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Abstract

In this paper, we propose a new method for constructing a bilinear pairing over
(hyper)elliptic curves, which we call the R-ate pairing. This pairing is a generalization
of the Ate and Atei pairing, and also improves efficiency of the pairing computation.
Using the R-ate pairing, the loop length in Miller’s algorithm can be as small as
log(r1/φ(k)) for some pairing-friendly elliptic curves which have not reached this lower
bound. Therefore we obtain from 29% to 69% savings in overall costs compared to
the Atei pairing. On supersingular hyperelliptic curves of genus 2, we show that this
approach makes the loop length in Miller’s algorithm shorter than that of the Ate
pairing.

Key words: pairing, elliptic curves, hyperelliptic curves, pairing based cryptography,
Tate pairing.

1 Introduction

The development of efficient algorithms for the pairing computation has been a very impor-
tant issue in the pairing based cryptosystems. The pairing computation on abelian varieties
is generally based on the Miller’s algorithm for rational functions from scalar multiplications
of divisors. Many algorithms for efficient computation of the pairing have been developed
by reducing the iteration loops in Miller’s algorithm. Barreto et al. [1] and Galbraith et
al. [11] proposed the fast computation of the Tate pairing over some supersingular elliptic
curves. Duursma and Lee [6] improved the BKLS-GHS algorithms by shortening the loop
length of the Miller’s algorithm over some hyperelliptic curves. Barreto et al. [2] extended
the Duursma-Lee method to supersingular abelian varieties using the Eta pairing approach.
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Recent breakthroughs include the Ate pairing on ordinary elliptic curves by Hess et al. [15],
which is a generalization of Eta pairing, followed by the Ate pairing on the hyperelliptic
curves by Granger et al. [12]. Matsuda et al. [21] showed that the Ate pairing is always
at least as fast as the Tate pairing by providing the optimized versions of the Ate and the
twisted Ate pairing. For fast pairing computation, it is known that the loop length in Miller’s
algorithm of the Ate pairing can be as small as Λr,k = log(r1/φ(k)) where φ(k) is the Euler-phi
function of embedding degree k and the prime number r is the order of cyclic subgroup of
given abelian variety [15]. Zhao et al. [25] showed that the loop length reaches Λr,k for some
ordinary elliptic curves by proposing the Atei pairing.

In this paper we propose a new method to construct a bilinear pairing over (hyper)elliptic
curves. We call the pairing obtained by this method the R-ate pairing. We show that the
Ate and Atei pairing can be constructed by this approach. Therefore, this new pairing is a
generalization of the Ate and Atei pairing. The R-ate pairing has two main advantages for
efficient computation of pairings. First, using the R-ate pairing, the loop length in Miller’s
algorithm can be as small as Λr,k for some pairing-friendly elliptic curves which have not
reached this lower bound. Therefore, this pairing enables the loop length to be around 2 or
3 times shorter than that of the Atei pairing on the curves suggested in [3, 7, 8]. Second,
we show that, on supersingular hyperelliptic curves of genus 2, the loop length of the R-ate
pairing can be reduced by up to half compared to the Ate pairing. In particular, we consider
the DL-curve [6], y2 = x5 − x + d, and analyze the complexity of the R-ate pairing on the
curve. This result shows that the R-ate pairing is around 19% faster than the Ate pairing
on this curve at 160-bit security level.

This paper is organized as follows. Section 2 includes the basic mathematical backgrounds
such as the Tate, Ate and Atei pairings and the Miller’s algorithm. In Section 3 we define
the R-ate pairing and also investigate the criterion for the R-ate pairing to be computed
efficiently. Section 4 provides the examples of the R-ate pairings on supersingular elliptic
curves over a finite field in characteristic 3 and ordinary elliptic curves. Section 5 gives the
examples of the R-ate pairings over supersingular hyperelliptic curves of genus two. Section
6 includes the complexity analysis of the R-ate pairings over (hyper)elliptic curves provided
in Section 4 and 5.

2 Preliminaries on pairings

In this section, we briefly recall the definitions of the Tate pairing, Ate pairing and Atei

pairing over (hyper)elliptic curves and also review the Miller’s algorithm to compute the
pairings. For a good survey of pairings, refer to [13].

2.1 The Tate, Ate and Atei pairings

Let Fq be a finite field with q elements, and C be a non-singular curve of genus g over Fq.
We denote by JC the group of degree zero divisor classes of C. If g = 1, then JC is an elliptic
curve group. We refer to [16] for the definitions and the notations related to divisors.
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We recall the definition of the Tate pairing [9]. Let r be a positive divisor of the order
of JC(Fq) with gcd(r, q) = 1, and k be the smallest integer such that r | (qk − 1); such k is
called the embedding degree. Let JC [r] be the divisor classes of order dividing r. The Tate
pairing is a map

〈 ·, · 〉r : JC [r]× JC(Fqk)/rJC(Fqk) → F∗qk/(F∗qk)
r

〈D, E〉r = fr,D(E ′),

where div(fr,D) = rD and E ′ ∼ E with support(E ′)∩ support(div(fr,D)) = ∅. We define the

reduced Tate paring by e(D, E) = 〈D,E〉 qk−1
r

r so that the pairing value is defined uniquely.
Here r can be replaced by any integer N such that r | N | qk − 1 [11]. Thus e(D,E) =

〈D,E〉
qk−1

N
N .

Let ϕ be the q-power Frobenius endomorphism on JC and G1 = JC [r] ∩ ker(ϕ − [1]),
G2 = JC [r] ∩ ker(ϕ − [q]). For ordinary curves, the Ate pairing [12, 15] and the Atei

pairing [25] on divisors D1 ∈ G1, D2 ∈ G2 are defined as following:

Ate pairing (g = 1) : a(D2, D1) = ft−1,D2(D1)
(qk−1)/r where t is a trace of ϕ

Ate pairing (g ≥ 2) : a(D2, D1) = fq,D2(D1)

Atei pairing (g = 1) : ai(D2, D1) = fqi mod r,D2
(D1)

(qk−1)/r for 0 < i < k.

The Ate(Atei) pairings can also be defined over G1 × G2. These pairings are called the
twisted Ate pairings. For the details of the Twisted Ate pairing, see [12, 15]. For supersingular
(hyper)elliptic curves, there exist a distortion map ψ such that e(D, ψ(E)) 6= 1 for two
divisors D, E ∈ G1 with prime order [14, 23]. If we use the distortion map, we can define the
Ate pairing on G1 ×G1 with the condition that ψ(G1) = G2. This pairing is called the Eta
pairing [2, 6]. The Eta pairing is a special form of the twisted Ate pairing on supersingular
curves. But the Eta pairing is introduced before the Ate pairing.

2.2 Miller’s algorithm

The pairings over (hyper)elliptic curves are computed using the algorithm proposed by
Miller [19]. The main part of the Miller’s algorithm is constructing the rational function
fn,D and evaluating fn,D(E) with div(fn,D) = nD − (nD) for divisors D and E. Let GiD,jD

be a rational function with

div(GiD,jD) = iD + jD − (iD ⊕ jD) (1)

where ⊕ is the group law on JC and (iD ⊕ jD) is reduced. Using the following relation,
Miller’s algorithm computes fn,D(E).

fi+j,D = fi,Dfj,DGiD,jD.
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Algorithm 1 Miller’s algorithm
procedure M(D,E, `)
INPUT: D, E ∈ JC , ` ∈ Z, ` =

∑blog2 `c−1
i=0 `i2i (`i = 0, 1)

OUTPUT: f`,D(E), `D
1: T ← D
2: f ← 1
3: for i ← blog2 `c − 1 down to 0 do
4: ¦ Miller-doubling step (MD)
5: f ← f2 ·GT,T (E)
6: T ← 2T
7: if `i = 1 then
8: ¦ Miller-addition step (MA)
9: f ← f ·GT,D(E)

10: T ← T + D
11: end if
12: end for
13: return f, T

In the case of elliptic curves, GiD,jD is the line passing through the points Pi and Pj divided
by the vertical line passing through the point Pi+j where iD = (Pi)− (∞), jD = (Pj)− (∞)
and (i + j)D = (Pi+j)− (∞).

The Miller’s algorithm is explicitly described in Algorithm 1. We denote by M(D,E, `)
the procedure in Algorithm 1 for the inputs D, E ∈ JC [r] and ` ∈ Z/rZ. The procedure
M returns the value f`,D(E) and `D. We call the steps in for-loop of Miller’s algorithm as
Miller-operation(MO) and the length of the for-loop as Miller-length. That is, in Algorithm 1,
the steps 4 through 10 are for Miller-operation and the Miller-length is blog2 `c. We also
divide Miller-operation into two parts: Miller-doubling(MD), Miller-addition(MA).

3 The R-ate pairing

In this section, we construct a new pairing, which we call the R-ate pairing because the R-ate
pairing can be regarded as a ratio of any two pairings. We also investigate the criterion for
the R-ate pairing to be computed efficiently.

3.1 Construction of the R-ate pairing

We use the same notations as in the previous sections. We recall the Atei pairing on an
elliptic curve which is defined by

fTi,D(E), Ti = qi mod r.

Our observation is that the Atei pairing is constructed from the parameters (q, r) which are
used to define the Ate and Tate pairing. We extend this idea to define a new bilinear pairing
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by using any combinations of parameters of previously known pairings such as r, q, Ti. First,
we define the R-ate pairing for arbitrary integers A and B.

Definition 3.1. For A,B, a, b ∈ Z with A = aB + b, we define the R-ate pairing to be

RA,B(D, E) = fa,BD(E) · fb,D(E) ·GaBD,bD(E). (2)

Generally, this definition does not give a non-degenerate, bilinear pairing. However if A
and B are chosen parameters which determine the Miller loop for bilinear pairings, the R-ate
pairing satisfies the condition of non-degeneracy and bilinearity.

Theorem 3.2. Let C be a non-singular curve over Fq and r a large prime which divide
N = #JC(Fq)(or#E(Fq)). Let D and E be divisors on C defined over Fq with an order
dividing r. Let A and B be integers such that
1. A = aB + b for a, b ∈ Z.
2. fA,D(E) and fB,D(E) are nondegenerate bilinear pairings with the following relations.

e(D, E)L1 = fA,D(E)M1 , e(D,E)L2 = fB,D(E)M2 .

for some integers L1, L2,M1 and M2.
Let M = lcm(M1,M2), d1 = M/M1, d2 = M/M2 and L = d1L1 − ad2L2.
If r - L, then the R-ate pairing RA,B(D,E) is a nondegenerate bilinear pairing with the
following relation:

e(D, E)L = RA,B(D,E)M .

Proof. Let D =
∑d

i=1(Pi)− d(O). We have

(faB,D) = (aB)(D)−D(aB) − d(aB − 1)(O)

= aB(D)− aDB − ad(B − 1)(O) + aDB −DaB − d(a− 1)(O)

= a(fB,D) + (fa,BD).

Hence
faB,D = fa

B,D · fa,BD.

Therefore

fA,D(E) = faB+b,D(E)

= faB,D(E) · fb,D(E) ·GaBD,bD(E)

= fa
B,D(E) · fa,BD(E) · fb,D(E) ·GaBD,bD(E)

= fa
B,D(E) ·RA,B(D, E).

By assumption, fA,D(E) and fa
B,D(E) are bilinear pairings. So RA,B(D,E) is also a bilinear

pairing. Moreover,
fA,D(E)M = fB,D(E)aM ·RA,B(D, E)M .
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e(D, E)d1L1 = e(D,E)ad2L2 ·RA,B(D, E)M .

Hence
e(D, E)L = RA,B(D,E)M .

By this relation, the R-ate pairing RA,B(D, E)M is nondegenerate if r - L.

In Eq. (2), the R-ate pairing requires Miller’s algorithm twice for the initial divisors
(BD) and D. However, if we choose B to be qi mod r which is the parameter for the Atei

pairing, we can construct the efficient R-ate pairing by making two initial divisors identical
as shown in Corollary 3.3. For simplicity, we represent R(D,E) instead of RA,B(D, E) if A
and B are clear from the context.

Corollary 3.3. Let C be a nonsingular curve over Fq with embedding degree k and r be a
large prime divisor of #JC(Fq). Let G1 = JC [r]∩ker(ϕ− [1]), G2 = JC [r]∩ker(ϕ− [q]) and
D2 ∈ G2, D1 ∈ G1. We let
- Ti ≡ qi mod r for 0 < i < k and hi be the smallest integer such that T hi

i ≡ 1 mod r.
- Ni = gcd(T hi

i − 1, qk − 1) and T hi
i − 1 = LiNi.

- ci =
∑hi−1

j=0 Ti
hi−1−j(qi)j mod Ni and Mi = (qk − 1)/Ni.

For each chosen parameters (A, B) with A = aB + b, the R-ate pairing follows with the
relation,

e(D2, D1)
L = R(D2, D1)

M

for each L and M :

1 . For (A, B) = (qi, r),
R(D2, D1) = fTi,D2(D1)

L = iqi−1 qk − 1

r
− kqk−1a, M = kqk−1 · qk − 1

r
.

2 . For (A, B) = (q, T1) where q > T1,

R(D2, D1) = fa,D2(D1)
q · fb,D2(D1) ·GaTD2,bD2(D1)

L = M1 − aL1, M = c1M1.

3 . For (A, B) = (Ti, Tj),

R(D2, D1) = fa,D2(D1)
qj · fb,D2(D1) ·GaTjD2,bD2(D1),

L = diLi − adjLj, M = lcm(ciMi, cjMj) = diciMi = djcjMj.

4 . For (A, B) = (r, Tj),

R(D2, D1) = fa,D2(D1)
qj · fb,D2(D1) ·GaTjD2,bD2(D1).

L = d0 − adjLj, M = lcm(
qk − 1

r
, cjMj) = d0

qk − 1

r
= djcjMj.
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Proof. Since the proofs of the case 2 and 4 are similar to that of the case 3, we just prove
the case 1 and 3.
1. Let qi = ar + b. In this case,

fqi,D2
(D1) = far,D2(D1) · fb,D2(D1).

Since b = Ti,
R(D2, D1) = fTi,D2(D1).

By [15, Lemma 2,3],

e(D2, D1)
iqi−1

= fq,D2(D1)
kqk−1iqi−1

= fqi,D2
(D1)

kqk−1

.

By the property of the Tate pairing,

e(D2, D1)
a = far,D2(D1)

qk−1
r .

Hence

e(D2, D1)
iqi−1 qk−1

r
−kqk−1a = R(D2, D1)

kqk−1· qk−1
r .

3. Let Ti = aTj + b. In this case,

fTi,D2(D1) = fa
Tj ,D2

(D1) · fa,TjD2(D1) · fb,D2(D1) ·GaTjD2,bD2(D1).

By [25, Theorem 1],

fa,TjD2(D1) = fa,D2(D1)
qj

.

Hence
R(D2, D1) = fa,D2(D1)

qj · fb,D2(D1) ·GaTjD2,bD2(D1).

Since
e(D2, D1)

Ll = f clMl
Tl,D2

(D1)

for l = i, j,
e(D2, D1)

diLi−adjLj = R(D2, D1)
M

where M = lcm(ciMi, cjMj), M = diciMi = djcjMj.

Remark 3.4. 1. The R-ate pairing in the case 1 of Corollary 3.3 is the Atei pairing [25].

2. For supersingular elliptic curves and superspecial hyperelliptic curves, Corollary 3.3
can be also appllied to G1 ×G2 by [12, 15].

Algorithm 2 describes the computation of the R-ate pairing with respect to a and b which
are explained in Corollary 3.3. If c or d are very small where max{a, b} = c min{a, b}+d, the
performance of Algorithm 2 is similar to that of the Miller’s algorithm with the loop length
log2 max{a, b}. In the following section, we investigate the condition of the parameters a, b, c
and d which provide the efficient R-ate pairing.
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Algorithm 2 R-ate pairing
procedure R-ate(P, Q, a, b)
INPUT: P, Q ∈ C, a, b, j ∈ Z, m1 = max{a, b}, m2 = min{a, b}.
OUTPUT: R(Q,P ) = fa,Q(P )qj · fb,Q(P ) ·GaTiQ,bQ(P )
1: ¦ Compute fa, fb, aQ and bQ where {a, b} = {m1,m2}.
2: c ← [m1

m2
], d ← m1 − c ·m2.

3: fm2 ,m2Q ← M(Q,P, m2).
4: fc,m2 , c ·m2Q ← M(m2Q,P, c).
5: fd, dQ ← M(Q,P, d).
6: f1 ← f c

m2
· fc,m2 · fd.

7: fm1 ← f1 ·Gc·m2Q,dQ(P ).
8: m1Q ← c ·m2Q + dQ.
9: f2 ← f qj

a · fb.
10: Q1 ← φj(aQ).
11: f3 ← f2 ·GQ1,bQ(P ).
12: return f3

3.2 Criterion for the efficient R-ate pairing

In this section, we observe the condition when the R-ate pairing is more efficient than the
Atei pairing.

We recall the pairings,

Atei: fT,D2(D1), where T = min1≤i≤k−1{T i (mod r)}
R-ate: fa,D2(D1)

qj · fb,D2(D1) ·GaqjD2,bD2
(D1).

To estimate the complexity of Algorithm 2, we use the following notations:

Mi : the cost for a multiplication in Fqi

T (M(D1, D2, `)) : the cost for Miller’s algorithm described in Algorithm 1 for D1 ∈
G1, D2 ∈ G2 and ` ∈ Z
TG,A(TG,D) : the cost for the rational function G appearing in a point addition (dou-
bling) and an evaluation of G at D1

TMA(TMD) : the cost for the Miller-addition (doubling) in Algorithm 1

TMO : the cost for the Miller-operation in Algorithm 1

Then, from Algorithm 1 and Algorithm 2, we obtain the following costs for the computation
of pairings:

C(Atei) = TMO · log2 T

C(R-ate) = TMO · (log2 min{a, b}+ log2 c + log2 d) + Exp(c) + TMA + 4Mk + TG,A,
(3)
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where Exp(c), TMA and TG,A are the costs for computing f c ∈ Fqk , for Step 7 and 8, and for
Step 11, respectively.

From [15, 17], we assume the cost for a squaring is similar to the cost for a multiplication
and the ratio of an inversion to a multiplication is 10. We ignore the cost for the Frobenius
map since it is relatively small compared to the cost for a multiplication and also we omit
the final powering step since the Atei pairing and the R-ate pairing have the same final
powering.

For simplicity, let us consider the ordinary elliptic curves with even embedding degree k.
As seen in [11, 15], G can be considered as a line for even embedding degree.

Thus, the costs for the elementary steps using affine coordinates in Full-Miller are as
following:

TG,A = Ik + 2Mk + kM1

TG,D = Ik + 3Mk + kM1

TMA = TG,A + 3Mk = Ik + 5Mk + kM1

TMD = TG,D + 4Sk = Ik + 7Mk + kM1 = TG,A + 5Mk = TMA + 2Mk = 17Mk + kM1

(4)

Since the cost for the Miller-operation of Miller’s algorithm depends on whether the addition
step exists in Algorithm 1, we have

TMD ≤ TMO ≤ TMA + TMD
and TMO = TMD + 1

2
TMA on average.

Since TMO ≥ TMD = 17Mk + kM1 ≥ 17Mk and Exp(c) ≤ 2(log2 c)Mk, we have

Exp(c) ≤ 2(log2 c)Mk ≤ 2(log2 c)TMO
17

.

From Eq. (3) and Eq. (4), we obtain TMA + 4Mk + TG,A ≤ TMA + TMD ≤ 2TMO and

C(R-ate) ≤ TMO · (log2(min{a, b}) +
19 log2 c

17
+ log2 d + 2). (5)

Therefore, the criterion for the R-ate pairing to be more efficient than the Atei pairing
follows:

γ(E) :=
log2(min{a, b}) + 19 log2 c

17
+ log2 d + 2

log2 T
< 1 =⇒ C(R-ate)

C(Atei)
< 1. (6)

The parameters a, b for the R-ate pairing satisfying Eq. (6) can be obtained by looking
into the combinations for (A,B) in Corollary 3.3. As γ(E) gets smaller, the R-ate pairing
becomes more efficient than the Atei pairing. For example, the curves E2 through E5 in
Section 4.2(Table 1) have

γ(E2) =
(9/34) log2 r + 2

(3/8) log2 r
∼ 2

3
γ(E3) =

(1/4) log2 r + 2
(3/4) log2 r

∼ 1
3

γ(E4) =
(1/4) log2 r + 3

(1/2) log2 r
∼ 1

2
γ(E5) =

(1/4) log2 r + 2
(1/2) log2 r

∼ 1
2
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which show the R-ate pairings on the curves are more efficient than the Atei pairing. The
values γ(Ei), i = 2, . . . , 5, also represent the ratios for the timing results of both pairings on
the examples (Table 3 in Section 6).

4 The R-ate pairing on elliptic curves

In this section we discuss the computation of R-ate pairings on supersingular elliptic curves
in characteristic 3 and ordinary elliptic curves including E1, E2, E3, E4 and E5.

4.1 Supersingular Elliptic curves

We give an example for the computation of R-ate pairing on the supersingular curve on F3n ,

S1 : y2 = x3 − x + b, b = ±1, gcd(n, 6) = 1,

whose order is
N = #E(F3n) = 3n + 1± 3

(n+1)
2 ([2, 6]).

For the curve S1, we can use the distortion map ψ(x, y) = (ρ − x, σy) to define the R-ate
pairing on G1 ×G1, where ρ3 − ρ− b = 0 and σ2 + 1 = 0.

Since 3n = ∓3
n−1

2 (T + 1), where T = 3n −N , we use (A,B) = (3n, T ) and thus we have
the following R-ate pairing for P, Q ∈ G1,

R(P, ψ(Q)) = f
3

(n−1)
2 ,(T+1)P

(ψ(Q)) ·GTP,P (ψ(Q))3
(n−1)

2
.

When ±(T + 1) < 0, we use (T + 1)P = −(T + 1)(−P ). By the case 2 of Corollary 3.3, this

pairing has the relation, e(P, ψ(Q))L = R(P, ψ(Q))M , with L = M1− 3
n−1

2 L1, M = c1M1 for

T1 = T . Since (c1, N) = 1, we have the reduced R-ate pairing R(P, ψ(Q))
qk−1

N = e(P, ψ(Q))L′

with L′ ≡ Lsc−1
1 mod N, where N1 = Ns.

By the final powering, we can ignore the vertical line and thus we only compute lTP,P (ψ(Q))
instead of GTP,P (ψ(Q)). Note that the explicit formulas for (T + 1)P and lTP,P (ψ(Q)) are
simple [2] and this R-ate pairing has one shorter Miller-length than the ηT pairing. We give
Algorithm 3 for computation of the R-ate pairing without a cubic root.

We can similarly define the R-ate pairing on the supersingular elliptic curves in charac-
teristic 2, S2 : y2 + y = x3 + x + b, b = 0, 1 over F2n discussed in [2, 18].

4.2 Ordinary Elliptic curves

In this section, we consider the R-ate pairing on ordinary elliptic curves. As discussed in
[15, 25], the Miller loop of the Ate (Atei) pairing can possibly be as small as r1/φ(k). However
some ordinary elliptic curves [3, 7, 8, 20] cannot reach this low bound. We show that the
R-ate pairing gives this low bound on such curves.
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Algorithm 3 R-ate pairing on y2 = x3 − x + 1 over F3n(n ≡ 5, 7 mod 12)
procedure R1(P, Q, ψ)
INPUT: P, Q ∈ E(F3n), ψ(x, y) = (ρ− x, σy)
OUTPUT: R(P, ψ(Q))

l ← lTP,P = yP (x− xP ) + yP − y
f ← lTP,P (ψ(Q))
for j=0 to n−3

2 do
f ← f3

xP ← x9
P − 1, yP ← −y9

P

u ← xP + xQ − 1
g ← σyP yQ − u2 − ρu− ρ2

f ← fg
end for
return finalpower(f)

Let Fp be a defining field of each elliptic curve and N be the order of Fp-rational points
with a large prime divisor r. Let

P1 ∈ G1 = E(Fp)[r] ∩ ker(ϕ− [1]) and P2 ∈ G2 = E(Fp)[r] ∩ ker(ϕ− [q]).

and
T = min

0<i<k
{Ti}, Ti = qi mod r.

The R-ate pairings R(P2, P1) on ordinary elliptic curves, say E1, . . . , E5, are following.

Example 4.1.

Let E1 be the curve over Fp in [20] with

k = 7
p = 15268391681519532829942582276850914805033533358709195412419252889296190850361031

N = 15268391681519532829942582276850914805033533358709195412419252889296190951028496
r = 1040722131042824291503998495039735508885676564761(160 bits)
T = T2 = 10133938509526225(54 bits).

Since r = T1+b for (A, B) = (r, T1) which is the case 4 of Corollary 3.3, we have the efficient
R-ate pairing with respect to a, b as following:

R(P2, P1) = fb,P2(P1) ·GT1P2,bP2(P1),

where
a = 1, b = 100667465(27 bits)
L = d0 − d1L1, M = lcm( qk−1

r , c1M1) = d0
qk−1

r = d1c1M1.

Note that the low bound, r1/φ(k) ∼ 227, is comparable to b in bit size. Since (d0, r) = 1,

we have the reduced R-ate pairing R(P2, P1)
qk−1

r equal to e(P2, P1)
L′ with L′ ≡ Ld−1

0 mod r.
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Example 4.2.

Let E2 be the curve over Fp in [20] with

k = 10
p = 396120610547891063909698040682890664156040501831963430185626838652064692433391635091

N = 396120610547891063909698040682890664156040501831963430185626838653153188731457177400
r = 1253732242268690674049383020671966019699064954321(160 bits)
T = T6 = 1088496298065542309(60 bits).

Since T9 = a · T2 + b for (A,B) = (T9, T2) which is the case 3 of Corollary 3.3, we have the
efficient R-ate pairing with respect to a, b as following:

R(P2, P1) = fa,P2(P1)
q2 · fa2,P2

(P1) ·GaT2P2,a2P2
(P1)

= fa,P2(P1)
q2 · fa,P2(P1)

a · fa,aP2(P1) ·GaT2P2,a2P2
(P1),

where

a = 1028669(20 bits), b = 1058159911561 = a2

L = d9L9 − ad2L2, M = lcm(c9M9, c2M2) = d9c9M9 = d2c2M2 = d2c2
qk−1
N2

.

Note that the low bound, r1/φ(k) ∼ 240, is comparable to b in bit size. Let N2 = rs. Since

(d2c2, r) = 1, we have the reduced R-ate pairing R(P2, P1)
qk−1

r equal to e(P2, P1)
L′ with

L′ ≡ Ls(d2c2)
−1 mod r.

Example 4.3.

Let E3 be the curve over Fp in [8] with

k = 8

p = 1/4(81z6 + 54z5 + 45z4 + 12z3 + 13z2 + 6z + 1)

r = 9z4 + 12z3 + 8z2 + 4z + 1

T = T1 = −9z3 − 3z2 − 2z − 1.

Since T3 = T2 + b for (A,B) = (T3, T2) which is the case 3 of Corollary 3.3, we have the
efficient R-ate pairing with respect to a, b as following:

R(P2, P1) = fb,P2(P1) ·GT2P2,bP2(P1),

where
a = 1, b = 3z + 1
L = d3L3 − d2L2, M = lcm(c3M3, c2M2) = d3c3M3 = d2c2M2 = d2c2

qk−1
N2

.

When z < 0, we can use T7 = T6−b. Note that the low bound, r1/φ(k) ∼ z, is comparable to b

in bit size. Let N2 = rs. Since (d2c2, r) = 1, we have the reduced R-ate pairing R(P2, P1)
qk−1

r

equal to e(P2, P1)
L′ with L′ ≡ Ls(d2c2)

−1 mod r. In implementation (Section 6), we select
z = 1013235040279 for the above parameters.
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Remark 4.4. By [8], this curve has a twist curve of degree 4. Hence we can use the twisted
Ate pairing. For the twisted R-ate pairing, we can use −4r = aT2 + b where a = 2z + 1, b =
3z2 + 2z. The twisted R-ate pairing is

R(P1, P2) = fa,P1(P2)
q2 · fb,P1(P2) ·GaT2P1,bP1(P2).

where P1 ∈ G1, P2 ∈ G2.

Example 4.5.

Let E4 be the curve over Fp in [7] with

k = 10

p = 25z4 + 25z3 + 25z2 + 10z + 3

r = 25z4 + 25z3 + 15z2 + 5z + 1

T = T2 = 5z2.

Since T4 = aT2 + b for (A, B) = (T4, T2) which is the case 3 of Corollary 3.3, we have the
efficient R-ate pairing with respect to a, b as following:

R(P2, P1) = fa,P2(P1)
q2 · fb,P2(P1) ·GaT2P2,bP2(P1)

= fa,P2(P1)
q2 · fa+2,P2(P1) ·GaT2P2,(a+2)P2(P1)

= fa,P2(P1)
q2 · fa,P2(P1) · f2,P2(P1) ·GaP2,2P2(P1) ·GaT2P2,(a+2)P2(P1),

where
a = −(5z + 3), b = −(5z + 1)
L = d4L4 − ad2L2, M = lcm(c4M4, c2M2) = d4c4M4 = d2c2M2 = d2c2

qk−1
N2

.

When z > 0, we can use T9 = −aT2−b. Note that the low bound, r1/φ(k) ∼ z, is comparable
to b in bit size. Let N2 = rs. Since (d2c2, r) = 1, we have the reduced R-ate pairing

R(P2, P1)
qk−1

r equal to e(P2, P1)
L′ with L′ ≡ Ls(d2c2)

−1 mod r. For z = −164286669864814370
suggested in [7], we implement the R-ate pairing on E4 with these parameters (Section 6).

Example 4.6.

Let E5 be the curve over Fp in [3] with

k = 12

p = 36z4 + 36z3 + 24z2 + 6z + 1

r = 36z4 + 36z3 + 18z2 + 6z + 1

T = T1 = 6z2.

Since T10 = a ·T1 + b for (A,B) = (T10, T1) which is the case 3 of Corollary 3.3, we have the
efficient R-ate pairing with respect to a, b as following:

R(P2, P1) = fa,P2(P1)
q · fb,P2(P1) ·GaT1P2,bP2(P1)

= fb+1,P2(P1)
q · fb,P2(P1) ·G(b+1)T1P2,bP2(P1)

= {fb,P2(P1) ·GbP2,P2(P1)}q · fb,P2(P1) ·G(b+1)T1P2,bP2(P1).
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where

a = 6z + 3, b = 6z + 2
L = d10L10 − ad1L1, M = lcm(c10M10, c1M1) = d10c10M10 = d1c1M1 = d1c1

qk−1
N1

.

When z < 0, we can use T4 = −aT1−b. Note that the low bound, r1/φ(k) ∼ z, is comparable
to b in bit size. Let N1 = rs. Since (d1c1, r) = 1, we have the reduced R-ate pairing

R(P2, P1)
qk−1

r equal to e(P2, P1)
L′ with L′ ≡ Ls(d1c1)

−1 mod r. For z = 6917529027641089837
suggested in [3], we implement the R-ate pairing on E5 with these parameters (Section 6).

Remark 4.7. By [3], this curve has a twist curve of degree 6. Hence we can use the twisted
Ate pairing. For the twisted R-ate pairing, we can use 2r = aT10 + b where a = 2z + 1, b =
6z2 + 4z. The twisted R-ate pairing is

R(P1, P2) = fa,P1(P2)
q10 · fb,P1(P2) ·GaT10P1,bP1(P2).

where P1 ∈ G1, P2 ∈ G2.

Table 1 summarizes the parameters for the Atei pairing and the R-ate pairing discussed
in the above examples.

Table 1: Examples : ordinary elliptic curves
Curve Parameters (Ti ≡ qi mod r)

E1 [20] k = 7
p = 15268391681519532829942582276850914805033533358709195412419252889296190850361031
r = 1040722131042824291503998495039735508885676564761
T2 = 10133938509526225(54bits)
r = T1 + 100667465(27bits)

E2 [20] k = 10
p = 396120610547891063909698040682890664156040501831963430185626838652064692433391635091
r = 1253732242268690674049383020671966019699064954321(160bits)
T6 = 1088496298065542309(60bits)
T9 = 1028669 · T2 + 1058159911561(40bits)

E3 [8] k = 8
p = 1/4(81z6 + 54z5 + 45z4 + 12z3 + 13z2 + 6z + 1)
r = 9z4 + 12z3 + 8z2 + 4z + 1
T1 = −9z3 − 3z2 − 2z − 1
T3 = T2 + 3z + 1

E4 [7] k = 10
p = 25z4 + 25z3 + 25z2 + 10z + 3
r = 25z4 + 25z3 + 15z2 + 5z + 1
T2 = 5z2

T9 = (5z + 3)T2 + (5z + 1)
E5 [3] k = 12

p = 36z4 + 36z3 + 24z2 + 6z + 1
r = 36z4 + 36z3 + 18z2 + 6z + 1
T1 = 6z2

T10 = (6z + 3)T1 + 6z + 2

5 The R-ate pairing on supersingular hyperelliptic curves

The Ate pairing on hyperelliptic curves of genus g can reduce the loop length in Miller’s
algorithm up to g times shorter than the Tate pairing [12]. In this section, we show that,
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using the R-ate pairing, the loop length of Miller’s algorithm can be about half as small as
that of the Ate pairing on supersingular hyperelliptic curves with g = 2.

Theorem 5.1. Let H be a supersingular hyperelliptic curve of genus 2 defined over Fq, q =
pn, n odd. Suppose N = #JH(Fq) = q2 + aq + b for some integers a and b, and let r be a
large prime factor of N .

Then, for D1 ∈ G1 = JC [r] ∩ ker(ϕ− [1]) and D2 ∈ G2 = JC [r] ∩ ker(ϕ− [q]), the R-ate
pairing is given by

R(D2, D1) =

{
f q
−a,D2

(D1) · f−b,D2(D1) ·G−qaD2,−bD2(D1) if q2 > N

f q
a,D2

(D1) · fb,D2(D1) · λqaD2,bD2(D1) if q2 < N
, (7)

where
|a| ≤ 4

√
q + 10, |b| ≤ 4

√
q + 1, |a− b| ≤ 9, (8)

and λqaD2,bD2 is a polynomial such that div(λqaD2,bD2)+2(∞)− (qaD2)− (bD2) is an effective
divisor.

Furthermore, for T2 = q2 −N and T1 = q, the relation to the Tate pairing is

e(D2, D1)
L = R(D2, D1)

M ,

where
L = d2L2 − ad1L1, M = lcm(c2M2, c1M1) if q2 > N,

L = −(d2L2 + ad1L1), M = lcm(c2M2, c1M1) if q2 < N

with the notations defined in Corollary 3.3.

Proof. Since H is supersingular, from [10], we know that

N = #JH(Fq) = q2 + a1q + a2 + a1 + 1

a1 ≡ 0 (mod p(n+1)/2)

a2 ≡ 0 (mod pn)

(9)

where a1 and a2 are the coefficients of the characteristic polynomial of q-power Frobenius
map on H. With combining the Hess-Weil bound [10, 22, 24] and Eq. (9), we obtain

−2q ≤ a2 = qa′2 ≤ 10q

|a1| ≤ 4
√

q

N = q2 + q(a1 + a′2) + a1 + 1,

for some integer a′2.
Let a = a1 + a′2 and b = a1 + 1. Then

|a| ≤ 4
√

q + 10, |b| ≤ 4
√

q + 1, |a− b| ≤ 9.
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In the case of q2 > N , T2 = q2 − N = (−a)q + (−b) = (−a)T1 + (−b). As the case 3 of
Corollary 3.3, we have the R-ate pairing and the relation.

In the case of q2 < N , −T2 = −(q2 − N) = aq + b = aT1 + b. Since f−T2,D2 =
1/(fT2,D2 · vT2D2) where div(vT2D2) = (T2D2) + (−T2D2), we have

1/fT2,D2(D1) = f−T2,D2(D1) · vT2D2(D1) = faT1+b,D2(D1) · vT2D2(D1)

= fT1,D2(D1)
a · f q

a,D2
· fb,D2(D1) ·GqaD1,bD2(D1) · vq2D2

(D1)

= fT1,D2(D1)
a ·R(D2, D1).

From the definition of G in Eq. (1), GqaD2,bD2 is a rational function of the form
λqaD2,bD2

v(qaD2⊕bD2)
[19]

such that

D′ := div(λqaD2,bD2) + 2(∞)− (qaD2)− (bD2) > 0

div(v(qaD2⊕bD2)) + 4(∞)−D′ > 0.

Since (−q2D2) = (qaD2 ⊕ bD2) and div(vq2D2
) = div(v−q2D2

),

GqaD2,bD2(D1) · vq2D2
(D1) = λqaD2,bD2(D1).

Following the similar proof as the case 3 in Corollary 3.3, we have the theorem.

Remark 5.2. The R-ate pairing with a, b defined in Theorem 5.1 can be computed using
Algorithm 2. Since |d| ≤ 9 where max{a, b} = min{a, b}+ d, we have

C(R-ate) ≤ TMO · (log2 min{a, b}+ log2 9) + TMA + 3Mk + TG,A (10)

from Eq. (3). Since TMA + 3Mk + TG,A ≤ 2TMO, the loop length in Miller’s algorithm is up to
log2 min{a, b}+ 5 which is about half of log2 q.

In the case of some curves like DL-curves, the cost for the Miller-operation using the
special automorphisms ([2, 6, 12]) is very small compared to the cost for computing G in
Eq. (7). Therefore, the additional cost such as TMA + 3Mk + TG,A in Eq. (10) is expensive
relative to the cost of Miller’s algorithm using the automorphisms and thus the total cost
may be larger than a half of the cost of the Ate pairing. As an example, we consider the R-
ate pairing on the DL-curve, y2 = x5−x+d of genus 2. Since this curve is superspecial [12],
the R-ate pairing can be defined on G1 × G2. We also analyze its complexity in Section 6,
and it shows that the R-ate pairing is around 19% faster than the Ate pairing on this curve.

Example 5.3.

We consider the R-ate pairing on H5 : y2 = x5 − x + d, d = 1, 2 over F5n with

k = 5

N± = 52n + (3± 5
n+1

2 )5n + 1± 5
n+1

2

distortion map ψ(x, y) = (ρ− x, 2y), ρ2 − ρ + 2d = 0.
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By Theorem 5.1, the R-ate pairing on H5 for D,E ∈ JH(F5n)[r] is as following.
In the case of N− (q2 > N), we have

R(D,ψ(E)) = f−a,D(ψ(E))q · f−b,D(ψ(E)) ·G−aT1D,−bD(ψ(E)), (11)

where
a = 3− 5

n+1
2 , b = 1− 5

n+1
2 .

Using the explicit formula for multiplication by 5 map [6], Eq. (11) can be computed by

the following equation. We only consider degenerate divisors D,E ∈ JH5(F5n). Let µ = 5
n+1

2 .
Since f1,D = f2,D = GµD,−D = 1 for degenerate divisor D,

R(D,ψ(E)) =
(
f q

µ−3,D · fµ−1,D ·G(µ−3)T1D,(µ−1)D

)
(ψ(E)),

=
(
(fµ,D · f−3,D ·GµD,−3D)q · (fµ,D · f−1,D ·GµD,−D) ·G(µ−3)T1D,(µ−1)D

)
(ψ(E))

=

((
fµ,D · 1

λ2D,D

·GµD,−3D

)q

·
(

fµ,D · 1

vD

)
·G5n(µ−3)D,(µ−1)D

)
(ψ(E)).

In the case of N+ (q2 < N), we have

R(D, ψ(E)) = fa,D(ψ(E))q · fb,D(ψ(E)) · λaT1D,bD(ψ(E)), (12)

where
a = 5

n+1
2 + 3, b = 5

n+1
2 + 1.

As above, Eq. (12) can be computed by the following equation.

R(D, ψ(E)) =
(
f q

µ+3,D · fµ+1,D · λ(µ+3)T1D,(µ+1)D

)
(ψ(E))

=
(
(fµ,D · f3,D ·GµD,3D)q · (fµ,D · f1,D ·GµD,D) · λ(µ+3)T1D,(µ+1)D

)
(ψ(E))

=
(
(fµ,D ·G2D,D ·GµD,3D)q · (fµ,D) · λ5n(µ+3)D,(µ+1)D

)
(ψ(E)).

(13)

The relation to the Tate pairing is the same as Theorem 5.1.

6 Complexity analysis

In this section, we examine the performance of the suggested pairings on various examples.
We describe the R-ate pairing on ordinary elliptic curves E1 through E5 in Section 4.2 and
the hyperelliptic curve H5 in Section 5. We also observe the complexity of the Atei pairing
and the R-ate pairing on G2×G1 for each elliptic curve. For H5, we consider the complexity
of the Atei pairing and the R-ate pairing on G1 × G2 where G2 = ψ(G1), ψ is a distortion
map as described in [14]. Algorithm 2 for the R-ate pairing consists of two parts: Miller’s
algorithms (Step 3 through Step 5) and the additional parts (Step 6 through Step 11). To
compare the cost of the R-ate pairing with that of the Atei pairing, we express the total cost
of Algorithm 2 as the length of Miller-loop by converting the cost for the additional parts to
the number of Miller-operations.
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In Section 3.2, we observed the costs of the R-ate pairing as Eq. (5) for ordinary elliptic
curves with an even embedding degree on G2×G1. Let mi = min{ai, bi} where (ai, bi) is the
parameter of the R-ate pairing on Ei, i = 1, . . . , 5.

CE2(R-ate) ≤ (2 log2 m2 + 2(log2 m2)
17

+ 2)TMO
CE3(R-ate) ≤ (log2 b3 + 2)TMO
CE4(R-ate) ≤ (log2 m4 + 3)TMO
CE5(R-ate) ≤ (log2 m5 + 2)TMO.

For odd embedding degree, we need to add the cost for the computation of the vertical line
in the Miller-operation. Thus, for E1, we have

TMD′ = TMD + 1Mk, TMA′ = TMA + 1Mk.

Using Eq. (3), the computation cost for the R-ate pairing on E1 with respect to each (a1, b1)
as following :

CE1(R-ate) = T (M(P, Q, b1)) + TG,A + 1Mk ≤ (log2 b1 + 1)TMO.

For the hyperelliptic curve H5 described in Section 5, we analyze the computation cost
for the R-ate pairing of the case (a, b) = (5

n+1
2 + 3, 5

n+1
2 + 1).

To estimate the cost, we denote the computation cost for basic operations as following:

TA−deg = 3M1 + I : cost for an addition of degenerate divisors

TD−deg = 2M1 + I : cost for a doubling of a degenerate divisor

TA−gen = 25M1 + I : cost for an addition of general divisors [5]

TG,A−gen = I + (28 + 3k)M1 + 10Mk : cost for a Miller-addition in Algorithm 1 on
general divisors [12]

TMO,5 = 3M1 + 2Mk : cost for a Miller-operation with base 5 using Lemma 1 in [6]

From Eq. (13), we obtain the following cost for the R-ate on H5:

CH5(R-ate) =
n + 1

2
TMO,5 + TA−deg + TD−deg + TA−gen + TG,A−gen + 4Mk + Ik. (14)

To have the unique value of the R-ate pairing, we need to compute a final powering with

L = (q5 − 1)/N± = (5n − 1)(52n + 3 · 5n ∓ 5(n+1)/2(5n + 1)).

This computation can be obtained by seven multiplications and one inversion in Fqk . There-

fore, the total cost for the R-ate pairing with the final powering, denoted by Ĉ, satisfies

ĈH5(R-ate) =
n + 1

2
TMO,5 + TA−deg + TD−deg + TA−gen + TG,A−gen + 11Mk + 2Ik

=
n + 1

2
TMO,5 + 113M1 + 41Mk ≤ (

n + 1

2
+ 25)TMO,5
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Table 2: Complexities of examples
Curve pairing Parameters for pairing Miller-length for total cost

E1(k = 7) Atei T2 = 10133938509526225 (1/3) log2 r
R-ate (1, 100667465) (1/6) log2 r + 1

E2(k = 10) Atei T6 = 1088496298065542309 (3/8) log2 r
R-ate (1028669, 10286692) (9/34) log2 r + 2

E3(k = 8) Atei T1 = −9z3 − 3z2 − 2z − 1 (3/4) log2 r
R-ate (1, 3z + 1) (1/4) log2 r + 2

E4(k = 10) Atei T2 = 5z2 (1/2) log2 r
R-ate (5z + 3, 5z + 1) (1/4) log2 r + 3

E5(k = 12) Atei T1 = 6z2 (1/2) log2 r
R-ate (6z + 3, 6z + 2) (1/4) log2 r + 2

H±
5 Ate 5n n

(k = 5) R-ate (5
(n+1)

2 + 3, 5
(n+1)

2 + 1) (n+1)
2

+ 25

because Mk ≥ 5M1.
The Ate pairing costs

CH5(Ate) = nTMO,5
and CH5(Ate) > CH5(R-ate) when n > n+1

2
+ 25, i.e., n > 51. From the security issue, n

should be larger than 88 and thus we can conclude that the R-ate is faster than the Ate
pairing on H5. In addition, since

CH5(Ate)− ĈH5(R-ate)

CH5(Ate)
=

1

2
− 51

2n
,

as the security level n becomes higher, the cost for the R-ate pairing approaches to a half
of the cost of the Ate pairing. We implemented the R-ate pairing and the Ate pairing for
n = 89 at 160-bit security level. In this case, the R-ate pairing improves the overall timings
by about 19% compared to the Ate pairing.

Table 2 summarizes the total cost in terms of the length of Miller-loop for the R-ate
pairing on the curves we discussed.

Table 3 shows the length of Miller’s algorithm for the pairing computation on each curve
and the timing costs for Atei and R-ate. We tested two pairings using Magma [4] on a
machine with Xeon 3.0 Ghz and all the timing results are in seconds. Miller’s algorithm
described in Algorithm 1 and the R-ate pairing described in Algorithm 2 are coded using
divisor operations on elliptic curves and hyperelliptic curves built in Magma. We implement
the pairings with the parameters for E1 through E5 given in Section 4.2 and the pairings on
y2 = x5−x+1 / F589 for H5. The implementation results in Table 3 support our theoretical
complexity analysis. The R-ate pairings on E1, E4, E5 are 50% faster, E2 case is 29% faster,
E3 case is 69% faster than the Atei pairing and H5 case is 19% faster than the Ate pairing.
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Table 3: The Miller-length and timing cost for Atei and R-ate on each example
Curve(k) E1(7) E2(10) E3(8) E4(10) E5(12) H5(5)

length of Miller-loop for Atei 54 60 123 117 128 89
length of Miller-loop for R-ate 28 44 43 62 68 70

Timing for Atei (Magma) 0.085 0.048 0.035 0.156 0.202 0.067
Timing for R-ate (Magma) 0.038 0.034 0.011 0.083 0.099 0.055
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