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Abstra
t

Oblivious transfer, �rst introdu
ed by Rabin, is one of the basi
 building blo
ks of 
ryp-

tographi
 proto
ols. In an oblivious transfer (or more exa
tly, in its 1-out-of-2 variant), one

party known as the sender has a pair of messages and the other party known as the re
eiver

obtains one of them. Somewhat paradoxi
ally, the re
eiver obtains exa
tly one of the messages

(and learns nothing of the other), and the sender does not know whi
h of the messages the

re
eiver obtained. Due to its importan
e as a building blo
k for se
ure proto
ols, the eÆ
ien
y

of oblivious transfer proto
ols has been extensively studied. However, to date, there are almost

no known oblivious transfer proto
ols that are se
ure in the presen
e of mali
ious adversaries

under the real/ideal model simulation paradigm (without using general zero-knowledge proofs).

Thus, eÆ
ient proto
ols that rea
h this level of se
urity are of great interest. In this paper we

present eÆ
ient oblivious transfer proto
ols that are se
ure a

ording to the ideal/real model

simulation paradigm. We a
hieve 
onstru
tions under the DDH, Nth residuosity and quadrati


residuosity assumptions, as well as under the assumption that homomorphi
 en
ryption exists.

1 Introdu
tion

In an oblivious transfer, a sender with a pair of strings m

0

;m

1

intera
ts with a re
eiver so that at

the end the re
eiver learns exa
tly one of the strings, and the sender learns nothing [24, 11℄. This

is a somewhat paradoxi
al situation be
ause the re
eiver 
an only learn one string (thus the sender


annot send both) whereas the sender 
annot know whi
h string the re
eiver learned (and so the

re
eiver 
annot tell the sender whi
h string to send). Surprisingly, it is possible to a
hieve oblivious

transfer under a wide variety of assumptions and adversary models [11, 15, 19, 23, 1, 17℄.

Oblivious transfer is one of the most basi
 and widely used proto
ol primitives in 
ryptography.

It stands at the 
enter of the fundamental results on se
ure two-party and multiparty 
omputation

showing that any eÆ
ient fun
tionality 
an be se
urely 
omputed [25, 15℄. In fa
t, it has even

been shown that oblivious transfer is 
omplete, meaning that it is possible to se
urely 
ompute any

eÆ
ient fun
tion on
e given a box that 
omputes oblivious transfer [18℄. Thus, oblivious transfer

has great importan
e to the theory of 
ryptography. In addition to this, oblivious transfer has been

widely used to 
onstru
t eÆ
ient proto
ols for problems of interest (e.g., it is 
entral to almost all

of the work on priva
y-preserving data mining).

Due to its general importan
e, the task of 
onstru
ting eÆ
ient oblivious transfer proto
ols has

attra
ted mu
h interest. In the semi-honest model (where adversaries follow the proto
ol spe
i�-


ation but try to learn more than allowed by examining the proto
ol trans
ript), it is possible to

�

An extended abstra
t of this work appeared at CT-RSA 2008.

y

Most of this work was 
arried out for Aladdin Knowledge Systems.
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onstru
t eÆ
ient oblivious transfer from (enhan
ed) trapdoor permutations [11℄ and homomorphi


en
ryption [19, 1℄. However, the situation is signi�
antly more problemati
 in the mali
ious model

where adversaries may arbitrarily deviate from the proto
ol spe
i�
ation. One possibility is to

use the proto
ol 
ompiler of Goldrei
h, Mi
ali and Wigderson [15℄ to transform oblivious transfer

proto
ols for semi-honest adversaries into proto
ols that are also se
ure in the presen
e of mali
ious

adversaries. However, the result would be a highly ineÆ
ient proto
ol. The diÆ
ulties in obtain-

ing se
ure oblivious transfer in this model seem to be due to the stri
t se
urity requirements of

simulation-based de�nitions that follow the ideal/real model paradigm.

1

Thus, until re
ently, the

only known oblivious transfer proto
ols that were se
ure under this de�nition, and thus were fully

simulatable, were proto
ols that were obtained by applying the 
ompiler of [15℄. In 
ontrast, highly-

eÆ
ient oblivious transfer proto
ols that guarantee priva
y (but not simulatability) in the presen
e

of mali
ious adversaries have been 
onstru
ted. These proto
ols guarantee that even a mali
ious

sender 
annot learn whi
h string the re
eiver learned, and that a mali
ious re
eiver 
an learn only

one of the sender's input strings. Highly eÆ
ient proto
ols have been 
onstru
ted for this setting

under the DDH and N-residuosity assumptions and using homomorphi
 en
ryption [19, 23, 1, 17℄.

This 
urrent state of a�airs is highly unsatisfa
tory. The reason for this is that oblivious transfer

is often used as a building blo
k in other proto
ols. However, oblivious transfer proto
ols that only

provide priva
y are diÆ
ult { if not impossible { to use as building blo
ks. Thus, the vast number of

proto
ols that assume (fully simulatable) oblivious transfer do not have truly eÆ
ient instantiations

today. For just one example, this is true of the proto
ol of [20℄ that in turn is used in the proto
ol

of [2℄ for se
urely 
omputing the median. The result is that [2℄ has no eÆ
ient instantiation, even

though it is eÆ
ient when ignoring the 
ost of the oblivious transfers. We 
on
lude that the absen
e

of eÆ
ient fully-simulatable oblivious transfer a
ts as a bottlene
k in numerous other proto
ols.

Our results. In this paper, we 
onstru
t oblivious transfer proto
ols that are se
ure (i.e., fully-

simulatable) in the presen
e of mali
ious adversaries. Our 
onstru
tions build on those of [23, 1, 17℄

and use 
ut-and-
hoose te
hniques. It is folklore that the proto
ols of [23, 1, 17℄ 
an be modi�ed

to yield full simulatability by adding proofs of knowledge. To some extent, this is what we do.

However, a dire
t appli
ation of proofs of knowledge does not work. This is be
ause the known

eÆ
ient proto
ols are all information-theoreti
ally se
ure in the presen
e of a mali
ious re
eiver.

This means that only one of the sender's inputs is de�ned by the proto
ol trans
ript and thus a

standard proof of knowledge 
annot be applied. (Of 
ourse, it is possible to have the sender prove

that it behaved honestly a

ording to some 
ommitted input but this will already not be eÆ
ient.)

Our proto
ols yield full simulatability and we provide a full proof of se
urity.

As we show, our proto
ols are in the order of ` times the 
omplexity of the proto
ols of [23, 1, 17℄,

where ` is su
h the simulation fails with probability 2

�`+2

. Thus, ` 
an be taken to be relatively

small (say, in the order of 30 or 40). This is a 
onsiderable overhead. However, our proto
ols are

still by far the most eÆ
ient known without resorting to a random ora
le.

Related work. There has been mu
h work on eÆ
ient oblivious transfer in a wide range of

settings. However, very little has been done regarding fully-simulatable oblivious transfer that is

also eÆ
ient (without using random ora
les). Despite this, re
ently there has been some progress

in this area. In [6℄, fully simulatable 
onstru
tions are presented. However, these rely on strong

and relatively non-standard assumptions (q-power DDH and q-strong DiÆe-Hellman). Following

1

A

ording to this paradigm, a real exe
ution of a proto
ol is 
ompared to an ideal exe
ution in whi
h a trusted

third party re
eives the parties' inputs and sends them their outputs.
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this, proto
ols were presented that rely on the De
isional Bilinear DiÆe-Hellman assumption [16℄.

Our proto
ols di�er from those of [6℄ and [16℄ in the following ways:

1. Assumptions: We present proto
ols that 
an be 
onstru
ted assuming that DDH is hard, that

there exist homomorphi
 en
ryption s
hemes, and more. Thus, we rely on far more standard

and long-standing hardness assumptions.

2. Complexity: Regarding the number of exponentiations, it appears that our proto
ols are of a

similar 
omplexity to [6, 16℄. However, as pointed out in [10℄, bilinear 
urves are 
onsiderably

more expensive than regular Ellipti
 
urves. Thus, the standard de
isional DiÆe-Hellman

assumption is mu
h more eÆ
ient to use (
urves that provide pairing need keys that are

similar in size to RSA, in 
ontrast to regular 
urves that 
an be mu
h smaller).

3. The problem solved: We solve the basi
 1-out-of-2 oblivious transfer problem, although our

proto
ols 
an easily be extended to solve the stati
 k-out-of-n oblivious transfer problem

(where stati
 means that the re
eiver must 
hoose whi
h k elements it wishes to re
eive at

the onset). In 
ontrast, [6℄ and [16℄ both solve the 
onsiderably harder problem of adaptive

k-out-of-n oblivious transfer where the re
eiver 
hooses the elements to re
eive one and a

time, and 
an base its 
hoi
e on the elements it has already re
eived.

In 
on
lusion, if adaptive k-out-of-n oblivious transfer is needed, then [6, 16℄ are the best solutions

available. However, if (stati
) oblivious transfer suÆ
es, then our proto
ols are 
onsiderably more

eÆ
ient and are based on far more standard assumptions.

2 De�nitions

In this se
tion we present the de�nition of se
urity for oblivious transfer, that is based on the

general simulation-based de�nitions for se
ure 
omputation; see [14, 21, 5, 7℄. We refer the reader

to [12, Chapter 7℄ for full de�nitions, and provide only a brief overview here. Sin
e we only 
onsider

oblivious transfer in this paper, our de�nitions are tailored to the se
ure 
omputation of this spe
i�


fun
tion only.

Preliminaries. We denote by s 2

R

S the pro
ess of randomly 
hoosing an element s from a set

S. A fun
tion �(�) is negligible in n, or just negligible, if for every positive polynomial p(�) and all

suÆ
iently large n's it holds that �(n) < 1=p(n). A probability ensemble X = fX(n; a)g

a2f0;1g

�

;n2N

is an in�nite sequen
e of random variables indexed by a and n 2 N. (The value a will represent

the parties' inputs and n the se
urity parameter.) Two distribution ensembles X = fX(n; a)g

n2N

and Y = fY (n; a)g

n2N

are said to be 
omputationally indistinguishable, denoted X




� Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible fun
tion �(�) su
h that for every

a 2 f0; 1g

�

,

jPr[D(X(n; a); a) = 1℄� Pr[D(Y (n; a); a) = 1℄j � �(n)

All parties are assumed to run in time that is polynomial in the se
urity parameter. (Formally,

ea
h party has a se
urity parameter tape upon whi
h that value 1

n

is written. Then the party is

polynomial in the input on this tape.)
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Oblivious transfer. The oblivious transfer fun
tionality is formally de�ned as a fun
tion f with

two inputs and one output. The �rst input is a pair (m

0

;m

1

) and the se
ond input is a bit �.

The output is the string m

�

. Party P

1

, also known as the sender, inputs (m

0

;m

1

) and re
eives

no output. In 
ontrast, party P

2

, also known as the re
eiver, inputs the bit � and re
eives m

�

for

output. Formally, we write f((m

0

;m

1

); �) = (�;m

�

) where � denotes the empty string. Stated in

words, in the oblivious transfer fun
tionality party P

1

re
eives no output, whereas party P

2

re
eives

m

�

(and learns nothing about m

1��

).

Adversarial behavior. Loosely speaking, the aim of a se
ure two-party proto
ol is to prote
t

an honest party against dishonest behavior by the other party. In this paper, we 
onsider mali
ious

adversaries who may arbitrarily deviate from the spe
i�ed proto
ol. Furthermore, we 
onsider the

stati
 
orruption model, where one of the parties is adversarial and the other is honest, and this is

�xed before the exe
ution begins.

Se
urity of proto
ols (informal). The se
urity of a proto
ol is analyzed by 
omparing what an

adversary 
an do in the proto
ol to what it 
an do in an ideal s
enario that is se
ure by de�nition.

This is formalized by 
onsidering an ideal 
omputation involving an in
orruptible trusted third

party to whom the parties send their inputs. The trusted party 
omputes the fun
tionality on the

inputs and returns to ea
h party its respe
tive output. Loosely speaking, a proto
ol is se
ure if

any adversary intera
ting in the real proto
ol (where no trusted third party exists) 
an do no more

harm than if it was involved in the above-des
ribed ideal 
omputation.

Oblivious transfer in the ideal model. An ideal oblivious transfer exe
ution pro
eeds as

follows:

Inputs: Party P

1

obtains an input pair (m

0

;m

1

) with jm

0

j = jm

1

j, and party P

2

obtains an input

bit �.

Send inputs to trusted party: An honest party always sends its input un
hanged to the trusted

party. A mali
ious party may either abort, in whi
h 
ase it sends ? to the trusted party, or

send some other input to the trusted party.

Trusted party 
omputes output: If the trusted party re
eives ? from one of the parties, then

it sends ? to both parties and halts. Otherwise, upon re
eiving some (m

0

0

;m

0

1

) from P

1

and

a bit �

0

from P

2

, the trusted party sends m

0

�

0

to party P

2

and halts.

Outputs: An honest party always outputs the message it has obtained from the trusted party (?

or nothing in the 
ase of P

1

, and ? or m

0

�

0

in the 
ase of P

2

). A mali
ious party may output

an arbitrary (probabilisti
 polynomial-time 
omputable) fun
tion of its initial input and the

message obtained from the trusted party.

Denote by f the oblivious transfer fun
tionality and let M = (M

1

;M

2

) be a pair of non-uniform

probabilisti
 expe
ted polynomial-time ma
hines (representing parties in the ideal model). Su
h a

pair is admissible if for at least one i 2 f1; 2g we have that M

i

is honest (i.e., follows the honest

party instru
tions in the above-des
ribed ideal exe
ution). Then, the joint exe
ution of f under M

in the ideal model (on input ((m

0

;m

1

); �)), denoted ideal

f;M

((m

0

;m

1

); �), is de�ned as the output

pair of M

1

and M

2

from the above ideal exe
ution.
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Exe
ution in the real model. We next 
onsider the real model in whi
h a real two-party

proto
ol is exe
uted and there exists no trusted third party. In this 
ase, a mali
ious party may

follow an arbitrary feasible strategy; that is, any strategy implementable by non-uniform proba-

bilisti
 polynomial-time ma
hines. Let � be a two-party proto
ol. Furthermore, let M = (M

1

;M

2

)

be a pair of non-uniform probabilisti
 polynomial-time ma
hines (representing parties in the real

model). Su
h a pair is admissible if for at least one i 2 f1; 2g we have that M

i

is honest (i.e., follows

the strategy spe
i�ed by �). Then, the joint exe
ution of � under M in the real model (on input

((m

0

;m

1

); �)), denoted real

�;M

((m

0

;m

1

); �), is de�ned as the output pair ofM

1

andM

2

resulting

from the proto
ol intera
tion.

Se
urity as emulation of a real exe
ution in the ideal model. Having de�ned the ideal

and real models, we 
an now de�ne se
urity of proto
ols. Loosely speaking, the de�nition asserts

that a se
ure two-party proto
ol (in the real model) emulates the ideal model (in whi
h a trusted

party exists). This is formulated by saying that admissible pairs in the ideal model are able to

simulate admissible pairs in an exe
ution of a se
ure real-model proto
ol.

De�nition 1 Let f denote the oblivious transfer proto
ol and let � be a two-party proto
ol. Pro-

to
ol � is said to be a se
ure oblivious transfer proto
ol if for every pair of admissible non-uniform

probabilisti
 polynomial-time ma
hines A = (A

1

; A

2

) for the real model, there exists a pair of ad-

missible non-uniform probabilisti
 expe
ted polynomial-time ma
hines B = (B

1

; B

2

) for the ideal

model, su
h that for every m

0

;m

1

2 f0; 1g

�

of the same length and every � 2 f0; 1g,

n

ideal

f;B

(n; (m

0

;m

1

); �)

o




�

n

real

�;A

(n; (m

0

;m

1

); �)

o

Note that we allow the ideal adversary/simulator to run in expe
ted (rather than stri
t)

polynomial-time. This is essential for a
hieving 
onstant-round proto
ols; see [4℄.

3 Oblivious Transfer Under the DDH Assumption

In this se
tion we present an oblivious transfer proto
ol that is se
ure in the presen
e of mali
ious

adversaries, under the DDH assumption. The proto
ol is a variant of the two-round proto
ol

of [23℄ with some important 
hanges. Before pro
eeding, we re
all the proto
ol of [23℄. Basi
ally,

this proto
ol works by the re
eiver generating a tuple (g

a

; g

b

; g




; g

d

) with the following property:

if the re
eiver's input equals 0 then 
 = ab and d is random, and if the re
eiver's input equals 1

then d = ab and 
 is random. The sender re
eives this tuple and 
arries out a manipulation that

randomizes the tuple so that if 
 = ab then the result of the manipulation on (g

a

; g

b

; g




) is still a

DDH tuple and the result of the manipulation on (g

a

; g

b

; g

d

) yields a 
ompletely random tuple (if

d = ab then the same holds in reverse). The sender then derives a se
ret key from the manipulation

of ea
h of (g

a

; g

b

; g




) and (g

a

; g

b

; g

d

), and sends information that enables the re
eiver to derive the

same se
ret key from the DDH tuple, whereas the key from the non-DDH tuple remains 
ompletely

random. In addition, the sender en
rypts its �rst message under the key derived from (g

a

; g

b

; g




)

and its se
ond message under the key derived from (g

a

; g

b

; g

d

). The re
eiver is able to de
rypt the

message derived from the DDH tuple but has no information about the other key and so 
annot

learn anything about the other message. We remark that the sender 
he
ks that g




6= g

d

. This

ensures that only one of (g

a

; g

b

; g




) and (g

a

; g

b

; g

d

) is a DDH tuple.

The se
ret key that is derived from the non-DDH tuple above is information-theoreti
ally hidden

from the re
eiver. This 
auses a problem when attempting to 
onstru
t a simulator for the proto
ol
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be
ause the simulator must learn both of the sender's inputs in order to send them to the trusted

party (and for whatever �rst message the simulator sends, it 
an only learn one of the sender's

inputs). We remark that if rewinding is used to obtain both messages then this 
auses a problem

be
ause the sender 
an make its input depend on the �rst message from the re
eiver. We therefore


hange the proto
ol of [23℄ so that instead of sending (g

a

; g

b

; g




; g

d

) where at most one of 
 or d

equals a � b, the re
eiver sends two tuples: one of the tuples is a DDH type and the other is not.

The parties then intera
t to ensure that indeed only one of the tuples is of the DDH type. As we

will see, this ensures that the re
eiver obtains only one message. The \intera
tion" used to prove

this is of the simplest 
ut-and-
hoose type.

The proto
ol below uses two 
ommitment s
hemes for the purpose of 
oin tossing: a perfe
tly

hiding 
ommitment s
heme denoted Com

h

, and a perfe
tly binding 
ommitment s
heme, denoted

Com

b

. We remark that su
h 
ommitment s
hemes exist under the Dis
rete Log assumption, and

thus also under the DDH assumption. We assume that the input values m

0

;m

1

of the sender are

in the group G that we are working with for the DDH assumption. If they 
annot be mapped to G

(e.g., they are too long), then the oblivious transfer 
an be used to ex
hange se
ret keys k

0

and k

1

that are used to en
rypt m

0

and m

1

, respe
tively.

Proto
ol 1

� Auxiliary input: The parties have the des
ription of a group G of order q, and a generator g

for the group. In addition, they have a statisti
al error parameter `.

� Input: The sender has a pair of group elements (m

0

;m

1

) and the re
eiver has a bit �.

� The proto
ol:

1. For i = 1; : : : ; `, the re
eiver P

2


hooses a random bit �

i

2

R

f0; 1g and random values

a

0

i

; b

0

i

; 


0

i

; a

1

i

; b

1

i

; 


1

i

2

R

f1; : : : ; qg under the 
onstraint that 


�

i

i

= a

�

i

i

� b

�

i

i

and 


1��

i

i

6= a

1��

i

i

�

b

1��

i

i

. Then, P

2


omputes the tuples 


0

i

= (g

a

0

i

; g

b

0

i

; g




0

i

) and 


1

i

= (g

a

1

i

; g

b

1

i

; g




1

i

). Note that




�

i

i

is a DDH tuple and 


1��

i

i

is not.

P

2

sends all of the pairs h(


0

1

; 


1

1

); : : : ; (


0

`

; 


1

`

)i to the sender P

1

.

2. Coin tossing:

(a) P

1


hooses a random s 2

R

f0; 1g

`

and sends Com

h

(s) to P

2

.

(b) P

2


hooses a random s

0

2

R

f0; 1g

`

and sends Com

b

(s

0

) to P

1

.

(
) P

1

and P

2

send de
ommitments to Com

h

(s) and Com

b

(s

0

), respe
tively, and set r =

s� s

0

. Denote r = r

1

; : : : ; r

`

.

3. For every i for whi
h r

i

= 1, party P

2

sends a

0

i

; b

0

i

; 


0

i

; a

1

i

; b

1

i

; 


1

i

to P

1

.

In addition, for every j for whi
h r

j

= 0, party P

2

sends a \reordering" of 


0

j

and 


1

j

so

that all of the 


�

j

tuples are DDH tuples and all of the 


1��

j

tuples are not. This reordering

is a bit su
h that if it equals 0 then the tuples are left as is, and if it equals 1 then 


0

j

and




1

j

are inter
hanged.

4. P

1


he
ks that for every i for whi
h r

i

= 1 it re
eived the appropriate values and that they

de�ne 


0

i

and 


1

i

. Furthermore, it 
he
ks that exa
tly one of 


0

i

and 


1

i

is a DDH tuple

as de�ned above and the other is not. If any of the 
he
ks fail, P

1

halts and outputs ?.

Otherwise it 
ontinues as follows:

(a) Denote 


0

j

= (x

0

j

; y

0

j

; z

0

j

) and 


1

j

= (x

1

j

; y

1

j

; z

1

j

). Then, for every j for whi
h r

j

= 0,

party P

1


hooses random u

0

i

; u

1

i

; v

0

i

; v

1

i

2

R

f1; : : : ; qg and 
omputes the following four

6



values:

w

0

j

=

�

x

0

j

�

u

0

i

� g

v

0

i

k

0

j

=

�

z

0

j

�

u

0

i

�

�

y

0

j

�

v

0

i

w

1

j

=

�

x

1

j

�

u

1

i

� g

v

1

i

k

1

j

=

�

z

1

j

�

u

1

i

�

�

y

1

j

�

v

1

i

(b) Let j

1

; : : : ; j

t

be the indi
es j for whi
h r

j

= 0. Then, P

1

\en
rypts" m

0

under all of

the keys k

0

j

, and m

1

under all of the keys k

1

j

, as follows:




0

=

 

t

Y

i=1

k

0

j

i

!

�m

0




1

=

 

t

Y

i=1

k

1

j

i

!

�m

1

P

1

sends P

2

all of the w

0

j

; w

1

j

values, as well as the pair (


0

; 


1

).

5. For every j for whi
h r

j

= 0, party P

2


omputes k

�

j

= (w

�

j

)

b

0

j

. Then, P

2

outputs m

�

=




�

�

�

Q

t

i=1

k

�

j

i

�

�1

.

Before pro
eeding to the proof, we show that the proto
ol \works", meaning that when P

1

and

P

2

are honest, the output is 
orre
tly obtained. We present this to \explain" the 
omputations

that take pla
e in the proto
ol, although these are exa
tly as in the proto
ol of [23℄. First, noti
e

that

�

w

�

j

�

b

�

j

=

�

x

�

j

�

u

�

j

�b

�

j

�

�

g

v

�

j

�

b

�

j

=

�

g

a

�

j

�b

�

j

�

u

�

j

�

�

g

b

�

j

�

v

�

j

By the fa
t that 


�

j

is a DDH tuple we have that g

a

�

j

�b

�

j

= z

�

j

and so

�

w

�

j

�

b

�

j

=

�

z

�

j

�

u

�

j

�

�

y

�

j

�

v

�

j

= k

�

j

Thus P

2


orre
tly 
omputes ea
h key k

�

j

for j su
h that r

j

= 0. Given all of these keys, it

immediately follows that P

2


an de
rypt 


�

, obtaining m

�

. We now pro
eed to prove the se
urity

of the proto
ol.

Theorem 1 Assume that the de
isional DiÆe-Hellman problem is hard in G with generator g, that

Com

h

is a perfe
tly-hiding 
ommitment s
heme, and that Com

b

is a perfe
tly-binding 
ommitment

s
heme. Then, Proto
ol 1 se
urely 
omputes the oblivious transfer fun
tionality in the presen
e of

mali
ious adversaries.

Proof: We separately prove the se
urity of the proto
ol for the 
ase that no parties are 
orrupted,

P

1

is 
orrupted, and P

2

is 
orrupted. In the 
ase that both P

1

and P

2

are honest, we have already

seen that P

2

obtains exa
tly m

�

. Thus, se
urity holds. We now pro
eed to the other 
ases.

P

1

is 
orrupted. Let A

1

be a non-uniform probabilisti
 polynomial-time real adversary that


ontrols P

1

. We 
onstru
t a non-uniform probabilisti
 expe
ted polynomial-time ideal-model ad-

versary/simulator S

1

. The basi
 idea behind how S

1

works is that it uses rewinding in order to

ensure that all of the \
he
ked" tuples are valid (i.e., one is a DDH tuple and the other is not),

whereas all of the \un
he
ked" tuples have the property that they are both of the DDH type. Now,

sin
e the proto
ol is su
h that a re
eiver 
an obtain a key k

�

j

as long as 


�

j

was a DDH tuple, it

follows that S

1


an obtain all of the k

0

j

and k

1

j

keys. This enables it to de
rypt both 


0

and 


1

and obtain both messages input by A

1

into the proto
ol. S

1

then sends these inputs to the trusted

7



party, and the honest party P

2

in the ideal model will re
eive the same message that it would

have re
eived in a real exe
ution with A

1

(or more a

urately, a message that is 
omputationally

indistinguishable from that message).

We now des
ribe S

1

formally. Upon input 1

n

and (m

0

;m

1

), the ma
hine S

1

invokes A

1

upon

the same input and works as follows:

1. S

1


hooses a random r 2

R

f0; 1g

`

and generates tuples 


0

1

; 


1

1

; : : : ; 


0

`

; 


1

`

with the following

property:

(a) For every i for whi
h r

i

= 1, S

1


onstru
ts 


0

i

and 


1

i

like an honest P

2

(i.e., one of them

being a DDH tuple and the other not, in random order).

(b) For every j for whi
h r

j

= 0, S

1


onstru
ts 


0

j

and 


1

j

to both be DDH tuples.

S

1

hands the tuples to A

1

.

2. Simulation of the 
oin tossing: S

1

simulates the 
oin tossing so that the result is r, as follows:

(a) S

1

re
eives a 
ommitment 


h

from A

1

.

(b) S

1


hooses a random s

0

2

R

f0; 1g

`

and hands 


b

= Com

b

(s

0

) to A

1

.

(
) If A

1

does not send a valid de
ommitment to 


h

, then S

1

simulates P

2

aborting and

sends ? to the trusted party. Then S

1

outputs whatever A

1

outputs and halts.

Otherwise, let s be the de
ommitted value. S

1

pro
eeds as follows:

i. S

1

sets s

0

= r � s, rewinds A

1

, and hands it Com

b

(s

0

).

ii. If A

1

de
ommits to s, then S

1

pro
eeds to the next step. If A

1

de
ommits to a value

~s 6= s, then S

1

outputs fail. Otherwise, if it does not de
ommit to any value, S

1

returns to the previous step and tries again until A

1

does de
ommit to s. (We stress

that in every attempt, S

1

hands A

1

a 
ommitment to the same value s

0

. However,

the randomness used to generate the 
ommitment Com

b

(s

0

) is independent ea
h

time.)

2

3. Upon re
eiving a valid de
ommitment to s from A

1

, simulator S

1

de
ommits to A

1

, revealing

s

0

. (Note that r = s� s

0

.)

4. For every i for whi
h r

i

= 1, simulator S

1

hands A

1

the values a

0

i

; b

0

i

; 


0

i

; a

1

i

; b

1

i

; 


1

i

used to

generate 


0

i

and 


1

i

. In addition, S

1

hands A

1

a random reordering of the pairs.

5. If A

1

does not reply with a valid message, then S

1

sends ? to the trusted party, outputs

whatever A

1

outputs and halts. Otherwise, it re
eives a series of pairs (w

0

j

; w

1

j

) for every j

for whi
h r

j

= 0, as well as 
iphertexts 


0

and 


1

. S

1

then follows the instru
tions of P

2

for

deriving the keys. However, unlike an honest P

2

, it 
omputes k

0

j

= (w

0

j

)

b

0

j

and k

1

j

= (w

1

j

)

b

1

j

and uses the keys it obtains to de
rypt both 


0

and 


1

. (Note that for ea
h su
h j, both 


0

j

and 


1

j

are DDH tuples; thus this makes sense.)

Let m

0

and m

1

be the messages obtained by de
rypting. S

1

sends the pair to the trusted

party as the �rst party's input, outputs whatever A

1

outputs and halts.

2

This strategy by S

1

is a
tually over-simpli�ed and does not guarantee that it runs in expe
ted polynomial-time.

This te
hni
ality will be dis
ussed below, and we will show how S

1


an be \�xed" so that its expe
ted running-time

is polynomial.
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We now prove that the joint output distribution of S

1

and an honest P

2

in an ideal exe
ution is


omputationally indistinguishable from the output distribution of A

1

and an honest P

2

in a real

exe
ution. First, note that the view of A

1

in the simulation with S

1

is indistinguishable from its

view in a real exe
ution. The only di�eren
e in its view is due to the fa
t that the tuples 


0

j

and




1

j

for whi
h r

j

= 0 are both of the DDH type. The only other di�eren
e is due to the 
oin tossing

(and the rewinding). However, by the binding property of the 
ommitment sent by A

1

and the

fa
t that P

2

generates its 
ommitment after re
eiving A

1

's, we have that the out
ome of the 
oin

tossing in a real exe
ution is statisti
ally 
lose to uniform (where the only di�eren
e is due to the

negligible probability that A

1

will break the 
omputational binding property of the 
ommitment

s
heme.) In the simulation by S

1

, the out
ome is always uniformly distributed, assuming that

S

1

does not output fail. Sin
e S

1

outputs fail when A

1

breaks the 
omputational binding of the


ommitment s
heme, this o

urs with at most negligible probability (a rigorous analysis of this is

given in [13℄). We therefore have that, apart from the negligible di�eren
e due to the 
oin tossing,

the only di�eren
e is due to the generation of the tuples. Intuitively, indistinguishability therefore

follows from the DDH assumption. More formally, this is proven by 
onstru
ting a ma
hine D that

distinguishes many 
opies of DDH tuples from many 
opies of non-DDH tuples. D re
eives a series

of tuples and runs in exa
tly the same way as S

1

ex
ept that it 
onstru
ts the 


0

j

and 


1

j

tuples (for

r

j

= 0) so that one is a DDH tuple and the other is from its input, in random order. Furthermore,

it provides the reordering so that all of the DDH tuples it generates are asso
iated with � and all

of the ones it re
eives externally are asso
iated with 1��. (For the sake of this mental experiment,

we assume that D is given the input � of P

2

.) It follows that if D re
eives a series of DDH tuples,

then the view of A

1

is exa
tly the same as in the simulation with S

1

(be
ause all the tuples are

of the DiÆe-Hellman type). In 
ontrast, if D re
eives a series of non-DDH tuples, then the view

of A

1

is exa
tly the same as in a real exe
ution (be
ause only the tuples asso
iated with � are of

the DiÆe-Hellman type). This suÆ
es for showing that the output of A

1

in a real exe
ution is

indistinguishable from the output of S

1

in an ideal exe
ution (re
all that S

1

outputs whatever A

1

outputs). However, we have to show this for the joint distribution of the output of A

1

(or S

1

) and

the honest P

2

. In order to see this, re
all that the output of P

2

is m

�

where � is the honest P

2

's

input. Now, assume that there exists a polynomial-time distinguisherD

0

that distinguishes between

the real and ideal distributions with non-negligible probability. We 
onstru
t a distinguisher D

as above that distinguishes DDH from non-DDH tuples. The ma
hine D re
eives the input � of

P

2

and a series of tuples that are either DDH or non-DDH tuples. D then works exa
tly as above

(i.e., 
onstru
ting the 


0

j

and 


1

j

tuples so that in the reordering step, all the 


�

j

tuples are those it

generated itself and all the 


1��

j

tuples are those it re
eived as input). Sin
e D generated all of the




�

j

tuples, it is able to \de
rypt" 


�

and obtain m

�

. Ma
hine D therefore does this, and invokes D

0

on the output of A

1

and the message m

�

(whi
h is the output that an honest P

2

would re
eive).

Finally D outputs whatever D

0

does. It is 
lear that if D re
eives non-DDH tuples, then the output

distribution generated is exa
tly like that of a real exe
ution between A

1

and P

2

. In 
ontrast, if it

re
eives DDH tuples, then the output distribution is exa
tly like of an ideal exe
ution with S

1

. (A

subtle point here is that the distribution over the 
 tuples generated by D who knows � is identi
al

to the distribution generated by S

1

who does not know �. The reason for this is that when all the

tuples are of the DDH type, their ordering makes no di�eren
e.) We 
on
lude that D solves the

DDH problem with non-negligible probability, in 
ontradi
tion to the DDH assumption. Thus, the

real and ideal output distributions must be 
omputationally indistinguishable, as required.

It remains to prove that S

1

runs in expe
ted polynomial-time. Unfortunately, this is not true!

In order to see this, denote by p the probability that A

1

de
ommits 
orre
tly to s when it re
eives

a 
ommitment to a random s

0

. Next, denote by q the probability that A

1

de
ommits 
orre
tly
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when it re
eives a 
ommitment to s

0

= s� r. (Note that this is not random be
ause r is impli
it

in the way that S

1

generated the tuples. That is, if r

i

= 1 then 


0

i

and 


1

i

are honestly generated,

and otherwise they are both of the DDH type.) Now, by the hiding property of the 
ommitment

s
heme Com

b

, the di�eren
e between p and q 
an be at most negligible. Furthermore, the expe
ted

running-time of S

1

in the rewinding stage equals p=q times some �xed polynomial fa
tor. In order

to see this, observe that S

1

enters the rewinding stage with probability p, and 
on
ludes after

an expe
ted 1=q number of rewindings. It thus remains to bound p=q. (We remark that S

1

's

running time in the rest of the simulation is a �xed polynomial and so we ignore this from now on).

Unfortunately, even though p and q are at most negligibly far from ea
h other, as we have dis
ussed,

the value p=q may not ne
essarily be polynomial. For example, if p = 2

�n

and q = 2

�n

+ 2

�n=2

then p=q � 2

n=2

. Thus, the expe
ted running-time of S

1

is not ne
essarily polynomial. Fortunately,

this 
an be solved using the te
hniques of [13℄ who solved an identi
al problem. Loosely speaking,

the te
hnique of [13℄ works by �rst estimating p and then ensuring that the number of rewinding

attempts does not ex
eed a �xed polynomial times the estimation of p. It is shown that this yields

a simulator that is guaranteed to run in expe
ted polynomial time. Furthermore, the output of the

simulator is only negligibly far from the original (simpli�ed) strategy des
ribed above. Thus, these

te
hniques 
an be applied here and the simulator appropriately 
hanged, with the result being that

the output is only negligibly di�erent from before, as required.

P

2

is 
orrupted. As before, we let A

2

be any non-uniform probabilisti
 polynomial-time adver-

sary 
ontrolling P

2

and we 
onstru
t a non-uniform probabilisti
 expe
ted polynomial-time simula-

tor S

2

. The simulator S

2

extra
ts the bit � used by A

2

by rewinding it and obtaining the reordering

of tuples that it had previously opened. Formally, upon input 1

n

and �, the simulator S

2

invokes

A

2

upon the same input and works as follows:

1. S

2

re
eives a series of tuples 


0

1

; 


1

1

; : : : ; 


0

`

; 


1

`

from A

2

.

2. S

2

hands A

2

a 
ommitment 


h

= Com

h

(s) to a random s 2

R

f0; 1g

`

, re
eives ba
k 


b

, de
om-

mits to 


h

and re
eives A

2

's de
ommitment to 


b

. S

2

then re
eives all of the a

0

i

; b

0

i

; 


0

i

; a

1

i

; b

1

i

; 


1

i

values from A

2

, for i where r

i

= 1, and the reorderings for j where r

j

= 0. If the values sent

by A

2

are not valid (as 
he
ked by P

1

in the proto
ol) or A

2

did not send valid de
ommit-

ments, S

2

sends ? to the trusted party, outputs whatever A

2

outputs, and halts. Otherwise,

it 
ontinues to the next step.

3. S

2

rewinds A

2

ba
k to the beginning of the 
oin-tossing, hands A

2

a 
ommitment ~


h

=

Com

h

(~s) to a fresh random ~s 2

R

f0; 1g

`

, re
eives ba
k some ~


b

, de
ommits to ~


h

and re-


eives A

2

's de
ommitment to ~


b

. In addition, S

2

re
eives the a

0

i

; b

0

i

; 


0

i

; a

1

i

; b

1

i

; 


1

i

values and

reorderings.

If any of the values are not valid, S

2

repeats this step using fresh randomness ea
h time, until

all values are valid.

4. Following this, S

2

rewinds A

2

to the beginning and resends the exa
t messages of the �rst


oin tossing (resulting in exa
tly the same trans
ript as before).

5. Denote by r the result of the �rst 
oin tossing (Step 2 above), and ~r the result of the se
ond


oin tossing (Step 3 above). If r = ~r then S

2

outputs fail and halts. Otherwise, S

2

sear
hes for

a value t su
h that r

t

= 0 and ~r

t

= 1. (Note that by the de�nition of the simulation, exa
tly

one of 


0

t

and 


1

t

is a DDH tuple. Otherwise, the values would not be 
onsidered valid.) If

no su
h t exists (i.e., for every t su
h that r

t

6= ~r

t

it holds that r

t

= 1 and ~r

t

= 0), then S

2
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begins the simulation from s
rat
h with the ex
eption that it must �nd r and ~r for whi
h all

values are valid (i.e., if for r the values sent by A

2

are not valid it does not terminate the

simulation but rather rewinds until it �nds an r for whi
h the responses of A

2

are all valid).

If S

2

does not start again, we have that it has a

0

t

; b

0

t

; 


0

t

; a

1

t

; b

1

t

; 


1

t

and 
an determine whi
h of




0

t

and 


1

t

is a DDH tuple. Furthermore, sin
e ~r

t

= 1, the reordering that S

2

re
eives from

A

2

after the 
oin tossing indi
ates whether the DDH tuple is asso
iated with 0 or with 1. S

2

sets � = 0 if after the reordering 


0

t

is of the DDH type, and sets � = 1 if after the reordering




1

t

is of the DDH type. (Note that exa
tly one of the tuples is of the DDH type be
ause this

is 
he
ked in the se
ond 
oin tossing.)

6. S

2

sends � to the trusted party and re
eives ba
k a string m = m

�

. Simulator S

2

then


omputes the last message from P

1

to P

2

honestly, while en
rypting m

�

under the keys k

�

j

(and en
rypting any arbitrary string of the same length under the keys k

j

1��

). S

2

hands A

2

these messages and outputs whatever A

2

outputs and halts.

We now prove that the output distribution of A

2

in a real exe
ution with an honest P

1

(with

input (m

0

;m

1

)) is 
omputationally indistinguishable from the output distribution of S

2

in an ideal

exe
ution with an honest P

1

(with the same input (m

0

;m

1

)). We begin by showing that S

2

outputs

fail with probability at most 2

�`

, ignoring for now the probability that r = ~r in later rewindings

(whi
h may o

ur if S

2

has to start again from s
rat
h). Re
all that this event o

urs if everything

is \valid" after the �rst 
oin tossing (where the result is r), and the result of the se
ond 
oin-tossing

after whi
h everything is valid is ~r = r.

3

First, observe that the distributions of the strings r and

~r are identi
al. This is be
ause S

2

runs the 
oin tossing in the same way ea
h time (using fresh

random 
oins), and a

epts ~r when all is valid, exa
tly as what happened with r. Next, note that

the distribution over the result of the 
oin tossing { without 
onditioning over A

2

sending valid

de
ommitments { is uniform. This holds be
ause the 
ommitment that S

2

hands to A

2

is perfe
tly

hiding and the 
ommitment returned by A

2

to S

2

is perfe
tly binding. Let R be a random variable

that denotes the result of the �rst 
oin tossing between A

2

and S

2

in the simulation, and let valid be

the event that A

2

replies with valid de
ommitments and values after the �rst 
oin tossing. Finally,

for a given r 2 f0; 1g

`

, let obtain

r

denote the event that the result of one of the 
oin tossing attempts

in the se
ond stage equals r. (Note that this does not mean that ~r = r be
ause ~r is the result that

is �nally a

epted after A

2

sends valid values. However, the de
ision of A

2

to send valid values may

also depend on the randomness used to generate Com

h

(s). Thus, ~r may not equal r, even though

r is obtained in one of the 
oin tossing attempts in the se
ond stage.) Clearly, fail 
an only o

ur

if r is obtained at least on
e as the result of a 
oin tossing attempt in the se
ond stage (be
ause

fail 
an only o

ur if ~r = r). We therefore have the following:

Pr[fail℄ �

X

r2f0;1g

`

Pr[R = r & valid℄ � Pr[obtain

r

℄ (1)

Before analyzing this probability, we 
ompute Pr[obtain

r

℄ for a �xed r. Let p denote the probability

(over A

2

and S

2

's 
oin tosses) that A

2

sends valid values after the 
oin tossing. It follows that the

expe
ted number of trials by S

2

in the se
ond 
oin tossing is 1=p. Letting X

r

be a Boolean random

variable that equals 1 if and only if the result of the se
ond 
oin tossing attempt equals the �xed

r, we have that E[X

r

℄ = 2

�`

. By Wald's equation (e.g., see [22, Page 300℄), it follows that the

expe
ted number of times that r is obtained as the result of a 
oin tossing attempt in the se
ond

3

It is very easy to prove that the probability that S

2

outputs fail is at most 2

�`=2

. However, in order to keep ` to

a low value, we present a more subtle analysis that demonstrates that S

2

outputs fail with probability at most 2

�`

.
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stage by S

2

is 1=p � 2

�`

. Using Markov's inequality, we have that the probability that r is obtained

at least on
e as the result of a 
oin tossing attempt in the se
ond stage is at most 1=p � 2

�`

. That

is:

Pr[obtain

r

℄ �

1

p � 2

`

We are now ready to return to Eq. (1). Denote by p

r

the probability that A

2

sends valid values


onditioned on the out
ome of the 
oin tossing being r. It follows that

p =

X

r2f0;1g

`

Pr[R = r℄ � p

r

=

X

r2f0;1g

`

p

r

2

`

Furthermore,

Pr[R = r & valid℄ = Pr[valid j R = r℄ � Pr[R = r℄ = p

r

�

1

2

`

Combining the above, we have:

Pr[fail℄ �

X

r2f0;1g

`

Pr[R = r & valid℄ � Pr[obtain

r

℄

�

X

r2f0;1g

`

p

r

2

`

�

1

p � 2

`

=

1

p � 2

`

�

X

r2f0;1g

`

p

r

2

`

=

1

p � 2

`

� p =

1

2

`

We 
on
lude that S

2

outputs fail with probability at most 2

�`

, as required. Re
all that this analysis

doesn't take into a

ount the probability that S

2

starts the simulation from s
rat
h. Rather, it just

shows that S

2

outputs fail in any simulation attempt (between starts from s
rat
h) with probability

at most 2

�`

. Below, we will show that the probability that S

2

starts from s
rat
h is at most 1=2.

Denote by fail

i

the probability that S

2

outputs fail in the ith attempt, given that there is su
h an

attempt. Likewise, denote by repeat

i

the probability that S

2

has an ith attempt. We have shown

that for every i, Pr[fail

i

℄ = 2

�`

, and below we show that every repeat happens with probability

1=2 and so for every i, Pr[repeat

i

℄ = 2

i�1

(repeat

1

= 1 be
ause we always have one attempt). We

therefore have:

Pr[fail℄ =

1

X

i=1

Pr[fail

i

℄ � Pr[repeat

i

℄ =

1

2

`

1

X

i=1

1

2

i�1

=

1

2

`

� 2 =

1

2

`�1

Given the above, we pro
eed to show indistinguishability of the ideal and real distributions.

Noti
e that in the 
ase that S does not output fail, the �nal trans
ript as viewed by A

2


onsists of

the �rst 
oin tossing (that is distributed exa
tly as in a real exe
ution) and the last message from

S

2

to A

2

. This last message is not generated honestly, in that 


�

is indeed an en
ryption of m

�

,

but 


1��

is an en
ryption of an arbitrary value (and not ne
essarily of m

1��

). However, as shown

in [23℄, for any tuple 


1��

j

that is not a DDH tuple, the value k

1��

j

is uniformly distributed in G

(even given w

1��

j

as re
eived by A

2

). This implies that 


1��

is uniformly distributed, independent

of the value m

1��

. Thus, A

2

's view in the exe
ution with S

2

is statisti
ally 
lose to its view in

a real exe
ution with P

1

(the only di�eren
e being if S

2

outputs fail). This 
ompletes the proof

regarding indistinguishability.
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It remains to prove that S

2

runs in expe
ted polynomial-time. We begin by analyzing the

rewinding by S

2

in the 
oin tossing phase (
learly, the running-time of S

2

outside of the rewinding

is stri
tly polynomial, and so it suÆ
es to bound the expe
ted number of rewinding attempts).

Denote by p the probability that A

2


ompletes the 
oin tossing phase and provides valid values to

S

2

. The important point to note here is that ea
h rewinding attempt is su

essful with probability

exa
tly p (there is no di�eren
e between the distribution over the �rst and se
ond 
oin tossing

attempts, in 
ontrast to the simulation where P

1

is 
orrupted). Thus, with probability p there are

rewinding attempts, and in su
h a 
ase there are an expe
ted 1=p su
h attempts. This yields an

expe
ted number of rewindings of 1. We now analyze the number of times that S

2

is expe
ted

to have to begin from s
rat
h (due to there being no t for whi
h r

t

= 0 and ~r

t

= 1). The main

observation here is that for any pair r and ~r whi
h for
es S

2

to begin from s
rat
h, inter
hanging

r and ~r would result in a pair for whi
h S

2

would be able to 
ontinue. Now, sin
e r and ~r are

derived through independent exe
utions of the 
oin tossing phase, the probability that they are in

one order equals the probability that they are in the opposite order. Thus, the probability that S

2

needs to start from s
rat
h equals at most 1=2. This implies that the expe
ted number of times

that S

2

needs to start from s
rat
h is at most two. We remark that when S

2

starts from s
rat
h,

the expe
ted number of times it needs to rewind in order to obtain ea
h of r and ~r is 1=p. Thus,

overall the expe
ted number of rewinding attempts is p � O(1)=p = O(1). We 
on
lude that the

overall expe
ted running time of S

2

is polynomial, as required.

EÆ
ien
y. The 
omplexity of the proto
ol is in the order of ` times the basi
 proto
ol of [23℄.

Thus, the eÆ
ien
y depends strongly on the value of ` that is taken. It is important to noti
e that

the simulation su

eeds ex
ept with probability � 2

�`+1

(as long as the 
ryptographi
 primitives

are not \broken"). To be more exa
t, one should take ` and n so that the probability of \breaking"

the 
ryptographi
 primitives (the 
ommitments for the 
oin tossing or the se
urity of en
ryption)

is at most 2

�`+1

. In su
h a 
ase, our analysis in the proof shows that the ideal and real exe
utions


an be distinguished with probability at most 2

�`+2

. This means that ` 
an be 
hosen to be

relatively small, depending on the level of se
urity desired. Spe
i�
ally, with ` = 30 the probability

of su

essful undete
ted 
heating is 2

�28

� 3:7 � 10

�9

whi
h is already very very small. Thus, it

is reasonable to say that the 
omplexity of the proto
ol is between 30 and 40 times of that of [23℄.

This is a non-trivial pri
e; however, this is far more eÆ
ient than known solutions. We also remark

that a similar idea 
an be used to a
hieve se
urity in the model of 
overt adversaries of [3℄. For

deterrent fa
tor � = 1=2 one 
an use ` = 2 and have the sender 
hoose r singlehandedly with

one bit of r equalling 0 and the other equalling 1. This yields very high eÆ
ien
y, together with

simulatability (albeit in the weaker model of 
overt adversaries).

4 Oblivious Transfer using Smooth Hashing

The proto
ol of [23℄ was generalized by [17℄ via the notion of smooth proje
tive hashing of [8℄. This

enables the 
onstru
tion of oblivious transfer proto
ols that are analogous to [23℄ under the Nth

residuosity and quadrati
 residuosity assumptions. Proto
ol 1 
an be extended dire
tly in the same

way, yielding oblivious transfer proto
ols that are se
ure against mali
ious adversaries, under the

Nth residuosity and quadrati
 residuosity assumptions. We remark that as in the proto
ol of [17℄,

the instantiation of the proto
ol under the Nth residuosity assumption is highly eÆ
ient, whereas

the instantiation under the quadrati
 residuosity assumption enables the ex
hange of a single bit

only (but is based on a longer-standing hardness assumption). We remark, however, that using

Ellipti
 
urves, the solution based on the DDH assumption is by far the most eÆ
ient.
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5 Oblivious Transfer from Homomorphi
 En
ryption

In this se
tion, we present a proto
ol based on the proto
ol of [1℄ that uses homomorphi
 en
ryption.

We assume an additive homomorphi
 en
ryption s
heme (G;E;D), where G(1

n

) outputs a key-pair

of length n, E is the en
ryption algorithm and D the de
ryption algorithm. Note that additive

homomorphi
 operations imply multipli
ation by a s
alar as well. The ideas behind this proto
ol

are similar to above, and our presentation is therefore rather brief.

Proto
ol 2

� Input: The sender has a pair of strings (m

0

;m

1

) of known length and the re
eiver has a bit �.

Both parties have a se
urity parameter n determining the length of the keys for the en
ryption

s
heme, and a separate statisti
al se
urity parameter `.

� The proto
ol:

1. Re
eiver's message:

(a) The re
eiver P

2


hooses a key-pair (pk; sk)  G(1

n

) from a homomorphi
 en
ryption

s
heme (G;E;D).

4

(b) For i = 1; : : : ; `, party P

2


hooses a random bit b

i

2

R

f0; 1g and de�nes




b

i

i

= E

pk

(0; r

b

i

i

) and 


1�b

i

i

= E

pk

(1; r

1�b

i

i

) :

where r

0

i

and r

1

i

are random strings, and E

pk

(x; r) denotes an en
ryption of message

x using random 
oins r.

(
) P

2

sends pk; h


0

1

; 


1

1

; : : : ; 


0

`

; 


1

`

i to P

1

.

2. Coin tossing:

(a) P

1


hooses a random ~s 2

R

f0; 1g

`

and sends Com

h

(~s) to P

2

.

(b) P

2


hooses a random ŝ 2

R

f0; 1g

`

and sends Com

b

(ŝ) to P

1

.

(
) P

1

and P

2

send de
ommitments to Com

h

(~s) and Com

b

(ŝ), respe
tively, and set s = ~s�ŝ.

Denote s = s

1

; : : : ; s

`

. Furthermore let S

1

be the set of all i for whi
h s

i

= 1, and let

S

0

be the set of all j for whi
h s

j

= 0. (Note that S

1

; S

0

are a partition of f1; : : : ; `g.)

3. Re
eiver's message:

(a) For every i 2 S

1

, party P

2

sends the randomness r

0

i

; r

1

i

used to en
rypt 


0

i

and 


1

i

.

(b) In addition, for every j 2 S

0

, party P

2

sends a bit �

j

so that if � = 0 then �

j

= b

j

,

and if � = 1 then �

j

= 1� b

j

.

4. Sender's message:

(a) For every i 2 S

1

, party P

1

veri�es that either 


0

i

= E

pk

(0; r

0

i

) and 


1

i

= E

pk

(1; r

1

i

),

or 


0

i

= E

pk

(1; r

0

i

) and 


1

i

= E

pk

(0; r

1

i

). That is, P

1

veri�es that in every pair, one


iphertext is an en
ryption of 0 and the other is an en
ryption of 1. If this does not

hold for every su
h i, party P

1

halts. If it does hold, it pro
eeds to the next step.

(b) For every j 2 S

0

, party P

1

de�nes 


j

and 


0

j

as follows:

i. If �

i

= 0 then 


j

= 


0

j

and 


0

j

= 


1

j

.

ii. If �

i

= 1 then 


j

= 


1

j

and 


0

j

= 


0

j

.

4

We assume that it is possible to verify that a publi
-key pk is in the range of the key generation algorithm G. If

this is not the 
ase, then a zero-knowledge proof of this fa
t must be added.
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This implies that if � = 0 then 


j

= E

pk

(0) and 


0

j

= E

pk

(1), and if � = 1 then




j

= E

pk

(1) and 


0

j

= E

pk

(0).

5

(
) For every j 2 S

0

, party P

1


hooses random �

j

; �

0

j

, uniformly distributed in the group

de�ned by the en
ryption s
heme. Then, P

1

uses the homomorphi
 properties of the

en
ryption s
heme to 
ompute:




0

=

0

�

X

j2S

1

�

j

� 


j

1

A

+E

pk

(m

0

) and 


1

=

0

�

X

j2S

1

�

0

j

� 


0

j

1

A

+E

pk

(m

1

)

where addition above denotes the homomorphi
 addition of 
iphertexts and multipli
a-

tion denotes multipli
ation by a s
alar (again using the homomorphi
 properties).

(d) P

1

sends (


0

; 


1

) to P

2

.

5. Re
eiver 
omputes output: P

2

outputs D

sk

(


�

) and halts.

Before dis
ussing se
urity, we demonstrate 
orre
tness:

1. Case � = 0: In this 
ase, as des
ribed in Footnote 5, it holds that for every j, 


j

= E

pk

(0)

and 


0

j

= E

pk

(1). Noting that the multipli
ation of 0 by a s
alar equals 0, we have:




0

=

0

�

X

j2S

1

�

j

� 


j

1

A

+E

pk

(m

0

) = E

pk

(0) +E

pk

(m

0

) = E

pk

(m

0

):

Thus, when P

2

de
rypts 


0

it re
eives m

0

, as required.

2. Case � = 1: In this 
ase, it holds that for every j, 


j

= E

pk

(1) and 


0

j

= E

pk

(0). Thus,

similarly to before,




1

= �

0

�

X

j

�

0

j

� 


0

j

1

A

+E

pk

(m

1

) = E

pk

(0) +E

pk

(m

1

) = E

pk

(m

1

);

and so when P

2

de
rypts 


1

, it re
eives m

1

, as required.

We have the following theorem:

Theorem 2 Assume that (G;E;D) is a se
ure homomorphi
 en
ryption s
heme, Com

h

is a perfe
tly-

hiding 
ommitment s
heme and Com

b

is a perfe
tly-biding 
ommitment s
heme. Then, Proto
ol 2

se
urely 
omputes the oblivious transfer fun
tionality in the presen
e of mali
ious adversaries.

Proof (sket
h): In the 
ase that P

2

is 
orrupted, the simulator works by rewinding the 
orrupted

P

2

over the 
oin tossing phase in order to obtain two di�erent openings and reorderings. In this

way, the simulator 
an easily derive the value of P

2

's input � (� is taken to be 0 if all the 


j


iphertexts for whi
h it obtained both reorderings and openings are en
ryptions of 0, and is taken

to be 1 otherwise). It sends � to the trusted party and re
eives ba
km = m

�

. Finally, the simulator

generates 


�

as the honest party P

1

would (using m), and generates 


1��

as an en
ryption to a

random string. Beyond a negligible fail probability in obtaining the two openings mentioned, the

5

In order to see this, note that if � = 0 then �

j

= b

j

. Thus, if �

j

= b

j

= 0 we have that 


j

= 


0

j

= E

pk

(0) and




0

j

= 


1

j

= E

pk

(1). In 
ontrast, if �

j

= b

j

= 1 then 


j

= 


1

j

= E

pk

(0) and 


0

j

= 


0

j

= E

pk

(1). That is, in all 
ases of

� = 0 it holds that 


j

= E

pk

(0) and 


0

j

= E

pk

(1). Analogously, if � = 1 the reverse holds.
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only di�eren
e with respe
t to a 
orrupted P

2

's view is the way 


1��

is generated. However, noti
e

that:




1��

=

0

�

X

j2S

1

�̂

j

� 
̂

j

1

A

+E

pk

(m

1��

)

where �̂

j

= �

j

and 
̂

j

= 


j

, or �̂

j

= �

0

j

and 
̂

j

= 


0

j

, depending on the value of �. Now, if at least one

value 
̂

j

for j 2 S

1

is an en
ryption of 1, then the 
iphertext 


1��

is an en
ryption of a uniformly

distributed value (in the group de�ned by the homomorphi
 en
ryption s
heme). This is due to

the fa
t that 
̂

j

is multiplied by �̂

j

whi
h is uniformly distributed. Now, by the 
ut-and-
hoose

te
hnique employed, the probability that for all j 2 S

1

it holds that 
̂

j

6= E

pk

(1) is negligible. This

is due to the fa
t that this 
an only hold if for many 
iphertext pairs 


0

i

; 


1

i

sent by P

2

in its �rst

message, the pair is not 
orre
tly generated (i.e., it is not the 
ase that one is an en
ryption of 0

and the other an en
ryption of 1). However, if this is the 
ase, then P

1

will abort ex
ept with

negligible probability, be
ause S

0

will almost 
ertainly 
ontain one of these pairs (and the sets S

0

and S

1

are 
hosen as a random partition based on the value s output from the 
oin tossing).

In the 
ase that P

1

is 
orrupted, the simulator manipulates the 
oin tossing so that in the un-

opened pairs of en
ryptions, all of the 
iphertexts en
rypt 0. This implies that both

�

P

j2S

1

�

j

� 


j

�

=

E

pk

(0) and

�

P

j2S

1

�

0

j

� 


0

j

�

= E

pk

(0), in turn implying that 


0

= E

pk

(m

0

) and 


1

= E

pk

(m

1

). Thus,

the simulator obtains both m

0

and m

1

and sends them to the trusted party. This 
ompletes the

proof sket
h. A full proof follows from the proof of se
urity for Proto
ol 1.

6 A
knowledgements

We would like to thank Nigel Smart for helpful dis
ussions and Benny Pinkas for pointing out an

error in a previous version.

Referen
es

[1℄ W. Aiello, Y. Ishai and O. Reingold. Pri
ed Oblivious Transfer: How to Sell Digital Goods.

In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), pages 119{135, 2001.

[2℄ G. Aggarwal, N. Mishra and B. Pinkas. Se
ure Computation of the k th-Ranked Element.

In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), pages 40{55, 2004.

[3℄ Y. Aumann and Y. Lindell. Se
urity Against Covert Adversaries: EÆ
ient Proto
ols for

Realisti
 Adversaries. In the 4th TCC, Springer-Verlag (LNCS 4392), pages 137{156, 2007.

[4℄ B. Barak and Y. Lindell. Stri
t Polynomial-Time in Simulation and Extra
tion. SIAM

Journal on Computing, 33(4):783{818, 2004.

[5℄ D. Beaver. Foundations of Se
ure Intera
tive Computing. In CRYPTO'91, Springer-Verlag

(LNCS 576), pages 377{391, 1991.

[6℄ J. Camenis
h, G. Neven and A. Shelat. Simulatable Adaptive Oblivious Transfer. In EU-

ROCRYPT 2007, Springer-Verlag (LNCS 4515), pages 573{590, 2007.

[7℄ R. Canetti. Se
urity and Composition of Multiparty Cryptographi
 Proto
ols. Journal of

Cryptology, 13(1):143{202, 2000.

16



[8℄ R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen

Ciphertext Se
ure Publi
-Key En
ryption. In EUROCRYPT 2002, Springer-Verlag (LNCS

2332), pages 45{64, 2002.

[9℄ Y. Dodis, R. Gennaro, J. H�astad, H. Kraw
zyk and T. Rabin. Randomness Extra
tion and

Key Derivation Using the CBC, Cas
ade and HMAC Modes. In CRYPTO 2004, Springer-

Verlag (LNCS 3152), pages 494{510, 2004.

[10℄ S.D. Galbraith, K.G. Paterson and N.P. Smart. Pairings for Cryptographers. Cryptology

ePrint Ar
hive Report 2006/165, 2006.

[11℄ S. Even, O. Goldrei
h and A. Lempel. A Randomized Proto
ol for Signing Contra
ts. In

Communi
ations of the ACM, 28(6):637{647, 1985.

[12℄ O. Goldrei
h. Foundations of Cryptography: Volume 2 { Basi
 Appli
ations. Cambridge

University Press, 2004.

[13℄ O. Goldrei
h and A. Kahan. How To Constru
t Constant-Round Zero-Knowledge Proof

Systems for NP. Journal of Cryptology, 9(3):167{190, 1996.

[14℄ S. Goldwasser and L. Levin. Fair Computation of General Fun
tions in Presen
e of Immoral

Majority. In CRYPTO'90, Springer-Verlag (LNCS 537), pages 77{93, 1990.

[15℄ O. Goldrei
h, S. Mi
ali and A. Wigderson. How to Play any Mental Game { A Completeness

Theorem for Proto
ols with Honest Majority. In 19th STOC, pages 218{229, 1987. For

details see [12℄.

[16℄ M. Green and S. Hohenberger. Blind Identity-Based En
ryption and Simulatable Oblivious

Transfer. In Asia
rypt 2007, Springer-Verlag (LNCS 4833), pages 265{282, 2007.

[17℄ Y.T. Kalai. Smooth Proje
tive Hashing and Two-Message Oblivious Transfer. In EURO-

CRYPT 2005, Springer-Verlag (LNCS 3494), pages 78{95, 2005.

[18℄ J. Kilian. Founding Cryptograph on Oblivious Transfer. In 20th STOC, pages 20{31, 1988.

[19℄ E. Kushilevitz and R. Ostrovsky. Repli
ation is NOT Needed: SINGLE Database,

Computationally-Private Information Retrieval. In 38th FOCS, pages 364{373, 1997.

[20℄ Y. Lindell and B. Pinkas. An EÆ
ient Proto
ol for Se
ure Two-Party Computation in the

Presen
e of Mali
ious Adversaries. In EUROCRYPT 2007, Springer-Verlag (LNCS 4515),

pages 52{78, 2007.

[21℄ S. Mi
ali and P. Rogaway. Se
ure Computation. Unpublishedmanus
ript, 1992. Preliminary

version in CRYPTO'91, Springer-Verlag (LNCS 576), pages 392{404, 1991.

[22℄ M. Mitzenma
her and E. Upfal. Probability and Computing. Cambridge University Press,

2005.

[23℄ M. Naor and B. Pinkas. EÆ
ient Oblivious Transfer Proto
ols. In 12th SODA, pages 448{

457, 2001.

[24℄ M. Rabin. How to Ex
hange Se
rets by Oblivious Transfer. Te
h. Memo TR-81, Aiken

Computation Laboratory, Harvard U., 1981.

[25℄ A. Yao. How to Generate and Ex
hange Se
rets. In 27th FOCS, pages 162{167, 1986.

17


