys. The
verifier is the one who creates the verification key, while the public keys used are
created by one or more trusted third parties. Any member of the group could
sign if and only if they have enough attribute private keys to satisfy the request.
Trusted third parties are divided into two types: central authority and attribute
authority. The central authority provides everyone with the public key base. It
also gives each member of the group a different pair of private key base and
registration key. The attribute authority uses the public key base in creating
a public attribute key. It uses a members registration key to create a private
attribute key for that user. Given our scenario, our central authority could be
the National Health Insurance. Attribute authorities could be hospitals, clinics,
ministry of education, pharmacy,...etc. Notice that a central authority could be
an attribute authority too. Bob creates a verification request to Alice. Alice signs

2



and her signature implicitly proves that Bob’s request has been satisfied(See
Figure 1).

	 C e n t r a l  A u t h o r i t y 	

	 V e r i f i e r 	

1. Public Key Base         		    

	 S i g n e r 	

 1. Private Key Base and 
 Registeration Keys

	A t t r ibu te  Author i ty 	

2. Public 
 Key Base

 4. Verification Key 

5. Signature

 2. Registeration      
 Key            	   

 3 .  A t t r i b u t e    	 	  
 Public Key        

 3. Attribute
 Private Key

Fig. 1. ABGS

1.1 Related Work

In the early nineties Chaum and Heyst proposed the first group signature scheme [2].
Since then various research has been done on improving the schemes efficiency,
security and features.
Many security notions were introduced such as unlinkability, unforgeability, ex-
culpability, coalition-resistance, anonymity, and traceability [3–9]. In [9] the au-
thors tried to unify and simplify all those security notions with defining the two
core requirements: full anonymity and full traceability. They proved their defi-
nitions to implicitly include all of the other security notions. ABGS is required
to be fully traceable and anonymous.
Cryptographers tried adding new features to group signatures. New ideas were
born such as Identity based group signatures [10–13], blind group signatures [14,
15], and group signcryption [16, 17]. Our scheme is a continuation of that effort
where we propose an attribute based group signature

1.2 Outline

The rest of the paper is organized as follows. We start with giving a precise defi-
nition of an ABGS in 2. Formal definitions of the security notions are presented
in 2. Section 4 gives an example of an ABGS construction. Required preliminar-
ies for the construction are given in section 3. We finally, conclude in section 5.
In the Appendix a comprehensive proof of security is given.

2 Attribute Based Group Signature

The new scheme adopts the idea of an attribute tree from [1] in creating the
verification key. In this section we will explain the tree. Then we will define the

3



algorithms of an ABGS scheme. Finally, we would provide the definitions of the
required security notions.
An attribute tree is the structure used in presenting the verifier’s request. It is a
tree in which each interior node is a threshold gate and the leaves are linked to
attributes. A threshold gate represents the fact that the number m of n children
branching from the current node need to be satisfied for the parent to be con-
sidered satisfied. Satisfaction of a leaf is achieved by owning an attribute. For
further explanation, consider the example in Figure 2, which demonstrates an
attribute tree for the scenario mentioned earlier:

Threshold Value=3

National Health Insurance Threshold Value=1 Threshold Value=1

Private Practice Public Practice Student Employee Elder

Fig. 2. Attribute Tree

Attribute Based Group Signature Schemes: An Attribute Based Group
Signature (ABGS) scheme is specified by eight algorithms: Setup, M.KeyGen,
A.KeyGenpub, A.KeyGenpri, V.KeyGen, Sign, V erify, and Open. As a pre-
requisite to describing the algorithms we define certain notations.
U is the universal set of attributes with m being the size of it. Γ will be used as a
description to our attribute tree. For example, to represent the tree in Figure 2,
Γ = {(3, 3),National Insurance, (1, 2), (1, 3), Private Practice, Public Practice,
Student, Employee, Elder}, where (m,n) represents a threshold gate m of n.
You read Γ in a Top-Down-Left-Right Manner. κ is the number of leaves in Γ .
Υi is a set describing all private keys a member owns. For example, if Smith is
a student and works in the pharmacy. ΥSmith = {Student, Employee}. The size
of Υi is represented by µ.
After having defined the notations we require, we could describe the algorithms
as follows:

– Setup: This algorithm is run by the central authority. It takes a security
parameter as an input. It outputs two sets of parameters, Spri and Spub.
The central authority keeps the system parameters Spri to itself. It publishes
Spub so everyone else can use them.

– M.KeyGen(Spri, n) : This algorithm is run by the central authority. It takes
the inputs Spri and n, where n is the number of members in the group. It
generates n private key bases bsk[i] and registration keys Ai. It distributes

4



them to the members of the group. The bsk[i] is kept private to the user,
while the Ai is given to trusted third parties, as shown in A.KeyGenpri.

– A.KeyGenpub(Spub) : This algorithm is run by the attribute authorities.
Each authority is responsible of an attribute or more. The authority has
for each attribute j, a master key tj . That key will be used in creating
attribute-related keys. Using the master keys the authority creates public
keys bpkj representing attributes it supports. Only the attribute authorities
could produce such keys since it requires the knowledge of tj .

– A.KeyGenpri(Ai, j) : This algorithm is run by the attribute authorities. The
idea of this algorithm is that member i registers with his key Ai to get a
special private key Ti,j. That key is calculated using the attribute authority’s
master key tj . Member i will be using his private key gsk[i] = 〈bsk[i],Ai,
Ti,1,...,Ti,µ〉 to sign. Notice that not all Ti,j have been generated by the same
attribute authority.

– V.KeyGen(bpk1, ..., bpkκ) : This algorithm is run by the verifier. Verifier
creates Γ . The verifier then creates a verification key, gpk. To do so he uses
Γ and the attribute public keys bpk1,...,bpkκ.

– Sign(gpk, gsk[i],M, Γ ) : This algorithm is run by the signer. The signer uses
the verification key gpk, the attribute tree Γ , and his private key gsk[i], to
sign on the message M . The output is a signature σ

– V erify(gpk,M, σ) : This algorithm is run by the verifier. He verifies the
signature σ using the verification key gpk. The output is either an acceptance
or rejection of the signature.

– Open(σ,M, Spri) : This algorithm is run by the central authority. It traces
a signature σ on a message M to the signer i.

Attribute based group signature schemes are considered an extension to group
signature schemes. Therefore, it is natural to require the same security notions:
full anonymity and full traceability which include all other notions. However,
the additional property of an ABGS scheme makes it a necessarily to strengthen
the definitions in [9]. The following sections provide adversarial models that
define the security notions. These models give the adversary access to a private
attribute key oracle and give him the opportunity to decide the universal set of
attributes he would like to be challenged upon.

2.1 ABGS Anonymity Definition

We say that an Attribute Based Group Signature Scheme is anonymous under
a specific set of attributes, if no polynomially bounded adversary Adam has a
non-negligible advantage against the challenger Charles in the following game:

– Init: Adam decides the universal set of attributes U in which he would like
to be challenged upon.

– Setup: Charles will play the role of the central authority and attribute
authority. He will run the algorithms Setup, M.KeyGen, and A.KeyGenpub.
He will produce the systems Spub, and Spri. Charles also will generate i

5



private key bases bsk[i] and i registration keys Ai. He chooses the master
keys 〈t1,...,tm〉 randomly from Zp. Finally, he will generatem public attribute
keys 〈bpk1,...,bpkm〉. The tuple 〈Spub, bpk1,...,bpkm〉 is sent to Adam.

– Phase 1: Charles will run three algorithms in this phase: Private Key
Oracle, Private Key Base Oracle, and Signature Oracle.
Adam could query the private key base oracle by sending an index i. He will
get from Charles a private key base bsk[i] and a registration key Ai. Adam
could also query the private key oracle by sending a set of attributes Υi and
the registration key Ai. Υi should have at least one attribute j. Charles
responds back with Ti,1,...,Ti,µ.
When Adam wants to issue a query to the signature oracle, he sends Charles
an index i, a verification key gpk for an attribute tree Γ , and a message M .
Charles responds with a signature σ.

– Challenge: Adam asks to be challenged on a message M , two indices i0,i1,
and verification key gpk of tree Γ . Charles responds back with a signature
σb, where b ∈ {0, 1}. The signer could be either i0 or i1.

– Phase 2: This stage is similar to Phase 1.
– Output: Adam outputs a guess b̀ ∈ {0, 1}. If b̀ = b, Adam wins the game.

If we prove that the previous game is anonymous, we implicitly prove that it is
unlinkable. The reason behind such a claim is that the adversary is given the
capability of requesting a challenge which he already queried in the signature
oracle in phase 1. If the scheme is linkable then the adversary could easily win
this game by linking the challenge to a previous queried signature.

2.2 ABGS Traceability Definition

We say that an Attribute Based Group Signature Scheme is traceable if no
polynomially bounded adversary Adam has a non-negligible advantage against
the challenger in the following game:

– Init: Adam decides the universal set of attributes U he would like to be
challenged upon.

– Setup: Charles will play the role of the central authority and attribute
authority. He will run the algorithms Setup, M.KeyGen, and A.KeyGenpub.
He will produce the systems Spub, and Spri. Charles also will generate i
private key bases bsk[i] and i registration keys Ai. Finally, he will generate
m public attribute keys 〈bpk1,...,bpkm〉. The tuple 〈Spub,bpk1,...,bpkm〉 is sent
to Adam.

– Running Queries: Charles runs three queries: Private Key Base, Private
key, and finally Signature queries.
Adam could request for a private key base. He sends Charles an index i.
Charles replies back with the registration key Ai and private key base bsk[i].
Adam might want to issue a private key query. He sends a registration key
Ai and a set Υi. The set Υi has one or more attributes. Charles responds
with Ti,1,...,Ti,µ.

6



Finally, Adam could run V.KeyGen to obtain a Γ of his choice and a gpk.
He could send to Adam the output with a message M , and an index i,
requesting a signature. Charles will reply with a signature σ.

– Challenge: Adam asks to be challenged on a messageM . Charles generates
a Γ and the corresponding gpk. He sends them to Adam. Adam replies with
a forged signature σ. Charles verifies the signature. If it turns up to be a
valid signature, he tries tracing it to a signer. If it traces to a signer in which
Adam did not query before or if it traces to a nonmember then Adam wins
the game.

Full traceability includes unforgeability. One can reduce the challenge to be
producing a valid pair of message and signature, where the message was not
queried in phase 1. The new adversarial model is the definition of unforgeability.
Therefore, full traceability implicitly proves unforgeability.
In the following section we will give a construction of an ABGS scheme. That
scheme is proven to be fully traceable and anonymous in the appendix.

3 Preliminaries

In this section we will explain some of the preliminaries that are used in con-
structing the ABGS scheme and proving it secure. We will define q-Strong Diffie-
Hellman which is used in building the scheme and proving it’s traceability. Then
we state the Decision Linear Diffie-Hellman Assumption used in constructing
the scheme and proving it anonymous. Finally, we define Bilinear Maps which
we base our scheme on to enable handling the attribute tree.

Definition 1. (q-Strong Diffie-Hellman Problem [18])
Let G1, G2 be cyclic groups of prime order p, with a computable isomorphism
ψ or possibly G1 = G2. Assuming the generators g1 ∈ G1, and g2 ∈ G2.
The q-SDH problem in (G1, G2) is defined as follows: given a (q + 2) tuple

(g1, g2, g
γ
2 , g

γ2

2 , ..., gγq

2 ) as an input, output what is called a SDH pair (g
1/(γ+x)
1 , x)

where x ∈ Z∗
p . An algorithm A has an advantage ε in solving q-SDH in (G1, G2)

if: Pr[A(g1, g2, g
γ
2 , g

γ2

2 , ..., gγq

2 ) = (g
1/(γ+x)
1 , x)] ≥ ε, where the probability is over

a random choice of a generator g2 (with g1 ← ψ(g2)), of γ ∈ Z∗
p and of random

bits of A.

This problem is considered hard to solve in polynomial time and ε should be
negligible [18].

Definition 2. (Decision Linear Problem in G1 [19])
Let G1 be a group of prime order p and u, v, h be generators in that group. Given
u, v, h, ua, vb, hc ∈ G1 as an input,it is hard to decide whether or not a+ b = c.

Definition 3. (Bilinear Maps [20]):
Let G1,G2 and GT be three groups of order p for some large prime p. A bilinear
map ê : G1 ×G2 → GT must satisfy the following properties:

7



– Bilinear: We say that a map ê : G1 × G2 → GT is bilinear if ê(ga
1 , g

b
2) =

ê(g1, g2)
ab for any generator g1 ∈ G1, g2 ∈ G2 and any a, b ∈ Zp.

– Non-degenerate: The map does not send all pairs in G1 ×G2 to the identity
in GT .

– Computable: There is an efficient algorithm to compute ê(g1, g2) for any
g1 ∈ G1 and g2 ∈ G2.

A bilinear map satisfying the three properties above is said to be an admissible
bilinear map.

4 Construction of an ABGS

In this section we will construct an ABGS scheme based on Boneh and Shacham [21].
Notice that the Open algorithm has been replaced by Revoke. In case of a dis-
pute, the central authority creates a fake revocation list and adds all members
in the group to it. The authority verifies the signature and checks whether the
signer is revoked. If the signature is not forged the signer should be a member of
the group. Therefore, running the revocation algorithm on the fake list should
output true. Otherwise, the signature is forged.

– Setup: Consider a bilinear pair (G1, G2) with a computable isomorphism
ψ. Suppose that SDH assumption holds on (G1, G2) and the decision lin-
ear assumption holds on G2. Define the bilinear map ê : G1 × G2 → G3.
All three groups G1, G2, G3 are multiplicative and of a prime order p. Se-
lect a hash function H : {0, 1}∗ → Zp. Select a hash function H0 with
respected range G2

2. Select a generator g2 ∈ G2 at random and then set
g1 ← ψ(g2). Select a random γ from Zp and set w = gγ

2 . Let Spub =
〈G1, G2, GT , ê, H,H0, g1, g2, w〉 and Spri = γ.

– M.KeyGen(Spri, n) : Using γ generate for each user i, 1 ≤ i ≤ n, a private
key base bsk[i] = 〈Ai, xi〉. All bsk[i] should be SDH pairs, where xi is chosen

randomly from Z∗
p and Ai = g

1/(γ+xi)
1 ∈ G1.

– A.KeyGenpub(Spub): The public key for attribute j is bpkj = g
γ/tj

2 = w1/tj ,
where tj is chosen randomly from Zp

– A.KeyGenpri(Ai, j, R): User i wants to register attribute j. It contacts the
attribute authority in charge, which checks the revocation list R. R contains
all registeration keys of users who have been revoked. If the member i is not
on the list, authority calculates Ti,j = A

tj

i and gives to user i. The private
key for a user i will be the tuple gsk[i] = 〈Ai, xi, Ti,1,...,Ti,µ〉.

– V.KeyGen(bpk1, ..., bpkκ) : Verifier chooses a Γ . Then he chooses a polyno-
mial qnode of degree dnode = knode − 1 for each node in the tree. knode is the
threshold gate value of every node. In other words knode children need to be
satisfied in order to consider the parent satisfied. Choosing the polynomials

8



is done in top-down manner. Starting from the root qroot(0) = srnd, where
srnd is chosen randomly from Zp and other points in the polynomial will be
random. The other nodes we set qnode(0) = qparent(index(node)) and choose
the rest of the points of the polynomial randomly. Once all polynomials have
been decided the verification key for a certain structure will be gpk = 〈g1,
g2, w, D1,...,Dκ〉 where Dj = bsk[i]qj(0).

– Sign(gpk, gsk[i],M, Γ ): The signer picks randomly an r from Zp and ob-
tains (û, v̂) from H0(gpk,M, r). Then compute their images u ← ψ(û) and
v ← ψ(v̂). User i chooses α and β randomly from Zp.
Then he computes C1 = uα, C2 = Aiv

α, C3 = ê(vα, w)β and C4 = wβ .

We need to define a recursive algorithm SignNode. If the node we are cur-
rently on is a leaf in the tree the algorithm returns the following:

SignNode(leaf) =

{

If (j ∈ Γ ); return ê(T β
i,j , Dj) = ê(Ai, w)βqj(0)

Otherwise return ⊥

For a node ρ which is not a leaf the algorithm proceeds as follows: For all
children z of the node ρ it calls SignNode and stores output as Fz . Let Ŝρ

be an arbitrary kρ sized set of children nodes z such that Fz 6= ⊥ and if no
such set exist return ⊥.
Otherwise let ∆Ŝρ,index(z) = Πι∈{index(z):z∈Ŝρ−index(z)}(−ι/(index(z) − ι))

and compute

Fρ = Πz∈Ŝρ
F

∆Ŝρ,index(z)

z = Πz∈Ŝρ
ê(Aβ

i , w)
qz(0).∆Ŝρ,index(z) = ê(Aβ

i , w)qρ(0)

To create the signature calculate Froot. If the tree is satisfied then Froot =
ê(Aβ

i , w)srnd .

Let δ = xiα. Pick randomly rα, rx, and rδ from Zp.

Let R1 = urα , R2 = ê(C2, g2)
rx ê(v, w)−rα ê(v, g2)

−rδ and R3 = Crx

1 u−rδ .

Compute c = H(gpk,M, r, C1, C2, C3, C4, R1, R2, R3), sα = rα + cα, sx =
rx + cxi and sδ = rδ + cδ.

Finally, output the signature σ = (r, C1, C2, C3, C4, c, sα, sx, sδ, Froot).

– V erify(gpk,M, σ,R): The verifier could calculate (û, v̂) = H0(gpk,M, r)
then u← ψ(û), and v ← ψ(v̂). Verifier derives R1,R2 and R3 by calculating

R̄1 = usα/Cc
1 ,

R̄2 = ê(C2, g2)
sx ê(v, w)−sα ê(v, g2)

−sδ .( ê(C2,w)
ê(g1,g2) )

c.

R̄3 = Csx

1 u−sδ

9



If c 6= H(gpk,M, r, C1, C2, C3, C4, R̄1, R̄2, R̄3) reject the signature. Other-
wise verifier needs to check whether the signer is in the revocation list and
whether he satisfies the attribute tree Γ .

If F
1/srnd

root .C3 = ê(C2, C4) that implies that user i has satisfied the attribute
tree Γ . The revocation list R has all values of Arevoked where Arevoked is the
registration key of revoked users. If for all revoked users ê(C2/Arevoked, û) =
ê(C1, v̂) does not hold then user i still is a valid user.

– Revoke(i): Revoke is about building a revocation list R. The algorithm gets
an index of a user i and adds Ai to the list.

Theorem 1. The ABGS scheme is correct.

Proof. To prove the scheme is correct we need to show that R1 = R̄1, R2 = R̄2,
and R3 = R̄3. That way we prove H(gpk,M, r, C1, C2, C3, C4, R1, R2, R3) =
H(gpk,M, r, C1, C2, C3, C4, R̄1, R̄2, R̄3). The signature should be correctly veri-
fied unless the user is revoked. We start our proof with showing that the three
equations hold:

R̄1 = usα/Cc
1 = urα+cα/ucα = urα = R1

R̄3 = Csx

1 .u−sδ = (uα)rx+cxi .u−(rδ+cδ) = uαrx+αcxi−rδ−cδ = Crx

1 .u−rδ = R3

R̄2 = ê(C2, g2)
sx ê(v, w)−sα ê(v, g2)

−sδ .( ê(C2,w)
ê(g1,g2) )

c

= (ê(C2, g2)
rx .ê(v, w)−rα .ê(v, g2)

−rδ ).(ê(C2, g2)
xi .ê(v, w)−α.ê(v, g2)

−αxi . ê(C2,w)
ê(g1,g2)

)c

= R2((ê(C2v
−α, wgxi

2 ))/ê(g1, g2))
c = R2(ê(Ai, wg

xi

2 )/ê(g1, g2))
c = R2

In the verifying algorithm we check revoked users before accepting a signature.
In the signature we have C1 = ψ(û)α and C2 = Aiψ(v̂)α for some random α.
We reject a signature when (û, v̂, C1, C2/Arevoked) is a co-Diffie Hellman tuple.
We also check whether signer satisfies the tree Γ by checking the equality of

F
1/srnd

root .C3 = ê(C2, C4). The correctness of that could be proved by starting

with the fact that Froot = ê(Aβ
i , w)srnd when the tree is satisfied. This implies

F
1/srnd

root .C3 = ê(Aβ
i , w).ê(vα, w)β = ê(Aiv

α, wβ) = ê(C2, C4).

In the appendix we use the adversial models in section 2 to prove the following
theorems:

Theorem 2. If SDH is hard on groups (G1, G2) then the selective model of the
Attribute Based Group Signature Scheme is said to be traceable under the random
oracle.

10



Theorem 3. If the decision linear assumption holds in group G2 then the At-
tribute Based Group Signature Scheme is said to be anonymous under the random
oracle.

5 Conclusion

In this paper we define an ABGS with multi-authorities and its security no-
tions. We construct an example and prove that to be fully anonymous and fully
traceable. Our scheme enables authority segregation which implies having each
authority responsible of giving out certain attributes. Moreover, our scheme is
dynamic in the sense that you could add and remove members of the group.
Furthermore, the ABGS scheme is efficient since the size of keys and signature is
independent from the number of members of the group and number of attributes
involved. However, the drawback of such a scheme is the verification key for two
reasons. First of all, the key size depends on the number of attributes a veri-
fier requests. This could be unpreventable since the verifier has to list down the
attributes he requires. The second disadvantage is that any eavesdropper could
guess the attributes the verifier needs. A possible solution using searchable en-
cryption techniques to preserve confidentiality of the verifier.

References

1. V. Goyal, O. Pandeyy, A. Sahaiz, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM

conference on Computer and communications security, pages 89 – 98, 2006.
2. D. Chaum and V. Heyst. Group signatures. In Proceedings of Eurocrypt 1991,

volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer-
Verlag, 1991.

3. X. Boyen and B. Waters. Compact group signatures without random oracles. In
In Proceedings of EUROCRYPT’06, volume 4004 of Lecture Notes in Computer

Science, pages 427–444. Springer-Verlag, 2006.
4. Y. Komano, K. Ohta, A. Shimbo, and S. Kawamura. Toward the fair anonymous

signatures: Deniable ring signatures. In Topics in Cryptology - CT-RSA, volume
3860 of Lecture Notes in Computer Science, pages 174–191. Springer-Verlag,
2006.

5. D. X. Song. Practical forward secure group signature schemes. In In: Proc. of

the 8th ACM Conference on Computer and Communications Security, volume
2229, pages 225–234, 2001.

6. I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication.
In Proceedings ASIACRYPT’04, volume 3329 of Lecture Notes in Computer

Science, pages 308–322. Springer-Verlag, 2004.
7. J. Camenisch. Efficient and generalized group signatures. In Proceedings of

Eurocrypt 1997, volume 1233 of Lecture Notes in Computer Science, pages 465–
479. Springer-Verlag, 1997.

8. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Proceedings of Crypto’00,
volume 1880 of Lecture Notes in Computer Science, pages 255–270. Springer-
Verlag, 2000.

11



9. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In Proceedings EUROCRYPT 2003, volume 2656 of Lecture Notes

in Computer Science, pages 614–629. Springer-Verlag, 2003.

10. S. Park, S. Kim, and D. Won. Id-based group signature. In Electronics Letters,
pages 1616–1617, 1997.

11. S. Popescu. An efficient id-based group signature scheme. In Studia Univ. Babes-

Bolyai Informatica, http://www.cs.ubbcluj.ro/ studia-i/2002-2/, pages 29–36,
2002.

12. V. Wei, T. Yuen, and F. Zhang. Group signature where group manager members
and open authority are identity-based. In Proceedings of Information Security

and Privacy, volume 3574 of Lecture Notes in Computer Science, pages 468–480.
Springer-Verlag, 2005.

13. M. Au, J. Liu, T. Yuen, and D. Wong. Id-based ring signature scheme secure
in the standard model. In Proceedings of Advances in Information and Com-

puter Security, volume 4266 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 2006.

14. A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable
solution to electronic cash. In Proceedings of Financial Cryptography’98, volume
1465 of Lecture Notes in Computer Science, pages 184–197. Springer-Verlag,
1998.

15. J. Herranz and F. Laguillaumie. Blind ring signatures secure under the chosen-
target-cdh assumption. In In Proceedings of Information Security, volume 4176
of Lecture Notes in Computer Science, pages 117–130. Springer-Verlag, 2006.

16. G. Wang, R. Deng, D. Kwak, and S. Moon. Security analysis of two signcryption
schemes. In Information Security, volume 3225 of Lecture Notes in Computer

Science, pages 123–133. Springer-Verlag, 2004.

17. D. Kwak, S. Moonb, G. Wangc, and R. Dengd. A secure extension of the
kwak’moon group signcryption scheme. In Computers and Security, volume 25,
pages 435–444. ELSEVIER, 2006.

18. D. Boneh and X. Boyen. Short signatures without random oracles. In Pro-

ceedings of Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science,
pages 382–400. Springer-Verlag, 2004.

19. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings

of Crypto 2004, volume 3152 of Lecture Notes in Computer Science, pages 41 –
55. Springer-Verlag, 2004.

20. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

21. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In
In proceedings of the 11’th ACM conference on Computer and Communications

Security, pages 168–177, 2004.

22. Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signa-
tures derived from identification. In Advances in Cryptology - CRYPTO’98,
volume 1462 of Lecture Notes in Computer Science, pages 223–242, 1998.

23. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. In Journal of Cryptography, volume 13 of Number 3, pages 361–396.
Springer-Verlag, 2000.

12



A Extra Preliminaries

A.1 Forking Lemma

Pointcheval and Stern [23], developed the Forking Lemma as a method to prove
certain security notions of a digital signature scheme. We will be using it in
proving our scheme to be traceable(See Appendix B). Assume a signature scheme
produces the triple 〈σ1, h, σ2〉 where σ1 takes its values randomly from a set. h
is the result of hashing the message M together with σ1. σ2 depends only on
(σ1, h,M). The Forking Lemma is as follows [23]:

Theorem 4. (The Forking Lemma)
Let A be a Probabilistic Polynomial Time Turing machine, given only the pub-
lic data as input. If A can find, with non-negligible probability, a valid signa-
ture (M,σ1, h, σ2) then, with non-negligible probability, a replay of this machine,
with the same random tape but a different oracle, outputs new valid signatures
(M,σ1, h, σ2) and (M,σ1, h̀, σ̀2) such that h 6= h̀.

A.2 Heavy Row Lemma

In this section we define a Boolean Matrix. We define a Heavy Row in that
matrix [22]. Both definitions are used in the Heavy Row Lemma [22] which
will be used in proving traceability of our scheme together with the Forking
lemma(See Section B).

Definition 4. (Boolean Matrix of Random Tapes) Consider a hypothetical ma-
trix M whose rows consists of all possible random choices of an adversary and
the columns consist of all possible random choices of a challenger. Let each entry
be either ⊥ when the adversary fails or ⊤ if the adversary manages to win the
game.

Definition 5. (Heavy Row) A row in M is called heavy if the fraction of ⊤ along
the row is less than ε/2 where ε is the advantage of the adversary succeeding in
attack.

Lemma 1. (Heavy Row Lemma) Let M be a boolean matrix, given any entry
that equals ⊤, the probability that it lies in a heavy row is at least 1/2.

A.3 The Strong Diffie-Hellman Assumption

In addition to the q-SDH problem mentioned earlier in section 3, we would need
the Boneh and Boyen SDH Equivalence theorem to prove traceability of the
scheme.

Theorem 5. (Boneh-Boyen SDH Equivalence [18])

Given a q-SDH instance (g̀1, g̀2, g̀
γ
2 , g̀

γ2

2 , ..., g̀γq

2 ), and then applying the Boneh
and Boyen’s Lemma found in [18] we can obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and
(q − 1) SDH pairs (Ai, xi) (such that e(Ai, wg

xi

2 ) = e(g1, g2)) for each i. Any
SDH pair besides these (q − 1) ones can be transformed into a solution to the
original q-SDH instance.

13



A.4 Linear Encryption

In this section we will define an encryption scheme which depends on the diffi-
culty of the Decision Linear Diffie-Hellman Assumption. The IND-CPA security
of the following encryption scheme would be used to prove our scheme anony-
mous.

Definition 6. (A Linear Encryption Scheme [19])
In a Linear Encryption scheme a user’s public key is u, v, h ∈ G1. The private
key is the exponents ξ1, ξ2 ∈ Zp such that uξ1 = vξ2 = h. To encrypt a mess-
sage M choose random elements α, β ∈ Zp and output the triple 〈C1, C2, C3〉 =

〈uα, vβ ,Mhα+β〉. To decrypt compute C3/(C
ξ1

1 C
ξ2

2 ).

LE has been proven to be IND-CPA secure under the Decision Linear Problem.

B Traceability

Theorem 6. If SDH is hard on groups (G1, G2) then the selective model of the
Attribute Based Group Signature Scheme is said to be traceable under the random
oracle.

Proof. In order to prove that we need three steps. Defining a security model for
proving traceability, introducing two types of signature forger, and then we show
that the existence of such forgers implies that SDH is easy. Suppose we are given
an adversary Adam that breaks the traceability of the signature scheme. The
security model will be defined as an interacting framework between the Charles
and Adam as follows:

– Init: Adam decides the universal set of attributes U it would like to be
challenged upon.

– Setup: Charles is given a bilinear pair (G1, G2) with respective genera-
tors g1, and g2. It is also given a value w = gγ

2 and n private key bases
bsk[i] = 〈Ai, xi〉 for an 1 ≤ i ≤ n. Some of those pairs have xi = ⋆
which implies that xi corresponding to Ai is not known; Other pairs are
valid SDH pairs(Theorem 1). Charles chooses randomly t1,...,tm from Zp,
where m is the size of the set U . He then runs the A.KeyGenpub and
gives Adam the tuple 〈bpk1,...,bpkm〉 where bpkj = w1/tj . Charles sends
Spub = 〈G1, G2, GT , ê, g1, g2, w〉 and keeps Spri = γ. Hash functions H0 and
H are presented as Random Oracles later on.

– Private Key Base Queries: Adam could ask for certain private keys by
sending the Charles an index i. If Adam queries an index where xi = ⋆
abort the game and declare failure otherwise respond with sending 〈Ai, xi〉.

14



– Hash Queries: When the Adam asks Charles for the hash of
(gpk,M, r, C1, C2, C3, C4, R1, R2, R3), Charles responds with a random el-
ement in G1 and saves the answer just incase the same query is requested
again. That represents the hash function H . When the Adam asks Charles
for the hash of (gpk,M, r), Charles responds with two random elements in
G2 and saves the answer.

– Revocation Queries: Adam picks a random index i to revoke. Ai is added
to the list R. The size of the list should be reasonable enough to run the rest
of the oracles in the next steps.

– Signature Queries: Adam runs the V.KeyGen for an attribute tree Γ of

his choice. He creates gpk = 〈g1,g2, w, D1,...,Dκ〉 where Dj = bpk
qj(0)
j .

Adam asks for a signature on a message M by the member i. If xi 6= ⋆ the
Charles follows the same signing procedure done in section[4].

If xi = ⋆, Charles simulates a signature. He picks a random r from Zp.
He then gets (û, v̂) = H0(gpk,M, r). Sets u← ψ(û) and v ← ψ(v̂) . Picks a
random α and β from Zp.

Charles then calculates C1 = uα, C2 = Aiv
α, C3 = ê(vα, w)β and C4 = wβ .

It randomly picks c, sδ, sx, and sα from Zp. Calculates R1 = usα/Cc
1 , R3 =

Csx

1 u−sδ and R2 = ê(C2, g2)
sx ê(v, w)−sδ ê(v, g2)

−sδ .(ê(C2, w)/ê(g1, g2))
c.

Charles adds c to the list of the hash oracle H to maintain consistency.

Charles takes every Dj in gpk and calculates ê(A
tj

i , Dj)
β .

Charles could now calculate Froot using the elements it calculated and Γ .

Charles returns the signature σ = (r, C1, C2, C3, C4, c, sα, sx, sδ, Froot) to
Adam.

– Private Key Queries: Adam issues a query for a private key by sending
Charles an Ai, and a set Υi. Υi should have at least one element j. If xi 6= ⋆,
Charles responds back with gsk[i] =< Ai, xi, A

t1
i ,...,A

tµ

i >. Otherwise,
Charles fails and terminates the game. In other words, Charles runs the
A.KeyGenpri algorithm.

– Challenge: Adam asks to be challenged and sends Charles a message M .
Charles responds back with a gpk for a certain Γ . If Adam is successful, he
will output a forged signature σ = (r, C1, C2, C3, C4, c, sα, sx, sδ, Froot) on a
message M . C1 and C2 should not have any of the revocation list elements
Arevoked encoded in them. Let A∗

i be the value used in signing the forged
signature. For i = 1, ..., n, Charles checks whether ê(C2/Ai, û) = ê(C1, v̂).
If the equality holds then that implies that A∗

i = Ai. In that case check if
si∗ = ⋆ to output σ or otherwise declare failure. If the for loop goes through
all the Ais and there was no equality output σ.

15



From this model of security there are two types of forgery. Type-I outputs a
signature that could be traced to some identity which is not part of {A1,...,An}.
Type-II has A∗

i = Ai where 1 ≤ i ≤ n but Adam did not do a private key query
on i. We should prove that both forgeries are hard.

Type-I: If we consider Theorem 5 for a (n + 1)SDH, we could obtain g1,g2
and w. We could also use the i pairs (Ai, xi) to calculate the private key bases
〈Ai, xi〉. We use these values in interacting with Adam. Adam’s success leads to
forgery of Type-I and the probability is ε.

Type-II: Using the same Theorem 5 but for a (i)SDH this time, we could
obtain g1, g2 and w. Then we could also use the i− 1 pairs (Ai, xi) to calculate
the private key bases 〈Ai, xi〉. In a random index i∗, we could choose the missing
pair randomly where Ai∗ ∈ G1 and set xi∗ = ⋆. Adam in the security model will
fail if he queries the private key or private key bases oracle in index i∗. Other
private key queries will succeed. In the signature oracle and because the hashing
oracle is used it will be hard to distinguish between signatures with a SDH pair
and ones without. As for the output algorithm the probability of tracing to a
forged signature that leads to index i∗ is equal to ε/n.

Now we need to prove that the existence of any of the two forgeries contradicts
with SDH assumption. For that we use the Forking Lemma (See Theorem[4]).
Let Adam be a forger of any type in which the security model succeeds with
probability ὲ. A signature will be represented as 〈M ,σ0,c,σ1,σ2〉. M is the signed
message. σ0 = 〈r,gpk,C1,C2,C3,C4,R1,R2,R3〉. c is the value derived from hash-
ing σ0. σ1 = 〈sα, sx, sδ〉 which are values used to calculate the missing inputs
for the hash function. Finally σ2 = Froot the values that depend on the set of
attributes in each signature oracle.
We require Adam to query H0 before H to ensure that by rewinding the game
we could change values of H(M, r, ..), while values of H0(M, r) should remain
the same. Therefore the arguments u, v used in H remain unchanged too.
One simulated run of the adversary is described by the randomness string ω(used
by Adam and Charles),by the vector ℓ0 of responses made by H0 and by the
vector ℓ of responses made by H . Let S be the set of tuple (ω, ℓ0, ℓ) where
Adam successfully forges the signature (M,σ0, c, σ1, σ2) and he queried H on
(M,σ0). Let Ind(ω, ℓ0, ℓ) be the index of ℓ at which Adam queried (M,σ0).
Let ν = Pr[S] = ὲ − 1/p where 1/p term represents the possibility that Adam
guessed the hash of (M,σ0) without quering it. For each χ, 1 ≤ χ ≤ qH , let Sχ

be a set of the tuple (ω, ℓ0, ℓ)where Ind(ω, ℓ0, ℓ) = χ. Let Φ be the set of indices
χ where Pr[Sχ|S] ≥ 1/2qH causing Pr[Ind(ω, ℓ0, ℓ) ∈ Φ|S] ≥ 1/2.
Let ℓ|ba be the restriction of ℓ to its elements at indices a, a + 1, ..., b. For
each χ ∈ Φ consider the heavy row lemma (See Section[A.2]) with a matrix
with rows indexed with(ω, ℓ0, ℓ|

χ−1
1 ) and columns (ℓ|qH

χ ). If (x, y) is a cell, then
Pr[(x, y) ∈ Sχ] ≥ ν/2qH . Let the heavy rows Ωχ be the rows such that ∀(x, y) ∈
Ωχ : Prỳ[(x, ỳ) ∈ Sχ] ≥ ν/(4qH). By the heavy row lemma Pr[Ωχ|Sχ] ≥ 1/2

16



which leads to Pr[∃χ ∈ Φ : Ωχ ∩ Sχ|S] ≥ 1/4.
Therefore Adam’s probability in forging a signature is about ν/4. That signa-
ture derives from the heavy row (x, y) ∈ Ωχ for some χ ∈ Φ, hence execution

(ω, ℓ0, ℓ) such that the Prℓ̀[(ω, ℓ0, ℓ̀) ∈ Sj |ℓ̀|
j−1
1 = ℓ|j−1

1 ] ≥ ν/(4qH). In other

words if we have another simulated run of the adversary with ℓ̀ that differs from
ℓ starting the jth query Adam will forge another signature 〈M,σ0, c̀, σ̀1, σ2〉 with
the probability ν/(4qH).
Now we show how we could extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new
SDH tuple. Let ∆c = c− c̀, ∆sα = sα − s̀α, and similarly for ∆sx, and ∆sδ.
Divide two instances of the equations used previously in proving correctness of
the scheme (See section 4). One instance is with c̀ and the other is with c to get
the following:

– Dividing Cc
1/C

c̀
1 = usα/us̀α we get

uα̃ = C1; where α̃ = ∆sα/∆c
– Dividing Csx

1 /C s̀x

1 = usδ/us̀δwill lead to
∆sδ = α̃∆sx

– Dividing (ê(g1, g2)/ê(C2, w))∆c will lead to
ê(C2, g2)

∆sx ê(v, w)−∆sα ê(v, g2)
−α̃∆sx

Letting x̀ = ∆sx/∆c we get ê(g1, g2)/ê(C2, w) = ê(C2, g2)
x̀ê(v, w)−ὰ ê(v, g2)

−x̀ὰ

this could be rearranged as ê(g1, g2) = ê(C2v
−ὰ, wgx̀

2 ). Let À = C2v
−ὰ we get

ê(À, wgx̀
2 ) = ê(g1, g2). Hence we obtain a new SDH pair (À, x̀) breaking Boneh

and Boyens Lemma(See Section[5]). Now putting things together we get the
following theorems:

Theorem 7. We could solve an instance of (n + 1) SDH with a probability
(ε− 1/p)2/16qH using a Type-I forger Adam

Theorem 8. We could solve an instance of n SDH with a probability (ε/n −
1/p)2/16qH using a Type-II forger Adam

C ABGS Scheme Anonymity

Theorem 9. If the decision linear assumption holds in group G2 then the At-
tribute Based Group Signature Scheme is said to be anonymous under the random
oracle.

Assuming Adam is an adversary that breaks the anonymity of the ABGS scheme.
We will prove that there is an adversary Eve that solves the decisional linear
assumption using Adam’s talent. Note that Eve in this game plays a challenger’s
role when it comes to interacting with Adam and an adversary’s role when she
interacts with Charles. So the game is demonstrated below:

– Init: Adam decides the universal set of attributes U , in which he would like
to be challenged upon and gives it to Eve.

17



– Setup: Charles gives Eve the tuple 〈u0,u1,u2,h0 = ua
0 ,h1 = ub

1,Z〉 where
u0,u1,u2 ∈ G2 and a, b ∈ Zp. Z is either random or Z = ua+b

2 . Eve should de-
cide which Z she was given. Recall that g1, g2 are in G1 and G2 respectively.
Eve chooses a random γ from Zp. Eve also chooses t1,...,tm for attributes
in U , where m is the size of U . Eve assigns w = gγ

2 . She creates the n − 2
private key bases bsk[i] = 〈Ai, xi〉 as in section[4]. She will then choose a
random W ∈ G2. The missing private key bases of user i0 and i1 are cho-
sen randomly. They are defined as Ai0 = ZW/ua

2 and Ai1 = Wub
2 for some

xi0 ,xi1 . Notice that if Z = ua+b
2 then Ai0 = Ai1 . Eve does not know the

values of either bsk[i0] or bsk[i1]. We will show later in our security model
how she could still interact with Adam pretending she does know them. Eve
gives Adam the Spub = 〈G1,G2, GT , ê, g1, g2, w〉 keeping Spri = γ. It also
runs the A.KeyGenpub algorithm and gives Adam the values 〈bpk1,...,bpkm〉.

– Phase 1: Eve runs five oracles, a signature oracle, a private key oracle, a
private key base oracle, revocation oracle and a hash oracle. If Adam queries
the hash oracle, Eve should keep a list of her responces to ensure random-
ness and consistancy for both hash functions H and H0. In the rest of the
oracles Eve’s reaction will be divided into three depending whether Adam
queried i0,i1 or neither.

If Adam queries the signature oracle he should send an index i, a verify-
ing key gpk for a certain attribute tree Γ , and a message M . If (i 6= i0, i1);
Eve will reply with a signature σ = 〈r,C1,C2,C3,C4,c,sα,sx,sδ, Froot〉 as done
in section[4]. If (i = i0), Eve picks a random s, t, l, β ∈ Zp and makes the
following assignments:
C1 = h0u

s
0; C2 = ZWus

2h
t
0u

st
0 ; û = ul

0; v̂ = (u2u
t
0)

l.
Let α = (a+ s)/l ∈ Zp. Then C1 = ûα and C2 = Ai0 v̂

α.
Eve assigns C3 = ê(ZW,w)β and C4 = wβ . It calculates Froot by replacing
the recursive algorithm SignNode with Fake−SignNode, which is described
below:

Fake− SignNode(leaf) =







If (j ∈ Γ ); return ê((us
2h

t
0u

st
0 )tj , Dj)

β

=ê(us
2h

t
0u

st
0 , w)βqj(0)

Otherwise return ⊥

Froot in this case will equal ê(us
2h

t
0u

st
0 , w)βsrnd . Notice that F

1/srnd

root .C3 =
ê(C2, w)β . If β1, β2 are random elements in Zp, it is hard to distinguish be-
tween the following two triples:
〈ê(vα, w)β1 , wβ1 , ê(Ai, w)β1srnd〉 and 〈ê(ZW,w)β2 , wβ2 , ê(us

2h
t
0u

st
0 , w)β2srnd〉.

If (i = i1), Eve picks a random s, t, l, β ∈ Zp and makes the following
assignments:
C1 = h1u

s
1; C2 = Wht

1u
st
1 /u

s
2; û = ul

1; v̂ = (ut
1/u2)

l

Let α = (b+ s)/l ∈ Zp. Then C1 = ûα and C2 = Ai1 v̂
α.

Eve assigns C3 = ê(W,w)β and C4 = wβ . It calculates Froot by replacing

18



the recursive algorithm SignNode with Fake− SignNode which is described
below:

Fake− SignNode(leaf) =







If (j ∈ Γ ); return ê((ht
1u

st
1 /u

s
2)

tj , Dj)
β

=ê(ht
1u

st
1 /u

s
2, w)βqj(0)

Otherwise return ⊥

Froot in this case will equal ê(ht
1u

st
1 /u

s
2, w)βsrnd . Notice that F

1/srnd

root .C3 =
ê(C2, w)β . If β1, β2 are random elements in Zp, it is hard to distinguish be-
tween the triple :
〈ê(vα, w)β1 , wβ1 , ê(Ai, w)β1srnd〉 and 〈ê(W,w)β2 , wβ2 , ê(ht

1u
st
1 /u

s
2, w)β2srnd〉

Eve chooses random values r, c, sα, sx, sδ from Zp. Eve sets the values
R1 = usα/ψ(C1)

c, R3 = ψ(C1)
sxψ(u)−sδ , and

R2 = ê(ψ(C2), g2)
sx ê(ψ(v̂), w)−sα ê(ψ(v̂), g2)

−sδ (ê(ψ(C2), w)/ê(g1, g2))
c.

The probability that H(gpk,M,ψ(C1), ψ(C2), ψ(C3), ψ(C4), R1, R2, R3) or
H0(gpk,M, r) have been queried before is at most qH/p where qH is the num-
bers of queries. If a collusion happens Eve reports a failure. Otherwise we add
H(gpk,M,ψ(C1), ψ(C2), ψ(C3), ψ(C4), R1, R2, R3) = c and H0(gpk,M, r) =
(û, v̂) to the hash oracle’s list.
Eve sends back the signature σ = 〈r,ψ(C1),ψ(C2),ψ(C3),ψ(C4),c,sα,sx,sδ,
Froot〉

When Adam issues a query on the private key oracle he needs to send Eve
an attribute set Υi and an index i, where Υi should have at least an element
j representing an attribute. Eve responds back with 〈Ai,xi,A

t1
i ,...,A

tµ

i 〉. If
Adam queries i0, i1, Eve reports failure. Finally when querying the revoca-
tion oracle Adam sends a users index i to revoke. Eve replies with adding
Ai to R. If Adam queries i0, i1, Eve reports failure.

– Challenge: Adam asks to be challenged on message M , verification key gpk
for a certain Γ and indexes i∗0 plus i∗1. If {i∗0, i

∗
1} 6= {i

∗
0, i

∗
1} then Eve reports

failure. Otherwise, Eve picks randomly b ∈ {0, 1} and generates a signature
the same way it would have done in the signature query. So Eve responces
back with a signature σb.

– Phase 2: Is exactly like phase 1.

– Output : Adam outputs a guess b̀ ∈ {0, 1}. If b = b̀ then Z is random,
otherwise Z = ua+b

2 .

There are two ways this game could end. Case one is when Eve does not abort.
If Z is random then Pr[b = b̀] > 1/2 + ε otherwise if Z = ua+b

2 then both
signatures should be identical and therefore challenge is independent of b hence
Pr[b = b̀] = 1/2. So the advantage of Eve solving the linear challenge is at least
ε/2.

19



The second case is Eve aborts and fails. Eve could abort in the signature queries
with probability qSqH/p where qS is the number of signature queries and qH are
hash queries. The probability that all queries in phase 1 and the challenge do not
cause Eve to abort is 1/n2. Concatenating both cases together the probability
of Eve solving the linear challenge is (ε/2)((1/n2)− (qSqH)/p) as required.

20


