
A New Blind Identity-Based Signature Scheme with 

Message Recovery 
 

Hassan Elkamchouchi and Yasmine Abouelseoud* 
Faculty of Engineering, Alexandria University, Egypt 

email address*: yasmine.abouelseoud@gmail.com 

 
Abstract- Anonymity of consumers is an essential 

functionality that should be supported in e-cash systems, 
locations based services, electronic voting systems as well as 
digital rights management system.  Privacy protection is an 
important aspect for wider acceptance of consumers of DRM 
systems. The concept of a blind signature is one possible 
cryptographic solution, yet it has not received much attention in 
the identity-based setting. In the identity-based setting, the 
public key of a user is derived from his identity, thus 
simplifying certificates management process compared to 
traditional public key cryptosystems. In this paper, a new blind 
identity-based signature scheme with message recovery based 
on bilinear pairings on elliptic curves is presented.  The use of 
bilinear pairings over elliptic curves enables utilizing  smaller 
key sizes, while achieving the same level of security compared 
to  other schemes not utilizing elliptic curves. The scheme 
achieves computational savings compared to other schemes in 
literature. The correctness of the proposed scheme is validated 
and the proof of the blindness property is provided. 
Performance and other security related issues are also 
addressed. 

I. INTRODUCTION 

The privacy issue of DRM systems [1] is one of the most 

intensely discussed concerns in public debates by advocates 

and citizens representatives. Consumer representatives point 

out that DRM systems have the potential to generate, 

transmit and store vast quantities of data on personal use of 

copyrighted works, representing an unprecedented level of 

monitoring to consumers activities. The key objective of 

consumer representatives is to achieve legitimate anonymous 

access DRM systems. In pay-TV applications, an authorized 

user expects to enjoy watching his favorite shows and sports 

events without his interests being revealed to outsiders. In 

tourist location-based mobile services [2], the tourist surely 

prefers to get advice on places to visit without his privacy 

being jeopardized. In both cases anonymity may be achieved 

through the use of anonymous identifiers. Other typical 

scenarios involving the need for anonymity include e-cash 

payment systems [3,4,5,6] and electronic voting systems [7].  

Blind signatures are one of the cryptographic tools which 

can provide such anonymity for users. The concept of a blind 

signature scheme was introduced by Chaum [8], since then 

many blind signature schemes have been presented in the 

literature [9,10,11,12]. A blind signature scheme is an 

interactive protocol allowing Bob to obtain a valid signature 

for a message m from a signer Alice without her seeing the 

message or its signature. If Alice sees m and its signature 

later, she can verify that the signature is genuine, but she is 

unable to link the message-signature pair to the particular 

instance of the signing protocol which had led to this pair. 

This intuitively corresponds to signing a document with your 

eyes closed. If you happen to see the document and signature 

later on, you can indeed verify that the signature is yours, but 

you will probably have great difficulty in recollecting when 

or for whom you signed the original document.  

At first this concept seems a little strange- why would you 

want to sign something without seeing it? It turns out, when 

applied properly, this notion has some nice applications 

where anonymity is a big issue. The document may be an 

electronic coin, an electronic ballot, an identifier to enable 

access to a digital good with intellectual copyright 

safeguards, etc.. 

Identity-based cryptosystems are becoming increasingly 

common those days. In a traditional public key cryptosystem, 

the association between a user’s identity and his public key 

is obtained through a digital certificate issued by a certifying 

authority (CA). If Alice wants to send a signed message to 

Bob, first she obtains a digital certificate for her public key 

from a CA. Alice then signs a message using her private key 

and sends the signed message along with her certificate to 

Bob. Bob first verifies the validity of the certificate by 

checking the certificate revocation list published by the CA, 

then he verifies the signature using public key in the 

certificate.    

Identity-based cryptosystems were introduced by Shamir 

in 1984 [13] to get rid of public key certificates by allowing 

the user's public key to be the binary sequence corresponding 

to an information identifying him in a non-ambiguous way 

(e-mail address,  social security number,...). This kind of 

system allows to avoid trust problems encountered in 

certificate based public key infrastructures (PKIs): there is 

no need to bind a public  key to its owner's identity since 

those are one single thing. These systems involve trusted 

authorities called private key generators (PKGs) whose task 

is to compute users' private keys from their identity 

information (users do not generate their key pairs 

themselves). Several practical identity-based signature 

schemes (IBS) have been devised since 1984, but a 

satisfactory identity-based encryption scheme (IBE) only 

appeared in 2001 [14]. It was devised by Boneh and Franklin 

and cleverly uses bilinear maps (the Weil or Tate pairing) 

over supersingular elliptic curves. Since then, many identity-

based cryptosystems have been developed based on the 

bilinear pairings [15]. Just to name a few, we have Hess’s 

identity-based signature [16], Libert and Quisquarter 

undeniable signatures [17] as well as signcryption schemes  

in [18] and Verheul’s self-blindable credential certificates 

presented in [19].  

In this paper, a new blind signature scheme in the identity-

based setting is presented. The scheme is based on the 

modified Weil pairing over elliptic curves. Moreover, the 

scheme is simple and the communication overhead during 



the blind signature generation phase is relatively low. 

Furthermore, bandwidth reductions are achieved as the 

scheme supports message recovery. Thus, there is no need to 

append the message to the signature for verification purposes. 

The proposed blind signature scheme is validated and its 

security is proven under the assumption of the hardness of 

the computational Diffie-Hellman problem. 

The organization of the rest of the paper is as follows. In 

the next section, the definition of blind signatures is 

presented. Section 3 presents a protocol for issuing 

anonymous identifiers to legitimate users of a DRM system. 

In Section 4, basic terminology used throughout the paper is 

provided. In Section 5, an identity-based signature scheme 

with message recovery is presented. Sections 6,7 present the 

proposed blind signature scheme and its efficiency analysis, 

respectively.  Section 8 provides proofs of security of the 

proposed scheme. Finally, Section 9 concludes the paper. 

II. BLIND SIGNATURE STRUCTURE 

The formal definition of a blind signature is presented 

below.  

Blind Signatures: A blind signature scheme [8] consists of 

three algorithms and two parties (the recipient and the 

signer). The details are as follows. 

 

1. Setup: This is a probabilistic polynomial time algorithm. It 

takes a security parameter k as its input and outputs a pair of 

public key y and private key x for the blind signature scheme. 

2. Blind Signature Generation: This is an interactive and 

probabilistic polynomial time protocol, which is operated by 

the recipient and the signer. The user first blinds the message 

m and obtains a new version m’ of m and then sends it to the 

signer. The latter utilizes her private key to sign m’ and 

obtains s’ and sends it to the recipient. The recipient then 

unblinds it to obtain s which is a blind signature on m. 

3. Verify: This is a deterministic polynomial time algorithm. 

Given a message m and its alleged blind signature s, anyone 

who knows the public key of the signer can verify the 

validity of s. If it is valid, then the algorithm outputs ‘1’; 

otherwise outputs ‘0’. 

 

The blindness property of a signature scheme may be 

formally defined as follows: A blind signature scheme 

possesses the blindness property, sometimes referred to as 

unlinkability property, if the signer’s view (m’,s’) and the 

message-signature pair (m,s) are statistically independent. 

 

A secure blind signature scheme must satisfy the 

following three requirements: 

1. Correctness: If the recipient and the signer both comply 

with the algorithm of blind signature generation, then the 

blind signature s will always be accepted. 

2. Unforgeability of Valid Blind Signatures: The recipient 

is not able to forge blind signatures which are accepted by 

the verification algorithm of blind signatures. 

3. Blindness: While correctly operating one instance of the 

blind signature scheme, let the output be (m,s) and the view 

of the protocol v~ . At a later time, the signer is unable to link 

v~  to (m,s). 

III. ISSUING ANONYMOUS IDENTIFIERS 

Blind signatures present a cryptographic solution to the 

problem of constructing anonymous access DRM systems. 

This is achieved through the use of anonymous identifiers, 

i.e. identifiers that are not linkable to the identities of their 

owners. In order to issue an anonymous identifier, the 

legitimate user and the access control system should carry 

out the following procedure: 

1. The access control system should publish a 

collection of valid identifiers },,,{ 21 nididid L . 

2. The user should prove his identity to the access 

control system through some identification protocol. 

3. The user randomly selects one of the published 

valid identifiers jid . 

4. The user blinds the chosen identifier jid  and sends 

the blind version 
*

jid  to the access control system. 

5. The access control system signs 
*

jid  to obtain 
*

s , 

which is then sent to the legitimate user requesting 

the anonymous identifier. 

6. The user unblinds the message-signature pair 

( ), **
sid j  to obtain a valid signature s  on the 

desired identifier jid .  

When the legitimate user later on requests to access the 

digital good, he presents the pair ),( sid j  to the access 

control system. The access control system in turn validates 

its signature on jid  and access is allowed if the validation 

procedure succeeds, otherwise access is denied. 

IV. BASIC DEFINITIONS AND TERMINOLOGY 

This section includes the basic terminology used 

throughout the rest of the paper. 

A. Bilinear Pairing 

Many efficient identity-based encryption and signature 

schemes in the literature are based on the use of bilinear 

pairings, which are briefly defined below [20] . 

Consider two groups 1G  (additive) and 2G  

(multiplicative) of the same prime order q. A bilinear map 

211: GGGe →×  satisfying the following properties is 

needed. 

1- Bilinearity: 
*

1 ,,, qFbaGQP ∈∀∈∀ , we have 
ab

QPebQaPe ),(),( = , ),(),(),( QReQPeQRPe =+ . 

2- Non-degeneracy: For any point 1GP ∈ , we have 

1 allfor 1),( GQQPe ∈=  iff Ο=P  

3- Computability: There exists an efficient algorithm to 

compute 1,),,( GQPQPe ∈∀ .  

B. Bilinear Pairings over Elliptic Curves 

The modified Weil pairing and the Tate pairing [14] are 

admissible instantiations of bilinear pairings. The modified 

Weil pairing settings are briefly described below. 

Let p  be a sufficiently large prime that satisfies: 

(1) 3mod2≡p ; (2) 1−= lqp , where q is also a large 

prime. Let E be the elliptic curve defined by the equation 

1
32 += xy  

over pF .  Define )( pFE  to be the group of points on E 

defined over pF . Let )( pFEP ∈  be a point of order q and 

let 1G  be the subgroup of points generated by P. Set 2G  to 

be the subgroup of 2*
pF  of order q. The modified Weil 



pairing is thus defined by 211: GGGe →×   satisfying the 

conditions of a bilinear pairing.  

The advantage of schemes based on bilinear pairings over 

elliptic curves is that they require smaller key sizes for the 

same level of security compared to previous approaches not 

utilizing elliptic curves. 

C. Map-to-Point Hash Function 

Consider a hash function 1
**

1 }1,0{: GH → .  As suggested 

in [14], it is sufficient to have a hash function 

AH →*
1 }1,0{:  for some set A and an encoding function 

1
*: GAL → . In case of using modified Weil pairings, we 

have that the set A  is pF  and the encoding function L is 

called Map-to-Point. 

Again, let p  be a prime satisfying 3mod2≡p  and 

1−= lqp , where q is also a prime. Let E be the elliptic 

curve defined by the equation 132 += xy  over pF . Let 1G  

be the subgroup of points on E  of order q . Suppose we 

already have a hash function: pFH →*
1 }1,0{: . Algorithm 

Map-to-Point works as follows on input pFy ∈0 : 

 

1. Compute  

2. Let )(),( 00 pFEyxQ ∈=  and set 1GlQQID ∈=  

3. Output Map-to-Point( 0y ) IDQ=  

This algorithm is needed in the schemes given below. 

D. Security Assumptions 

The security of the schemes defined below relies on the 

hardness of the following problems: 

The Computational Diffie-Hellman Problem(CDHP): 

Given a group 1G of prime order q, and a generator P  of 1G , 

the CDHP is to compute abP , given ),,( bPaPP  

The Bilinear Diffie-Hellman Problem (BDHP): Given two 

groups 1G  and 2G  of the same prime order q, a bilinear map 

211: GGGe →×  and a generator P  of 1G , the BDHP is to 

compute abc
PPe ),( , given ),,,( cPbPaPP  

V. AN IDENTITY-BASED SIGNATURE SCHEME WITH 

MESSAGE RECOVERY 

The proposed blind signature scheme is a blind version of 

the following identity-based signature scheme which is an 

adaptation of Nyberg-Rueppel scheme to the identity-based 

setting.  

The scheme consists of the following four  algorithms: 

(Setup, Extract, Sign, Verify). 

Setup: The private key generator (PKG) decides on a bilinear 

pairing  211: GGGe →×  and P an arbitrary generator of 1G . 

He then chooses ×∈ )/( qZZs R  as his secret key and 

computes the global public key sPPpub = . The PKG also 

selects a Map-to-Point hash function 1
**

1 }1,0{: GH → . He 

then publishes the system parameters:  

                params = 121 ,,,,, HPPeGG pub  

Extract: Given the public identity information ID of a new 

user, the PKG computes the corresponding secret key as 

IDID sQd = , where )(1 IDHQID =  plays the role of the 

corresponding public key. 

Sign: To sign a message *
}1,0{∈m  using the secret key IDd , 

the signer picks a random integer 
×∈ )/( qZZk  and 

computes: 

1. k
PPemr ),(=  

3. kPrdS ID +=  

The signature σ  is the pair: ××∈ )/(, 1 qZZGSr  

Verify: To verify the signature Sr,=σ  of an identity ID 

on a message m calculate 

1. )(1 IDHQID =  

 

2.  

 

3. Accept the signature if and only if *
mm = . 

 

The correctness of the above scheme may be easily 

validated according to the following arguments. 

 

 

 

 

 

 

In the above scheme, the signing phase requires one 

pairing operation, namely ),( PPe which could be pre-

computed, one exponentiation in 2G , one point addition and 

two scalar multiplications in 1G . The verification phase 

requires two pairing operations, one Map-to-Point hash 

operation and one exponentiation in 2G . 

VI. THE PROPOSED BLIND IDENTITY-BASED SIGNATURE 

SCHEME WITH MESSAGE RECOVERY 

In this section, a new blind identity-based signature 

scheme with message recovery is proposed. Signature 

schemes with message recovery are of special interest for 

secure, authenticated message transfer over low-bandwidth 

channels. There is no need to transmit the message itself 

along with the signature for verification. This is because 

only a valid signature could be used to reproduce an illegible 

message. The PKG runs the setup and extract algorithms as 

discussed in the previous section. We suggest to set the 

bilinear pairing to be the modified Weil pairing.  

In order to sign a message m blindly by a signer whose 

identity is ID, the recipient and signer should follow the 

scenario given below.  

 

Recipient 

Sends a signature request to the signer 

Signer 

1. Picks a random integer ×∈ )/( qZZk   

2. Computes kPX =  and sends it to the recipient 

Recipient 

3. Picks ×∈ )/(, qZZβα  at random 

4. Computes ),( PXPemr βα +=   

5. A blind version of the message 
1~ −= βrm is sent to the 

signer. 

Signer 

6. Computes IDdmXS ~~
+=  

Recipient 

7. Computes PSS αβ +=
~

 

    

The signature on the message m is the pair Sr,=σ . The 

verification process is the same as that described in the 

previous section. 
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VII. EFFICIENCY OF THE PROPOSED SCHEME 

In the blind signature generation phase of the new scheme, 

the signer needs to compute two scalar multiplications and 

one point addition in 1G . The recipient needs to compute 

three scalar multiplications and two point additions in 1G , 

one pairing evaluation and one inversion operation in 2G . 

 In the verification phase, two pairing evaluations (one of 

which ),( pubID PQe  could be precomputed for frequently 

communicating parties) and an exponentiation operation in 

2G  are required. These requirements are advantageous over 

those of the scheme proposed in [22]. 

VIII. PROOF OF CORRECTNESS  

In this section the correctness of the proposed scheme is 

presented, that is, any blind signature Sr,=σ  on a 

message m correctly produced by the proposed blind signing 

algorithm will always be accepted by the verification 

algorithm.  

Theorem 1: The pair Sr,=σ  is a valid signature of the 

message m. 

Proof:  

The validity of the signature Sr,=σ  can be easily 

shown as follows. 

 

 

 

 

 

 

 

 

 

 

 

IX. SECURITY ANALYSIS 

The security analysis of the proposed scheme proceeds in 

two steps. First, we prove the blindness property of the 

scheme. This is followed by the proof of unforgeability. 

A.  Proof of Blindness 

Blindness or unlinkability is an important property of the 

proposed scheme. In order to prove the blindness of the 

scheme, we show that given any view V and any message-

signature pair ),( σm , there exists a unique pair of blinding 

factors βα  and . Since the recipient chooses the blinding 

factors at random, the blindness of the scheme follows. 

 

Theorem 2: The proposed protocol is a blind signature 

scheme, i.e. possesses the blindness property. 

Proof: 

If the blind signature Sr,=σ  of the message m has 

been generated during an execution of the protocol with 

view V consisting of X , 
1~ −= βrm  and XdmS ID += ~~

, then 

the following equations must hold for βα  and : 

),( PXPemr βα +=                       (1) 
1~ −= βrm                                        (2) 

PSS αβ +=
~

                                 (3) 

Since m~ , βα  and  are relatively prime to q, the blinding 

factors βα  and  are uniquely determined by the last two 

equations. 
1~ −= mrβ   mod q 

 

 

The above formula for α  involves the elliptic curve 

discrete logarithm of   1)
~

( GSS ∈− β   with respect to the 

base P. In fact, we can use Pα  in the rest of the proof 

instead. 

By substituting the values of  Pα  and β  in the right hand 

side of the last equation (1) and using the verification 

equation 

 

 

as well as IDdmXS ~~
+=  we obtain the following results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the unique solution of the last two equations 

satisfies the last equation. Since the blinding factors 

βα  and   are unique and chosen at random during the 

protocol, the blindness property of the proposed scheme 

follows. 

B.  Proof of Unforgeability 

The unforgeability property of the scheme will be 

discussed with respect to the recipient [23]. This is because 

the recipient can obtain more useful information about the 

underlying blind signature scheme than any other adversary.  

Theorem 3: The proposed blind signature scheme possesses 

the unforgeability property with respect to the recipient 

under the assumption of the hardness of the computational 

Diffie-Hellman problem. 

Proof: 

We first assume that we can construct a probabilistic 

polynomial time algorithm A  which can create forged 

signatures of the signer. We then use A to solve the 

computational Diffie-Hellman problem. Therefore, a 

contradiction is concluded. 

Algorithm A is admitted to use the recipient as a 

subroutine, as well as being admitted to make queries to the 

message signing simulator ( a probabilistic time algorithm) 

of the proposed scheme. Moreover, the following 

requirements need to be satisfied.  

Suppose the recipient has a random transcript 

LISTRECIPIENT. On this list, all the data transmitted between 

the recipient and the signer during the process of interaction 

of the blind signature scheme are recorded. All these data 

include the data the recipient gets from the message signing 

m
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simulator as well as the data computed and those randomly 

chosen by the recipient itself. 

Assume also that the message signing simulator has a 

random transcript LISTSIGNER. On this list, we store the data 

the message signing simulator receives from the recipient as 

well as the data computed and secretly chosen by the signer 

itself. 

For the above two random transcripts, the probabilistic 

time algorithm A has full access to LISTRECIPIENT but has only 

limited access to LISTSIGNER. 

In order to complete the proof, we can assume that  

algorithm A is able to forge valid blind signatures which can 

be accepted by the verification algorithm. Without loss of 

generality and applying the forking lemma, assume that A 

has successfully constructed two different valid blind 

signatures for a message m: 

111 ,Sr=σ   and   222 ,Sr=σ  

Since they are valid blind signatures, it is admissible to 

assume that 

 

 

 

 

 

where X  is a random element that A obtains from the 

message signing simulator. As for 1α  and 2α , these are two 

elements randomly chosen by the recipient. Finally, 1
~m and 

2
~m  are computed by the recipient. All the four elements 1α , 

2α ,  1
~m and 2

~m  exist in LISTRECIPIENT, which A has full 

access to. Thus, we have 

 

 

 

Therefore, we arrive at 

 

 

Consequently, we can compute IDd  as follows 

 

 

Thus, according to the system initialization algorithm of 

the blind signature, we are able to solve an instance of the 

CDH problem, namely, given ),,( sPPaPQP pubID ==  it is 

possible to compute saPsQd IDID == . Therefore, a 

contradiction is reached and the theorem is concluded.  

In other words, in order to solve an instance of the CDH 

problem, ),,( bPaPP , the CDH solver runs the system setup 

procedure of the blind signature scheme and sets pubP to 

aP and runs algorithm A , the forger, on an identity whose 

public key is bPQID = . If A succeeds in the forgery process, 

a solution to the CDH problem is achieved. 

X. CONCLUSIONS 

In this paper, a new identity-based blind signature scheme 

has been proposed. The work is motivated by the importance 

of blind signatures as a cryptographic primitive essential in 

protocols that guarantee anonymity of users. This is 

particularly of interest in DRM systems, electronic cash 

systems, electronic voting systems and location-based 

mobile services that are becoming common those days. 

Anonymous identifiers may be used to protect the privacy of 

users of DRM systems. Blind signatures present a practical 

tool for issuing such identifiers. The proposed scheme is a 

blind signature scheme with message recovery and 

consequently achieves bandwidth savings. Since the 

proposed scheme is identity-based, the user’s public key is 

easily extracted from his identification information. This 

eliminates the certificates for public keys needed in 

traditional public key cryptosystems. 

The correctness of the proposed scheme has been 

validated. Security proofs for the blindness property and 

unforgeability have been developed. Performance 

assessment is also provided. 
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