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Abstract. Manual authentication is a recently proposed model of com-
munication motivated by the settings where the only trusted infras-
tructure is a low bandwidth authenticated channel, possibly realized by
the aid of a human, that connects the sender and the receiver who are
otherwise connected through an insecure channel and do not have any
shared key or public key infrastructure. A good example of such sce-
narios is pairing of devices in Bluetooth. Manual authentication systems
are studied in computational and information theoretic security model
and protocols with provable security have been proposed. In this paper
we extend the results in information theoretic model in two directions.
Firstly, we extend a single receiver scenario to multireceiver case where
the sender wants to authenticate the same message to a group of re-
ceivers. We show new attacks (compared to single receiver case) that
can launched in this model and demonstrate that the single receiver
lower bound 2 log(1/ε)+O(1) on the bandwidth of manual channel stays
valid in the multireceiver scenario. We further propose a protocol that
achieves this bound and provides security, in the sense that we define,
if up to c receivers are corrupted. The second direction is the study of
non-interactive protocols in unconditionally secure model. We prove that
unlike computational security framework, without interaction a secure
authentication protocol requires the bandwidth of the manual channel
to be at least the same as the message size, hence non-trivial protocols
do not exist.

Key words: manual channel, (interactive) multireceiver authentication,
security.

1 Introduction

Message authentication systems provide assurance for the receiver about the au-
thenticity of a received message. Unconditionally secure authentication systems
in symmetric key and asymmetric key models were introduced by Simmons [1]
and later studied and extended to by a number of authors [2, 3]. Information
theoretic bounds on the success probability of an adversary relates the success
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chance to the key entropy [4] and provides a lower bound on number of key bits
that are required for achieving a certain level of protection. Gemmell and Naor
[5] proposed an interactive protocol for authentication and showed that the key
length can be reduced for the same level of protection 1.

As an extension of two-party authentication, MRA (multi-receiver authen-
tication) aims at providing the integrity of a message sent from one sender to
n > 1 receivers. MRA is very important for many applications, such as network
control, TV broadcast, and other distributed systems. A trivial yet inefficient
approach for MRA might be to run n copies of the two-party authentication
protocol. Significant efforts have been made to construct nontrivial (more ef-
ficient and/or more secure) MRAs. Existing work on them in the information
theoretic model includes [8–10], providing unconditional security. Note that all
the existing MRAs were done in the shared key communication model where
secrets are pre-distributed to participants.

Recently a new communication model for message authentication, motivated
by scenarios such as pairing of devices in Bluetooth protocol [11], has been pro-
posed. In this model sender and receiver do not have a shared key but in addition
to the insecure channel that they are using for communication of messages, they
are also connected through a low bandwidth authenticated channel, called man-
ual channel. Messages sent over the manual channel cannot be modified. Also
the attacker cannot inject a new message over this channel. However the attacker
can change the synchronization of the channel and can delay or replay a sent
message over this channel. The bandwidth of the manual channel is a scarce
resource and has the same role as the key length in a symmetric or asymmet-
ric key model and efficiency analysis of the protocols shows how efficiently the
bandwidth has been used for providing protection against forgery.

Authentication in manual channel model has been studied in both compu-
tational and unconditionally secure frameworks [12, 13]. Vaudenay proposed a
formal model for analysis of protocols in this model. Naor, Sergev and Smith
studied protocols in this model using unconditionally secure framework. Naor et
al’s protocol is interactive and is shown to limit the success chance of the forger
to ε by using a manual channel with bandwidth 2 log ε + O(1).

In computational model there are also non-interactive protocols, referred to
as NIMAP (Non-interactive Manual Authentication Protocol). NIMAPs [14, 15]
are particularly interesting because they do not require the receive to be live and
as long as what is received through the public channel matches what is received
over the manual channel, the received message is considered authentic.

Our contribution
In this paper we extend the two party manual authentication scenario of [13] to
a multireceiver manual authentication (MRMA), i.e., a scenario where there is
one sender and multiple receivers, some possibly corrupted, and the sender does
not have shared secret with receivers. The sender however has a low bandwidth
manual channel with each receiver. We assume receivers are connected through
1 The original version of their protocol was shown insecure [6]. The corrected version

in [7] provides the claimed security.
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a trusted infrastructure. In particular we assume there is a trusted initializer
that provides key information to receivers. The adversary can corrupt up to
c receivers. We will show that in the above MRMA system the 2 log(1/ε) +
O(1) lower bound on manual channel bandwidth holds for constant c. More
specifically, we propose an interactive protocol for multireceiver case that limits
the success chance of the forger to ε by using a manual channel with bandwidth
2 log(1/ε) + O(log c).

We also consider NIMAPs in unconditionally secure framework and show a
lower bound on the bandwidth of the manual channel that effectively implies
secure NIMAPs can only exist if the message is directly sent over the manual
channel, i.e. trivial case. This demonstrates that unlike computational security
framework interaction is necessary for secure manual authentication.

The paper is organized as follows. In Section 2 we present a communication
model and a definition for multireceiver manual authentication (MRMA) un-
der the model. We assume the strongest adversary in our model. In Section 3
we extend the Naor et al’s protocol to multireceiver case. We first show that a
straightforward extension cannot be secure in our strong adversary model, and
then propose an secure extension, resulting in an interactive multireceiver man-
ual authentication protocol. In Section 4 we show that non-interactive manual
authentication in the unconditionally secure setting is not possible unless the
message itself is sent over the manual channel. There, interaction is necessary in
for unconditionally secure manual authentication. Finally, the paper is concluded
in Section 5.

2 A model for multi-receiver manual authentication

We consider a setting where there are a sender S and a group of receivers denoted
byR =: {R1,R2, · · · ,Rn}. The sender and receivers are connected via two types
of channels (insecure and manual). Receivers are connected among themselves
via one type of channels (insecure). However there is a trusted infrastructure
among receivers. A motivating scenario is when a group leader is connected to
each group member through a manual channel, and group members have some
secret key information that enables them to have secure communication among
themselves.

Communication between sender and receivers
The sender is connected to the receivers through an insecure multicast channel
that is used to transmit the same message to all the receivers. Such an insecure
multicast channel could be implemented by letting each receiver has a point to
point channel to the sender. All these channels are insecure and are controlled
by the adversary. In particular the adversary can control the link between the
sender and each receiver independently, and read, inject, modify, remove and
delay traffic as he wishes (similar to multicast over the Internet).

In addition to the public channel, we assume that there is a manual multicast
channel that connects the sender to the receivers. This channel can be seen as n
(unidirectional) manual channels, each connecting the sender to a receiver, that
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can be individually controlled by the adversary. The sender uses the multicast
channel to send the same message to all receivers but the adversary’s control can
result in the message to have different synchronisation tampering for different
receivers.

An example of a manual multicast channel is a display that is visible by
all group members (e.g a classroom) and is used to show a short string to all
group members (although in this example the tampering will be the same on all
individual manual channels). Following the terminology in A-codes, such a short
string is called as manual tag and sometimes tag without making confusion.

Communication among receivers
Receivers can communicate with each other through insecure point-to-point pub-
lic channels. We assume there is a trusted initializer that securely distribute keys
to receivers, hence allowing them to use traditional cryptographic primitives.

The adversary
Adversary has full control over public channels can target one or more channels
(but not all). He can can read, modify or delay messages; he can prevent them
from being delivered; he can also replay old messages or insert new ones at
any time. The adversary can control one or more manual channels between the
sender and receivers. He is however restricted to tampering with synchronisation
information; i.e. read, remove, delay, reply of sent messages.

The adversary can also corrupt up to c receivers and have them deviate from
the protocol in anyway he defines, but of course subject to restrictions in the
communication model.

2.1 Extending Naor et al protocol to MRMA

Our aim is to extend Naor et al protocol to allow a sender to authenticate a
message m to a group of receivers when the communication structure is defined
as above.

A basic approach would be to use the trusted infrastructure to reduce the
group of receivers R into a single entity (i.e., a single receiver) and use the
single receiver protocol of Naor et al [13] between the sender and this combined
receiver.

We first show that without assuming a trusted infrastructure and using a
direct application of the protocol, a single dishonest receiver can subvert the
system. In Subsection 3.1 we describe two attacks that show how an adversary
can use a man-in-middle strategy to forge a message with or without manipulat-
ing synchronization of messages. We next consider a model assuming receivers
can be initialized by a trusted initializer who can provide some secret informa-
tion (hence a trusted infrastructure) to them. Hence our model can be viewed
as a combination of manual channel model between sender and receiver, and a
trusted initializer model among receivers. See also Figure 1.

Similar to the single receiver model of [13], the input of the sender S is
a message m, which she wishes to authenticate to the set of receivers R. In
the first round, S sends the message and an authentication tag A1

S over the
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Fig. 1. The multireceiver manual authentication (MRMA) model.

insecure multicast channel. In the following rounds only a tag Aj
S (or Bj

i ) is
sent over the insecure channel, meaning that the tag is from S (or from Ri). All
communications over public channel can be controlled by the adversary. He can
inject or modify the input message m. The replaced message m̂i is received by
the receiver Ri, i = 1, 2, · · · , n. He receives all of the tags Aj

S and can replace
them with Âj

i of his choice intending for Ri. The adversary also receives each
of the tags Bj

i and can replace them with B̂j
i before they arrive S. Finally, S

manually authenticates a short manual tag t, i.e., sent over the manual channel.
For reading ease, we list the notations represent what are sent and received

at each player’s end in Table 1.

S side sending/receiving Ri side

m - m̂i

Aj
S - Âj

i

B̂j
i ¾ Bj

i

Table 1. Notations reflects changes. j specifies the round.

Notice that in the presence of a computationally unbounded adversary, we
can assume w.l.g that the manually authenticated string is sent in the last round.
As being pointed out in [13], this is true also in the computational setting, under
the assumption that distributively one-way functions do not exit. And similarly,
we also allow the adversary to control the synchronization of the protocol’s exe-
cution. That is, the adversary can carry on two separate, possibly asynchronous
conversations, one with the sender and one with the receivers. However, the
party that is supposed to send a message waits until it receives the adversary’s
message from the previous round. For example, the sender S will only send his
Aj+1
S after he has obtained all the B̂j

i (i = 1, 2, · · · , n) from the receivers.
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We assume the adversary can corrupt a subset C ⊂ R of the receivers and
c = |C|.

Definition 1. An unconditionally (n, c)-secure (a, b, k, ε)-manual authentication
protocol is a k-round protocol in the communication model described above, in
which the sender wishes to authenticate an a-bit input message to n receivers,
while manually authenticating at most b-bits to over a multireceiver manual chan-
nel. The following requirement must hold:

– Completeness: For all input message m, when there is no interference by the
adversary in the execution and all the players honestly follow, every receiver
accepts with probability at least 1/2.

– Unforgeability: For any computationally unbounded adversary, for any C of
size c receivers corrupted by the adversary, and for all input messages m, if
the adversary replaces m with a different message m̂i for any Ri /∈ C, then
Ri accepts m̂i with probability at most ε.

Lower bound on bandwidth
Obviously when n = 1, our model reduces to the basic model of Naor et al [13]
and so the lower bound for our model cannot be less than that. By constructing
a protocol that uses a manual channel with bandwidth being only 2 log(1/ε) +
O(log c), we show that the lower bound for the our MRMA model is in fact equal
to 2 log(1/ε) + O(1) for constant c, the same lower bound of the basic model.
This is particularly the case for small groups.

3 Interactive MRMA protocols

At first, we show that a straightforward extension of a single-receiver scheme is
not secure in the multi-receiver setting due to existence of strong attacks. This
result is consistent to other known results on multi-receiver authentications in
the shared-key communication model. More precisely, that is a straightforward
extension of a single receiver scheme (A-code) is not secure in the multi-receiver
setting. We note that this consistence is however due to different reasons (of
course both due to distrust among receivers). In the shared-key model, the inse-
curity is due to the difference that the sender and receiver in A-codes is symmet-
ric while in secure MRA-codes should be asymmetric. But in the manual channel
model (always asymmetric), the insecurity is due to the difference that a single-
receiver will generate a truly random for himself, while a group of receivers may
not voluntarily generate a truly random for the group (traitors exist).

Then we present two attacks to show that a single traitor is enough to subvert
the protocol completely and thus new technique must employed to secure the
protocol. And in Subsection 3.2 we show that by using commitment schemes,
the group of receivers can be forced to play honestly, in the sense that dishonest
behavior (of up to c = n− 1 corrupted receivers) can cheat no honest receiver.
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3.1 A straightforward extension

In the following, we present a straightforward extension of the interactive pro-
tocol Pk of [13], from the single receiver setting to the multi-receiver setting.
A brief description of the Pk [13] is given in the Appendix A. Denote the re-
sulting protocol by Pn

k . We show how an inside attacker (e.g., corrupted by the
adversary) can fool the other receivers in Pn

k . Note that Pn
k is quite efficient in

the sense that generating and sending a message to all the receivers is once-off
in every round. It is obvious that a trivial multi-receiver solution by repeating
a single-receiver protocol multiple times does not enjoy this computation and
communication efficiency.

For simplicity, let n = 2 and k = 2, thus the round index j can be omitted.
The Pk=2

n=2 protocol is described as below, where f (more exactly f j) is defined in
Section 3.2, which is the function Cj in [13]. Note that for any equivalent tasks
of R1 and of R2, the order of performing them can be either.

The protocol Pk=2
n=2

1. S multicasts m to the receivers through the insecure channel.
2. R1 receives the message as m̂1 and R2 receives the message as m̂2.

(a) S chooses AS ∈R GF[Q] and multicasts it to R1,R2.

(b) R1 receives Â1, then chooses B1 ∈R GF[Q] and sends it to S and R2.

(c) R2 receives Â2, then chooses B2 ∈R GF[Q] and sends it to S and R1.

(d) After receiving the B̂1 and B̂2, S computes B̂ = B̂1 + B̂2 and computes

mS = 〈B̂, fB̂(m) + AS〉.
(e) R1 receives B2, then computes B = B1 +B2 and m1 = 〈B, fB(m̂1)+ Â1〉.
(f) R2 receives B1, then computes B = B1 +B2 and m2 = 〈B, fB(m̂2)+ Â2〉.

3. S multicasts mS to R1,R2 through the manual multicast channel.
4. R1 accepts if and only if mS = m1; R2 accepts if and only if mS = m2.

Fig. 2. An insecure extension of Naor et al’s Pk to MRMA model

Clearly the sum B (resp. B̂) plays exactly the role of the random number
selected by the single receiver (resp. what received by the sender) of Pk. The
protocol Pk is proved to be secure, but Pn

k is not secure any more. In order to
better understand our construction, in the following we show two attacks on the
protocol Pn

k below.
As illustrated in Figure 3, the asynchronous attack is named from that the

dishonest R2 (or considering that he is corrupted by an adversary) runs the
protocol non-synchronically (i.e., separately) with the sender S and the other
receiver R1 who are both honest. When running the protocol with S, R2 imper-
sonates R1 sending an arbitrary B̂1 and also sending his own B̂2. Then S will
send the supposed manual tag t = 〈B̂, fB̂(m) + A〉 through the manual channel.
Now R2 delays the manual tag, and impersonates S to run the protocol with



8 Shuhong Wang and Rei Safavi-Naini

S R2 R1

m,AS //

any B̂1oo

any B̂2oo

ED
t=〈B̂,f

B̂
(m)+AS〉 ________

@A

delay

Â
Â
Â
Â
Â
Â
Â
Â

£¤t _________ //

proper m̂1 or Â1 //

B1oo_ _ _ _ _ _ _ _

proper B2 //________

Fig. 3. An attack with manipulating synchronization.

R1. He can choose a proper Â1 for an arbitrary message m̂1 or vice versa such
that fB̂(m̂1) + Â1 = fB̂(m) + A. On receiving m̂1, Â1 the receiver R1 sends B1

to R2 and thus R2 can simply sends B2 = B̂1 + B̂2−B1 to R1. And then R2 let
the tag t get through to R1 (recall that R2 is not able to modify the manual tag
over the manual channel). It is easy to see that R1 will accept m̂1 as authentic
from S.

As illustrated in Figure 4, the dependent attack does not use an asynchronous
conversation, instead, it merely make use of the fact that B̂2 and B2 can be
dependent on B̂1 and B1 (i.e.R2 can choose the former after he knows the latter).
In fact, for any m,AS and any m̂1, Â1, F (x) := (fx(m) + AS)− (fx(m̂1) + Â1)
is a polynomial of the variable x. Denote x0 a root of F (x), then R2 can simply
compute and send B̂2 = x0 − B̂1 and B2 = x0 − B1. One can easily verify that
R1 would accept the tag t sent by S.

3.2 An interactive protocol

In a multireceiver manual authentication system the sender is trusted but some
of the receivers can be corrupted by the adversary. Our protocol, Πk, as described
below is secure against such a strong adversary.

The main observation from the above section is that to ensure security of
the protocol, one needs to ensure the sum Bj =

∑n
i=1 Bj

i remains unpredictable
(cannot be engineered by the adversary). We use unconditionally secure non-



Multi-Receiver Manual Authentication 9

S R2 R1

m,AS // any m̂1,Â1 //

any B̂1oo B1oo_ _ _ _ _

proper B̂2oo proper B2 //_____

t=〈B̂,f
B̂

(m)+A〉
//_______________

Fig. 4. An attack without manipulating synchronization.

interactive commitment schemes (USNIC) to achieve this goal. Examples of such
commitment schemes include the ones by Rivest [16] and by Blundo et al [17].

We denote the USNIC scheme working in finite field GF[Q] by USNIC[Q] and
choose it to be the scheme of Blundo et al. To make the paper self-contained,
we briefly review their scheme in Appendix B.

The commitment scheme is used in each round, by each receiver to commit
to a random value of his choice to all the other receivers2 to provide assurance
for other receivers that their random values are not captured for subverting the
protocol (See the dependent attack in Subsection 3.1, Figure 4 for detail). In
other words the sum Bj =

∑n
i=1 Bj

i is unpredictable (has full entropy). We note
that this can be achieved even if only one receiver is honest, i.e., if one Bj

i is
truly randomly. This lets us to treat the group of the receivers as one entity and
thus the security of our MRMA protocol reduces to the security of Naor et al’s
protocol Pk [13].

To reduce the length of manual tag, similar to the protocol in [13], we use
a sequence of compression function families f1, f2, · · · , fk−1 in an k-round in-
teractive protocol. More precisely, given the length, a, of the input message and
the upper bound, (c + 1)ε, on the adversary’s forgery probability, k − 1 finite
fields Qj , j = 1, · · · k − 1, are chosen such that 2k−jaj

ε ≤ Qj <
2k−j+1aj

ε , where
a1 = a and aj+1 = d2 log Qje. Then each f j

x chosen from the family f j maps an
aj-bit message m into GF[Qj ] in the following way: firstly the message is split
as m = m1m2 · · ·md (concatenation of d strings) with each mi ∈ GF[Qj ], and
then the function is evaluated as f j

x(m) = m1x + m2x
2 + · · ·+ mdx

d mod Qj .
The splitting methods, and equivalently the function family f j , is public known
for all j = 1, 2, · · · , k − 1.

The protocol Πk:

1. S multicasts m1
S = m to the receivers through the insecure channel.

2 It is an interesting open problem to construct more sophistic schemes for committing
to multiple messages, so that the trusted initializer is invoked only once.
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2. For i = {1, 2, · · · , n}, Ri obtains the message m1
i = m̂i.

3. For j = 1 to k − 1.
(a) If j is odd, then

i. S chooses Aj
S ∈R GF[Qj ] and multicasts it to R, through the inse-

cure multicast channel.
ii. For i = {1, 2, · · · , n}, Ri receives Âj

i . Then he chooses and commits
to (using USNIC[Qj ]) a random Bj

i ∈R GF[Qj ] all the other receivers
R\Ri. After receiving all the commitments from other receivers, he
sends Bj

i to S and opens the his commitment to other receivers.
iii. After receiving all the B̂j

i , S computes B̂j =
∑n

i=1 B̂j
i and mj+1

S =
〈B̂j , f j

B̂j
(mj

S) + Aj
S〉.

iv. When all the commitments are correctly opened, Ri computes Bj =∑n
i=1 Bj

i and mj+1
i = 〈Bj , f j

Bj (m
j
i ) + Âj

i 〉.
(b) If j is even, then

i. For i = {1, 2, · · · , n}, Ri chooses Bj
i ∈ GF[Qj ] and commits to it

to other receivers using USNIC[Qj ] scheme. After received all the
commitments, he sends Bj

i to S and reveals his commitment.
ii. After receiving all the B̂j

i , S chooses Aj
S ∈R GF[Qj ] and mul-

ticasts it to R. Then he computes B̂j =
∑n

i=1 B̂j
i and mj+1

S =
〈Aj

S , B̂j , f j

Aj
S
(mj

S) + B̂j〉.
iii. For i = {1, 2, · · · , n}, Ri computes Bj =

∑n
i=1 Bj

i when all the com-
mitments are correctly opened and then computes mj+1

i = 〈Âj
i , f

j

Âj
i

(mj
i )+

Bj〉 on receiving Âj
i .

4. S multicasts mk
S to R through the manual multicast channel.

5. For i = {1, 2, · · · , n}, Ri accepts if and only if mk
S = mk

i .

Theorem 1. For any 1 ≤ c < n colluders, the above protocol Πk is an (n, c)-
secure (a, b, k, (c+1)ε)-manual authentication protocol in the MRMA model, with
b ≤ 2 log(1/ε) + 2 logk−1 a + O(1).

Proof (sketch). See Appendix C for the detailed proof.
The proof is analogous to that of the protocol Pk in [13] where the Bj is

randomly chosen by a single receiver after receiving Âj . In our protocol Bj is
the sum (or any function depending on all) of the random variables Bj

i chosen
by Ri, i = 1, 2, · · · , n. Thus to prove the security of our protocol, it is suffi-
cient to prove that the Bj that Ri /∈ C computes is truly random and plays
the same role of Bj in the single receiver protocol. For instance in case of j
odd, to prove that the sum Bj , after Ri received Âj

i from the adversary, is
truly random we note that since Bj depends on Bj

i which is chosen after Ri

received Âj
i , it is sufficient to prove that the adversary can not control Bj . This

is obviously true (except with a probability ≤ c/Qj) because the security of un-
derlying commitment scheme USNIC[Qj ] (see Appendix C), For the case of even
j, the conclusion holds similarly. So the total cheating probability is bounded by∑k−1

j=1 ( c
Qj

+ ε
2k−j ) ≤ (c + 1)ε.

shuhong
Note
as $B$ in
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Since by using USNIC schemes, we are able to handle a group R of receiver
as a single receiver, thus the number of bits sent over the manual channel is
actually same to the single receiver case, that is b ≤ 2 log(1/ε)+2 logk−1 a+O(1)
by claim 17 in [13]. And if there exists some 1 ≤ j ≤ k − 2 such that aj ≤ 2k−j

ε ,
we can choose Qk−1 = Θ(1/ε) instead of Qk−1 = Θ((1/ε) log(1/ε)) and achieves
b = 2 log(1/ε) + O(1). ut
Corollary 1. An (n, c)-secure (a, b, k, ε)-manual authentication protocol in the
MRMA model exists for all a, k, 1 ≤ c ≤ n − 1, 0 < ε < 1 and b ≤ 2 log(1/ε) +
2 logk−1 a + O(log c).

Proof. By replacing (c+1)ε with ε in Theorem 1, we have b ≤ 2 log((c+1)/ε)+
2 logk−1 a + O(1) = 2 log(1/ε) + 2 logk−1 a + 2 log(c + 1) + O(1). ut

In case aj ≤ (c+1)2k−j

ε for some j = 1, · · · , k−2, we immediately have a lower
bound for the MRMA model 2 log(1/ε) + O(log c). This is the same bound as
the single receiver model for constant c, that is 2 log(1/ε) + O(1). It is however
not known for large c, whether 2 log(1/ε) + O(log c) is the tight bound.

4 Impossibility of noninteraction

Non-interactive Manual Authentication Protocols (NIMAPs) [14, 15] are partic-
ularly interesting in computational model because they do not require the receive
to be live and as long as what is received through the public channel matches
what is received over the manual channel, the received message is considered
authentic. In this section we show a negative result that non-trivial NIMAPs do
not exist in information theoretic model.

The information theoretic NIMAP model: The sender S sends the
message m and some x over the insecure public channel, and a tag t over the
manual channel. The receiver R decides wether or not accepts m as authentic
from S.

Advantage: The non-interactive protocol (if exists) has an obvious advan-
tage over interactive protocol, that is, it is simple and efficient in communication.
More importantly, there is an advantage that non-interactive protocol for single
receiver also works for multiple receivers by replacing the unicast channels with
multicast ones. The intrinsic reason is that non-interactive protocol needs no
information from the receiver, no matter it is a single entity or a group. For this
reason, we thereafter consider R as a single entity.

Impossibility: We, however, notice that non-interactive manual authentica-
tion protocol does not exists in the “pure” manual channel model (i.e., without
secrets between sender and receiver, and without requirements such as stall-free
on the manual channel) unless the manual channel has enough bandwidth to
transmit the whole message. This can be roughly argued as follows.

Suppose now |m| > |t|, then there definitely exists some other message m̂
which is authenticated under the same manual tag t (under some x̂). Therefore,
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on observing the authentication transcripts (m,x, t), the adversary simply re-
places (m,x) with (m̂, x̂). The adversary can do so “online” by removing m, x
and delaying t until he figures out such (m̂, x̂) and then inserts it into the insecure
channel.

To formally prove the impossibility, we need the following formal definition
of non-interactive manual authentication protocol.

Definition 2. Let M, X, T denote the random variables overs the sets M,X , T ,
respectively. A non-interactive manual protocol is given by a joint conditional
distribution PXT |M : (X , T ,M) → [0, 1], where the input message m is chosen
according to the distribution PM : M → [0, 1] (by either the adversary or S).
The values (m,x) of (M,X) are sent over the insecure channel and the value
t of T is sent over the manual channel. Finally, R receives m̂, x̂, t and accepts
m̂ as authentic if and only if PM (m̂) > 0 3 and V (m̂, x̂, t) = 1, where V (·) is a
boolean-valued function V (m,x, t) ∈ {0, 1} over M×X × T .

Typically, the distribution PM is chosen to be the uniform distribution; the
joint conditional distribution PXT |M is given in terms of efficiently computable
randomized function f : M × Γ → X × T , where Γ is some finite se, such
that P··|M is the distribution of f(m, γ)) for a uniformly random chosen γ ∈ Γ .
This is often directly used as the definition of a manual authentication protocol,
such as [19, 15], although they are in computational setting. The protocol of
Naor et al [13] and ours in previous sections are also described in this typical
manner. Note that this definition can be extended to cover the interactive manual
authentication protocol by defining a series of joint conditional distributions. Due
to the time and space limitation, we leave the extension as our future work.

We use the term “an input message m” to mean a message m ∈M satisfying
PM (m) > 0, and denote the set of input messages by M+. Then for every
m ∈ M+, define Tm = {t ∈ T : ∃x ∈ X , s.t., PXT |M (x, t|m) > 0} and ∆m =
{t ∈ T : ∃x ∈ X , s.t., V (m,x, t) = 1}. Tm is called the set of correct manual tags
with regard to an input message m, and ∆m is called the acceptable manual tags
with regard to an input message m. Then we can use t ∈ Tm (resp. t ∈ ∆m) to
refer to the event that “there exists an x ∈ X such that PXT |M (x, t|m) > 0 (resp.
V (m, x, t) = 1) holds for the input message m”. Let 1/2 ≤ ξ ≤ 1 and 0 ≤ ε < 1 be
two real number constants, and let ε(m̂|m, t) be the chance of an adversary, who
observes the authentication transcripts4 (m,x, t), in deceiving R into accepting
a different message m̂ using his best strategy. We have the following definition
for security of a non-interactive manual authentication protocol.

Definition 3. A non-interactive manual authentication protocol is said to be
information theoretically (ξ, ε)-secure if the following properties hold.

3 This can be looked as the message redundancy verification that excludes the messages
meaningless. However, one can assume PM (m) > 0 holds for all m ∈ M to omit
this verification without impact on our impossibility result since, adding m with
PM (m) = 0 to M only increase its size, has no effect on its entropy H(M).

4 Which, by the definition of Tm, implies t ∈ Tm.
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Completeness The joint conditional distribution satisfies for every m ∈ M+,∑
x,t:V (m,x,t)=1 PXT |M (x, t|m) ≥ ξ. In other words, for all input message m,

when there is no interference by the adversary in the execution, the receiver
accepts m with probability at least ξ.

Unforgeability The joint conditional distribution satisfies ε(m̂|m, t) ≤ ε, for
all m 6= m̂ ∈ M+ and t ∈ Tm. In other words, for any computationally
unbounded adversary, and for all input message m, if the adversary replaces
m with a different message m̂, then R accepts m̂ with probability at most ε.

By the definitions, the property of perfect completeness (i.e., ξ = 1) in Section
2 is guaranteed if and only if V (m, x, t) = 1 holds whenever PXT |M (x, t, m) > 0.

For a fixed protocol, i.e., a fixed joint conditional distribution PXT |M (x, t|m),
the maximal chance ε of success of an adversary could be calculated as

ε = max
m,t∈Tm

max
m̂ 6=m

ε(m̂|m, t).

Since the adversary has computationally unbounded power, then

ε(m̂|m, t) = Pr[V (m̂, ∗, t) = 1|t ∈ Tm]
= Pr[t ∈ ∆m̂|t ∈ Tm] = Pr[t ∈ Tm ∩∆m̂]

=

{
1 if t ∈ ∆m̂,

0 if t /∈ ∆m̂.

is a boolean-valued function and is only defined for m, m̂ ∈M+.

Theorem 2. For any information theoretically secure (ξ, ε) non-interactive man-
ual authentication protocol, |M+| ≤ |T |. Furthermore, if ξ = 1, then H(M) ≤
H(T ), where H(·) denotes the Shannon entropy function.

Proof. We observe that Pr[t ∈ Tm ∩∆m̂] ≤ ε < 1 is equivalent to Pr[t ∈ Tm ∩
∆m̂] = 0 since it is a boolean function. That is to say Tm ∩ ∆m̂ = ∅ for all
m 6= m̂ ∈ M+. Because ∆m ⊆ Tm, we further have ∆m ∩ ∆m̂ = ∅ for all
m 6= m̂ ∈ M+. And, thanks to the completeness property, we know ∆m 6= ∅
for all PM (m) > 0. Together, we can claim that {∆m}m∈M+ forms a partition
of a subset of T . So we immediately have |M+| ≤ |T |. But |M| ≤ |T | is not
necessarily true if there exist some messages m with PM (m) = 0. Instead, we
show H(M) ≤ H(T ) as below.

Denote by PMXT the joint distribution over M,X , T determined by PM and
PXT |M . Then PMXT (m,x, t) is computed as PM (m) ·PXT |M (x, t|m). Artificially
define a conditional probability

Pr[m|t] =

{
1 if t ∈ ∆m;
0 otherwise,

then H(M |t) = −∑
Pr[m|t]>0 Pr[m|t]·log2 Pr[m|t] = 0, which implies H(M,T ) =

H(T ). Following the fact that the joint entropy of two variables is not smaller
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than the entropy of either variable, i.e., H(M, T ) ≥ H(M), we easily arrive at
the conclusion H(T ) ≥ H(M). If Pr[m|t] matches the conditional distribution
PM |T deducted from PMXT , then the conclusion also holds for the protocol.

In the following, we show that for perfect complete non-interactive protocol,
Pr[m|t] does match the conditional distribution PM |T defined by the protocol.
In fact, we have for the general case that,

PM |T (m, t) =
∑

x∈X

PMXT (m,x, t)
PT (t)

=
∑

x∈X PM (m) · PXT |M (x, t, m)∑
m∈M

∑
x∈X PM (m) · PXT |M (x, t|m)

=
∑

x∈X PM (m) · PXT |M (x, t, m)∑
x∈X PM (m) · PXT |M (x, t, m) +

∑
m 6=m̂∈M

∑
x∈X PM (m̂) · PXT |M (x, t, m̂)

=





0 if m /∈M+ or t /∈ Tm;
p ∈ (0, 1) if t ∈ Tm \∆m;
1 if t ∈ ∆m.

Then we can conclude the proof by noticing that Tm = ∆m for a perfect
completeness protocol and thus Tm \∆m = ∅. ut

5 Conclusions

Manual authentication captures numerous real life scenarios where a sender
wants to send a message to a receiver with whom he does not have any pre-
distribute keys, however he an use a low bandwidth auxiliary channel to send
short strings authentically. We propose an extension of this model where the
sender wants to send the message to a group of receivers. We introduce mul-
tireceiver manual channel to model devices such as a display used to display a
short string to a group of people, or a speaker is used to send a short string
to a group. Such a manual channel can be seen as a collection of manual chan-
nels, one for each receiver. Our model of adversary is the most powerful one,
allowing the adversary to control independently each manual channel. We gave
the construction of a protocol that achieves optimal security assuming a trusted
infrastructure among receivers. We also showed nontrivial NIMAP in uncondi-
tionally secure framework does not exist. An interesting question is to consider
extensions of multireceiver manual authentication systems where receivers are
connected through other types of trusted mechanisms (e.g. manual channels).
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Appendix

A Description of Pk [13]

For ease of reading and self-completeness, we give a brief description of the
single-receiver (R) protocol Pk due to Naor, Segev and Smith [13]. To uniform
the notations, we replace Cj with f j , ijS with Aj

S , and ijR with Bj
R.

The protocol Pk:

1. S sends m1
S = m.

2. For j = 1 to k − 1.
(a) If j is odd, then

i. S chooses Aj
S ∈R GF[Qj ] and sends it to R.

ii. R receives Âj
S , chooses Bj

R ∈R GF[Qj ], and sends it to S.

iii. S receives B̂j
R, and computes mj+1

S = 〈B̂j
R, f j

B̂
j
R

(mj
S) + Aj

S〉.
iv. R computes mj+1

R = 〈Bj
R, f j

B
j
R

(mj
R) + Âj

S〉.
(b) If j is even, then

i. R chooses Bj
R ∈R GF[Qj ] and sends it to S.

ii. S receives B̂j
R, chooses Aj

S ∈R GF[Qj ], and sends it to R.

iii. R receives Âj
S , and computes mj+1

R = 〈Âj
S , f j

Â
j
S
(mj

R) + Bj
R〉.

iv. S computes mj+1
S = 〈Aj

S , f j

A
j
S
(mj

S) + B̂j
R〉.

3. S manually authenticates mk
S to R.

4. R accepts if and only if mk
S = mk

R.

Fig. 5. The k-round authentication protocol [13]

B Description of USNIC[p] [17]

Unconditionally secure non-interactive commitment scheme is suggested by Re-
vist [16] and then formally addressed by Blundo, Masucci, Stinson and Wei
[17]. As commitment schemes in computational setting, a USNIM scheme pro-
vides also two aspects of security. That is concealing and binding properties.
Roughly speaking, concealing means the receiver learns nothing about the com-
mitted value before the reveal/open phase and binding means the sender can
not change this value after committed. But different to computational setting,
USNIM schemes works only in trusted initializer (TI) model – TI trusted by
both the sender S and the receiver R. For more information, please refer to
their original work.

Fig. 6 is a brief description of the Affine Plane Commitment Scheme work-
ing in GF[p] = Zp. We use the notation USNIC[p] to imply that any similar
commitment scheme is applicable for our MRMA protocol in Subsection 3.2.
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USNIC[p] Scheme:

initialize TI chooses a, b, x1 ∈R Zp.
He computes y1 = (ax1 + b) mod p.
Then he privately sends (a, b) to S and (x1, y1) to R.

commit Suppose S wants to commit to the value x0 ∈ Zp.
She computes y0 = (x0 + a) mod p and sends y0 to R.

reveal S sends (a, b) and x0 to R.
R verifies that ax1 + by1 mod p and x0 + a = y0 mod p.
If both congruences hold, R accepts x0 and otherwise rejects.

Fig. 6. The USNIC[p] commitment scheme from [17]

The following theorem shows that R’s probability of guessing the value of x0

after the commit protocol is the same as his probability of randomly guessing it.

Theorem 3 (THEOREM 4.1 of [17]). The USNIC[p] scheme in Fig. 6 is
concealing.

The following theorem says that the probability of S cheating R into accept-
ing a different x0 is less that 1/p.

Theorem 4 (THEOREM 4.2 of [17]). In the USNIC[p] scheme in Fig. 6,
the binding probability is equal to 1− 1/p.

C The proof of Theorem 1

Proof. Given an uncorrupted receiver Ri ∈ R\C who was cheated into accepting
a fraudulent message m̂i(= m1

i ) 6= m(= m1
S), it holds that mj

i 6= mj
S but

mj+1
i = mj+1

S for some 1 ≤ j ≤ k − 1. As in [13], denote this event by Dj .
We similarly prove Pr[Dj ] ≤ (c+1)ε

2k−j and therefore the cheating probability is
bounded by

∑k−1
j=1 Pr[Dj ] ≤

∑k−1
j=1

(c+1)ε
2k−j ≤ (c + 1)ε.

Let T (x) be the time at which the variable x is fixed. Namely, T (Aj
S) denotes

the time in which S sent the tag Aj
S , and T (Âj

i ) denotes the time in which Ri

received the tag Âj
i from the adversary, corresponding to Aj

S ; Similarly, T (B̂j)
denotes the time in which S received the last B̂j

l , l ∈ [n], and T (Bj
i ) denote the

time in which Ri opened his commitment for Bj
i .

From the description of the protocol, it holds that all the Bj
l ’s were chosen

before T (Bj
i ). So, thanks to the security of the commitment scheme, Bj

l is un-
changeable except with a probability 1/Qj (binding property of USNIC[Qj ]) and
the other Bj

l ’s (l 6= i) were chosen independently to Bj
i (concealing property of

USNIC[Qj ]). In the exception case we regard the adversary as being successful,
which happens with a probability at most c/Qj ≤ cε

2k−j (accumulated among all
the corrupted users).
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In the following we assume the commitment scheme has zero probability for
both binding and secrecy. Denote by Dj the event Dj under the assumption, the
conclusion follows as long as Pr[Dj ] ≤ ε

2k−j is proved. Under the assumption,
we easily have PrBj

i∈RGF[Qj ]
[Bj (i.e.,

∑n
l=1 Bj

l ) = B] = 1
Qj

for any constant

B ∈ GFQj ] and no matter how Bj
l ’s (l 6= i) were chosen.

Now suppose j is odd, we have the following possible cases:

1. T(B̂j) < T(Bj
i): In this case, the receiver Ri opens the randomly chosen Bj

i

only after the adversary chooses B̂j . Therefore,

Pr[Dj ] ≤ Pr
Bj

i∈RGF[Qj ]
[B̂j = Bj ] =

1
Qj

≤ ε

2k−j
.

2. T(B̂j) ≥ T(Bj
i) and T(Âj

i) ≥ T(Aj
S): In this case, the adversary chooses B̂j

not before the receiver opens the random Bj
i . Then the sum Bj may be

known to the adversary. If the adversary chooses B̂j 6= Bj , then mj+1
S 6=

mj+1
i , i.e., Pr[Dj ] = 0. Now suppose that the adversary chooses B̂j = Bj .

Since j is odd, Ri chooses (and then opens) Bj
i only after he receives Âj

i

from the adversary, therefore T (Bj
i ) > T (Âj

i ) ≥ T (Aj
S) > T (mj

S), and also
T (Bj

i ) > T (mj
i ). This means that mj

i ,m
j
S , Âj

i and Aj
S are chosen indepen-

dently to Bj
i . Define F (x) := f j

x(mj
S)+Aj

S−f j
x(mj

i )− Âj
i , which is a polyno-

mial of degree d ∈ [1, d aj

log Qj
e] (since by assumption mj

S 6= mj
i ). Therefore,

Pr[Dj ] ≤ Pr
Bj

i∈RGF[Qj ]
[f j

Bj (m
j
S) + Aj

S = f j
Bj (m

j
i ) + Âj

i ]

= Pr
Bj

i∈RGF[Qj ]
[Bj is a root of F (x)] =

d

Qj
≤ ε

2k−j
.

3. T(B̂j) ≥ T(Bj
i) and T(Âj

i) < T(Aj
S): As in the previous case, we can assume

that the adversary chooses B̂j = Bj . It always holds that T (Aj
S) > T (mj

S)
and T (Bj) > T (Bj

i ) > T (mj
i ). Since j is odd, Ri sends (before he opens)

Bj
i only after he receives Âj

i , therefore T (Âj
i ) < T (Bj

i ). And we can assume
T (Bj

i ) < T (Aj
S) (otherwise we have T (Bj

i ) > {T (Aj
S), T (Âj

i ), T (mj
S), T (mj

i )}
as in case 2). This implies that S chooses Aj

S ∈R GF[Qj ] when mj
S ,mj

i , Â
j
i

and Bj are fixed. As a result,

Pr[Dj ] = Pr
Aj
S∈RGF[Qj ]

[Aj
S = f j

Bj (m
j
i ) + Âj

i − f j
Bj (m

j
S)] =

1
Qj

≤ ε

2k−j
.

When j is even, the conclusion follows in the same way. We just need to change
the roles of A and B in classifying the possible cases. That is, i) T (Âj

i ) < T (Aj
S);

ii) T (Âj
i ) ≥ T (Aj

S) and T (B̂j) ≥ T (Bj
i ); and iii) T (Âj

i ) ≥ T (Aj
S) and T (B̂j) <

T (Bj
i ). Also refer to [13] for more details. ut


