Anonymous Consecutive Delegation of Signing Rights:
Unifying Group and Proxy Signatures

Georg Fuchsbauer David Pointcheval

ENS, CNRS, INRIA, Paris, France

www.di.ens.fr/{~fuchsbau, ~pointche}

April 2008

Abstract

We define a general model for consecutive delegations of signing rights with the following
properties: The delegatee actually signing and all intermediate delegators remain anonymous.
As for group signatures, in case of misuse, a special authority can open signatures to reveal
the chain of delegations and the signer’s identity. The scheme satisfies a strong notion of non-
frameability generalizing the one for dynamic group signatures. We give formal definitions
of security and show them to be satisfiable by constructing an instantiation proven secure
under general assumptions in the standard model. Our primitive is a proper generalization of
both group signatures and proxy signatures and can be regarded as non-frameable dynamic
hierarchical group signatures.

1 Introduction

The concept of delegating signing rights for digital signatures is a well studied subject in cryptog-
raphy. The most basic concept is that of proxy signatures, introduced by Mambo et al. [MUO96]
and group signatures, introduced by Chaum and van Heyst [CvHI1]. In the first, a delegator
transfers the right to sign on his behalf to a prozy signer in a delegation protocol. Now the latter
can produce prozy signatures that are verifiable under the delegator’s public key. Security of
such a scheme amounts to unforgeability of proxy signatures, in that an adversary cannot create
a signature without having been delegated, nor impersonate an honest proxy signer.

On the other hand, in a group signature scheme, an authority called the issuer distributes
signing keys to group members, who can then sign on behalf of the group, which can be viewed
as delegating the group’s signing rights to its members—there is one single group signature
verification key. The central feature is anonymity, meaning that from a signature one cannot
tell which one of the group members actually signed. In contrast to ring signatures [RSTO01],
to preclude misuse, there is another authority holding an opening key by which anonymity of
the signer can be revoked. Generally, one distinguishes static and dynamic groups, depending
on whether the system and the group of signers are set up once and for all or members can
join dynamically. For the dynamic case, a strong security notion called non-frameability is
conceivable: Nobody—mnot even the issuer nor the opener—is able to produce a signature that
opens to a member who did not sign. The two other requirements are traceability (every valid
signature can be traced to its signer) and anonymity, that is, no one except the opener can
distinguish signatures of different users.

It is of central interest in cryptography to provide formal definitions of primitives and rigor-
ously define the notions of security they should achieve. Only then can one prove instantiations
of the primitive to be secure. Security of group signatures was first formalized by Bellare et al.
[BMWO03] and then extended to dynamic groups in [BSZ05]. The model of proxy signatures and
their security were formalized by Boldyreva et al. [BPWO03].!

The main result of this paper is to unify the two above-mentioned seemingly rather different
concepts, establishing a general model which encompasses proxy and group signatures. We
give security notions which imply the formal ones for both primitives. Moreover, we consider
consecutive delegations where all delegators (except the first of course) remain anonymous.
As for dynamic group signatures, we define an opening authority separated from the issuer
and which in addition might even be different for each user (for proxy signatures, a plausible
setting would be to enable the users to open signatures on their behalf). We call our primitive
anonymous prozy signatures, a term that already appeared in the literature (see e.g. [SK02])—
however without providing a rigorous definition nor security proofs. As it is natural for proxy
signatures, we consider a dynamic setting allowing to define non-frameability which we extend
to additionally protect against wrongful accusation of delegation.

The most prominent example of a proxy signature scheme is “delegation-by-certificate”:
The delegator signs a document called the warrant containing the public key of the proxy and
passes it to the latter. A proxy signature then consists of a regular signature by the proxy
on the message and the signed warrant which together can by verified using the delegator’s
verification key only. Although not adaptable to the anonymous case—after all, the warrant

!Their scheme has later been attacked by [TLO4]. Note, however, that our definition of non-frameability pre-
vents this attack, since an adversary querying PSig(-, warr, -) and then creating a signature for task’ is considered
successful (cf. Section 3.3).

contains the proxy’s public key—, a virtue of the scheme is the fact that the delegator can
restrict the delegated rights to specific tasks specified in the warrant. Since our model supports
re-delegation, it is conceivable that a user wishes to re-delegate only a reduced subset of tasks
she has been delegated for. We represent tasks by natural numbers and allow delegations for
arbitrary sets of them, whereas re-delegation can be done for any subsets.

The primary practical motivation for the new primitive is GRID Computing, where Alice,
after authenticating herself, starts a process. Once disconnected, the process may remain active,
launch sub-processes and need additional resources that require further authentication. Alice
thus delegates her rights to the process. On the one hand, not trusting the environment, she will
not want to delegate all her rights, which can be realized by delegation-by-certificate. On the
other hand, there is no need for the resources to know that it was not actually Alice who was
authenticated, which is practically achieved solely by full delegation, i.e., giving the private key
to the delegatee. While the first solution exposes the proxy’s identity, the second approach does
not allow for restriction of delegated rights nor provide any means to trace malicious signers.
Anonymous proxy signatures incorporate both requirements at one blow.

Another benefit of our primitive is that due to possible consecutiveness of delegations it can
be regarded as mon-frameable, dynamic hierarchical group signatures, a concept introduced by
Trolin and Wikstrom [TWO05] for the static setting.

After defining the new primitive and a corresponding security model, in order to show sat-
isfiability of the definitions, we give an instantiation and prove it secure under the (standard)
assumption that families of trapdoor permutations exist. The problem of devising a more ef-
ficient construction is left for future work. We emphasize furthermore that delegation in our
scheme is non-interactive (the delegator simply sends a warrant she computed w.r.t. the delega-
tee’s public key) and does not require a secure channel.

2 Algorithm Specification

We describe an anonymous proxy signature scheme by giving the algorithms it consists of. First
of all, running algorithm Setup with the security parameter A creates the public parameters of
the scheme, as well as the issuing key ik given to the issuer in order to register users and the
opener’s certification key ock given to potential openers. When a user registers, she and her
opening authority run the interactive protocol Reg with the issuer. In the end, all parties hold
the user’s public key pk, the user is the only one to know the corresponding signing key sk, and
the opener possesses ok, the key to open signatures on the user’s behalf.

Once a user Uj is registered and holds her secret key ski, she can delegate her signing rights
to user Uy holding pk, for a set of tasks TList by running Del(sk;, TList, pky) to produce a
warrant warr)_o enabling Us to proxy sign on behalf of U;. Now if Uy wishes to re-delegate
the received signing rights for a possibly reduced set of tasks TList' C TList to user Uz holding
pks, she runs Del(sky, warry_,9, TList', pks), that is, with her warrant as additional argument,
to produce warr;_.o_,3. Every user in possession of a warrant valid for a task task can produce
proxy signatures o for messages M corresponding to task by running PSig(sk, warr, task, M).2
Anyone can then verify o under the public key pk; of the first delegator (sometimes called
“original signer” in the literature) by running PVer(pk,, task, M, o).

2Note that it depends on the concrete application to check whether M lies within the scope of task.

‘ Issuer (ik) ‘ Reg ‘ Opener (ock) ‘
pk . pk, ok
: l pk, sk
‘ User ‘
A — Setup — pp,ik,ock
sky,[warr_,,] TList,pk, — Del — warr_, .,
sky, warry_, ., task, M — PSig — o
pk,,task, M,c — PVer — be{0,1}
ok,, o, task, M and registry-data — Open — a list of users or L (failure)

Figure 1: Inputs and outputs of the algorithms

Finally, using the opening key ok; corresponding to pk;, a signature o can be opened by
running Open(oky, task, M, o), which returns the list of users that have re-delegated as well as
the proxy signer.? Note that for simplicity, we identify users with their public keys. Figure 1
gives an overview of the algorithms constituting an anonymous proxy signature scheme.

Consider a warrant established by executions of Del with correctly registered keys. Then for
any task and message we require that the signature produced with it pass verification.

Remark 1 (Differences to the model for proxy signatures). The specification deviates from the
one in [BPWO03] in the following points: First, dealing with anonymous proxy signatures there is
no general proxy identification algorithm; instead, only authorized openers holding a special key
may revoke anonymity. Second, in contrast to the above specifications, the prozy-designation
protocol in [BPWO03] is a pair of interactive algorithms and the prozy signing algorithm takes
a single input, the proxy signing key skp. However, by simply defining the proxy part of the
proxy-designation protocol as
skp = (sk, warr)

any scheme satisfying our specifications is easily adapted to theirs.

3 Security Definitions

3.1 Anonymity

Anonymity ensures that signatures do not leak information on the identities of the intermediate
delegators and the proxy signer. While this holds even in the presence of a corrupt issuer, the
number of delegators involved may not remain hidden.

3We include task and M in the parameters of Open to enable the opener to verify the signature before opening
it.

A quite “holistic” approach to define anonymity is the following experiment in the spirit
of CCA2-indistinguishability: The adversary A, who may control the issuer and all users, is
provided with an oracle to communicate with an opening authority—who is assumed to be
honest for obvious reasons. A may also query opening keys and the opening of signatures.
Eventually, he outputs a public key, a message, a task and two secret key/warrant pairs under
one of which he is given a signature. Now A must decide which pair has been used to sign.?

Figure 2 shows the experiment, which might look more complex than expected, as there are
several checks necessary to prevent the adversary from trivially winning the game by either

(1) returning a public key he did not register with the opener,
(2) returning an invalid warrant, that is, signatures created with it fail verification, or

(3) having different lengths of delegation chains.

Exp38i”(A)
(pp, ik, ock) «+— Setup(1*)
(ST, pk, (sk°, wart®), (sk*, warr'), task, M)
«— A1 (pp, ik : USndToO, ISndToO, OK, Open)

if pk ¢ OReg, return 0
forc=0..1

o€ «— PSig(sk®, warr®, task, M)

if PVer(pk, task, M, o¢) = 0, return 0

(pks, ..., pky,) «— Open(OK(pk), task, M, o)
if opening succeeded and ko # k1, return 0
d +— Ay(sT, 0" : Open)
if A; did not query OK(pk) and A, did not query Open(pk, task, M, o?), return d,

else return 0

Figure 2: Experiment for ANONYMITY

The experiment simulates an honest opener as specified by Reg with whom the adversary
communicates via the USndToO and ISndToO oracles, depending on whether he impersonates a
user or the issuer. It also keeps a list OReg of the opening keys created and the corresponding
public keys. OK, called with a public key, returns the corresponding opening key from OReg and
when Open is called on (pkK, task’, M’ o’), the experiment looks up the corresponding opening
key ok’ and returns Open(ok’, M’, task’, o’) if pk’ has been registered and L otherwise.

Definition 2 (Anonymity). A proxy signature scheme PS is ANONYMOUS if for any probabilistic
polynomial-time (p.p.t.) adversary A = (43, A2), we have

‘ Pr [Exp%ngﬁl()\) =1] —Pr [Exp%ngﬁo()\) =1] ‘ = negl()).

Remark 3 (Hiding the number of delegations). A feature of our scheme is that users are able to
delegate themselves. It is because of this fact—useful per se to create temporary keys for oneself
for use in hostile environments—that one could define the following variant of the scheme:

4Note that our definition implies all conceivable anonymity notions, such as proxy-signer anonymity, last-
delegator anonymity, etc.

Suppose there is a maximum number of possible delegations and that before signing, the
proxy extends the actual delegation chain in her warrant to this maximum by consecutive self-
delegations. The scheme would then satisfy a stronger notion of anonymity where even the
number of delegations remains hidden. What is more, defining standard (non-proxy) signatures
as self-delegated proxy signatures, even proxy and standard signatures become indistinguishable.

Since we also aim at constructing a generalization of group signatures in accordance with
[BSZ05], we split the definition of what is called security in [BPWO03] into two parts: traceability
and non-frameability. We thereby achieve stronger security guarantees against malicious issuers.

3.2 Traceability

Consider a coalition of corrupt users and openers (the latter however following the protocol)
trying to forge signatures. Then traceability guarantees that whenever a signature passes veri-
fication it can be opened.®

In the game for traceability we let the adversary A register corrupt users and see the commu-
nication between issuer and opener. To win the game, A must output a signature and a public
key for which it is valid such that opening of the signature fails.

Expp5’ (A)
(pp, ik, ock) «+— Setup(1*)
(pk, task, M, o) «— A(pp : SndTol, SndToO)
if PVer(pk, task, M, o) = 1 and Open(OK(pk), task, M,0) = L

return 1, else return 0

Figure 3: Experiment for TRACEABILITY

Figure 3 shows the experiment for traceability, where the oracles SndTol and SndToO simu-
late issuer and opener respectively, according to the protocol Reg. In addition, they return a
transcript of the communication between them. The experiment maintains a list of generated
opening keys, so OK returns the opening key associated to the public key it is called with, or L
in case the key is not registered—in which case Open returns L, too.

Definition 4 (Traceability). A proxy signature scheme PS is TRACEABLE if for any p.p.t.

adversary A, we have
Pr [Exp%‘agfi()\) =1] = negl(}).

3.3 Non-Frameability

Non-frameability ensures that no user is wrongfully accused of delegating or signing. In order to
give a strong definition of non-frameability, we accord the adversary as much liberty as possible
in his oracle queries; unfortunately, this entails introduction of an auxiliary functionality of the

>The issuer is assumed to behave honestly as he can easily create unopenable signatures by registering dummy
users and sign in their name. The openers are partially corrupt, otherwise they could simply refuse to open or
not correctly register the opening keys.

proxy signature scheme: Function OpenW applied to a warrant returns the list of delegators
involved in creating it.

In the non-frameability game, the adversary can impersonate the issuer and the opener as
well as corrupt users. He is given all keys created in the setup, and oracles to register honest
users and query delegations and proxy signatures from them. To win the game, the adversary
must output a task, a message and a valid signature on it, such that the opening reveals either

1. a second delegator or proxy signer who was never delegated by an honest original delegator
for the task,

2. an honest delegator who was not queried the respective delegation for the task, or

3. an honest proxy signer who did not sign the message for the task and the respective
delegation chain.

We emphasize that querying re-delegation from user Us to Us with a warrant from U for Us and
then producing a signature that opens to (U7, Uz, Us) is considered a success. Note furthermore
that it is the adversary that chooses the opening key to be used. See Figure 4 for the experiment
for non-frameability.

Exppgii(A)
(pp, ik, ock) «+— Setup(1*)
(ok, pk, task, M, o) «— A(pp, ik, ock : 1SndToU, OSndToU, SK, Del, PSig)
if PVer(pk, task, M,) = 0 or Open(ok, task, M,o) = L, return 0
(pky, . . ., pk;,) = Open(ok, task, M, o)
if pk; € HU and no queries Del(pk;, TList, pk,) with TList > task made
return 1 (Case 1)
if for some 7 > 2, pk; € HU and no queries Del(pk;, warr, TList, pk; ;) with
TList > task and OpenW(warr) = (pk;, ..., pk;) made, return 1 (Case 2)
if pk;,, € HU and no queries PSig(pk,,, warr, task, M) made
with OpenW(warr) = (pky, ..., pk;,_;) made, return 1 (Case 3)

return 0

Figure 4: Experiment for NON-FRAMEABILITY

ORACLES FOR NON-FRAMEABILITY: [SndToU (OSndToU) enables the adversary impersonating
a corrupt issuer (opener) to communicate with an honest user. When first called without
arguments, the oracle simulates a user starting the registration procedure and makes a new
entry in HU, the list of honest users. Oracles Del and PSig are called with a user’s public key,
which the experiment replaces by the user’s secret key from HU before executing the respective
function; e.g., calling Del with parameters (pk;, TList, pky) returns Del(sky, TList, pky). Oracle
SK takes a public key pk as argument and returns the corresponding private key after deleting
pk from HU.

Definition 5 (Non-frameability). A proxy signature scheme PS is NON-FRAMEABLE if for any
p-p-t. adversary A we have

Pr [Exp%‘gr’%me()\) =1] = negl(\).

Remark 6. In the experiment Exp%gamo, the opening algorithm is run by the experiment,

which by definition behaves honestly. To guard against a corrupt opener, it suffices to add a
(possibly interactive) zero-knowledge proof to the system and have the opener prove correctness
of decryption.

4 An Instantiation of the Scheme

4.1 Building Blocks

To construct the generic scheme PS, we will use the following cryptographic primitives (cf.
Appendix A for the formal definitions) whose existence is implied by assuming trapdoor permu-
tations [Rom90, DDN00, Sah99].

e DS = (K, Sig, Ver), a digital signature scheme secure against existential forgeries under
chosen-message attack [GMRS8].

e PKE = (K., Enc, Dec), a public-key encryption scheme with indistinguishable encryptions
under adaptive chosen-ciphertext attack (CCA2) [RS92].

e II = (P,V,Sim), a non-interactive zero-knowledge (NIZK) proof system for an NP-language
to be defined in the following that is simulation sound [BASMP91, Sah99].

4.2 Algorithms

The algorithm Setup establishes the public parameters and outputs the issuer’s and the opener’s
certification key. The public parameters consist of the security parameter, a common random
string for non-interactive zero-knowledge proofs and the two signature verification keys corre-
sponding to the issuer’s and the opener’s key:

Setup

1* = (pka, ska) «— Ky (1?); (pkw, skw) «— K, (1*); crs «— {0,1}P)
pp, ik, ock —| pp:= (A, pka, pkw, crs); ik := ska; ock := skw

When a user joins the system, she creates a pair of verification/signing keys (pko, sko) and
signs pko (possibly via an external PKI) in order to commit to it. She then sends pko and the
signature sig to the issuer. The latter, after checking sig, signs pko with his certificate issuing
key ska and writes the user data to IReg, the registration table.

In addition, the issuer sends pko to the authority responsible for opening the user’s signa-
tures. The opener creates an encryption/decryption key pair (pke, ske) and a certificate on pke
and pko, which he sends together with pke to the issuer, who forwards it to the user.® See
Figure 5.

It is by having users create their own signing keys sko that a corrupt authority is prevented
from framing users. The user is however required to commit to her verification key via sig, so
that she cannot later repudiate signatures signed with the corresponding signing key. Now to

SIn practice, our protocol would allow for the opener to communicate directly with the user without the detour
via the issuer—consider for example the case where each user is his own opener. We define the protocol this way
to simplify exposition of the security proofs.

‘ Reg ‘ public: pp = (A, pka, pkw, crs)

‘ User z ‘ ‘ Issuer (holds ska) ‘

o (pko, sko) «+— K, (1*)

e produce sig, pko, sig

a signature on pko _ e if sig invalid for pko, return L
o cert «— Sig(ska, pko)
cert, pke, certw e write (pko, sig) to IReg

e verify cert and certw —_—
pk := (pko, pke, cert, certw, pp)
sk := (pk, sko) pko pke, certw

‘ Opener for z (holds skw)‘

o (pke, ske) «— K_(1%)
o certw «— Sig(skw, (pko, pke))
e write (pko, pke, ske) to OReg

Figure 5: Registration protocol

frame a user by creating a public key and attributing it to her, the issuer would have to forge
sig. Note that it is impossible to achieve non-frameability without assuming some sort of PKI
prior to the scheme.

Algorithm Del enables user x to pass her signing rights to user y (if called with no optional
argument warr,q), or to re-delegate the rights represented in warrq for the tasks in TList. A
warrant is an array where warr[i] corresponds to the i delegation and warr[i][task] contains
basically a signature by the i*" delegator on the next delegator’s public key and task.

More specifically, user z, being the k" delegator, creates warr, and writes her public key to
warr|[k][0] that will later be used by an eventual delegator or signer. In case of re-delegation,
for all task to re-delegate, she copies warrqq[i|[task| to warr[i|[task]| for all i« < k. Finally,
she produces a signature on the task, the public keys of the delegators, her and the delegatee’s
public key and writes it to warr|[k][task].

\ Del

sky, [warrqq) parse sk, ~ (pk,, sko); k := |warrqq| + 1 // k=1if no warrgq
TList, pk, —| warr[k][0] := pk,
for all 1 < i < k, parse warrqq4[i][0] ~ (pko;, pke;, cert;, certw;, pp)
for all task € TList
foralll <i< kdo
warr [i][task] := warrq[i][task]

warr «—| warr|[k][task] < Sig(sko, (task, pkoy, . .., pko, pkay))

8

For every k, let Il := (P, Vg, Simg) be a simulation-sound NIZK proof system for the
following NP-relation:

Ry, [(pka,pkw,pkal,pksl, certwy, task, M, C), (pkoa, . . ., pkoy, certa, . . ., certy, warry, . .., warrg_1, S, p)}

i< Ver(pkw, (pkot, pke1), certwy) =1 A (1)
No<ick Ver(pka, pkoi, cert;) =1 A (2)
Ni<ich Ver(pkoy, (task, pkot, . . ., pkoiy1), warr;)) =1 A (3)
Ver(pkak, (task, pkoz, . .., pkog, M), s) =1 A (4)
Enc(pksl, (pkoa, ..., pkoy, certa, . .., certy, warry, . .., warrg_1, S), p) =C (5)

Note that for every k, the above relation Rj, defines in fact an NP-language Lg,, since given a
witness, membership of a candidate theorem is efficiently verifiable and furthermore the length
of a witness is polynomial in the length of the theorem.

Basically, a theorem (pko, pkw, pkoy, pkey, certwy, task, M, C') is in Lg, if and only if

(1) pke;p is correctly certified w.r.t. pkw,
(2) there exist verification keys pkoo, ..., pkoy that are correctly certified w.r.t. pka,

(3) there exist warrant entries warr; for 1 < i < k, s.t. pko; verifies the delegation chain
pky — -+ — pkiq,
(4) there exists a signature s on the delegation chain and M valid under pkoy,

(5) C is an encryption using randomness p of all the verification keys, certificates, warrants
and the signature s.

Now to produce a proxy signature, it suffices to sign the delegation chain and the message,
encrypt it together with all the signatures for the respective task from the warrant and prove
that everything was done correctly, that is, prove that Ry is satisfied:

PSig

sk, warr, task, M —| k :=|warr|+ 1, parse sk ~ (pky, sko)
parse pk;, ~> (pkak, pkey, certy, certwy, (A, pka, pkw, crs))

for 1 <i < k: parse pk, := warr|[i][0] ~ (pko;, pke;, cert;, certw;, pp)
set warr; := warr [i][task]

§ — Sig(ska, (task, pkoy, . . ., pkoy, M)), p «— {0,1}P=(AF)

W := (pkoa, ..., pkoy, certa, ..., certy, warry, . .., warrg_i, s)

C «— Enc(pke,, W; p)

m— P (lA, (pka, pkw, pkoy, pkeq, warrws, task, M, C), W || p, crs)

o o:=(C,m)

Verifying a proxy signature amounts to merely verifying the proof it contains:

PVer

pk,, task, M,o —| parse pk, ~~ (pkaz,pksz, certy, certw,, (A, pka, pkw, crs)), o~ (C,m)
b— b:=Vg (1’\, (pka, pkw, pko, pke ., certw,, task, M, C), m, crs)

9

To open a signature, after checking its validity, decrypt the ciphertext contained in it:

Open

ok,, task, M,0 —| parse ok ~> (pk,,ske;); o~ (C,7)

parse pk, ~ (pko,, pke,, cert,, certw,,, (\, pka, pkw, crs))

if Vg, (1’\, (pka, pkw, pkoy, pkey, certw,, task, M, C), =, crs) =0
return L

(pkoa, . . ., pkoy, certs, . . ., certy, warry, . .., warrg_1, s) := Dec(ske,, C)

(pky, ..., pk;) « if for some i, pk, is not in IReg, return L

4.3 Security Results

From the definition of the algorithms, it should be apparent that running PSig with a war-
rant correctly produced by registered users, returns a signature which is accepted by PVer and
correctly opened by Open. Moreover, the defined scheme satisfies all security notions from
Section 3:

Lemma 7. The proxy signature scheme PS is ANONYMOUS (Definition 2).
See Appendix B.2 for the proof.

Lemma 8. The proxy signature scheme PS is TRACEABLE (Definition /).
See Appendix B.1 for the proof.

Lemma 9. The proxzy signature scheme PS is NON-FRAMEABLE (Definition 5).

Proof. Figure 6 shows experiment Exp%?i;me rewritten with the code of the respective algo-

rithms. Note that we can dispense with the OSndToU-oracle, because in our scheme the user
communicates exclusively with the issuer.

We construct an adversary B against the signature scheme DS having input a verification
key pk and access to a signing oracle Osg. B simulates Exp%gamC for A, except that for one
random user registered by A via ISndToU, B sets pko to his input pk, hoping that A will frame
this very user. If B guesses correctly and A wins the game, a forgery under pk can be extracted
from the proxy signature returned by A. Let n(\) be the maximal number of ISndToU queries
A makes. Figure 7 details adversary B and how he answers A’s ISndToU and SK oracle queries.

To answer oracle calls Del and PSig with argument pk* = (pk, --), B replaces the line with
Sig(sko, (task, pkoy,...)) in the respective algorithms by a query to his own signing oracle. For
all other pulic keys, B holds the secret keys and can thus answer all queries.

Let S denote the event [(pkoz,pkw,pkal,pkel,certwl,task, M,C) € LR] and Ey, Es, Ej
n-frame

denote the union of S and the event that Exp
the following holds:”

returns 1 in line 7, 8, 9, respectively. Then

AdvEE(\) < Pr[Ey] + Pr[Es] + Pr[Es] + PrExppf®™(\) =1 A S

We now show that the four summands are negligible:

"If not otherwise defined, we use Adve,(+) as shortcut for Pr[Exp2, (-) = 1].

10

Exps())
1 (pka, ska) «— K, (1"); (pkw, skw) «— K, (11); crs «— {0,1}PX)
2 pp:= (A, pka, pkw, crs)
(ok, pk, task, M, c) «— A(pp, ska, skw : 1SndToU, SK, Del, PSig)
parse ok ~~ ((pko1, pkey, certy, certws, pp), skey); o ~ (C,)
if Vg (IA, (pka, pkw, pkoy, pkeq, certwy, task, M, C), =, crs) = 0 then return 0
(pkoa, . . ., pkoy, certs, . . ., certy, warry, . .., warrg_1, s) := Dec(ske1, C)
if pk; € HU and no queries Ope(pky, {--, task, --}, pky) then return 1
if 37 : pk; € HU and no queries Opel(pk;, warr, {--, task, -}, pk;, 1)
with warr{j][0][1] = pko; for 1 < j <4 then return 1
g if pk, € HU and no queries Opsig(pk;,, warr, task, M)
with warr(j][0][1] = pko; for 1 < j < k then return 1

o N O O ks W

10 return 0
Oisnatou (1) Osk((pko, -+))
1 (pko, sko) «— K, (1*) 1 if Isko : (pko,sko) € HU,
o HU := HU U {(pko, sko)} o delete the entry and return sko
3 return pko 3 otherwise, return L

Figure 6: Instantiated experiment for non-frameability

Adversary B(pk : Sig(sk,-))
0 .]* — {1,,?1},]:0

7 if pkoy = pk and no queries Ope((pky, -), {-, task, --}, (pkos, --))
then return ((task, pkoy, pkos), W&I’Il)
g if 3i: pko; = pk and no queries Ope((pkos;, --), warr, {--, task, --}, (pkoit 1, -+))
with warr(j][0][1] = pko; for 1 < j <3
then return ((task, pkoy, . . ., pkoit1), W&I‘I‘i)
o if pkoy = pk and no queries Opsig((pkoy, -), warr, task, M) with
warr{j][0][1] = pko; for 1 < j < k, then return ((task, pkoi, ..., pkoy, M), s)

10 return 0

Oisnatou () by B Osk((pka,) by B
1 ji=j+1;if j = j*, return pk 1 if pko = pk then abort
2 (pko, ska) — K, (1*) 2 else if I sko: (pko, sko) € HU
3 HU := HU U {(pko, sko)} 3 delete entry, return sko
4 return pko 4 return L

n-frame

Figure 7: Adversary B against DS simulating Exppg ‘)

11

1. Consider the event Ej := [E; A pkoy = pk|. Then Ver(17<7 (task, pkoy, pkos), Warrl) =1,
by S. So, B returns a valid message/signature pair. The forgery is valid, since B did
not query its signing oracle for (task, pkoy, pkos) as this only happens when A queries
Obel((pkoy,), {+, task, -}, (pkog, --)), which by Ej is not the case. Moreover, B simulates
perfectly, for E1 implies Osk ((pk, --) was not queried. All in all, we have

Adv%{é’%ﬂa > Pr[Ej] = Pr[pk® = pk|-Pr[Ey] = ﬁPr[El]

2. Consider the event [E5 A pko; = pk]: Then S implies
Ver(pk, ((task, pkoy, ..., pkoiy1), Warr,-) =1

So, B returns a valid signature on a message he did not query its signing oracle:
Only if A queries Opel((pkos, -), warr, {--, task, -}, (pkoj41,--)) with warr[j][0][1] = pko;
for1<ji<i+1, B queries (task, pkoy, ..., pkoi+1). Moreover, B simulates perfectly, as
there was no query OSK((pk7) AS for 1., we have ﬁ PI'[EQ] S Adv%{;%na

3. Consider the event [E3 A pkop = pk|: There were no Osk((pk,-) queries and by S, B
outputs a valid pair. B did not query (task, pkoy,...,pkog, M) (as A made no query
Opsig((pkoy, -+), warr, task, M) with warr[j][0][1] = pko; for 1 < j < k). Again, we have
oy Pr(Bs] < AdvBsE™

4. The event Pr[Exp%‘grfome()\) = 1] implies

Vk(l)‘7 (pka, pkw, pkoy, pke, certwy, task, M, C'), m, crs) = 1,

which, together with S contradicts soundness of II: based on Exp%'g%mc, we could con-

struct an adversary By against soundness of II which after receiving crs (rather than
choosing it itself), runs along the lines of the experiment until line 4 and subsequently
outputs ((pka, pkw, pkoy, pkeq, certwy, task, M, C),T('). We have thus

Pr[Exp?gg’Zme()\) =1AS] < Adviip O
Theorem 10. Assuming trapdoor permutations, there exists an anonymous traceable non-
frameable prozy signature scheme.

Proof. Follows from Lemmata 7, 8 and 9. O

We have thus defined a new primitive unifying the concepts of group and proxy signatures
and given strong security definitions for it. Moreover, Theorem 10 shows that these definitions
are in fact satisfiable in the standard model, albeit by a inefficient scheme. We are nonetheless
confident that more practical instantiations of our model will be proposed, as it was the case
for group signatures; see e.g. [BWO07] for an efficient instantiation of a variation of the model
by [BMWO03]. We believe in particular that the novel methodology to construct NIZK proofs
introduced by [GS07] will lead to practically usable implementations.

5 Acknowledgements

This work was partially funded by EADS, CELAR and ECRYPT.

12

References

[BMWO03]

[BSZ05]

[BASMP91]

[BPWO03)

[BW07]

[CvHI1]

[DDN00]

[GMRSS]

[GS07)

IMUOY6]

[RS92]

[RSTO1]

[Rom90]

[Sah99)

[SK02]

[TLO4]

[TWO05)

M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: Formal def-
initions, simplified requirements, and a construction based on general assumptions. EURO-
CRYPT 08, LNCS 2656, pp. 614—629. Springer-Verlag, 2003.

M. Bellare, H. Shi and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In CT-RSA 2005, LNCS 3376, pp. 136—153. Springer-Verlag, 2005.

M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof
systems. SIAM Journal on Computing, 20(6):1084-1118, 1991.

A. Boldyreva, A. Palacio and B. Warinschi. Secure proxy signature schemes for delegation
of signing rights. JACR ePrint Archive: Report 2003/096, 2003.

X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures.
PKC ’07, LNCS 4450, pp. 1-15. Springer-Verlag, 2007.

D. Chaum and E. van Heyst. Group signatures. FEUROCRYPT ’91, LNCS 547, pp. 257-265.
Springer-Verlag, 1991.

D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing,
30(2):391-437, 2000.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. STAM Journal on Computing, 17(2):281-308, 1988.

J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. EUROCRYPT
’08, to appear; preliminary verion: TACR ePrint Archive: Report 2007/155

M. Mambo, K. Usuda and E. Okamoto. Proxy signatures for delegating signing operation.
Proceedings of the 3rd ACM Conference on Computer and Communications Security (CCS).
ACM, 1996.

C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. CRYPTO ’91, LNCS 576, pp. 433-444, Springer-Verlag, 1992.

R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proceedings of Asiacrypt
2001, LNCS 2248, pp. 552-565. Springer-Verlag, 2001.

J. Rompel. One-way functions are necessary and sufficient for secure signatures. 22nd Annual
Symposium on Theory of Computing, pp. 387-394. ACM, 1990.

A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext se-
curity. 40th Symposium on Foundations of Computer Science, pp. 543-553, IEEE, 1999.

K. Shum and Victor K. Wei. A strong proxy signature scheme with proxy signer privacy
protection. 11th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE '02), pp. 55-56. IEEE, 2002.

Z. Tan and Z. Liu. Provably secure delegation-by-certification proxy signature schemes. IACR
ePrint Archive: Report 2004/148, 2004.

M. Trolin and D. Wikstrom. Hierarchical group signatures. Automata, Languages and Pro-
gramming, 32nd International Colloguium (ICALP’05), LNCS 3580, pp. 446-458. Springer-
Verlag, 2005.

13

A Formal Definitions of the Employed Primitives
A.1 Signature Scheme DS = (K,, Sig, Ver)
DS is a digital signature scheme, that is
VA eNVm e {0,1}* V¥ (pk,sk) — K, (1*) : Ver(pk,m, Sig(sk,m)) =1
We assume DS is secure against existential forgery under chosen-message attack, that is
Vppt. A: Pr [Exp%{é’f}fm()\) =1] = negl(}) with
Exppsi™(A)
(pk, sk) «— K, (1*)

(maU) — A(pk : Slg(Ska))
if Ver(pk, m, o) = 1 and A never queried m, return 1, else return 0

A.2 Public-key Encryption Scheme PKE = (K., Enc, Dec)
PKE is a public-key encryption scheme, that is
VA eNVme {0,1}* V(pk,sk) — K.(1") : Dec(sk, Enc(pk,m)) = m
We assume that PKE satisfies indistinguishability under adaptive chosen-ciphertext attacks, i.e.,
Vppt. A= (A, 4): |Pr [Exp%?%'gfj'l(/\) =1] —Pr [Exp%,%'gfj'o(/\) =1]| = negl()) with

ExpiiEs ()

(pk, sk) «— Ke(l)\)

(mo,m1,ST) «— A;(pk : Dec(sk,))

y «— Enc(pk, mp)

d — Aa(sT,y : Dec(sk,-))

if |mo| = |m1| and Ay never queried y return d, else return 0

A.3 Non-interactive Zero-knowledge Proof System I1 = (P,V,Sim) for Lgp
We require that II satisfy the following properties:

e COMPLETENESS

YAEN V(z,w) € R with [z] < £(\) Vr € {0,1}*N . V(1*, 2, P(1}, z,w,7),7) =1

e SOUNDNESS

Vp.pt. A: Prlr— {0, 1PN (z,1) — A(r): 2 ¢ L AVAN, z,m,7) = 1] = negl())

14

e ADAPTIVE SINGLE-THEOREM ZERO KNOWLEDGE

V p.pt. A: Advf}‘,A()\) = | Pr [Expf{A()\) =1]-Pr [Expﬁ‘j()\) =1]| = negl(\) with

Expfi4(\) Expii(A)
r«— {0,1}pX) (r,8Tg) «— Simy(1%)
(x,w,8T4) «— A1(r) (x,w,ST4) «— A1(r)
7w — P(z,w,r) m «— Simy(STg, x)
return Ay(STy4,7) return Ay(ST4,7)

e SIMULATION SOUNDNESS
Vppt. A: Pr [ExpsriA()\) =1] = negl()) with

Expii 4(A)
(r,8Tg) «— Simy(1%)
(y,8Ta) «— Ai(r)
7 «— Sima(STg,y)
(x,7") «— Asz(STa, ™)
if T# 7' and x ¢ Lr and V(1*,z,7’,7) = 1 return 1, else return 0

B Further Proofs of Security Results

B.1 Proof of Lemma 8

First, note that the requirement to have pke certified by the opener prevents the adversary from
trivially winning the game by using a different pke’ to encrypt which would lead to a signature
that is not openable with the opener’s key. Figure 8 shows the experiment Exp%f‘g‘f‘j including
the SndTol-oracle rewritten with the code of the respective algorithms. Note that due to our
implementation of Reg, the SndToO oracle is obsolete.

We construct two adversaries B!, B? against existential unforgeability of DS that simulate
Expgg«‘ﬁ, while using its input pk as either the opener’s certifying key (B') or the issuer’s sign-
ing key (B?). When answering A’s SndTol queries, B! and B2 use their oracle for the respective

signature.

Adversary B!(pk : Sig)
1 (pka, ska) «— K, (1*); pkw := pk

¢ if no entry pk in OReg, return ((pko*, pke*), certw™)

7 return L
Adversary B2(pk : Sig)

1 pka = pk; (pkw, skw) «— K, (1*)

s if for some i, pko; not in IReg, return (pko;, cert;)

9 return L

15

Expisic, ()
1 (pka, ska) «— K, (1*); (pkw, skw) «— Kq(17)
o crs«— {0,1}*N: pp:= (), pka, pkw, crs)
3 (pk, task, M,o) «— A(pp : SndTol)
4 parse pk ~ (pko*, pke*, cert*, certw*, pp); o ~ (C,)
5 if Vi(1*, (pka, pkw, pko*, pke*, certw*, task, M, C), m, crs) = 0, return 0
¢ if no entry pk in OReg, return 1 // opening fails
otherwise look up the corresponding ske*.
7 (pkoa, ..., pkoy, certs, . .., certy, warry, ..., warrg_1, s) := Dec(ske*, C)
g if for some %, pko; not in IReg, return 1

9 return 0

OsndTol (Pko, sig)
1 if verification of sig on pko fails then return L
o cert «— Sig(ska, pko); write (pko, sig) to IReg
3 (pke,ske) «— K.(1?); certw «— Sig(skw, (pko, pke))
4 write (pko, pke, ske) to OReg

5 return (cert, pke, certw)

Figure 8: Experiment for traceability

Let Eq, F> and S denote the following events:

Ei ... Exp3¥%()) returns 1 in line 6
Ey ... Exp3E%()) returns 1 in line 8
S ... (pka,pkw, pko*, pke*, certw*, task, M,C) € L

We have Adv3E%(N) = Pr[Ey A S|+ Pr[Ey A S] + Pr[(E1 V Ez) A S]. We show that the three
summands are negligible, which completes the proof.

Ey NS: We have (pka, pkw, pko*, pke*, certw*, task, M,C') € Lg, so
Ver (pkw, (pko*, pke*), certw*) = 1.

On the other hand, F; implies that (pko*, pke*) is not in OReg, thus B! never queried
it its signing oracle and returns thus a valid forgery. Consequently we have

Pr[E; A S] < Pr[Exp%l;(}gia()\) =1].

Es NS: Again, (pka, pkw, pko*, pke*, certw*, task, M,C) € Lg, so for all 2 < j < k we have
Ver(pka, pkoj, cert;) = 1, but pko; being not in IReg means B? returns a valid forgery,
thus

Pr[Ea A S] < Pr[Exp%l‘;%néa(/\) =1].

(BE1VE)AS: (E1V Ey) implies Vi (1%, (pka, pkw, pko*, pke*, certw*, task, M, C), T, crs) = 1,
so the event (E7V E2) A S contradicts soundness of IT and happens thus only with negligible
probability (cf. the proof of Lemma 9 for non-frameability).

16

B.2 Proof of Lemma 7

The natural way to prove anonymity is a reduction to indistinguishability of the underlying en-
cryption scheme: if the adversary can distinguish between two signatures (C1,7;1) and (Ca, m2),
it must be by distinguishing C7 from Cs, as the proofs m; do not help since they are zero-
knowledge (simulating the proofs does not alter the experiments in any computationally distin-
guishable manner and can be performed by the adversary himself). The only case that needs
special treatment in the reduction is when the PS adversary, after receiving o = (C,), queries
(C,7")—which is perfectly legitimate, but poses a problem to the PKXE-adversary that cannot
forward C' to its decryption oracle.

Expi’s ()
1 crs «— {0,1}P0)
2 (pka, ska) «— K, (17); (pkw, skw) «— K, (1*); pp := (A, pka, pkw, crs)
3 (ST, pk, (wart®, sk%), (warr', sk'), task, M) — A1 (pp, ik : 1SndToO, OK, Open)
4 if pk ¢ OReg, return 0, else parse pk ~» (pko*, pke*, cert*, certw™, pp)
5 if |wart®| # |warrt|, return 0, else k := |warr| + 1
¢ forc=0..1
7 parse sk® ~ ((pko?, pke§, certf, certwy, pp), sko®)
g fori=1..k-1
9 pki := warr®[i][0] ~ (pko$, pke§, cert§, certw, pp)
10 s¢ «— Sig(sko®, (task, pkof, ..., pkof, M)
11 m¢ := (pko$, ..., pkof, certs, ..., certf,
warr®[1][task], ..., warr®[k — 1][task], s)
12 if R} (pka, pkw, pko*, pke*, certw*, task, M), m¢) = 0, return 0
13 p «— {0,1}P=N; C «— Enc(pke*,m"; p)
14 T — Py (lA, (pka, pkw, pko*, pke*, certw*, task, M, C'), m®|| p, crs)
15 d «— A2 (ST, (C, 7T) : Open)
16 if no oracle calls Open (pk7 task, M, (C, 7r)), return d, otherwise return 0

Oracle OysnaTo0 (Pko) Oracle Ook((pka*,)
(pke, ske) «— K (1) if (pko*,-,-,ske) € OReg
certw «— Sig (skw, (pko, pka)) for some ske
save (pko, pke, certw, ske) in OReg delete the entry from OReg
return (pke, certw) return ske

Figure 9: Experiment for anonymity

Figure 9 shows the experiment for anonymity after plugging in the algorithm definitions, and
some simplifications, with R* defined as R restricted to the first 4 clauses, i.e., there is no check
of encryption (this does not alter the experiment, since encryption is performed correctly by the
experiment anyway). Note also that due to the communication between the parties defined in
Reg, the USndToO oracle is obsolete.

17

We define a first variant of the original experiment by substituting the zero-knowledge proof
7w by a simulated one:

Exppgi (A

1 (crs,sTg) «— Simy(1%)

14 ™ «— Simy(sTg, (pka, pkw, pko*, pke*, cert*, task, M, C')

Since II is a zero-knowledge proof system, we have:
Claim 11.
| Pr[Exppe™P(\) = 1] — PrlExppeP(\M = 1]| < Advi ()

where D is a p.p.t. algorithm that in the first stage, on input crs, simulates Exp%ﬁé’ﬁ]b()\) from
line 2 to 13 and outputs (pko, pkw, pko*, pke*, cert*, task, M, C),mb|| p); after receiving m in the
second stage, D continues simulating lines 15 and 16.

Proof. The claim follows from equivalence of the following random variables:
Expfip(\) = Exppsi’(\) and Expfp(h) = Exppgi® (M)W O
Next, we define a second variant that can then be perfectly simulated by a PKXE adversary:

Exppgi(\)®

16 if no queries (pk, task, M, (C, w)) and no walid queries (pk, task, M, (C, 7r'))

return d, otherwise return 0

Claim 12.
| PrBxpgs () = 1] — PrExpBg* () = 1]] = negl()

(See below for the proof.) Due to the above claims, in order to proof Lemma 7, it suffices to
relate Pr[Exp®°™) = 1] to Pr[Exp™?-> = 1]. Let n be the maximal number of 1SndToO
queries performed by A. We construct an adversary against the encryption scheme that, on
guessing the right user, perfectly simulates Exp%gﬁb()\)@):

Adversary B (pk : Dec)
1 g% e {1, n}; j = 0; (ers,STg) «— Simy (1%)

12 if R} (pko, pkw, pko*, pke*, certw*, task, M), m®) = 0, return 0
13 return (m°, mt, STATUS)

18

Adversary Bs(sTATUS, C' : Dec)
1 7 «— Sima(STg, (pka, pkw, pko*, pke*, certw*, task, M, C)
9 d+«— As(ST,(k,C,m) : Open)
3 if no queries (pk, task, M, (C,)) and no valid queries (pk, task, M, (C, "))

return d, otherwise return 0

Oracle OISndToO (pka) by Bl
ji=7+1
if j = j* then pke := pk
else (pke, ske) «+— K.(1*)
certw «— Sig(skw, (pko, pks)); save (pko, pke, certw) in OReg

return (pke, certw)

When A calls its Open oracle with a public key containing pk, B uses his own Dec oracle to
decrypt the ciphertext in the signature.

Consider the experiment, when A returns pk containing pk (which happens with probability
at least ﬁ) first, note that m® and m!' are of equal length, for R* guarantees that the

warrants are formed correctly. Moreover, B makes an illegal C' query if and only if line 16 of
anon-b

Expps’a ()\)(2) is violated (an invalid query (C,7") by A does not provoke an oracle call by B).
We have thus

PrExpBESE () = 1] > s PriBxpE (V@ = 1] (6)

On the other hand, by indistinguishability of PXE, we have:
| PrExpESET (V) = 1] - PrExpBiea®() = 1] = negl())
which, because of (6) and Claims 11 and 12 yields:
| Pr{Expen (3) = 1] — PrExpEgi() = 1]| = negl(\)
We conclude by proving the second claim:

Proof of Claim 12. We show that after receiving (C,), A is very unlikely to make a valid open
query (C,7'), i.e., create a different proof 7’ for the statement

(pka, pkw, pko™, pke*, certw®, M, task, C') =: X.

If X was not in Lg, then due to simulation soundness of 1I, such a query happens only with
negligible probability. However, indistinguishability implies that the same holds for X € Lg,
otherwise based on Exp?;:gr;b(l) we could build a distinguisher B® for PKE as follows:

Adversary B?(pk : Dec)

b
13 return (011, mb, sTaTUS)

19

Adversary B5(staTus, C : Dec)
1 ™« Simg (STS, (pka, pkw, pko*, pke*, certw*, M, task, C’))
o d«— As(sT,(C,m) : Open)
3 if at some point A queries (C,n’) with 7’ # 7 and
Vi (17, (pka,pkw,pka*,pks*, certw*, M, task, C'), 7', R) =1 then return 1

4 return 0

and a simulation-soundness adversary S®¢ that runs Exp%,%‘é by €xcept for having crs and 7
as input from the experiment instead of creating them itself. Now when when A first makes
a valid query (C,7'), it outputs (X := (pka, pkw, pko™, pke*, certw*, M, task, C'), 7r’), and fails
otherwise. We have

| PrExppe® (MY = 1] — Pr[Exppg”* (V)@ =1]| < Pr[Ey),

where Ej, denotes the event that in Exp%rg’ﬁ]b, A makes a valid query (C,7’). It remains to

bound the probability of event FEj:

Pr{Exppis (V) = 1] = Pr{BExppis p(A) =1 A pke’ = pk] +
PrExpiiits 5(A) =1 A pke” # DR
- ﬁ Pr[Ey] + (1 - ﬁ) PriExpf; g1 (V) = 1],

since in the event of the second summand, S%! succeeds, since X ¢ L by pke* # pk. On the
other hand, we have

Pr[Expi;%g’Bb()\) =1] = Pr[ExpsriSb’o(/\) =1],
since (X,O'mb‘) ¢ R. Combining the above, we get
Pr[Ey] < n()\)AdV;?,%&Bb()\) + (n(\) — 1)Adv%s’sb,1()\) + n(A)AAVY g1.0(N),

which proves the claim, for the right hand side of the equation is negligible. O

20

