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Abstrat

Oblivious transfer, �rst introdued by Rabin, is one of the basi building bloks of ryp-

tographi protools. In an oblivious transfer (or more exatly, in its 1-out-of-2 variant), one

party known as the sender has a pair of messages and the other party known as the reeiver

obtains one of them. Somewhat paradoxially, the reeiver obtains exatly one of the messages

(and learns nothing of the other), and the sender does not know whih of the messages the

reeiver obtained. Due to its importane as a building blok for seure protools, the eÆieny

of oblivious transfer protools has been extensively studied. However, to date, there are almost

no known oblivious transfer protools that are seure in the presene of maliious adversaries

under the real/ideal model simulation paradigm (without using general zero-knowledge proofs).

Thus, eÆient protools that reah this level of seurity are of great interest. In this paper we

present eÆient oblivious transfer protools that are seure aording to the ideal/real model

simulation paradigm. We ahieve onstrutions under the DDH, Nth residuosity and quadrati

residuosity assumptions, as well as under the assumption that homomorphi enryption exists.

1 Introdution

In an oblivious transfer, a sender with a pair of strings m

0

;m

1

interats with a reeiver so that at

the end the reeiver learns exatly one of the strings, and the sender learns nothing [24, 11℄. This

is a somewhat paradoxial situation beause the reeiver an only learn one string (thus the sender

annot send both) whereas the sender annot know whih string the reeiver learned (and so the

reeiver annot tell the sender whih string to send). Surprisingly, it is possible to ahieve oblivious

transfer under a wide variety of assumptions and adversary models [11, 15, 19, 23, 1, 17℄.

Oblivious transfer is one of the most basi and widely used protool primitives in ryptography.

It stands at the enter of the fundamental results on seure two-party and multiparty omputation

showing that any eÆient funtionality an be seurely omputed [25, 15℄. In fat, it has even

been shown that oblivious transfer is omplete, meaning that it is possible to seurely ompute any

eÆient funtion one given a box that omputes oblivious transfer [18℄. Thus, oblivious transfer

has great importane to the theory of ryptography. In addition to this, oblivious transfer has been

widely used to onstrut eÆient protools for problems of interest (e.g., it is entral to almost all

of the work on privay-preserving data mining).

Due to its general importane, the task of onstruting eÆient oblivious transfer protools has

attrated muh interest. In the semi-honest model (where adversaries follow the protool spei�-

ation but try to learn more than allowed by examining the protool transript), it is possible to

�
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onstrut eÆient oblivious transfer from (enhaned) trapdoor permutations [11℄ and homomorphi

enryption [19, 1℄. However, the situation is signi�antly more problemati in the maliious model

where adversaries may arbitrarily deviate from the protool spei�ation. One possibility is to

use the protool ompiler of Goldreih, Miali and Wigderson [15℄ to transform oblivious transfer

protools for semi-honest adversaries into protools that are also seure in the presene of maliious

adversaries. However, the result would be a highly ineÆient protool. The diÆulties in obtain-

ing seure oblivious transfer in this model seem to be due to the strit seurity requirements of

simulation-based de�nitions that follow the ideal/real model paradigm.

1

Thus, until reently, the

only known oblivious transfer protools that were seure under this de�nition, and thus were fully

simulatable, were protools that were obtained by applying the ompiler of [15℄. In ontrast, highly-

eÆient oblivious transfer protools that guarantee privay (but not simulatability) in the presene

of maliious adversaries have been onstruted. These protools guarantee that even a maliious

sender annot learn whih string the reeiver learned, and that a maliious reeiver an learn only

one of the sender's input strings. Highly eÆient protools have been onstruted for this setting

under the DDH and N-residuosity assumptions and using homomorphi enryption [19, 23, 1, 17℄.

This urrent state of a�airs is highly unsatisfatory. The reason for this is that oblivious transfer

is often used as a building blok in other protools. However, oblivious transfer protools that only

provide privay are diÆult { if not impossible { to use as building bloks. Thus, the vast number of

protools that assume (fully simulatable) oblivious transfer do not have truly eÆient instantiations

today. For just one example, this is true of the protool of [20℄ that in turn is used in the protool

of [2℄ for seurely omputing the median. The result is that [2℄ has no eÆient instantiation, even

though it is eÆient when ignoring the ost of the oblivious transfers. We onlude that the absene

of eÆient fully-simulatable oblivious transfer ats as a bottlenek in numerous other protools.

Our results. In this paper, we onstrut oblivious transfer protools that are seure (i.e., fully-

simulatable) in the presene of maliious adversaries. Our onstrutions build on those of [23, 1, 17℄

and use ut-and-hoose tehniques. It is folklore that the protools of [23, 1, 17℄ an be modi�ed

to yield full simulatability by adding proofs of knowledge. To some extent, this is what we do.

However, a diret appliation of proofs of knowledge does not work. This is beause the known

eÆient protools are all information-theoretially seure in the presene of a maliious reeiver.

This means that only one of the sender's inputs is de�ned by the protool transript and thus a

standard proof of knowledge annot be applied. (Of ourse, it is possible to have the sender prove

that it behaved honestly aording to some ommitted input but this will already not be eÆient.)

Our protools yield full simulatability and we provide a full proof of seurity.

As we show, our protools are in the order of ` times the omplexity of the protools of [23, 1, 17℄,

where ` is suh the simulation fails with probability 2

�`+2

. Thus, ` an be taken to be relatively

small (say, in the order of 30 or 40). This is a onsiderable overhead. However, our protools are

still by far the most eÆient known without resorting to a random orale.

Related work. There has been muh work on eÆient oblivious transfer in a wide range of

settings. However, very little has been done regarding fully-simulatable oblivious transfer that is

also eÆient (without using random orales). Despite this, reently there has been some progress

in this area. In [6℄, fully simulatable onstrutions are presented. However, these rely on strong

and relatively non-standard assumptions (q-power DDH and q-strong DiÆe-Hellman). Following

1

Aording to this paradigm, a real exeution of a protool is ompared to an ideal exeution in whih a trusted

third party reeives the parties' inputs and sends them their outputs.
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this, protools were presented that rely on the Deisional Bilinear DiÆe-Hellman assumption [16℄.

Our protools di�er from those of [6℄ and [16℄ in the following ways:

1. Assumptions: We present protools that an be onstruted assuming that DDH is hard, that

there exist homomorphi enryption shemes, and more. Thus, we rely on far more standard

and long-standing hardness assumptions.

2. Complexity: Regarding the number of exponentiations, it appears that our protools are of a

similar omplexity to [6, 16℄. However, as pointed out in [10℄, bilinear urves are onsiderably

more expensive than regular Ellipti urves. Thus, the standard deisional DiÆe-Hellman

assumption is muh more eÆient to use (urves that provide pairing need keys that are

similar in size to RSA, in ontrast to regular urves that an be muh smaller).

3. The problem solved: We solve the basi 1-out-of-2 oblivious transfer problem, although our

protools an easily be extended to solve the stati k-out-of-n oblivious transfer problem

(where stati means that the reeiver must hoose whih k elements it wishes to reeive at

the onset). In ontrast, [6℄ and [16℄ both solve the onsiderably harder problem of adaptive

k-out-of-n oblivious transfer where the reeiver hooses the elements to reeive one and a

time, and an base its hoie on the elements it has already reeived.

In onlusion, if adaptive k-out-of-n oblivious transfer is needed, then [6, 16℄ are the best solutions

available. However, if (stati) oblivious transfer suÆes, then our protools are onsiderably more

eÆient and are based on far more standard assumptions.

2 De�nitions

In this setion we present the de�nition of seurity for oblivious transfer, that is based on the

general simulation-based de�nitions for seure omputation; see [14, 21, 5, 7℄. We refer the reader

to [12, Chapter 7℄ for full de�nitions, and provide only a brief overview here. Sine we only onsider

oblivious transfer in this paper, our de�nitions are tailored to the seure omputation of this spei�

funtion only.

Preliminaries. We denote by s 2

R

S the proess of randomly hoosing an element s from a set

S. A funtion �(�) is negligible in n, or just negligible, if for every positive polynomial p(�) and all

suÆiently large n's it holds that �(n) < 1=p(n). A probability ensemble X = fX(n; a)g

a2f0;1g

�

;n2N

is an in�nite sequene of random variables indexed by a and n 2 N. (The value a will represent

the parties' inputs and n the seurity parameter.) Two distribution ensembles X = fX(n; a)g

n2N

and Y = fY (n; a)g

n2N

are said to be omputationally indistinguishable, denoted X



� Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible funtion �(�) suh that for every

a 2 f0; 1g

�

,

jPr[D(X(n; a); a) = 1℄� Pr[D(Y (n; a); a) = 1℄j � �(n)

All parties are assumed to run in time that is polynomial in the seurity parameter. (Formally,

eah party has a seurity parameter tape upon whih that value 1

n

is written. Then the party is

polynomial in the input on this tape.)
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Oblivious transfer. The oblivious transfer funtionality is formally de�ned as a funtion f with

two inputs and one output. The �rst input is a pair (m

0

;m

1

) and the seond input is a bit �.

The output is the string m

�

. Party P

1

, also known as the sender, inputs (m

0

;m

1

) and reeives

no output. In ontrast, party P

2

, also known as the reeiver, inputs the bit � and reeives m

�

for

output. Formally, we write f((m

0

;m

1

); �) = (�;m

�

) where � denotes the empty string. Stated in

words, in the oblivious transfer funtionality party P

1

reeives no output, whereas party P

2

reeives

m

�

(and learns nothing about m

1��

).

Adversarial behavior. Loosely speaking, the aim of a seure two-party protool is to protet

an honest party against dishonest behavior by the other party. In this paper, we onsider maliious

adversaries who may arbitrarily deviate from the spei�ed protool. Furthermore, we onsider the

stati orruption model, where one of the parties is adversarial and the other is honest, and this is

�xed before the exeution begins.

Seurity of protools (informal). The seurity of a protool is analyzed by omparing what an

adversary an do in the protool to what it an do in an ideal senario that is seure by de�nition.

This is formalized by onsidering an ideal omputation involving an inorruptible trusted third

party to whom the parties send their inputs. The trusted party omputes the funtionality on the

inputs and returns to eah party its respetive output. Loosely speaking, a protool is seure if

any adversary interating in the real protool (where no trusted third party exists) an do no more

harm than if it was involved in the above-desribed ideal omputation.

Oblivious transfer in the ideal model. An ideal oblivious transfer exeution proeeds as

follows:

Inputs: Party P

1

obtains an input pair (m

0

;m

1

) with jm

0

j = jm

1

j, and party P

2

obtains an input

bit �.

Send inputs to trusted party: An honest party always sends its input unhanged to the trusted

party. A maliious party may either abort, in whih ase it sends ? to the trusted party, or

send some other input to the trusted party.

Trusted party omputes output: If the trusted party reeives ? from one of the parties, then

it sends ? to both parties and halts. Otherwise, upon reeiving some (m

0

0

;m

0

1

) from P

1

and

a bit �

0

from P

2

, the trusted party sends m

0

�

0

to party P

2

and halts.

Outputs: An honest party always outputs the message it has obtained from the trusted party (?

or nothing in the ase of P

1

, and ? or m

0

�

0

in the ase of P

2

). A maliious party may output

an arbitrary (probabilisti polynomial-time omputable) funtion of its initial input and the

message obtained from the trusted party.

Denote by f the oblivious transfer funtionality and let M = (M

1

;M

2

) be a pair of non-uniform

probabilisti expeted polynomial-time mahines (representing parties in the ideal model). Suh a

pair is admissible if for at least one i 2 f1; 2g we have that M

i

is honest (i.e., follows the honest

party instrutions in the above-desribed ideal exeution). Then, the joint exeution of f under M

in the ideal model (on input ((m

0

;m

1

); �)), denoted ideal

f;M

((m

0

;m

1

); �), is de�ned as the output

pair of M

1

and M

2

from the above ideal exeution.
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Exeution in the real model. We next onsider the real model in whih a real two-party

protool is exeuted and there exists no trusted third party. In this ase, a maliious party may

follow an arbitrary feasible strategy; that is, any strategy implementable by non-uniform proba-

bilisti polynomial-time mahines. Let � be a two-party protool. Furthermore, let M = (M

1

;M

2

)

be a pair of non-uniform probabilisti polynomial-time mahines (representing parties in the real

model). Suh a pair is admissible if for at least one i 2 f1; 2g we have that M

i

is honest (i.e., follows

the strategy spei�ed by �). Then, the joint exeution of � under M in the real model (on input

((m

0

;m

1

); �)), denoted real

�;M

((m

0

;m

1

); �), is de�ned as the output pair ofM

1

andM

2

resulting

from the protool interation.

Seurity as emulation of a real exeution in the ideal model. Having de�ned the ideal

and real models, we an now de�ne seurity of protools. Loosely speaking, the de�nition asserts

that a seure two-party protool (in the real model) emulates the ideal model (in whih a trusted

party exists). This is formulated by saying that admissible pairs in the ideal model are able to

simulate admissible pairs in an exeution of a seure real-model protool.

De�nition 1 Let f denote the oblivious transfer protool and let � be a two-party protool. Pro-

tool � is said to be a seure oblivious transfer protool if for every pair of admissible non-uniform

probabilisti polynomial-time mahines A = (A

1

; A

2

) for the real model, there exists a pair of ad-

missible non-uniform probabilisti expeted polynomial-time mahines B = (B

1

; B

2

) for the ideal

model, suh that for every m

0

;m

1

2 f0; 1g

�

of the same length and every � 2 f0; 1g,

n

ideal

f;B

(n; (m

0

;m

1

); �)

o



�

n

real

�;A

(n; (m

0

;m

1

); �)

o

Note that we allow the ideal adversary/simulator to run in expeted (rather than strit)

polynomial-time. This is essential for ahieving onstant-round protools; see [4℄.

3 Oblivious Transfer Under the DDH Assumption

In this setion we present an oblivious transfer protool that is seure in the presene of maliious

adversaries, under the DDH assumption. The protool is a variant of the two-round protool

of [23℄ with some important hanges. Before proeeding, we reall the protool of [23℄. Basially,

this protool works by the reeiver generating a tuple (g

a

; g

b

; g



; g

d

) with the following property:

if the reeiver's input equals 0 then  = ab and d is random, and if the reeiver's input equals 1

then d = ab and  is random. The sender reeives this tuple and arries out a manipulation that

randomizes the tuple so that if  = ab then the result of the manipulation on (g

a

; g

b

; g



) is still a

DDH tuple and the result of the manipulation on (g

a

; g

b

; g

d

) yields a ompletely random tuple (if

d = ab then the same holds in reverse). The sender then derives a seret key from the manipulation

of eah of (g

a

; g

b

; g



) and (g

a

; g

b

; g

d

), and sends information that enables the reeiver to derive the

same seret key from the DDH tuple, whereas the key from the non-DDH tuple remains ompletely

random. In addition, the sender enrypts its �rst message under the key derived from (g

a

; g

b

; g



)

and its seond message under the key derived from (g

a

; g

b

; g

d

). The reeiver is able to derypt the

message derived from the DDH tuple but has no information about the other key and so annot

learn anything about the other message. We remark that the sender heks that g



6= g

d

. This

ensures that only one of (g

a

; g

b

; g



) and (g

a

; g

b

; g

d

) is a DDH tuple.

The seret key that is derived from the non-DDH tuple above is information-theoretially hidden

from the reeiver. This auses a problem when attempting to onstrut a simulator for the protool
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beause the simulator must learn both of the sender's inputs in order to send them to the trusted

party (and for whatever �rst message the simulator sends, it an only learn one of the sender's

inputs). We remark that if rewinding is used to obtain both messages then this auses a problem

beause the sender an make its input depend on the �rst message from the reeiver. We therefore

hange the protool of [23℄ so that instead of sending (g

a

; g

b

; g



; g

d

) where at most one of  or d

equals a � b, the reeiver sends two tuples: one of the tuples is a DDH type and the other is not.

The parties then interat to ensure that indeed only one of the tuples is of the DDH type. As we

will see, this ensures that the reeiver obtains only one message. The \interation" used to prove

this is of the simplest ut-and-hoose type.

The protool below uses two ommitment shemes for the purpose of oin tossing: a perfetly

hiding ommitment sheme denoted Com

h

, and a perfetly binding ommitment sheme, denoted

Com

b

. We remark that suh ommitment shemes exist under the Disrete Log assumption, and

thus also under the DDH assumption. We assume that the input values m

0

;m

1

of the sender are

in the group G that we are working with for the DDH assumption. If they annot be mapped to G

(e.g., they are too long), then the oblivious transfer an be used to exhange seret keys k

0

and k

1

that are used to enrypt m

0

and m

1

, respetively.

Protool 1

� Auxiliary input: The parties have the desription of a group G of order q, and a generator g

for the group. In addition, they have a statistial error parameter `.

� Input: The sender has a pair of group elements (m

0

;m

1

) and the reeiver has a bit �.

� The protool:

1. For i = 1; : : : ; `, the reeiver P

2

hooses a random bit �

i

2

R

f0; 1g and random values

a

0

i

; b

0

i

; 

0

i

; a

1

i

; b

1

i

; 

1

i

2

R

f1; : : : ; qg under the onstraint that 

�

i

i

= a

�

i

i

� b

�

i

i

and 

1��

i

i

6= a

1��

i

i

�

b

1��

i

i

. Then, P

2

omputes the tuples 

0

i

= (g

a

0

i

; g

b

0

i

; g



0

i

) and 

1

i

= (g

a

1

i

; g

b

1

i

; g



1

i

). Note that



�

i

i

is a DDH tuple and 

1��

i

i

is not.

P

2

sends all of the pairs h(

0

1

; 

1

1

); : : : ; (

0

`

; 

1

`

)i to the sender P

1

.

2. Coin tossing:

(a) P

1

hooses a random s 2

R

f0; 1g

`

and sends Com

h

(s) to P

2

.

(b) P

2

hooses a random s

0

2

R

f0; 1g

`

and sends Com

b

(s

0

) to P

1

.

() P

1

and P

2

send deommitments to Com

h

(s) and Com

b

(s

0

), respetively, and set r =

s� s

0

. Denote r = r

1

; : : : ; r

`

.

3. For every i for whih r

i

= 1, party P

2

sends a

0

i

; b

0

i

; 

0

i

; a

1

i

; b

1

i

; 

1

i

to P

1

.

In addition, for every j for whih r

j

= 0, party P

2

sends a \reordering" of 

0

j

and 

1

j

so

that all of the 

�

j

tuples are DDH tuples and all of the 

1��

j

tuples are not. This reordering

is a bit suh that if it equals 0 then the tuples are left as is, and if it equals 1 then 

0

j

and



1

j

are interhanged.

4. P

1

heks that for every i for whih r

i

= 1 it reeived the appropriate values and that they

de�ne 

0

i

and 

1

i

. Furthermore, it heks that exatly one of 

0

i

and 

1

i

is a DDH tuple

as de�ned above and the other is not. If any of the heks fail, P

1

halts and outputs ?.

Otherwise it ontinues as follows:

(a) Denote 

0

j

= (x

0

j

; y

0

j

; z

0

j

) and 

1

j

= (x

1

j

; y

1

j

; z

1

j

). Then, for every j for whih r

j

= 0,

party P

1

hooses random u

0

i

; u

1

i

; v

0

i

; v

1

i

2

R

f1; : : : ; qg and omputes the following four

6



values:

w

0

j

=

�

x

0

j

�

u

0

i

� g

v

0

i

k

0

j

=

�

z

0

j

�

u

0

i

�

�

y

0

j

�

v

0

i

w

1

j

=

�

x

1

j

�

u

1

i

� g

v

1

i

k

1

j

=

�

z

1

j

�

u

1

i

�

�

y

1

j

�

v

1

i

(b) Let j

1

; : : : ; j

t

be the indies j for whih r

j

= 0. Then, P

1

\enrypts" m

0

under all of

the keys k

0

j

, and m

1

under all of the keys k

1

j

, as follows:



0

=

 

t

Y

i=1

k

0

j

i

!

�m

0



1

=

 

t

Y

i=1

k

1

j

i

!

�m

1

P

1

sends P

2

all of the w

0

j

; w

1

j

values, as well as the pair (

0

; 

1

).

5. For every j for whih r

j

= 0, party P

2

omputes k

�

j

= (w

�

j

)

b

0

j

. Then, P

2

outputs m

�

=



�

�

�

Q

t

i=1

k

�

j

i

�

�1

.

Before proeeding to the proof, we show that the protool \works", meaning that when P

1

and

P

2

are honest, the output is orretly obtained. We present this to \explain" the omputations

that take plae in the protool, although these are exatly as in the protool of [23℄. First, notie

that

�

w

�

j

�

b

�

j

=

�

x

�

j

�

u

�

j

�b

�

j

�

�

g

v

�

j

�

b

�

j

=

�

g

a

�

j

�b

�

j

�

u

�

j

�

�

g

b

�

j

�

v

�

j

By the fat that 

�

j

is a DDH tuple we have that g

a

�

j

�b

�

j

= z

�

j

and so

�

w

�

j

�

b

�

j

=

�

z

�

j

�

u

�

j

�

�

y

�

j

�

v

�

j

= k

�

j

Thus P

2

orretly omputes eah key k

�

j

for j suh that r

j

= 0. Given all of these keys, it

immediately follows that P

2

an derypt 

�

, obtaining m

�

. We now proeed to prove the seurity

of the protool.

Theorem 1 Assume that the deisional DiÆe-Hellman problem is hard in G with generator g, that

Com

h

is a perfetly-hiding ommitment sheme, and that Com

b

is a perfetly-binding ommitment

sheme. Then, Protool 1 seurely omputes the oblivious transfer funtionality in the presene of

maliious adversaries.

Proof: We separately prove the seurity of the protool for the ase that no parties are orrupted,

P

1

is orrupted, and P

2

is orrupted. In the ase that both P

1

and P

2

are honest, we have already

seen that P

2

obtains exatly m

�

. Thus, seurity holds. We now proeed to the other ases.

P

1

is orrupted. Let A

1

be a non-uniform probabilisti polynomial-time real adversary that

ontrols P

1

. We onstrut a non-uniform probabilisti expeted polynomial-time ideal-model ad-

versary/simulator S

1

. The basi idea behind how S

1

works is that it uses rewinding in order to

ensure that all of the \heked" tuples are valid (i.e., one is a DDH tuple and the other is not),

whereas all of the \unheked" tuples have the property that they are both of the DDH type. Now,

sine the protool is suh that a reeiver an obtain a key k

�

j

as long as 

�

j

was a DDH tuple, it

follows that S

1

an obtain all of the k

0

j

and k

1

j

keys. This enables it to derypt both 

0

and 

1

and obtain both messages input by A

1

into the protool. S

1

then sends these inputs to the trusted

7



party, and the honest party P

2

in the ideal model will reeive the same message that it would

have reeived in a real exeution with A

1

(or more aurately, a message that is omputationally

indistinguishable from that message).

We now desribe S

1

formally. Upon input 1

n

and (m

0

;m

1

), the mahine S

1

invokes A

1

upon

the same input and works as follows:

1. S

1

hooses a random r 2

R

f0; 1g

`

and generates tuples 

0

1

; 

1

1

; : : : ; 

0

`

; 

1

`

with the following

property:

(a) For every i for whih r

i

= 1, S

1

onstruts 

0

i

and 

1

i

like an honest P

2

(i.e., one of them

being a DDH tuple and the other not, in random order).

(b) For every j for whih r

j

= 0, S

1

onstruts 

0

j

and 

1

j

to both be DDH tuples.

S

1

hands the tuples to A

1

.

2. Simulation of the oin tossing: S

1

simulates the oin tossing so that the result is r, as follows:

(a) S

1

reeives a ommitment 

h

from A

1

.

(b) S

1

hooses a random s

0

2

R

f0; 1g

`

and hands 

b

= Com

b

(s

0

) to A

1

.

() If A

1

does not send a valid deommitment to 

h

, then S

1

simulates P

2

aborting and

sends ? to the trusted party. Then S

1

outputs whatever A

1

outputs and halts.

Otherwise, let s be the deommitted value. S

1

proeeds as follows:

i. S

1

sets s

0

= r � s, rewinds A

1

, and hands it Com

b

(s

0

).

ii. If A

1

deommits to s, then S

1

proeeds to the next step. If A

1

deommits to a value

~s 6= s, then S

1

outputs fail. Otherwise, if it does not deommit to any value, S

1

returns to the previous step and tries again until A

1

does deommit to s. (We stress

that in every attempt, S

1

hands A

1

a ommitment to the same value s

0

. However,

the randomness used to generate the ommitment Com

b

(s

0

) is independent eah

time.)

2

3. Upon reeiving a valid deommitment to s from A

1

, simulator S

1

deommits to A

1

, revealing

s

0

. (Note that r = s� s

0

.)

4. For every i for whih r

i

= 1, simulator S

1

hands A

1

the values a

0

i

; b

0

i

; 

0

i

; a

1

i

; b

1

i

; 

1

i

used to

generate 

0

i

and 

1

i

. In addition, S

1

hands A

1

a random reordering of the pairs.

5. If A

1

does not reply with a valid message, then S

1

sends ? to the trusted party, outputs

whatever A

1

outputs and halts. Otherwise, it reeives a series of pairs (w

0

j

; w

1

j

) for every j

for whih r

j

= 0, as well as iphertexts 

0

and 

1

. S

1

then follows the instrutions of P

2

for

deriving the keys. However, unlike an honest P

2

, it omputes k

0

j

= (w

0

j

)

b

0

j

and k

1

j

= (w

1

j

)

b

1

j

and uses the keys it obtains to derypt both 

0

and 

1

. (Note that for eah suh j, both 

0

j

and 

1

j

are DDH tuples; thus this makes sense.)

Let m

0

and m

1

be the messages obtained by derypting. S

1

sends the pair to the trusted

party as the �rst party's input, outputs whatever A

1

outputs and halts.

2

This strategy by S

1

is atually over-simpli�ed and does not guarantee that it runs in expeted polynomial-time.

This tehniality will be disussed below, and we will show how S

1

an be \�xed" so that its expeted running-time

is polynomial.

8



We now prove that the joint output distribution of S

1

and an honest P

2

in an ideal exeution is

omputationally indistinguishable from the output distribution of A

1

and an honest P

2

in a real

exeution. First, note that the view of A

1

in the simulation with S

1

is indistinguishable from its

view in a real exeution. The only di�erene in its view is due to the fat that the tuples 

0

j

and



1

j

for whih r

j

= 0 are both of the DDH type. The only other di�erene is due to the oin tossing

(and the rewinding). However, by the binding property of the ommitment sent by A

1

and the

fat that P

2

generates its ommitment after reeiving A

1

's, we have that the outome of the oin

tossing in a real exeution is statistially lose to uniform (where the only di�erene is due to the

negligible probability that A

1

will break the omputational binding property of the ommitment

sheme.) In the simulation by S

1

, the outome is always uniformly distributed, assuming that

S

1

does not output fail. Sine S

1

outputs fail when A

1

breaks the omputational binding of the

ommitment sheme, this ours with at most negligible probability (a rigorous analysis of this is

given in [13℄). We therefore have that, apart from the negligible di�erene due to the oin tossing,

the only di�erene is due to the generation of the tuples. Intuitively, indistinguishability therefore

follows from the DDH assumption. More formally, this is proven by onstruting a mahine D that

distinguishes many opies of DDH tuples from many opies of non-DDH tuples. D reeives a series

of tuples and runs in exatly the same way as S

1

exept that it onstruts the 

0

j

and 

1

j

tuples (for

r

j

= 0) so that one is a DDH tuple and the other is from its input, in random order. Furthermore,

it provides the reordering so that all of the DDH tuples it generates are assoiated with � and all

of the ones it reeives externally are assoiated with 1��. (For the sake of this mental experiment,

we assume that D is given the input � of P

2

.) It follows that if D reeives a series of DDH tuples,

then the view of A

1

is exatly the same as in the simulation with S

1

(beause all the tuples are

of the DiÆe-Hellman type). In ontrast, if D reeives a series of non-DDH tuples, then the view

of A

1

is exatly the same as in a real exeution (beause only the tuples assoiated with � are of

the DiÆe-Hellman type). This suÆes for showing that the output of A

1

in a real exeution is

indistinguishable from the output of S

1

in an ideal exeution (reall that S

1

outputs whatever A

1

outputs). However, we have to show this for the joint distribution of the output of A

1

(or S

1

) and

the honest P

2

. In order to see this, reall that the output of P

2

is m

�

where � is the honest P

2

's

input. Now, assume that there exists a polynomial-time distinguisherD

0

that distinguishes between

the real and ideal distributions with non-negligible probability. We onstrut a distinguisher D

as above that distinguishes DDH from non-DDH tuples. The mahine D reeives the input � of

P

2

and a series of tuples that are either DDH or non-DDH tuples. D then works exatly as above

(i.e., onstruting the 

0

j

and 

1

j

tuples so that in the reordering step, all the 

�

j

tuples are those it

generated itself and all the 

1��

j

tuples are those it reeived as input). Sine D generated all of the



�

j

tuples, it is able to \derypt" 

�

and obtain m

�

. Mahine D therefore does this, and invokes D

0

on the output of A

1

and the message m

�

(whih is the output that an honest P

2

would reeive).

Finally D outputs whatever D

0

does. It is lear that if D reeives non-DDH tuples, then the output

distribution generated is exatly like that of a real exeution between A

1

and P

2

. In ontrast, if it

reeives DDH tuples, then the output distribution is exatly like of an ideal exeution with S

1

. (A

subtle point here is that the distribution over the  tuples generated by D who knows � is idential

to the distribution generated by S

1

who does not know �. The reason for this is that when all the

tuples are of the DDH type, their ordering makes no di�erene.) We onlude that D solves the

DDH problem with non-negligible probability, in ontradition to the DDH assumption. Thus, the

real and ideal output distributions must be omputationally indistinguishable, as required.

It remains to prove that S

1

runs in expeted polynomial-time. Unfortunately, this is not true!

In order to see this, denote by p the probability that A

1

deommits orretly to s when it reeives

a ommitment to a random s

0

. Next, denote by q the probability that A

1

deommits orretly

9



when it reeives a ommitment to s

0

= s� r. (Note that this is not random beause r is impliit

in the way that S

1

generated the tuples. That is, if r

i

= 1 then 

0

i

and 

1

i

are honestly generated,

and otherwise they are both of the DDH type.) Now, by the hiding property of the ommitment

sheme Com

b

, the di�erene between p and q an be at most negligible. Furthermore, the expeted

running-time of S

1

in the rewinding stage equals p=q times some �xed polynomial fator. In order

to see this, observe that S

1

enters the rewinding stage with probability p, and onludes after

an expeted 1=q number of rewindings. It thus remains to bound p=q. (We remark that S

1

's

running time in the rest of the simulation is a �xed polynomial and so we ignore this from now on).

Unfortunately, even though p and q are at most negligibly far from eah other, as we have disussed,

the value p=q may not neessarily be polynomial. For example, if p = 2

�n

and q = 2

�n

+ 2

�n=2

then p=q � 2

n=2

. Thus, the expeted running-time of S

1

is not neessarily polynomial. Fortunately,

this an be solved using the tehniques of [13℄ who solved an idential problem. Loosely speaking,

the tehnique of [13℄ works by �rst estimating p and then ensuring that the number of rewinding

attempts does not exeed a �xed polynomial times the estimation of p. It is shown that this yields

a simulator that is guaranteed to run in expeted polynomial time. Furthermore, the output of the

simulator is only negligibly far from the original (simpli�ed) strategy desribed above. Thus, these

tehniques an be applied here and the simulator appropriately hanged, with the result being that

the output is only negligibly di�erent from before, as required.

P

2

is orrupted. As before, we let A

2

be any non-uniform probabilisti polynomial-time adver-

sary ontrolling P

2

and we onstrut a non-uniform probabilisti expeted polynomial-time simula-

tor S

2

. The simulator S

2

extrats the bit � used by A

2

by rewinding it and obtaining the reordering

of tuples that it had previously opened. Formally, upon input 1

n

and �, the simulator S

2

invokes

A

2

upon the same input and works as follows:

1. S

2

reeives a series of tuples 

0

1

; 

1

1

; : : : ; 

0

`

; 

1

`

from A

2

.

2. S

2

hands A

2

a ommitment 

h

= Com

h

(s) to a random s 2

R

f0; 1g

`

, reeives bak 

b

, deom-

mits to 

h

and reeives A

2

's deommitment to 

b

. S

2

then reeives all of the a

0

i

; b

0

i

; 

0

i

; a

1

i

; b

1

i

; 

1

i

values from A

2

, for i where r

i

= 1, and the reorderings for j where r

j

= 0. If the values sent

by A

2

are not valid (as heked by P

1

in the protool) or A

2

did not send valid deommit-

ments, S

2

sends ? to the trusted party, outputs whatever A

2

outputs, and halts. Otherwise,

it ontinues to the next step.

3. S

2

rewinds A

2

bak to the beginning of the oin-tossing, hands A

2

a ommitment ~

h

=

Com

h

(~s) to a fresh random ~s 2

R

f0; 1g

`

, reeives bak some ~

b

, deommits to ~

h

and re-

eives A

2

's deommitment to ~

b

. In addition, S

2

reeives the a

0

i

; b

0

i

; 

0

i

; a

1

i

; b

1

i

; 

1

i

values and

reorderings.

If any of the values are not valid, S

2

repeats this step using fresh randomness eah time, until

all values are valid.

4. Following this, S

2

rewinds A

2

to the beginning and resends the exat messages of the �rst

oin tossing (resulting in exatly the same transript as before).

5. Denote by r the result of the �rst oin tossing (Step 2 above), and ~r the result of the seond

oin tossing (Step 3 above). If r = ~r then S

2

outputs fail and halts. Otherwise, S

2

searhes for

a value t suh that r

t

= 0 and ~r

t

= 1. (Note that by the de�nition of the simulation, exatly

one of 

0

t

and 

1

t

is a DDH tuple. Otherwise, the values would not be onsidered valid.) If

no suh t exists (i.e., for every t suh that r

t

6= ~r

t

it holds that r

t

= 1 and ~r

t

= 0), then S

2

10



begins the simulation from srath with the exeption that it must �nd r and ~r for whih all

values are valid (i.e., if for r the values sent by A

2

are not valid it does not terminate the

simulation but rather rewinds until it �nds an r for whih the responses of A

2

are all valid).

If S

2

does not start again, we have that it has a

0

t

; b

0

t

; 

0

t

; a

1

t

; b

1

t

; 

1

t

and an determine whih of



0

t

and 

1

t

is a DDH tuple. Furthermore, sine ~r

t

= 1, the reordering that S

2

reeives from

A

2

after the oin tossing indiates whether the DDH tuple is assoiated with 0 or with 1. S

2

sets � = 0 if after the reordering 

0

t

is of the DDH type, and sets � = 1 if after the reordering



1

t

is of the DDH type. (Note that exatly one of the tuples is of the DDH type beause this

is heked in the seond oin tossing.)

6. S

2

sends � to the trusted party and reeives bak a string m = m

�

. Simulator S

2

then

omputes the last message from P

1

to P

2

honestly, while enrypting m

�

under the keys k

�

j

(and enrypting any arbitrary string of the same length under the keys k

j

1��

). S

2

hands A

2

these messages and outputs whatever A

2

outputs and halts.

We now prove that the output distribution of A

2

in a real exeution with an honest P

1

(with

input (m

0

;m

1

)) is omputationally indistinguishable from the output distribution of S

2

in an ideal

exeution with an honest P

1

(with the same input (m

0

;m

1

)). We begin by showing that S

2

outputs

fail with probability at most 2

�`

, ignoring for now the probability that r = ~r in later rewindings

(whih may our if S

2

has to start again from srath). Reall that this event ours if everything

is \valid" after the �rst oin tossing (where the result is r), and the result of the seond oin-tossing

after whih everything is valid is ~r = r.

3

First, observe that the distributions of the strings r and

~r are idential. This is beause S

2

runs the oin tossing in the same way eah time (using fresh

random oins), and aepts ~r when all is valid, exatly as what happened with r. Next, note that

the distribution over the result of the oin tossing { without onditioning over A

2

sending valid

deommitments { is uniform. This holds beause the ommitment that S

2

hands to A

2

is perfetly

hiding and the ommitment returned by A

2

to S

2

is perfetly binding. Let R be a random variable

that denotes the result of the �rst oin tossing between A

2

and S

2

in the simulation, and let valid be

the event that A

2

replies with valid deommitments and values after the �rst oin tossing. Finally,

for a given r 2 f0; 1g

`

, let obtain

r

denote the event that the result of one of the oin tossing attempts

in the seond stage equals r. (Note that this does not mean that ~r = r beause ~r is the result that

is �nally aepted after A

2

sends valid values. However, the deision of A

2

to send valid values may

also depend on the randomness used to generate Com

h

(s). Thus, ~r may not equal r, even though

r is obtained in one of the oin tossing attempts in the seond stage.) Clearly, fail an only our

if r is obtained at least one as the result of a oin tossing attempt in the seond stage (beause

fail an only our if ~r = r). We therefore have the following:

Pr[fail℄ �

X

r2f0;1g

`

Pr[R = r & valid℄ � Pr[obtain

r

℄ (1)

Before analyzing this probability, we ompute Pr[obtain

r

℄ for a �xed r. Let p denote the probability

(over A

2

and S

2

's oin tosses) that A

2

sends valid values after the oin tossing. It follows that the

expeted number of trials by S

2

in the seond oin tossing is 1=p. Letting X

r

be a Boolean random

variable that equals 1 if and only if the result of the seond oin tossing attempt equals the �xed

r, we have that E[X

r

℄ = 2

�`

. By Wald's equation (e.g., see [22, Page 300℄), it follows that the

expeted number of times that r is obtained as the result of a oin tossing attempt in the seond

3

It is very easy to prove that the probability that S

2

outputs fail is at most 2

�`=2

. However, in order to keep ` to

a low value, we present a more subtle analysis that demonstrates that S

2

outputs fail with probability at most 2

�`

.
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stage by S

2

is 1=p � 2

�`

. Using Markov's inequality, we have that the probability that r is obtained

at least one as the result of a oin tossing attempt in the seond stage is at most 1=p � 2

�`

. That

is:

Pr[obtain

r

℄ �

1

p � 2

`

We are now ready to return to Eq. (1). Denote by p

r

the probability that A

2

sends valid values

onditioned on the outome of the oin tossing being r. It follows that

p =

X

r2f0;1g

`

Pr[R = r℄ � p

r

=

X

r2f0;1g

`

p

r

2

`

Furthermore,

Pr[R = r & valid℄ = Pr[valid j R = r℄ � Pr[R = r℄ = p

r

�

1

2

`

Combining the above, we have:

Pr[fail℄ �

X

r2f0;1g

`

Pr[R = r & valid℄ � Pr[obtain

r

℄

�

X

r2f0;1g

`

p

r

2

`

�

1

p � 2

`

=

1

p � 2

`

�

X

r2f0;1g

`

p

r

2

`

=

1

p � 2

`

� p =

1

2

`

We onlude that S

2

outputs fail with probability at most 2

�`

, as required. Reall that this analysis

doesn't take into aount the probability that S

2

starts the simulation from srath. Rather, it just

shows that S

2

outputs fail in any simulation attempt (between starts from srath) with probability

at most 2

�`

. Below, we will show that the probability that S

2

starts from srath is at most 1=2.

Denote by fail

i

the probability that S

2

outputs fail in the ith attempt, given that there is suh an

attempt. Likewise, denote by repeat

i

the probability that S

2

has an ith attempt. We have shown

that for every i, Pr[fail

i

℄ = 2

�`

, and below we show that every repeat happens with probability

1=2 and so for every i, Pr[repeat

i

℄ = 2

i�1

(repeat

1

= 1 beause we always have one attempt). We

therefore have:

Pr[fail℄ =

1

X

i=1

Pr[fail

i

℄ � Pr[repeat

i

℄ =

1

2

`

1

X

i=1

1

2

i�1

=

1

2

`

� 2 =

1

2

`�1

Given the above, we proeed to show indistinguishability of the ideal and real distributions.

Notie that in the ase that S does not output fail, the �nal transript as viewed by A

2

onsists of

the �rst oin tossing (that is distributed exatly as in a real exeution) and the last message from

S

2

to A

2

. This last message is not generated honestly, in that 

�

is indeed an enryption of m

�

,

but 

1��

is an enryption of an arbitrary value (and not neessarily of m

1��

). However, as shown

in [23℄, for any tuple 

1��

j

that is not a DDH tuple, the value k

1��

j

is uniformly distributed in G

(even given w

1��

j

as reeived by A

2

). This implies that 

1��

is uniformly distributed, independent

of the value m

1��

. Thus, A

2

's view in the exeution with S

2

is statistially lose to its view in

a real exeution with P

1

(the only di�erene being if S

2

outputs fail). This ompletes the proof

regarding indistinguishability.
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It remains to prove that S

2

runs in expeted polynomial-time. We begin by analyzing the

rewinding by S

2

in the oin tossing phase (learly, the running-time of S

2

outside of the rewinding

is stritly polynomial, and so it suÆes to bound the expeted number of rewinding attempts).

Denote by p the probability that A

2

ompletes the oin tossing phase and provides valid values to

S

2

. The important point to note here is that eah rewinding attempt is suessful with probability

exatly p (there is no di�erene between the distribution over the �rst and seond oin tossing

attempts, in ontrast to the simulation where P

1

is orrupted). Thus, with probability p there are

rewinding attempts, and in suh a ase there are an expeted 1=p suh attempts. This yields an

expeted number of rewindings of 1. We now analyze the number of times that S

2

is expeted

to have to begin from srath (due to there being no t for whih r

t

= 0 and ~r

t

= 1). The main

observation here is that for any pair r and ~r whih fores S

2

to begin from srath, interhanging

r and ~r would result in a pair for whih S

2

would be able to ontinue. Now, sine r and ~r are

derived through independent exeutions of the oin tossing phase, the probability that they are in

one order equals the probability that they are in the opposite order. Thus, the probability that S

2

needs to start from srath equals at most 1=2. This implies that the expeted number of times

that S

2

needs to start from srath is at most two. We remark that when S

2

starts from srath,

the expeted number of times it needs to rewind in order to obtain eah of r and ~r is 1=p. Thus,

overall the expeted number of rewinding attempts is p � O(1)=p = O(1). We onlude that the

overall expeted running time of S

2

is polynomial, as required.

EÆieny. The omplexity of the protool is in the order of ` times the basi protool of [23℄.

Thus, the eÆieny depends strongly on the value of ` that is taken. It is important to notie that

the simulation sueeds exept with probability � 2

�`+1

(as long as the ryptographi primitives

are not \broken"). To be more exat, one should take ` and n so that the probability of \breaking"

the ryptographi primitives (the ommitments for the oin tossing or the seurity of enryption)

is at most 2

�`+1

. In suh a ase, our analysis in the proof shows that the ideal and real exeutions

an be distinguished with probability at most 2

�`+2

. This means that ` an be hosen to be

relatively small, depending on the level of seurity desired. Spei�ally, with ` = 30 the probability

of suessful undeteted heating is 2

�28

� 3:7 � 10

�9

whih is already very very small. Thus, it

is reasonable to say that the omplexity of the protool is between 30 and 40 times of that of [23℄.

This is a non-trivial prie; however, this is far more eÆient than known solutions. We also remark

that a similar idea an be used to ahieve seurity in the model of overt adversaries of [3℄. For

deterrent fator � = 1=2 one an use ` = 2 and have the sender hoose r singlehandedly with

one bit of r equalling 0 and the other equalling 1. This yields very high eÆieny, together with

simulatability (albeit in the weaker model of overt adversaries).

4 Oblivious Transfer using Smooth Hashing

The protool of [23℄ was generalized by [17℄ via the notion of smooth projetive hashing of [8℄. This

enables the onstrution of oblivious transfer protools that are analogous to [23℄ under the Nth

residuosity and quadrati residuosity assumptions. Protool 1 an be extended diretly in the same

way, yielding oblivious transfer protools that are seure against maliious adversaries, under the

Nth residuosity and quadrati residuosity assumptions. We remark that as in the protool of [17℄,

the instantiation of the protool under the Nth residuosity assumption is highly eÆient, whereas

the instantiation under the quadrati residuosity assumption enables the exhange of a single bit

only (but is based on a longer-standing hardness assumption). We remark, however, that using

Ellipti urves, the solution based on the DDH assumption is by far the most eÆient.
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5 Oblivious Transfer from Homomorphi Enryption

In this setion, we present a protool based on the protool of [1℄ that uses homomorphi enryption.

We assume an additive homomorphi enryption sheme (G;E;D), where G(1

n

) outputs a key-pair

of length n, E is the enryption algorithm and D the deryption algorithm. Note that additive

homomorphi operations imply multipliation by a salar as well. The ideas behind this protool

are similar to above, and our presentation is therefore rather brief.

Protool 2

� Input: The sender has a pair of strings (m

0

;m

1

) of known length and the reeiver has a bit �.

Both parties have a seurity parameter n determining the length of the keys for the enryption

sheme, and a separate statistial seurity parameter `.

� The protool:

1. Reeiver's message:

(a) The reeiver P

2

hooses a key-pair (pk; sk)  G(1

n

) from a homomorphi enryption

sheme (G;E;D).

4

(b) For i = 1; : : : ; `, party P

2

hooses a random bit b

i

2

R

f0; 1g and de�nes



b

i

i

= E

pk

(0; r

b

i

i

) and 

1�b

i

i

= E

pk

(1; r

1�b

i

i

) :

where r

0

i

and r

1

i

are random strings, and E

pk

(x; r) denotes an enryption of message

x using random oins r.

() P

2

sends pk; h

0

1

; 

1

1

; : : : ; 

0

`

; 

1

`

i to P

1

.

2. Coin tossing:

(a) P

1

hooses a random ~s 2

R

f0; 1g

`

and sends Com

h

(~s) to P

2

.

(b) P

2

hooses a random ŝ 2

R

f0; 1g

`

and sends Com

b

(ŝ) to P

1

.

() P

1

and P

2

send deommitments to Com

h

(~s) and Com

b

(ŝ), respetively, and set s = ~s�ŝ.

Denote s = s

1

; : : : ; s

`

. Furthermore let S

1

be the set of all i for whih s

i

= 1, and let

S

0

be the set of all j for whih s

j

= 0. (Note that S

1

; S

0

are a partition of f1; : : : ; `g.)

3. Reeiver's message:

(a) For every i 2 S

1

, party P

2

sends the randomness r

0

i

; r

1

i

used to enrypt 

0

i

and 

1

i

.

(b) In addition, for every j 2 S

0

, party P

2

sends a bit �

j

so that if � = 0 then �

j

= b

j

,

and if � = 1 then �

j

= 1� b

j

.

4. Sender's message:

(a) For every i 2 S

1

, party P

1

veri�es that either 

0

i

= E

pk

(0; r

0

i

) and 

1

i

= E

pk

(1; r

1

i

),

or 

0

i

= E

pk

(1; r

0

i

) and 

1

i

= E

pk

(0; r

1

i

). That is, P

1

veri�es that in every pair, one

iphertext is an enryption of 0 and the other is an enryption of 1. If this does not

hold for every suh i, party P

1

halts. If it does hold, it proeeds to the next step.

(b) For every j 2 S

0

, party P

1

de�nes 

j

and 

0

j

as follows:

i. If �

i

= 0 then 

j

= 

0

j

and 

0

j

= 

1

j

.

ii. If �

i

= 1 then 

j

= 

1

j

and 

0

j

= 

0

j

.

4

We assume that it is possible to verify that a publi-key pk is in the range of the key generation algorithm G. If

this is not the ase, then a zero-knowledge proof of this fat must be added.
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This implies that if � = 0 then 

j

= E

pk

(0) and 

0

j

= E

pk

(1), and if � = 1 then



j

= E

pk

(1) and 

0

j

= E

pk

(0).

5

() For every j 2 S

0

, party P

1

hooses random �

j

; �

0

j

, uniformly distributed in the group

de�ned by the enryption sheme. Then, P

1

uses the homomorphi properties of the

enryption sheme to ompute:



0

=

0

�

X

j2S

1

�

j

� 

j

1

A

+E

pk

(m

0

) and 

1

=

0

�

X

j2S

1

�

0

j

� 

0

j

1

A

+E

pk

(m

1

)

where addition above denotes the homomorphi addition of iphertexts and multiplia-

tion denotes multipliation by a salar (again using the homomorphi properties).

(d) P

1

sends (

0

; 

1

) to P

2

.

5. Reeiver omputes output: P

2

outputs D

sk

(

�

) and halts.

Before disussing seurity, we demonstrate orretness:

1. Case � = 0: In this ase, as desribed in Footnote 5, it holds that for every j, 

j

= E

pk

(0)

and 

0

j

= E

pk

(1). Noting that the multipliation of 0 by a salar equals 0, we have:



0

=

0

�

X

j2S

1

�

j

� 

j

1

A

+E

pk

(m

0

) = E

pk

(0) +E

pk

(m

0

) = E

pk

(m

0

):

Thus, when P

2

derypts 

0

it reeives m

0

, as required.

2. Case � = 1: In this ase, it holds that for every j, 

j

= E

pk

(1) and 

0

j

= E

pk

(0). Thus,

similarly to before,



1

= �

0

�

X

j

�

0

j

� 

0

j

1

A

+E

pk

(m

1

) = E

pk

(0) +E

pk

(m

1

) = E

pk

(m

1

);

and so when P

2

derypts 

1

, it reeives m

1

, as required.

We have the following theorem:

Theorem 2 Assume that (G;E;D) is a seure homomorphi enryption sheme, Com

h

is a perfetly-

hiding ommitment sheme and Com

b

is a perfetly-biding ommitment sheme. Then, Protool 2

seurely omputes the oblivious transfer funtionality in the presene of maliious adversaries.

Proof (sketh): In the ase that P

2

is orrupted, the simulator works by rewinding the orrupted

P

2

over the oin tossing phase in order to obtain two di�erent openings and reorderings. In this

way, the simulator an easily derive the value of P

2

's input � (� is taken to be 0 if all the 

j

iphertexts for whih it obtained both reorderings and openings are enryptions of 0, and is taken

to be 1 otherwise). It sends � to the trusted party and reeives bakm = m

�

. Finally, the simulator

generates 

�

as the honest party P

1

would (using m), and generates 

1��

as an enryption to a

random string. Beyond a negligible fail probability in obtaining the two openings mentioned, the

5

In order to see this, note that if � = 0 then �

j

= b

j

. Thus, if �

j

= b

j

= 0 we have that 

j

= 

0

j

= E

pk

(0) and



0

j

= 

1

j

= E

pk

(1). In ontrast, if �

j

= b

j

= 1 then 

j

= 

1

j

= E

pk

(0) and 

0

j

= 

0

j

= E

pk

(1). That is, in all ases of

� = 0 it holds that 

j

= E

pk

(0) and 

0

j

= E

pk

(1). Analogously, if � = 1 the reverse holds.
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only di�erene with respet to a orrupted P

2

's view is the way 

1��

is generated. However, notie

that:



1��

=

0

�

X

j2S

1

�̂

j

� ̂

j

1

A

+E

pk

(m

1��

)

where �̂

j

= �

j

and ̂

j

= 

j

, or �̂

j

= �

0

j

and ̂

j

= 

0

j

, depending on the value of �. Now, if at least one

value ̂

j

for j 2 S

1

is an enryption of 1, then the iphertext 

1��

is an enryption of a uniformly

distributed value (in the group de�ned by the homomorphi enryption sheme). This is due to

the fat that ̂

j

is multiplied by �̂

j

whih is uniformly distributed. Now, by the ut-and-hoose

tehnique employed, the probability that for all j 2 S

1

it holds that ̂

j

6= E

pk

(1) is negligible. This

is due to the fat that this an only hold if for many iphertext pairs 

0

i

; 

1

i

sent by P

2

in its �rst

message, the pair is not orretly generated (i.e., it is not the ase that one is an enryption of 0

and the other an enryption of 1). However, if this is the ase, then P

1

will abort exept with

negligible probability, beause S

0

will almost ertainly ontain one of these pairs (and the sets S

0

and S

1

are hosen as a random partition based on the value s output from the oin tossing).

In the ase that P

1

is orrupted, the simulator manipulates the oin tossing so that in the un-

opened pairs of enryptions, all of the iphertexts enrypt 0. This implies that both

�

P

j2S

1

�

j

� 

j

�

=

E

pk

(0) and

�

P

j2S

1

�

0

j

� 

0

j

�

= E

pk

(0), in turn implying that 

0

= E

pk

(m

0

) and 

1

= E

pk

(m

1

). Thus,

the simulator obtains both m

0

and m

1

and sends them to the trusted party. This ompletes the

proof sketh. A full proof follows from the proof of seurity for Protool 1.
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