
Generic Attacks on Feistel Schemes
-Extended Version-

Jacques Patarin

PRiSM, University of Versailles, 45 av. des États-Unis,
78035 Versailles Cedex, France

This paper is the extended version of the paper with the same title published at Asiacrypt’2001 and we
have also included here the cryptanalysis results of the paper “Security of Random Feistel Schemes with 5
or more Rounds” published at Crypto’2004.

Abstract

Let A be a Feistel scheme with 5 rounds from 2n bits to 2n bits. In the present paper we show that
for most such schemes A:

1. It is possible to distinguish A from a random permutation from 2n bits to 2n bits after doing at
most O(2n) computations with O(2n) non-adaptive chosen plaintexts.

2. It is possible to distinguish A from a random permutation from 2n bits to 2n bits after doing at
most O(2

3n
2) computations with O(2

3n
2) random plaintext/ciphertext pairs.

Since the complexities are smaller than the number 22n of possible inputs, they show that some generic
attacks always exist on Feistel schemes with 5 rounds. Therefore we recommend in Cryptography to use
Feistel schemes with at least 6 rounds in the design of pseudo-random permutations.

We will also show in this paper that it is possible to distinguish most of 6 round Feistel permutations
generator from a truly random permutation generator by using a few (i.e. O(1)) permutations of the
generator and by using a total number of O(22n) queries and a total of O(22n) computations. This
result is not really useful to attack a single 6 round Feistel permutation, but it shows that when we have
to generate several pseudo-random permutations on a small number of bits we recommend to use more
than 6 rounds.

We also show that it is also possible to extend these results to any number of rounds, however with
an even larger complexity.

Key words: Feistel permutations, pseudo-random permutations, generic attacks on encryption schemes,
Luby-Rackoff theory.

1 My results on (classical, i.e. balanced) Feistel schemes

My results of 2001-2004 on Feistel schemes are presented on 3 papers: this paper for the cryptanalysis
results, paper [13] for the security results and paper [14] for a mathematical result that we need in [13] .
By Feistel scheme, we mean here classical, i.e. balanced Feistel scheme (i.e. we use round functions from n
bits to n bits in order to build a permutation from 2n bits to 2n bits: see Section 3 for a precise definition).
In this paper we will concentrate on cryptanalysis results, i.e. on the best known attacks. This paper is
the extended version of the paper with the same title published at Asiacrypt’2001, LNCS 2248, Springer,
pp. 222-238, where I have added the generic attacks of the paper “Security of Random Feistel Schemes
with 5 or more Rounds” published at Crypto ’2004. So this paper merges the results on generic attacks
on Feistel Schemes of these two papers.

1

2 Introduction

Many secret key algorithms used in cryptography are Feistel schemes (a precise definition of a Feistel
scheme is given in section 3), for example DES, TDES, many AES candidates, etc.. In order to be as fast
as possible, it is interesting to have not too many rounds. However, for security reasons it is important
to have a sufficient number of rounds. Generally, when a Feistel scheme is designed for cryptography, the
designer either uses many (say ≥ 16 as in DES) very simple rounds, or uses very few (for example 8 as in
DFC) more complex rounds. A natural question is: what is the minimum number of rounds required in a
Feistel scheme to avoid all the “generic attacks” , i.e. all the attacks effective against most of the schemes,
and with a complexity negligible compared with a search on all the possible inputs of the permutation.
Let assume that we have a permutation from 2n bits to 2n bits. Then a generic attack will be an attack
with a complexity negligible compared to O(22n), since there are 22n possible inputs on 2n bits.
It is easy to see that for a Feistel scheme with only one round there is a generic attack with only 1 query
of the permutation and O(1) computations: just check if the first half (n bits) of the output are equal to
the second half of the input.
In [4] it was shown that for a Feistel scheme with two rounds there is also a generic attack with a complexity
of O(1) chosen inputs (or O(2

n
2) random inputs).

Also in [4], M. Luby and C. Rackoff have shown their famous result: for more than 3 rounds all generic
attacks on Feistel schemes require at least O(2

n
2) inputs, even for chosen inputs. If we call a Luby-Rackoff

construction (a.k.a. L-R construction) a Feistel scheme instantiated with pseudo-random functions, this
result says that the Luby-Rackoff construction with 3 rounds is a pseudorandom permutation.
Moreover for 4 rounds all the generic attacks on Feistel schemes require at least O(2

n
2) inputs, even for

a stronger attack that combines chosen inputs and chosen outputs (see [4] and a proof in [7], that shows
that the Luby-Rackoff construction with 4 rounds is super-pseudorandom, a.k.a strong pseudorandom).
However it was discovered in [8] (and independently in [1]) that these lower bounds on 3 and 4 rounds are
tight, i.e. there exist a generic attack on all Feistel schemes with 3 or 4 rounds with O(2

n
2) chosen inputs

with O(2
n
2) computations.

For 5 rounds or more the question is difficult. In [8] it was proved that for 5 rounds (or more) the number
of queries must be at least O(2

2n
3) (even with unbounded computation complexity), and in [10] it was

shown that for 6 rounds (or more) the number of queries must be at least O(2
3n
4) (even with unbounded

computations). Finally in [13], [14], it was proved that for 5 rounds (or more) the number of queries must
be at least O(2n).
It can be noticed (see [8]) that if we have access to unbounded computations, then we can make an
exhaustive search on all the possible round functions of the Feistel scheme, and this will give an attack
with only O(2n) queries (see [8]) so the bound O(2n) of the number of queries is optimal. However here
we have a gigantic complexity ≥ O(2n2n

). This “exhaustive search” attack always exists, but since the
complexity is far much larger than the exhaustive search on plaintexts in O(22n), it was still an open
problem to know if generic attacks, with a complexity � O(22n), exist on 5 rounds (or more) of Feistel
schemes. This is the subject of this paper.
In this paper we will indeed show that there exist generic attacks on 5 rounds of the Feistel scheme, with
a complexity � O(22n). We describe two attacks on 5 round Feistel schemes:

1. An attack with O(2
3n
2) computations on O(2

3n
2) random input/output pairs.

2. An attack with O(2n) computations on O(2n) chosen inputs.

For 6 rounds (or more) we will describe some attacks with a complexity much smaller than O(2n2n
) of

exhaustive search, but still ≥ O(22n). So these attacks on 6 rounds and more are generally not interesting
against a single permutation. However they may be useful when several permutations are used, i.e. they
will be able to distinguish some permutation generators. These attacks show for example that when
several small permutations must be generated (for example in the Graph Isomorphism scheme, or as in the
Permuted Kernel scheme) then we must not use a 6 round Feistel construction.

2

Remark The generic attacks presented here for 3, 4 and 5 rounds are effective against most Feistel
schemes, or when the round functions are randomly chosen. However it can occur that for specific choices
of the round function, the attacks, performed exactly as described, may fail. However in this case, very
often there are modified attacks on these specific round functions.

3 Notations

We use the following notations that are very similar to those used in [4], [6] and [10].

• In = {0, 1}n is the set of the 2n binary strings of length n.

• For a, b ∈ In, [a, b] will be the string of length 2n of I2n which is the concatenation of a and b.

• For a, b ∈ In, a⊕ b stands for bit by bit exclusive or of a and b.

• ◦ is the composition of functions.

• The set of all functions from In to In is Fn. Thus |Fn| = 2n·2n
.

• The set of all permutations from In to In is Bn. Thus Bn ⊂ Fn, and |Bn| = (2n)!

• Let f1 be a function of Fn. Let L, R, S and T be elements of In. Then by definition

Ψ(f1)[L,R] = [S, T] def⇔

S = R
and
T = L⊕ f1(R)

• Let f1, f2, . . . , fk be k functions of Fn. Then by definition:

Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦Ψ(f2) ◦Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called “a Feistel scheme with k rounds” and also called Ψk.

4 Generic attacks on 1,2,3 and 4 rounds

Up till now, generic attacks had been discovered for Feistel schemes with 1,2,3,4 rounds. Let us shortly
describe these attacks.
Let f be a permutation of B2n. For a value [Li, Ri] ∈ I2n we will denote by [Si, Ti] = f [Li, Ri].

1 round
The attack just tests if S1 = R1. If f is a Feistel scheme with 1 round, this will happen with 100%

probability, and if f is a random permutation with probability ' 1
2n . So with one round there is a generic

attack with only 1 random query and O(1) computations.

2 rounds, CPA-1 with m = 2 messages (non-adaptive chosen plaintext attack)
Let choose R2 = R1 and L2 6= L1. Then the attack just tests if S1 ⊕ S2 = L1 ⊕L2. This will occur with

100% probability if f is a Feistel scheme with 2 rounds, and if f is a random permutation with probability
' 1

2n . So with two rounds there is a generic attack with only 2 non-adaptive chosen queries and O(1)
computations.

2 rounds, known plaintext attack with m ' 2n/2

It is possible to transform this non-adaptive chosen plaintext attack in a known plaintext attack like the
following. If we have O(2

n
2) random inputs [Li, Ri], then with a good probability we will have a collision

Ri = Rj , i 6= j. Then we test if Si ⊕ Sj = Li ⊕ Lj . Now the attack requires O(2
n
2) random queries and

O(2
n
2) computations.

3

Note This attack on 1 and 2 rounds was already described in [4].

3 rounds, known plaintext attack with m ' 2n/2

Let φ be the following algorithm :
1. φ chooses m random distinct [Li, Ri], 1 ≤ i ≤ m.

2. φ asks for the values [Si, Ti] = f [Li, Ri], 1 ≤ i ≤ m.

3. φ counts the number N of equalities of the form Ri ⊕ Si = Rj ⊕ Sj , i < j.

4. Let N0 be the expected value of N when f is a random permutation, and N1 be the expected value
of N when f is a Ψ3(f1, f2, f3), with randomly chosen f1, f2, f3.
Then N1 ' 2N0, because when f is a Ψ3(f1, f2, f3), Ri ⊕ Si = f2(Li ⊕ f1(Ri)) so f2(Li ⊕ f1(Ri)) =
f2(Lj ⊕ f1(Rj)), i < j, if Li ⊕ f1(Ri) 6= Lj ⊕ f1(Rj) and f2(Li ⊕ f1(Ri)) = f2(Lj ⊕ f1(Rj)) or if
Li ⊕ f1(Ri) = Lj ⊕ f1(Rj).

So by counting N we will obtain a way to distinguish 3 round Feistel permutations from random permuta-
tions. This generic attack requires O(2

n
2) random queries and O(2

n
2) computations (just store the values

Ri ⊕ Si and count the collisions).

Remark Here N1 ' 2 ·N0 when f1, f2, f3 are randomly chosen. Therefore this attack is effective on most
of 3 round Feistel schemes but not necessarily on all 3 round Feistel schemes (however very special f1, f2,
f3 may create other attacks, as we will see for example with the Knudsen attack in Section 5).

3 rounds, CPCA-2 with m = 3 (adaptive chosen plaintext and chosen ciphertext attack)
For 3 rounds there is also an attack that uses both an encryption and decryption oracles with only 3

queries. Let φ be the following algorithm :
1. φ chooses two elements L1 and R1 of In and asks the encryption oracle for the value of f [L1, R1] =

[S1, T1].

2. φ chooses an element L2 6= L1 and asks for the value of f [L2, R1] = [S2, T2].

3. φ asks the decryption oracle for the value of f−1[S2, T2 ⊕ L1 ⊕ L2] = [L3, R3]. Then φ tests if
R3 = S2 ⊕ S1 ⊕R1. This will always be true if f is a Ψ3, and will appear with probability ≈ 1/2n if
f is a random permutation.

Remark How this attack can be found.
It is easy to check that the attack above works. It is also possible to explain how such an attack can be
found, as we will do now.

�
�
�
�
�
�A

A
A
A
A
A3 2

1

R

S

X

Figure 1: A circle in R, S, X.

4

The idea is to create a circle in R, S, X, as in figure 1, where Xi = Li ⊕ f1(Ri), i.e. to have R2 = R1,
S3 = S2 and X3 = X1. We always have:

Ri = Rj ⇒ Li ⊕ Lj = Xi ⊕Xj (1)

Xi = Xj ⇒ Ri ⊕Rj = Si ⊕ Sj (2)

Si = Sj ⇒ Xi ⊕Xj = Ti ⊕ Tj (3)

First, we choose R2 = R1 and L2 6= L1. So from (1), we have:
X2 ⊕X1 = L1 ⊕ L2 (4).
Second, we choose S3 = S2. So from (3), we have: X2 ⊕X3 = T2 ⊕ T3 (5).
So from (4) and (5) we can impose X3 = X1 by choosing T3 = T2 ⊕ L1 ⊕ L2. Then from (2) we will have:
R3 = R1 ⊕ S1 ⊕ S3 (= R1 ⊕ S1 ⊕ S2).

4 rounds, CPA-1 with m ' 2n/2 (non-adaptive chosen plaintext attack)
This time, we take Ri = 0 (or Ri constant), and we count the number N of equalities of the form

Si ⊕ Li = Sj ⊕ Lj , i < j. In fact, when f = Ψ4(f1, f2, f3, f4), then Si ⊕ Li = f3(f2(Li ⊕ f1(0))) ⊕ f1(0).
So the probability of such an equality is about the double in this case (as long as f1, f2, f3 are randomly
chosen) than in the case where f is a random permutation (because if f2(Li⊕ f1(0)) = f2(Lj ⊕ f1(0)) this
equality holds, and if βi = f2(Li ⊕ f1(0)) 6= f2(Lj ⊕ f1(0)) = βj but f3(βi) = f3(βj), this equality also
holds).
So by counting N we will obtain a way to distinguish 4 round Feistel permutations from random permu-
tations. This generic attack requires O(2

n
2) non-adaptive chosen queries and O(2

n
2) computations (just

store the values Si ⊕ Li and count the collisions).

Notes

1. These attacks for 3 and 4 rounds have been first published in [8], and independently re-discovered in
[1].

2. Here again the attack is effective against most of 4 round Feistel schemes but not necessarily on all
4 round Feistel schemes (however very special f1, f2, f3, f4 may create other attacks, as we will see
for example with the Knudsen attack in Section 5).

3. Here, for 4 rounds the attack can be seen geometrically as a way to create a circle in R, X.
R

X

4 rounds, known plaintext attack with m ' 2n

When m ≥ O(2n), it is possible to transform this attack in a known plaintext attack. We will count the
number N of (i, j), 1 ≤ i < j ≤ m such that Ri = Rj and Si ⊕ Li = Sj ⊕ Lj . For a random permutation
N ' m2

2·22n , and for a Ψ4 we have N ' m2

22n (i.e. about double).

Remark Here the number of computations to be done is O(m) if we have O(m) in memory (for all i
compute Si ⊕ Li and store +1 at the address Ri||Si ⊕ Li).

5

5 Generic attacks on Ψ5

We will present here the two best generic attacks that we have found on Ψ5:

1. A CPA-1 attack on Ψ5 with m ' 2n and λ = O(2n) computations.

2. A KPA on Ψ5 with m ' 23n/2 and λ = O(23n/2)computations.

1. CPA-1 attack on Ψ5.

Let us assume that Ri =constant, ∀i, 1 ≤ i ≤ m, m ' 2n. We will simply count the number N of
(i, j), i < j such that Si = Sj and Li ⊕ Ti = Lj ⊕ Tj . This number N will be about double for Ψ5

compared with a truly random permutation.

Proof:

If Si = Sj , Li ⊕ Ti = Lj ⊕ Tj ⇔ Li ⊕ Zi = Lj ⊕ Zj

⇔ f1(R1)⊕ f3(Yi) = f1(R1)⊕ f3(Yj)
⇔ f3(R1 ⊕ f2(Li ⊕ f1(R1)))

= f3(R1 ⊕ f2(Lj ⊕ f1(R1))) (#)

This will occur if f2(Li ⊕ f1(R1)) = f2(Lj ⊕ f1(R1)), or if these values are distinct but when Xored
with R, they have the same images by f3, so the probability is about two times larger.

Remarks

(a) By storing the Si||Li ⊕ Ti values and looking for collisions, the complexity is in λ ' O(2n).

(b) With a single value for Ri, we will get very few collisions. However this attack becomes significant
if we have a few values Ri and for all these values about 2n values Li.

2. KPA on Ψ5.

The CPA-1 attack can immediately be transformed in a KPA: for random [Li, Ri], we will simply
count the number N of (i, j), i < j such that Ri = Rj , Si = Sj , and Li ⊕ Ti = Lj ⊕ Tj . We will
get about m(m−1)

23n such collisions for Ψ5, and about m(m−1)
2·23n for a random permutation. This KPA is

efficient when m2 becomes not negligible compared with 23n, i.e. when m ≥ about 23n/2.

Remark 1 If we count the number N of (i, j), i < j such that Ri ⊕ Rj = Si ⊕ Sj , we get another KPA
attack with a similar complexity.

Remark 2 These attacks are very similar with the attacks on 5-round Feistel schemes described by
Knudsen (cf [2]) in the case where (unlike us) f2 and f3 are permutations (therefore, not random functions).
Knudsen attacks are based on this theorem:

Theorem 5.1 (Knudsen, see [2]) Let [L1, R1] and [L2, R2] be two inputs of a 5-round Feistel scheme,
and let [S1, T1] and [S2, T2] be the outputs. Let us assume that the round functions f2 and f3 are permuta-
tions (therefore they are not random functions of Fn). Then, if R1 = R2 and L1 6= L2, it is impossible to
have simultaneously S1 = S2 and L1 ⊕ L2 = T1 ⊕ T2.

Proof This comes immediately from (#) above.

6

6 Attacking Feistel Generators

In this section we will describe what is an attack against a generator of permutations (and not only against
a single permutation randomly generated by a generator of permutations), i.e. we will be able to study
several permutations generated by the generator. Then we will evaluate the complexity of brute force
attacks and we will notice that since all Feistel permutations have an even signature, it is possible to
distinguish them from a random permutation in O(22n).
Let G be a “k round Feistel Generator”, i.e. from a binary string K, G generates a k round Feistel
permutation GK of B2n.
Let G′ be a truly random permutation generator, i.e. from a string K, G′ generates a truly random
permutation G′

K of B2n.
Let G′′ be a truly random even permutation generator, i.e. from a string K, G′′ generates a truly random
permutation G′′

K of A2n, with A2n being the group of all the permutations of B2n with even signature.
We are looking for attacks that distinguish G from G′, and also for attacks that will distinguish G from
G′′.

Adversarial model: An attacker can choose some strings K1, . . . Kf , can ask for some inputs [Li, Ri] ∈
I2n, and can ask for some GKα [Li, Ri] (with Kα being one of the Ki). Here the attack is more general than
in the previous sections, since the attacker can have access to many different permutations generated by
the same generator.

Adversarial goal: The aim of the attacker is to distinguish G from G′ (or from G′′) with a good
probability and with a complexity as small as possible.

Brute force attacks A possible attack is the exhaustive search on the k round functions f1, . . . , fk form
In to In that have been used in the Feistel construction. This attack always exists, but since we have 2k·n·2n

possibilities for f1, . . . , fk, this attack requires about 2k·n·2n
computations (or 2d

k
2
e·n·2n

computations in a
version “in the middle” of the attack) and about k · 2n−1 random queries1 and only 1 permutation of the
generator.

Attack by the signature

Theorem 6.1 If n ≥ 2 then all the Feistel schemes from I2n → I2n have an even signature.

Proof
Let σ : I2n → I2n

[L,R] 7→ [R, L].
Let f1 be a function of Fn.
Let Ψ′(f1)[L,R] = [L⊕ f1(R), R].
We will show that both σ and Ψ′(f1) have an even signature, so will have σ ◦Ψ′(f1) = Ψ(f1), and thus by
composition, all the Feistel schemes from I2n → I2n have an even signature.

For σ: All the cycles have 1 or 2 elements since σ ◦ σ = Id. We have 2n cycles with 1 element since
σ[L,R] = [L,R] if and only if L = R (and a cycle with 1 element has an even signature). So we have
22n−2n

2 cycles with 2 elements. When n ≥ 2 this number is even.

For Ψ′(f1): All the cycles have 1 or 2 elements since Ψ′(f1)◦Ψ′(f1) = Id. Moreover Ψ′(f1)[L,R] = [L,R]
if and only if f1(R) = 0, so the number of cycles with 2 elements is 2n·k

2 , with k being the number of values
R such that f1(R) 6= 0. So when n ≥ 2 the signature of Ψ′(f1) is even.

1each query divides by about 22n the number of possible f1, . . . , fk

7

Theorem 6.2 Let f be a permutation of B2n. Then using O(22n) computations on the 22n input/output
values of f , we can compute the signature of f .

Proof
Just compute all the cycles ci of f , f =

α∏
i=1

ci and use the formula:

signature(f) =
α∏

i=1
(−1)length(ci)+1.

Theorem 6.3 Let G be a Feistel scheme generator, then it is possible to distinguish G from a generator
of truly random permutations of B2n after O(22n) computations on O(22n) input/output values.

Proof
It is a direct consequence of the Theorems 6.1 and 6.2 above.

Remark
It is however probably much more difficult to distinguish G from random permutations of A2n, with A2n

being the group of all the permutations of B2n with even signature. In the next sections we will present
our best attacks for this problem.

7 An attack on 6 round Feistel Generators with O(22n) random plain-
texts and O(22n) complexity

Attacks on 6 round Feistel If G is a generator of 6 round Feistel permutations of B2n, we have
found an attack (described below) that uses a few (i.e. O(1)) permutations from the generator G, O(22n)
computations and about O(22n) random queries. So this attack has a complexity much smaller than the
exhaustive search in 23n·2n

. However since a permutation of B2n has only 22n possible inputs, this attack
has no real interest against a single specific 6 round Feistel scheme used in encryption.
It is interesting only if at least a few 6 round Feistel schemes are used. This can be particularly interesting
for some cryptographic schemes using many permutations on a relatively small number of bits. For example
in the Graph Isomorphism authentication scheme many permutations on about 214 points are used (thus
n = 7), or in the Permuted Kernel Problem PKP of Adi Shamir many permutations on about 26 points
(n = 3 here). Then, we will be able to distinguish these permutations from truly random permutations
with a small complexity if a 6 round Feistel scheme generator is used. And this, whatever the size of
the secret key used in the generator may be. So we do not recommend to generate small pseudorandom
permutations from 6 round Feistel schemes.

The Attack:
Let [Li, Ri] be an element of I2n.

Let Ψ6[Li, Ri] = [Si, Ti]. The attack proceeds as follows:

Step 1
We choose a specific permutation f = GK .

We generate m values f [Li, Ri] = [Si, Ti], 1 ≤ i ≤ m with the random [Li, Ri] ∈ I2n and with m = O(22n).
Remark: Since m = O(22n), we cover here almost all the possible inputs [Li, Ri] for this specific permutation
f .

Step 2
We look if among these values we can find 4 pairwise distinct indices denoted by 1, 2, 3, 4 such that these

8 equations are satisfied:

8

(#)

R1 = R3

R2 = R4

S1 = S2

S3 = S4

L1 ⊕ L3 = L2 ⊕ L4

L1 ⊕ L3 = S1 ⊕ S3

T1 ⊕ T2 = T3 ⊕ T4

T1 ⊕ T2 = R1 ⊕R2

(and with R2 6= R1, S3 6= S1 and T1 6= T2).

-

-

? ?

3 4

1 2 S, R⊕ T

S, R⊕ T

R,L⊕ S R, L⊕ S

Figure 3: A representation of the 8 equations # in L, S, R, T .

It is also possible to show that all the indices that satisfy these equations can be found in O(m) and with
O(m) of memory. We count the number of solutions found.

Step 3
We try again at Step 1 with another f = GK′ and we will do this a few times, say λ times with λ = O(1).

Let α be the total number of solutions found at Step 2 for all the λ functions tested. It is possible to prove
that for a generator of pseudorandom permutation of B2n we have

α ' λm4

28n
.

Moreover it is possible to prove that for a generator of 6 round Feistel schemes the average value we get
for α is

α ≥ about
2λm4

28n
.

So by counting this value α we will distinguish 6 round Feistel generators for example when λ = O(1) and
m = O(22n), as claimed.

Proof
The proof is very similar to the proof we did for Ψ5. For Ψ6 we can get the 8 equations # with about

the same probability when all the internal variables X, Y, Z, U are pairwise distinct, or when we have the
relations of figure 4 (so the probability is about double compared with random permutations).

-

-

? ?

3 4

1 2 S, R⊕ T,X,Z

S, R⊕ T,X,Z

R,L⊕ S, Y, U R, L⊕ S, Y, U

9

This comes from the fact that all these equations come from these 8 equations:

(Λ)

R1 = R3 (1)
R2 = R4 (2)
X1 = X2 (3)
L1 ⊕ L2 = L3 ⊕ L4 (4)
Y1 = Y3 (5)
Z1 = Z2 (6)
U1 = U3 (7)
S1 = S2 (8)

and from the usual relations:

Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj (CR)
Xi = Xj ⇒ Yi ⊕ Yj = Ri ⊕Rj (CX)
Yi = Yj ⇒ Zi ⊕ Zj = Xi ⊕Xj (CY)
Zi = Zj ⇒ Ui ⊕ Uj = Yi ⊕ Yj (CZ)
Ui = Uj ⇒ Zi ⊕ Zj = Si ⊕ Sj (CU)
Si = Sj ⇒ Ui ⊕ Uj = Ti ⊕ Tj (CS)

Proof that # comes from Λ with these usual relations
From (1), (2), (CR) we get: X1 ⊕X3 = L1 ⊕ L3 and X2 ⊕X4 = L2 ⊕ L4.

So from (3), (4) we get: X1 = X2 and X3 = X4.
So from (CX) we get: Y1 ⊕ Y2 = R1 ⊕R2 and Y3 ⊕ Y4 = R3 ⊕R4.
So from (1), (2), (5) we get: Y1 = Y3 and Y2 = Y4.
So from (CY) we get: Z1 ⊕ Z3 = X1 ⊕X3 and Z2 ⊕ Z4 = X2 ⊕X4.
So from (6) and X1 = X2 and X3 = X4 we get: Z1 = Z2 and Z3 = Z4.
So from (CZ) we get: U1 ⊕ U2 = Y1 ⊕ Y2 and U3 ⊕ U4 = Y3 ⊕ Y4.
So from (7) and Y1 = Y3 and Y2 = Y4 we get: U1 = U3 and U2 = U4.
So from (CU) we get: S1 ⊕ S3 = Z1 ⊕ Z3 (= X1 ⊕X3 = L1 ⊕ L3 from above) and S2 ⊕ S4 = Z2 ⊕ Z4.
So from (8) and Z1 = Z2 and Z3 = Z4 we get: S1 = S2 and S3 = S4.
So from (CS) we get: T1 ⊕ T2 = U1 ⊕ U2 and T3 ⊕ T4 = U3 ⊕ U4.
So T1 ⊕ T2(= U1 ⊕ U2 = Y1 ⊕ Y2) = R1 ⊕R2 and T3 ⊕ T4 = R3 ⊕R4.
So we have obtained all the 8 equations of # from the 8 equations of Λ as claimed.

Examples: Thus we are able, to distinguish between a few 6 round Feistel permutations taken from a
generator, and a set of truly random permutations (or from a set of random permutations with an even
signature) from 32 bits to 32, within approximately 232 computations and 232 chosen plaintexts.

8 First attacks on k round Feistel Generators

It is also possible to extend these attacks on more than 6 rounds, to any number of rounds k. However
for more than 6 rounds, as already for 6 rounds, all our attacks require a complexity and a number of
queries ≥ O(22n), so they can be interesting to attack generators of permutations, but not to attack a
single permutation (the probability of success against one single permutation is generally negligible, and
we need a few, or many permutations from the generator, in order to be able to distinguish the generator
from a truly random permutation generator).

Example of attack on a Feistel generator with k rounds. Let k be an integer. For simplicity we
will assume that k is even (the proof is very similar when k is odd). Let λ = k

2 −1. Let G be a generator of
Feistel permutations of k rounds of B2n. We will consider an attack with a set of equations in (L,R, S, T)
illustrated in figure 4. For simplicity we do not write all the equations explicitly.

10

-

-

-

-

S, R⊕ T

S, R⊕ T

S, R⊕ T

S, R⊕ T

...

?
R,L⊕ S ?

R,L⊕ S . . .
?

R,L⊕ S

λ points︷ ︸︸ ︷

λ points

Figure 4: Modelling the 4 · λ(λ− 1) equations in L,R, S, T .

Here we have µ = λ2 = (k
2 − 1)2 indices, and we have 4λ(λ − 1) = k2 − 6k + 8 equations in L,R, S, T .

Here it is possible to prove that the probability that the 4λ(λ−1) equations of figure 4 exist, will be about
twice for a Feistel scheme with k rounds, than for a truly random permutation.
Thus, on a fixed permutation this attack succeeds with a probability in

O
(

m(k
2
−1)2

2n·4λ(λ−1)

)
If we take m = O(22n) for such a permutation, it gives a probability of success in

O
(

22n(k
2
−1)2

2n·(k2−6k+8)

)
So we will use O(2n(k2

2
−4k+6)) permutations, and the total complexity and the total number of queries on

all these permutations will be O(2n(k2

2
−4k+8)). The total memory will be O(22n).

Examples:

• With k = 6 this attack uses O(1) permutations and O(22n) computations (exactly as we did in
section 7).

• With k = 8 we need O(26n) permutations and O(28n) computations.

9 Improved attacks on Ψk generators, k ≥ 6

Ψk has always an even signature. This gives an attack in 22n if we want to distinguish Ψk from random
permutations (see section 6) and if we have all the possible cleartext/ciphertext. In this appendix, we will
present the best attacks that we know when we want to distinguish Ψk from random permutations with
an even signature, or when we do not have exactly all the possible cleartext/ciphertext.

1. KPA with k even.

Let (i, j) be two indices, i 6= j, such that Ri = Rj and Si ⊕ Sj = Li ⊕ Lj . From [8] or [9] p.146, we
know the exact value of H in this case, when k is even. We have:

H = H∗
(

1 +
1

2(k
2
−2)n

− 1

2(k
2
−1)n

− 2

2
kn
2

+
1

2(k−1)n

)
where

H∗ =
|Fn|k

22nm
· 1
1− 1

22n

11

i.e. H∗ is the average value of H on two cleartext/ciphertext. So there is a small deviation, of about
1

2(k
2−2)n

, from the average value.

So in a KPA, when the [Li, Ri] are chosen at random, and if the fi functions are chosen at random,
we will get slightly more (i, j), i < j, with Ri = Rj and Si ⊕ Sj = Li ⊕ Lj from a Ψk (with k even)
than from a truly random permutation. This can be detected if we have enough cleartext/ciphertext
pairs from many Ψk permutations. In first approximation, these relations will act like independent
Bernoulli variables (in reality the equations are not truly independent, but this is expected to create
only a modification of second order).

If we have N possibilities for (i, j), i < j, and if X is the number of (i, j), i < j/Ri = Rj and
Si ⊕ Sj = Li ⊕ Lj , we expect to have:

E(X) ' N
22n

V (X) ' N
22n

σ(X) '
√

N
2n .

We want σ(X) ≤ N

2(k
2−2)n

· 1
22n in order to distinguish Ψk from a random permutation. So we want

√
N

2n ≤ N

2
k
2 n

i.e. N ≥ 2(k−2)n.

However, if we have µ available permutations, with about 22n cleartext/ciphertext for each of these
permutations, then N ' 24nµ (here we know these µ permutations almost on every possible cleartext.
If not, µ will be larger and we will do more computations). N ≥ 2(k−2)n gives µ ≥ 2(k−6)n. This is
an attack with 2(k−6)n permutations and 22nµ ' 2(k−4)n computations.

2. KPA with k odd.

Let (i, j) be two indices, i 6= j, such that Ri = Rj , Si = Sj and Li ⊕ Lj = Ti ⊕ Tj . From [9] p.147,
we know the exact value of H in this case, when k is odd. We have:

H = H∗
(

1 +
1

2(k
2
− 5

2
)n
− 1

2(k
2
− 3

2
)n
− 2

2(k
2
− 1

2
)n

+
1

2(k−2)n

)
where H∗ is the average value of H on two cleartext/ciphertext. So there is a small deviation, of
about 1

2(k
2−

5
2)n

, from the average value.

So in a KPA, when the [Li, Ri] are chosen at random, and if the fi functions are chosen at random,
we will get slightly more (i, j), i < j, with Ri = Rj , Si = Sj and Li ⊕ Lj = Ti ⊕ Tj from a Ψk

(with k odd) than from a truly random permutation. In first approximation, these relations will act
like independent Bernoulli variables (in reality the equations are not truly independent, but this is
expected to create only a modification of second order).

If we have N possibilities for (i, j), i < j, and if X is the number of (i, j), i < j/Ri = Rj , Si = Sj

and Li ⊕ Lj = Ti ⊕ Tj , we expect to have:

E(X) ' N
23n

V (X) ' N
23n

σ(X) '
√

N

2
3n
2

.

We want σ(X) ≤ N

2(k
2−

5
2)n

· 1
23n in order to distinguish Ψk from a random permutation. So we want

√
N

2
3n
2
≤ N

2(k
2−

1
2)n

i.e. N ≥ 2(k−2)n.

However, if we have µ available permutations, with about 22n cleartext/ciphertext for each of these
permutations, then N ' 24nµ (here we know these µ permutations almost on every possible cleartext.

12

If not, µ will be larger and we will do more computations). So N ≥ 2(k−2)n gives µ ≥ 2(k−6)n. This
is an attack with 2(k−6)n permutations and 22nµ ' 2(k−4)n computations.

Remark If we count the number N of (i, j), i < j such that Ri⊕Rj = Si⊕Sj , then we get another
KPA with the same complexity.

3. CPA and CPCA attacks.

For CPA or CPCA attacks we have not found anything really better than these KPA attacks when
we have k ≥ 6 rounds.

10 Conclusion

Up till now, generic attacks on Feistel schemes were known only for 1,2,3 or 4 rounds. In this paper we have
seen that some generic attacks also do exist on 5 round Feistel schemes. So we do not recommend to use
5 round Feistel schemes in cryptography for general purposes. Our first attack requires O(2

3n
2) random

plaintext/ciphertext pairs and the same amount of computation time. Our second attack requires O(2n)
chosen plaintext/ciphertext pairs and the same amount of computation time. For example, it is possible
to distinguish most of 5 round Feistel ciphers with blocks of 64 bits, from a random permutation from 64
bits to 64 bits, within about 232 chosen queries and 232 computations.
We have also seen that when we have to generate several small pseudo-random permutations we do not
recommend to use a Feistel scheme generator with only 6 rounds (whatever the length of the secret key
may be). As an example, it is possible to distinguish most generators of 6 round Feistel permutations from
truly random permutations on 32 bits, within approximately 232 computations and 232 chosen plaintexts
(and this whatever the length of the secret key may be).
Similar attacks can be generalised for any number of rounds k, but they require to analyse much more
permutations and they have a larger complexity when k increases.

11 Acknowledgments

I would like to thank Jean-Jacques Quisquater who allowed me to do this work, as it has been done during
my invited stay at the university of Louvain-La-Neuve. I also would like to thank the anonymous referee
of Asiacrypt’2001, for pointing out the references [2, 3], and for observing that my attack against 5 round
Feistel schemes will not in general apply as it is, against some specific round functions such as permutations.

References

[1] William Aiollo, Ramarathnam Venkatesan: Foiling Birthday Attacks in Length-Doubling Transfor-
mations - Benes: A Non-Reversible Alternative to Feistel. Eurocrypt 96, LNCS 1070, Springer, pp.
307-320.

[2] L.R. Knudsen: DEAL - A 128-bit Block Cipher, Technical report #151, University of Bergen, Depart-
ment of Informatics, Norway, February 1998. Submitted as a candidate for the Advanced Encryption
Standard. Available at http://www.ii.uib.no/∼larsr/newblock.html

[3] L.R. Knudsen, V. Rijmen: On the Decorrelated Fast Cipher (DFC) and its Theory. Fast Software
Encryption (FSE’99), Sixth International Workshop, Rome, Italy, March 1999, LNCS 1636, pp. 81-94,
Springer, 1999.

[4] M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions,
SIAM Journal on Computing, vol. 17, n. 2, pp. 373-386, April 1988.

13

[5] V. Nachef. Random Feistel schemes for m = 3, available from the author at: Valerie.nachef@math.u-
cergy.fr.

[6] Moni Naor and Omer Reingold, On the construction of pseudo-random permutations: Luby-Rackoff
revisited, J. of Cryptology, vol 12, 1999, pp. 29-66. Extended abstract in: Proc. 29th Ann. ACM Symp.
on Theory of Computing, 1997, pp. 189-199.

[7] J. Patarin, Pseudorandom Permutations based on the DES Scheme, Eurocode’90, LNCS 514, Springer,
pp. 193-204.

[8] J. Patarin, New results on pseudorandom permutation generators based on the DES scheme, Crypto’91,
Springer, pp. 301-312.

[9] J. Patarin Etude des générateurs de permutations basés sur le schéma du DES, Ph. D. Thesis, INRIA,
Domaine de Voluceau, Le Chesnay, France, 1991.

[10] J. Patarin About Feistel Schemes with Six (or More) Rounds, in Fast Software Encryption 1998, pp.
103-121.

[11] J. Patarin. About Feistel Schemes with 6 (or More) Rounds. Fast Software Encryption 1998, pp.
103–121.

[12] J. Patarin. Generic Attacks on Feistel Schemes. Asiacrypt ’01 (Lecture Notes in Computer Science
2248), pp. 222–238, Springer.

[13] J. Patarin Security of Random Feistel Schemes with 5 or more Rounds, Extended version of the Crypto
’04 paper. This extended version is available from the author or from e-print.

[14] J. Patarin On linear systems of equations with distinct variables and small block size. This paper is
available from the author or from e-print.

14

Appendices

A Summary of the known results on random Feistel schemes

KPA denotes known plaintext attacks. CPA-1 denotes non-adaptive chosen plaintext attacks. CPA-2
denotes adaptive chosen plaintext attacks. CPCA-1 denotes non-adaptive chosen plaintext and ciphertext
attacks. CPCA-2 denotes adaptive chosen plaintext and chosen ciphertext attacks. Non-Homogeneous
properties are defined in [11].
This figure 1 present the best known results against unbounded adversaries limited by m oracle queries.

KPA CPA-1 CPA-2 CPCA-1 CPCA-2 Non-Homogeneous
Ψ 1 1 1 1 1 1
Ψ2 2n/2 2 2 2 2 2
Ψ3 2n/2 2n/2 2n/2 2n/2 3 2
Ψ4 2n 2n/2 2n/2 2n/2 2n/2 2
Ψ5 2n 2n 2n 2n 2n 2
Ψ6 2n 2n 2n 2n 2n 4 *

Ψk, k ≥ 6 2n 2n 2n 2n 2n ≤
(

k
2 − 1

)2
**

Figure 1: Minimum number m of queries to distinguish Ψk from a random permutation of In → In. For
simplicity we denote 2α for O(2α) i.e. when we have security as long as m � 2α.

* ≤ 4 comes from [12] and ≥ 4 comes from [5].
** with k even and with (k−2)(k−4) exceptional equations, so if k ≥ 7 we need more than one permutation
for this property.

KPA CPA-1 CPA-2 CPCA-1 CPCA-2
Ψ 1 1 1 1 1
Ψ2 2n/2 2 2 2 2
Ψ3 2n/2 2n/2 2n/2 2n/2 3
Ψ4 2n 2n/2 2n/2 2n/2 2n/2

Ψ5 ≤ 23n/2 2n 2n 2n 2n

Ψ6 ≤ 22n ≤ 22n ≤ 22n ≤ 22n ≤ 22n

Ψ7 ≤ 23n ≤ 23n ≤ 23n ≤ 23n ≤ 23n

Ψ8 ≤ 24n ≤ 24n ≤ 24n ≤ 24n ≤ 24n

Ψk, k ≥ 6 * ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n

Figure 2: Minimum number λ of computations needed to distinguish a generator Ψk (with one or many
such permutations available) from random permutations with an even signature of In → In. For simplicity
we denote α for O(α). ≤ means best known attack.

* If k ≥ 7 these attacks analyze about 2(k−6)n permutations of the generator. If k ≥ 6 then ≥ 22n

computations are needed: this is shown by a line in Figure 2.

15

