
Unidirectional Key Distribution Across Time and Space
with Applications to RFID Security

Ari Juels
RSA Laboratories

Bedford, MA, USA
ajuels@rsa.com

Ravikanth Pappu
ThingMagic Inc

Cambridge, MA, USA
ravi.pappu@thingmagic.com

Bryan Parno
Carnegie Mellon University

Pittsburgh, PA, USA
parno@cmu.edu

Abstract

We explore the problem of secret-key distribution inunidirectionalchannels, those in which a sender
transmits information blindly to a receiver. We consider two approaches: (1) Key sharing acrossspace, i.e.,
across simultaneously emitted values that may follow different data paths and (2) Key sharing acrosstime,
i.e., in temporally staggered emissions. Our constructions are of general interest, treating, for instance,
the basic problem of constructing highly compact secret shares. Our main motivating problem, however,
is that of practical key management in RFID (Radio-Frequency IDentification) systems. We describe the
application of our techniques to RFID-enabled supply chains and a prototype privacy-enhancing system.

1 Introduction

Key management is a cornerstone of cryptography, but also its major deployment challenge. Textbook crypto-
graphic protocols often presuppose keys held by a pair of principals anecdotally dubbed Alice and Bob. From
birth, as it were, Alice and Bob are presumed to share a password, a secret key, or the public key of some
mutually trusted entity.

In practice, the conceptually simple goals of key distribution—even between two parties—are fraught with
complexity. Disparate naming conventions and requirements for key revocation and recovery have hobbled
many public-key infrastructures. Password management remains a widespread challenge thanks to obstacles
as varied as limited human memory, caps-lock keys, and social-engineering attacks such as phishing.

Ultimately, key distribution must rely on secure channels established through pre-existing trust relation-
ships or special physical considerations. For example, browser software shipped with new computing systems
carries the root public keys of a number of certificate authorities. Specialphysical assumptions and adversarial
constraints can shape the problem of key distribution in interesting ways. Researchers have explored a host
of different physical models to support key establishment between pairsof devices, including optical chan-
nels [16, 24], distance-bounding [30] based on signal velocity, and physical contact [33]. Such models treat
a range of different adversarial capabilities. For instance, privacyamplification [3], which strengthens keys
using shared sources of noise or quantum phenomena, appeals to bounds on adversarial data access or storage.

In this paper, we focus on the problem of key distribution between two parties communicating via aunidi-
rectionalchannel. This special constraint means that one party (Alice) acts exclusively as a sender, while the
other (Bob) acts exclusively as a receiver. We consider the challengeof unidirectional key transport when Alice
and Bob have no pre-existing relationship, but share a channel with limited adversarial access. We believe that
such special unidirectional models have broad applicability, as they reflect the natural broadcast characteristics
of many media. The starting point and motivation for our investigation, though, isthe specific, real-world
problem of key transport in RFID-enabled supply chains.

Organization In Section 2, we give details on the RFID challenges motivating our work. Weprovide an
overview of our technical contributions in Section 3 and review related work in Section 4. In Section 5, we

1



present what we callsecret sharing in space, a key-distribution system that supports privacy protection in
RFID applications. We also briefly describe a prototype RFID implementation ofsecret sharing in space. In
Section 6, we presentsecret sharing in time, a separate body of techniques applicable to RFID access-control
and authentication, and also of broad interest for key distribution in unidirectional channels. We conclude in
Section 7 with a brief discussion of future research directions.

2 Motivation: The RFID Landscape

The ratio of terrestrial radio and cellular telephone systems to the number of humans on earth is approaching
unity and, in the past decade, a completely different kind of radio device has emerged and is poised to eclipse
this ratio by three orders of magnitude. Rapid advances in CMOS technologyhave enabled the production of
low-costtagsthat are capable of reporting their identity over a wireless link. These tags -usually costing on
the order of tens of cents - are typically composed of a few thousand gatesof silicon, and have little, if any,
general-purpose computing power available to them beyond responding tocommands from an interrogator or
reader. This asymmetry between the interrogators and the tags is further amplified by the fact that, in many
applications, tags are passive, lacking an on-board source of power; instead, they harvest power from the
electric, magnetic or electromagnetic field generated by the interrogators.

Recent developments in Radio Frequency IDentification (RFID) technology and corresponding interna-
tional standards [12] have spurred the deployment of passive systemsin applications ranging from supply-
chain and inventory management of consumer goods, to tracking medical equipment in hospitals, to counting
poker chips on gaming tables.

The heir apparent to the optical barcode, RFID is becoming a prevalent technology in supply-chain man-
agement. Ultimately, manufacturers and retailers envisage RFID tagging of individual consumeritems. Today,
tagging is most common at the granularity ofcases, which contain consumer items, and ofpallets, which carry
cases. In this paper, we use the term “case” as the generic term for a discrete collection of goods.

For supply-chain operations, the predominant RFID standard is one known as the Electronic Product Code
(EPC) (in particular, Class-1 Gen-2 EPC, hereafter referred to as Gen2). EPC tags act effectively as wireless
barcodes, emitting short strings of information known as EPC codes. An EPC code has four basic components:
(1) A header, which denotes the EPC version number; (2) Adomain manager, which typically specifies the
manufacturer or creator of the item; (3) Anobject class, which specifies the item type, and (4) aserial number,
a unique identifier for the item. Thislicense plateapproach makes it possible to store an unlimited amount of
metadata about the tagged object on the network and keep the memory requirements on the tag itself small.

2.1 Security and Key Distribution in Gen2

There are two features in the Gen2 standard that require secret keyingmaterial:
Locking and perma-locking: It is possible to lock part (or all) of the tag’s memory, either temporarily under
a 32-bit password, or permanently with no possibility of unlocking and rewriting the memory. While this
feature prevents unauthorized entities from tampering with the contents of tagmemory, it does not prevent
unauthorized readers from reading the contents.
The kill command: The only security function that completely disables tags is a command known askill .
When transmitted by a reader along with a tag-specific kill PIN (32 bits long in Gen2), the kill command
causes a tag to disable itself permanently.

The EPC kill function is envisaged as a privacy-enhancing feature forretail environments with item-level
tagging. In principle, as EPC tags identify the items to which they are affixed, aconsumer carrying EPC-tagged
items would be subject to clandestine inventorying attacks. Such attacks coulddisclose sensitive information
about medications, reading materials, luxury goods, and so forth. By deploying the kill function at the point of
sale, a retail shop can protect against such privacy infringements by rendering tags inoperable. Additionally,
researchers have proposed techniques that co-opt the kill and write-access commands in EPC to support reader
authentication of tags and to protect PINs from untrusted readers, thus protecting against cloning [15].

2



1 . F a c t o r y 2 . D i s t r i b u t i o nC e n t e r 3 . D e � & R e � P a l l e t i z a t i o na n d t r a n s p o r t a t i o n 4 . B a c k r o o m o fr e t a i l s t o r e 5 . S t o r es h e l f 6 . I n d i v i d u a lc o n s u m e r s
P h y s i c a l l y s e c u r e d a r e a s O p e n a r e a s9 0 c a s e s w i t h7 2 i t e m s e a c h 9 0 c a s e s w i t h7 2 i t e m s e a c h 1 0 c a s e s w i t h7 2 i t e m s e a c h B e t w e e n 7 2 a n d1 4 4 i t e m s T y p i c a l l y l e s s t h a n1 0 i t e m s

T I M E
Figure 1:Object hierarchies in RFID-enabled supply chainsThis schematic represents the path taken by an individual
pack of razor blades from the factory to the consumer’s home.Please refer to Section 2.2 for details.

Both locking and killing pose a significant implementation hurdle: They require asolution to thekey-
distribution problem. The initialization of tag-specific kill PINs in tags and the secure propagation of these
PINs to point-of-sale devices are formidable operational challenges. Supply chains include entities with widely
disparate data-processing capabilities. Information transfer across organizational boundaries, moreover, intro-
duces a host of regulatory and technical burdens. Hence supply-chain entities commonly lack data-network
mechanisms for timely, reliable, and secure transport of PINs. While it might seem a straightforward matter
for Alice (a manufacturer) to share EPC PINs with Bob (a retailer) througha data network, in practice it is
often quite difficult. Indeed, with all of the intermediaries through which manufactured goods regularly pass,
Alice may even ship cases without knowing that Bob is the ultimate receiver.

In this paper, we show that RFID-enabled supply chains possess unique properties that allow us to:

• Provide consumer privacy with respect to unauthorized scanning of tagged objects;
• Provide a robust protocol-independent mechanism to distribute PINs andpasswordswithout requiring a

network connection, changes to the air interface protocol, or changes to the tag hardware.

The only resource our method requires is memory on the tag, and we providea means to trade-off memory
usage against security.

2.2 Object Hierarchies in RFID-Enabled Supply Chains

Our techniques for key distribution in RFID applications rely in part on the fact that supply chains are hierar-
chical in nature. To highlight the properties we utilize, we use Figure 1 to trace the path of a single pack of
razor-blades in a consumer’s home back to the manufacturing facility.

Typically, items start off in large collections and progressively get whittled down into smaller aggregates as
they make their way from the factory to the store shelf [13]. In the example above, razor blades are assembled
into a pallet containing 90 cases, each with 72 packs of blades. Assuming theitems, cases, and pallet are
tagged, we have a total of 6571 tags on this particular pallet. The pallet is thentransported, possibly with
many other pallets, to a distribution center (DC). The DC de-palletizes the largepallet and assembles a mixed
pallet with a smaller quantity of cases that has been ordered by the store. A typical number of cases from the
original pallet that make it onto this new pallet is 10 [13]. Assuming a new pallettag is added, 730 of the 6571
original tags are now available on the new pallet. This new pallet is then transported to the store and stored in
the backroom. Of these 730 tags, typically up to two cases’ worth, or 144, items are laid out on the store shelf
for customers. From this collection, consumers pick up a few packs and purchase them. Therefore, the object
hierarchy is as follows.

Razor blades: 6571→ 730→ 144→ 5
Similarly, for DVDs a typical object hierarchy is

3



DVDs: 5040→ 2520→ 400→ 24
where the last number represents an estimate of the number of DVDs from a case sold to an individual con-
sumer. Finally, for pharmaceuticals, we have

Pharmaceuticals: 7200→ 1920→ 150→ 6
where again the last number represents an estimate of the maximum number of filled prescriptions from one
case in possession of a consumer at the same time.

While these numbers may vary between different types of retailers and usecases, the important point to
note is that the number of tagged items starts off large and ends up being small. Another important insight
is that larger numbers of tags are typically found in physically secure areas, while smaller numbers of tags
are found in physical locations that are accessible to adversaries. We exploit the fact that tags share the same
space-time context earlier in the supply chain, but this history is progressively lost as tagged objects emerge
from the supply chain into the front of the retail store and thereon into the consumer’s home.

3 Our Contribution

The challenges of EPC PIN distribution motivate us to consider a new approach, namely that oftransporting
secret keys in RFID tags themselves. This approach allows a unidirectional model of key transport. The sender
(Alice) encodes secrets in a collection of tags or cases. The receiver (Bob) recovers these secrets without
communicating with Alice—and, potentially, without even knowing her identity.

To support this unidirectional model of key transport, we propose protocols for dispersing keys or PINs
across tags by means ofsecret sharing. We consider two distinct modes of secret sharing: (1)Secret sharing
across spaceand (2)Secret sharing across time.

Secret sharing across space: Alice can share a secret keyκ across a set of tagsT = {τ1, . . . ,τn} in a case.
To do so, she transformsκ into a collection of sharesS1, . . . ,Sn, and storesSi on tagτi , such thatκ can only be
recovered by scanning alln tags in the cases. (We later consider threshold secret sharing, i.e., schemes such
thatk < n shares suffice for recovery ofκ.)

Such secret sharing across tags permits a new approach to privacy enforcement for item-level tagging that
largelyeliminates the need for killing tags. Suppose thatmi consists of the data, e.g., EPC code, associated with
tagτi . Suppose that Alice replacesmi with Eκ[mi ] in all tags, whereEκ represents symmetric-key encryption
underκ. Then the contentsmi of any tag can only be deciphered by scanning the full set of tagsT.

On receiving a case from Alice, a retailer (Bob) can recoverκ and decrypt the EPC codes of the associated
tags.Once the items and their associated tags are dispersed by sale to customers, however, a would-be eaves-
dropper has no practical way to recoverκ. We assume here that access to tags is secured in the supply chain,
i.e., the pre-sale environment. We illustrate the principle by means of an example.

Example 1 Alice ships a case containing three bottles of medicine bearing RFID tagsτ1,τ2 andτ3 with data
strings m1,m2, and m3. She generates a secret keyκ and transforms it into a triplet of shares(S1,S2,S3) via a
(3,3)-secret sharing scheme. Alice writes the value vi = (Eκ[mi ],Si) to tagτi .

Bob, a pharmacist, receives Alice’s case. He scans the three tags, recoversκ and decrypts the data
strings of the tags in the cases, enabling him to read m1 = “High street-value drug, 500 mg, 100 count,
bottle #8278732,” as well as m2 and m3. Bob dispenses the first bottle to Carol.

Later in the day, a drug thief surreptitiously scans Carol’s RFID tags as she passes on the street. The
thief obtains the value v1 = (Eκ[m1],S1)—a ciphertext and key share that by themselves carry no meaning and
therefore do not reveal the presence of high-value pharmaceuticals.

As this example illustrates, Bob does not have to perform any explicit action toprotect his customers’
privacy. He does not have to kill or rewrite tags. Secret sharing across space enforces privacy implicitly
through the physical dispersion of tags. Unlike killing, though, secret sharing does not enforce privacy against
tracking attacks. The valuev1 is itself a unique identifier that can serve to correlate different instances of

4



scanning of Carol’s tags and potentially track Carol herself. This is a basic limitation of our scheme, but one
we consider to be of considerably smaller importance than revelation of tag data contents.

Of course, it is possible to encodeκ in a case-specific tag, rather than across items within a case. The
advantage of sharing across space is twofold, though: (1) As we show, it allows for robust secret recovery, i.e.,
recovery ofκ even in the face of scanning errors or lost data and (2) It eliminates the need for an extra tag, i.e.,
one on each case.

Our main research challenge in applying secret sharing across space toRFID is the development of schemes
with tiny secret shares. While the literature on computational secret sharing considers shares of length equal
to that of a secret key, e.g., 128 bits, space constraints on EPC tags urgeeven smaller share sizes, e.g., 16 bits.

In Example 1, the adversary (thief) isunderinformed, i.e., lacks the shares needed to recoverκ. Another
facet of our research aims to create situations in which an adversary isoverinformed, having too many shares
to identify and extract tag keys. In Appendix A, we consider situations in which an adversary is overinformed
when scanning retail shelves where the contents and thus RFID tags of many cases are mixed together.

Secret sharing across time: Suppose thatκ is not an encryption key, but a write-access key. In that case, the
ability to recoverκ by scanning a case would enable a malefactor with access to a single case atany point in
the supply chain to modify the data contents of tags. Similarly, suppose thatκ were a symmetric key used to
authenticate tags. Then simply by scanning a case, an attacker could recover all of the data required to clone
its tags.

For this reason, we consider another form of secret sharing in which asecret keyκ is distributed not across
the tags in a single case, but across multiple cases. Given that cases—muchlike data packets—depart and
arrive at staggered times in a supply chain, we refer to this approach as secret sharing across time.

Example 2 Alice is shipping RFID-tagged items to Bob. She would like to communicate write-access PINs
for the tags to Bob as securely as possible.

Suppose that Alice employs trucks that hold up to ten cases. She might do as follows. She selects a window,
i.e., sequence, of eleven cases cj ,c j+1, . . . ,c j+10 designated for delivery to Bob. She creates a master secretκ
from which it is possible to derive the write-access PIN for any tag within the window of cases. She distributes
κ into eleven shares S1,S2, . . . ,S11 via an (11,11)-secret sharing scheme, and writes share Sd to case cj+d−1.
(She might distribute the secret across tags on individual items, or on a case-specific tag.)

An adversary that gains access to the contents of a small collection of cases, or even an entire truckload,
is unable to reconstructκ or to obtain the write-access PINs for the RFID tags. On the other hand, Bobcan
reconstructκ once he receives the full sequence of eleven constituent cases.

Of course, in practice, it may be difficult for Alice to identifya priori a window of cases that Bob will
receive in its entirety, particularly if the cases pass through intermediary distributors. Hence the main thrust of
our work here is the development of more flexible secret sharing schemes. We propose what we callSliding-
Window Information Secret-Sharing(SWISS) schemes, constructions such that for a sequencec1,c2, . . . of
cases, Bob need only receive a minimal numberk of cases in any contiguous window of sizen in order to
reconstruct the associated secret keys. SWISS schemes provide keyconfidentiality against adversaries that
intercept cases on a sporadic basis.

As we explain, it is a straightforward matter to create a SWISS scheme in which shares are linear inn, and
thus potentially large in practice. Our contribution is a SWISS scheme whose shares are constant in size, i.e.,
have length independent ofk andn.

4 Related Work

Since its invention in 1979 by Shamir [32] and independently by Blakeley [4],secret sharing has played a
foundational role in cryptography. However, our work differs fromprevious work in two key aspects: the
privacy goal we adopt and the size of the shares employed.

5



The majority of secret sharing literature evaluates the privacy of a secret-sharing scheme from an information-
theoretic perspective, largely seeking to create efficient schemes for various access structures. In this regime,
a perfect secret-sharing (PSS) scheme is one in which an adversary learns no information about the secret in
an information-theoretic sense (i.e., even if the adversary has unbounded computational resources). Shamir’s
scheme [32] qualifies as a PSS scheme. Statistical secret-sharing (SSS) schemes, such as Blakeley’s [4], allow
a small amount of information leakage, again in the information-theoretic sense.

A narrower literature concerns complexity (or computational) theoretic secret-sharing (CSS), in which
privacy depends on computational bounds on an adversary. Krawczyk first introduced the notion of a CSS
scheme [20], and Bellare and Rogaway later refined and formalized it [2]. Work in this area has focused on
privacy based onall-or-nothing indistinguishability. In other words, in Krawczyk’s construction, an adversary
either has no information about the secret or she has complete information about it. In this work, we introduce
constructions that accommodategradatedkey information. This allows us to consider schemes in which the
leakage of secret information is proportional to and thus growsgraduallywith the number of revealed shares.

The other dimension in which this work differs from previous work is the length of the shares involved. It
is well known that in any natural PSS scheme, the size of every participant’s share must be at least that of the
secret itself [10,18]. For specific access structures, stronger lower-bounds have been shown [9].

Any scheme in which shares are shorter than the secret is necessarily imperfect. Ogata and Kurosawa [26]
give information-theoretic lower bounds on share sizes in such schemes.At a high level, they show that a share
must have length equal to at least that of the “gap” in knowledge between sets of shares outside the permitted

access structures and the secret itself. More formally, suppose that a secretx
R← D is selected at random from

distributionD. Let x̂ denote a random variable forx andŜi one forSi , i.e., theith share generated by a natural
secret-sharing scheme. IfΓ represents the set of access structures that are allowed to recover thesecret, then it
is the case thatH(Ŝi)≥minγ 6∈ΓH(x̂|{Ŝi}i∈γ), whereH(A|B) denotes the entropy ofA conditional onB.

In terms of concrete proposals, in the information-theoretic literature, McEliece and Sarwate note that
Shamir’s scheme can be generalized as a Reed-Solomon code and note thatthis generalization permits a trade-
off between share size and security [25]. Blakeley and Meadows propose a class of ramp secret sharing
schemes [5] which define two thresholds. Givent shares, it is easy to reconstruct the secret. Less thant ′ shares
reveals no information about the secret, and given some number of sharesy such thatt ′ ≤ y< t, the information
gained about the secret is proportional toy−t ′

t−t ′ . Larger “ramps” provide weaker security but allow a reduction
in share size. In both of these proposals, the size of the shares is dependent on the size of the secret.

By moving to the CSS realm, Krawczyk introduces a scheme with “short” shares with lengths independent
of the secret’s size [20]. A cryptographic key is shared using a PSS scheme, while the secret is encrypted using
the key. The resulting ciphertext is shared using an information-dispersal algorithm, e.g., Rabin’s IDA [27]. A
share then consists of a cryptographic portion and a ciphertext portion.The length of the cryptographic portion
is at least that of a cryptographic secret key and a hash function image (thus, in practice, at least 384 bits). We
use a similar mechanism to make the size of our shares independent of the secret, but instead of using PSS and
IDA schemes, we employ error correcting codes to reduce the size of the shares and add robustness.

We are aware of no investigation, however, of the particular problem of creating shares of size smaller than
the short ones introduced by Krawczyk, that is, shares of length potentially lessthan that of a cryptographic
secret key (perhaps 16 bits in length). Here, we characterize such shares astiny.

The omission from the literature of CSS schemes with tiny shares appears to have several underlying
causes. First, short shares are indeed quite compact enough for manyapplications. A second reason is the
solid anchoring of the literature in PSS. Even CSS schemes, such as that ofKrawczyk, typically rely on PSS
as a primitive to share out cryptographic keys.

Secret-sharing in RFID: Langheinrich and Marti suggest using secret sharing to conceal an RFID tag’s
information from adversaries with time-limited access to the tag [21]. The tag’s information is split using
Shamir’s scheme [32], and the tag periodically emits a share. A reader that probes the tag over the course of
several minutes will receive enough shares to reconstruct the tag’s information, while a casual attacker who

6



only obtains a few emissions cannot reconstruct any tag information. Our schemes, in contrast, spread shares
across multiple tags and consider sliding time windows with evolving secrets, rather than a single fixed secret.

In other work, Langheinrich and Marti propose using Shamir’s scheme todistribute an item’s ID over
hundreds of RFID tags integrated into the item’s material [22]. They aim to enforce privacy by requiring a
reader to access multiple tags. In contrast, we look to dispersion, rather than aggregation, of tags, as a privacy-
enforcing mechanism. We also reduce the size of each share to well below the size of standard Shamir shares.

5 Secret Sharing Across Space

Sharing a secret (e.g., a cryptographic key) across space in an RFIDapplication imposes severe limitations
on the size of each share. As discussed in Section 4, previous schemes typically require 128 bits or more
for each share, whereas with RFID tags, we would like shares of 16 bits or less. Hence, in this section we
provide a generic robust secret sharing scheme with tiny shares, whichwe refer to as a Tiny Secret Sharing
(TSS) scheme. We define our scheme in a general problem framework based on adversarial games, describe
our prototype implementation, and suggest parameters that would be appropriate in a real world deployment.

5.1 Preliminaries

Secret Sharing. We adhere closely to the notation and definitional framework of Bellare and Rogaway [2].
An n-partysecret-sharing schemeis a pair of algorithmsΠ = (Share,Recover) that operates over a message
spaceX, where:

• Share is a probabilistic algorithm that takes inputx∈ X and outputs then-vectorS
R← Share(x), where

Si ∈ {0,1}∗. On invalid input ˆx 6∈ X, Share outputs ann-vector of the special (“undefined”) symbol⊥.
• Recover is a deterministic algorithm that takes inputS∈ ({0,1}∗ S♦)n, where♦ represents a share that

has been erased (or is otherwise unavailable). The outputRecover(S) ∈ X
S ⊥, where⊥ is a distin-

guished value indicating a recovery failure.

In our security definitions, we assume an honest dealer, i.e., correct execution ofShare (although the
adversary may choose the secret that is shared).

Adversaries. While secret sharing literature traditionally defines goals with respect to access structures, we
predicate our definitions below on a classA of probabilistic adversarial algorithms. We define the security of
a TSS scheme in terms of a particular classA . We can reconcile our adversarial model with the traditional
access-structure view by restrictingA to only adversariesA that respect a particular access structure. For
example, we might consider only adversaries that compromise fewer thand legitimate shares for somed.

Error Correcting Codes. Our construction utilizes an error-correcting code (ECC), a generalization of secret
sharing that we formally define as a pair of algorithmsΠecc = (Shareecc,Recoverecc). An (N,K,D)Q-ECC
operates over an alphabetΣ of size |Σ| = Q. Shareecc mapsΣK → ΣN such that the minimum Hamming
distance in symbols between (valid) output vectors isD. For such a functionShareecc, there is a corresponding
functionRecoverecc that recovers a message successfully given an attacker that can corrupt up toD/2 players
or erase the shares ofD− 1 players—or some combination of the two, depending on the specific ECC. (In
some cases, correction beyond the minimum distance is possible [28].)

5.2 Problem Definition

Informally, the adversary may attack either the privacy or the robustnessof the scheme or both. A privacy
attacker attempts to recover the secretx given some number of shares. To break robustness, the adversary
aims to corrupt shares such thatRecover fails to outputx. We define these security goals formally below and
conclude with a definition of a TSS scheme.

7



ExperimentExpind
A [Π,X]

(x0,x1)← A(“choose”);

b
R←{0,1}; S

R← Share(xb);
b′← Acorrupt(S,·)(“corrupt”);
output ‘1’ if b = b′, else ‘0’

(a) Privacy Experiment

ExperimentExprec
A [Π,X]

x← A(“choose”);

S
R← Share(x);

S′← Acorrupt(S,·)(“corrupt”);
x′← Recover({S′i}i∈Ŝ

S{Si}i 6∈Ŝ);
output ‘1’ if x 6= x′, else ‘0’

(b) Robustness Experiment

Figure 2:TSS Experiments.These experiments capture our notion of privacy and robustness for TSS schemes.

5.2.1 Privacy

We consider two subtypes of privacy attackers: anunderinformedadversary and anoverinformedadversary.
An underinformed adversary can corrupt a limited number of players, while an overinformed adversary can
obtain alln shares, but also receives some number of additional “shares” that she cannot distinguish from the
correct shares. Due to lack of space, we relegate details on overinformed adversaries to Appendix A. (Briefly,
an overinformed adversary is one that sees shares from multiple cases simultaneously, and cannot feasibly
extract secrets due to the hardness of decoding in the face of many “chaff” shares.)

Underinformed Attacks. Here, we consider an attacker who obtains a limited number of legitimate shares
(recall Example 1). In this setting, Bellare and Rogaway define privacy based on a notion of indistinguisha-
bility. Given ann-party secret-sharing scheme(Π,X), they define the oraclecorrupt(S, i) as a function that
returnsSi . (“Corruption” in this setting—corresponding to compromise of a share-holding player—results in
disclosure, not change, of a share.) Then the Bellare and Rogaway notion of privacy is defined based on the
experiment shown in Figure 2(a)

In the experiment, the adversary is asked to choose two values to be shared. The experiment selects one
of the secrets at random and generates a set of shares. The adversary can then corrupt (or see the value of)
individual shares and must eventually produce a guess as to which secret was shared. Using this experiment,

Bellare and Rogaway defineA’s advantage asAdv ind
A [Π,X]

△
=2Pr

[

Expind
A [Π,X]⇒ 1

]

−1.

5.2.2 Robustness

We desire our scheme to allow a legitimate user to recover the original secret, even if the adversary tampers with
some of the shares. To model a scheme’s resilience to such an attack, we define a robustness experiment. In our
robustness experiment,Share is invoked on a secretx of the adversary’s choosing. The adversary then corrupts
a number of players andreplaces their share values. The adversary is successful ifRecover fails to recoverx
given the corrupted and uncorrupted shares as input. This experimentis much like that for robustness in Bellare
and Rogaway.1 We define the robustness experiment as shown in Figure 2(b), lettingŜrepresent the indices of

the shares corrupted by the adversary. We define the advantage ofA asAdvrec
A [Π,X]

△
=Pr[Exprec

A [Π,X]⇒ 1].
It is also useful to consider a modified experimentExprec−or−detectthat outputs ‘1’ ifx 6= x′ andx′ 6=⊥, else

‘0.’ In other words,A is successful if it causes a recovery failure thatRecover does not detect. This is a weaker
requirement, of course, than that represented byExprec, but an important condition not explored by Bellare
and Rogaway. Given the above experiments, we define a TSS scheme as follows.

1The Bellare and Rogaway definition additionally includes the technical requirement that the adversary identify an uncorrupted
player j. This is not necessary for our purposes.

8



{0,1}Σ
K

ShareECC ShareECC

Hash Encrypt
(+auth)κ κ

X

X

S1 S2 S3

R

S
1

κ'
S

3

κ'S
2

κ' S
2

x'
S

3

x'
S

1

x'

∼

∼

Figure 3:Secret Sharing with Tiny Shares.Schematic of our TSS construction in a toy example with n=3. It can be
used to distribute a keyκ, or optionally a secret x of arbitrary size. Whenκ and x are provided at the same time, the two
error-correcting codes may be coalesced into a single one.

5.2.3 TSS Definition

Definition 1 A (k,n)-TSS scheme is a pair(Π,X), such thatΠ distributes n shares of a secret x∈ X, of which
any set of k correct shares suffices to recover x. The security of the scheme is characterized by an adversary
classA and the tuple:(qu,εu,qr ,εr), where an underinformed attacker A∈ A making qu corrupt queries
hasAdv ind

A [Π,X] ≤ εu; likewise, the pair(qr ,εr) applies to robustness attackers. (An extended definition can
include overinformed attackers as well; see Appendix A.)

5.3 Our Construction

Figure 3 illustrates a high-level schematic of our TSS scheme. TheShareTSSalgorithm accepts as input an
arbitrarily-sized secretx. It then generates a large random pre-keyκ̃. We apply a hash to reduceκ̃ to the size
of a cryptographic keyκ. The hash function also constitutes good cryptographic hygiene (and is used in our
proofs) in the sense that it rendersκ indistinguishable even in the face of partial compromise ofκ̃. We use
the keyκ to perform authenticated encryption ofx and then use an(N,K,D)-error correcting code (ECC) to
share both̃κ and the ciphertext ˜x. We focus in this paper on the basic construction that assigns a single symbol
to each share. Thus we assumeK = k. More general constructions are possible, but we don’t address them
in this paper. A recipient with enough shares can apply the ECC decoding algorithm to recoverκ̃ and the
ciphertext ˜x, and then usẽκ to derive the keyκ necessary to authenticate and decryptx. In some applications
(e.g., transporting the master key used to derive RFID kill codes), we may only want to distribute a key. In that
case, we can simply useκ as the desired key, and eliminate the portion of the schematic shown in the dashed
box.

Our construction assumes that the hash function behaves as a random oracle [1], and for large secrets, we
assume the use of an authenticated encryption mode, such as OCB [29].

Below, we state our claims for the security of this construction. We defer the proofs to Appendix B.

Claim 1 Given our construction above, an underinformed attacker’s advantageis bounded byεu such that

Adv ind
A [Π,X]≤ εu≤ 1/Qk−qu.

Claim 2 Against an attacker who makes qr corrupt queries, if qr < D/2, i.e., q≤⌊(D−1)/2⌋, thenAdvrec
A [Π,X] =

0 = εr , and if qr ≤ D−1, thenAdvrec−or−detect
A [Π,X] = 0.

9



5 D 6 D B 3 D 6 5 4 2 E 6 3 9 D B E 78 8 7 1 5 2 9 1 0 A A 3 5 F 4 1 B 1 64 8 1 0 1 7 3 C E 1 D 5 4 0 1 8 A 9 52 A 2 7 0 6 3 9 D 6 C 6 1 E 0 A 2 6 53 4 F F E 1 E 9 6 7 C 6 B B 3 B C 2 AB 3 E 8 6 A 5 C D 1 E F 7 8 6 F 5 6 93 A 8 D 6 1 B 1 B B 9 C D 0 0 8 7 5 AB F C F 1 5 B D 0 F 4 B 7 2 A E D 2 46 9 1 8 9 C C C 9 A 2 5 2 F B E B 8 A8 1 C F 3 6 1 B C E 6 4 D 9 6 A 2 8 8A E A 8 8 C E D D 2 8 0 D 1 1 5 1 E 6
1 1 0 d e a d b e e f d e a d b e e f2 0 0 d e a d b e e f d e a d b e e f5 0 0 d e a d b e e f d e a d b e e f1 9 0 d e a d b e e f d e a d b e e f1 3 0 d e a d b e e f d e a d b e e f1 6 0 d e a d b e e f d e a d b e e f1 2 0 d e a d b e e f d e a d b e e f1 7 0 d e a d b e e f d e a d b e e f1 0 0 d e a d b e e f d e a d b e e f1 8 0 d e a d b e e f d e a d b e e f7 0 0 d e a d b e e f d e a d b e e fT a g s

A n t e n n a E n c r y p t e d I D S D e c r y p t e d I D S

Figure 4:Implementation setup and resultsAn example implementation setup shows an RFID reader and antenna, 20
TSS-encoded tags, and two screenshots depicting example encrypted and decrypted reads.

Thus, our construction is a(qu,1/Qk−qu,⌊(D−1)/2⌋,0)-TSS scheme.

Remark 1 With an appropriate choice of an ECC, we can generalize the construction above. For example,
using a systematic version of Reed-Solomon as the ECC,κ̃ will be encoded in the initial code symbols. We then
apply a hash function (SHA-256 with truncation) to those code symbols to deriveκ. If we choose Q= 2|κ̃| (and
do not release S̃κ1), then ShareECC becomes a robust PSS scheme, as in Krawczyk’s scheme [20]. If we choose
Q = 2n, then we have the scheme described above. Intermediate choices of Q trade increased share size for
increased security.

5.4 Implementation Sketch and Real World Parameterization

In order to demonstrate the real-world viability of our TSS scheme, we implemented a (15,20)-TSS scheme
to encrypt commercially-available 96-bit Gen2 tags using a Reed-Solomon error-correction code. Use of a
(15,20)-TSS scheme means that of the 20 available tags, we need to read at least 15tags successfully in order
to recover the secret key and decrypt tag data. We work over the fieldGF(216), so a share (codeword symbol)
is 16 bits long.

Since we use 16 bits for each share, the remaining 80 bits (of the 96 bits available on an EPC tag) can
be used to store the encryption of the tag’s unique ID. This parameterizationrequires a cipher with an 80-bit
block size. To achieve this, we use Blowfish [31], which has a block size of 64 bits, and employ Ciphertext-
Stealing [11] to expand the block size to 80 bits. (We omit integrity protection in our encryption at present,
assuming that the system provides it implicitly by checking valid structure in EPC values.) The length of the
secret keyκ was 128-bits; we deriveκ by choosing a random 240-bit valueκ̃, hashing it with SHA-256, and
then taking the first half of the output. We divideκ̃ into 15 16-bit symbols and apply the Reed-Solomon ECC
to generate 20 16-bit shares, one for each tag. Figure 4 shows the setup and the results.

In an ECC, a codeword consists of anorderedsequence of symbols. Because there is no fixed reading order
for tags in our implementation, however, it must beorder invariant. That is, since shares are not distributed
among players with fixed identities, as in our robustness experiment, we must explicitly associate an index with
each share (effectively assigning a player index to each tag). Thus, the symbol on a tag must be accompanied
by an index specifying its codeword position. Rather than specifying this index explicitly, and thereby using
an additional 16 bits of storage, we derive it implicitly based on the encryptedtag ID. In particular, we hash
the ID using SHA-256, and interpret the last 16 bits as the index; of course, we must do thisbeforesharing
the encryption key. This optimization potentially introduces a new problem: Two (or more) tags within a case
may have ciphertexts that hash to the same index. A sufficiently large index size can minimize this problem.
(By the Birthday Paradox,GF(216) accommodates roughly 256 tags without many collisions.)

10



...
k

 n

 n

ρ(S)

 n

Figure 5:In this example, if the adversary holds a setŜ of k= 3 shares (shown as shaded boxes), then we defineρ(Ŝ) as
the union of all (three) windows of n= 6 shares containing the original k shares. We require that theadversary be unable
to recover keys for periods outside ofρ(Ŝ). The figure assumesλ = 0. If λ = 1, thenρ(Ŝ) would include two additional
shares: one before and one after the setρ(Ŝ) currently shown.

In general, the first step in parametrizing the TSS scheme for real-world usage involves determining the
total number of tagsn and the key-recovery thresholdk. As noted earlier (section 2.2), these numbers can
vary widely between use cases. Today, pallets typically carry from 1 to 200 tags each. In a normal setting,
an RFID reader will often fail to perceive 2–3% (i.e., 4–6) of the tags in a 200-item pallet, and it may pick
up 3–10 tags from a pallet in the adjacent dock door. This means that we can see up to 6 erasures, and 10
errors in reading. Thus the choice of a (200, 170)-Reed Solomon code2, which can correct up to 15 errors or
30 erasures, would provide sufficient error correction for real-world deployments. As discussed in Section 2.2,
individual consumers typically have fewer than 40 tags from the same case, so we could alternatively choose a
(200, 40)-Reed Solomon code that would maintain privacy and provide additional robustness to read errors.

Lastly, we remark on the choice of the field size. As the field size is the principal determinant of the extra
tag memory consumed by our scheme, smaller fields correspond to smaller memoryrequirements. Larger field
sizes reduce the number of index collisions, which is useful both to ensuregood decoding rates and to enforce
security against an overinformed adversary (see Appendix A). We note that in applications where only the
underinformed attacker must be considered, we can potentially reduce thespace requirement on each tag down
to a single bit, for sufficiently largen and an appropriate ECC scheme.

6 Secret Sharing Across Time

Thus far, we have considered sharing schemes for a single shipment. However, a distributor may wish to
increase security by leveraging the fact that a legitimate recipient should receive more shipments than an
attacker can access (recall Example 2 from Section 3). In this section, weexplore a class of schemes that use
this information disparity across sliding time windows. Section 7 describes ongoing work on schemes that
leverage the entropy of the entire history of interactions between a senderand a legitimate recipient.

6.1 Defining SWISS: Sliding-Window Information Secret Sharing

In the schemes below, we assume a sender3 periodically emits a shareSi . Each period also has an associated
key κi . Thus, we have a sequence of sharesS= {S0,S1, . . .} that expands indefinitely over time. We assume
that within any window ofn elements, only a legitimate recipient will receive at leastk of the shares emitted
in that window, and given those shares, the recipient should be able to recover the corresponding keys. An
adversary receiving fewer shares should learn nothing about the keys.

More formally, a SWISS scheme is defined as a pair of algorithmsΠ = (Share,Recover), where:

• Share(k,n,τ) is a probabilistic algorithm that takes as input a threshold for recoverabilityk, a window
sizen, and a security parameterτ. It outputs two “infinite” vectorsκ andS, whereκi ∈ {0,1}τ is the key

2(The minimum distanceD = N−K +1 is typically omitted from Reed-Solomon parameterization.
3For RFID purposes, we may suppose the sender is a manufacturer who periodically ships out containers of RFID-labeled items.

Each share may optionally be further shared out amongst the RFID tagsin the container as described in Section 5.

11



for periodi, andSi is the share for periodi. On invalid input,Share outputs the special symbol⊥.
• Recover is a deterministic algorithm that takes as inputS′ ⊂Wj whereWj defines a sequence ofn shares

starting at timej such thatWj = {Si : j ≤ i < j +n}, and|S′| ≥ k. The output ofRecover(S′) is a set of
keysK = {κi : Si ∈ S′} for the shares provided inS′ or⊥, a special value indicating a recovery failure.

In our security definitions, we again assume an honest dealer, i.e., correct execution ofShare. Below, we
give formal definitions for our privacy and recoverability requirements.

Privacy. To define privacy, we require that the adversary cannot obtain the key for any share she does not
possess. If the adversary holds fewer thank shares, she should not learn any keys. We deal with the case in
which the adversary holds more thank shares as follows.

Define the set of shares held by the adversary asŜ. Let ρ(Ŝ) be the set of all shares that lie in a window
of sizen+λ for which the adversary has recovered at leastk shares. We require the adversary to be unable to
recover the key for any element inρ(Ŝ), the complement ofρ(Ŝ). Sincek shares allow the adversary to recover
all of the keys in a window of sizen, the value ofλ indicates the amount of informationk shares “leak” about
keys not contained within a window ofn shares. Figure 5 illustrates these requirements.

More formally, we can define privacy based on the following experiment:

ExperimentExpind−swiss
A [Π]

(S,κ)
R← Share(k,n,τ);

i← A(“choose”);

κR R←{0,1}|κ|; b
R←{0,1};

b′← Acorrupt(S,·)(π(b,κR,κi), “corrupt”);
if i 6∈ ρ(Ŝ) or i 6∈ Ŝ then

output ‘1’ if b′ = b, else ‘0’;
else output ’0’;

whereπ(0,x,y) = (x,y) andπ(1,x,y) = (y,x). Essentially, the adversary is asked to choose a time periodi.
After corrupting some number of shares, the adversary must distinguish between the key for periodi and a
randomly selected key. We consider the adversary successful if the period chosen does not correspond to a
share held by the adversary, or if the period lies outside the setρ(Ŝ) induced by the adversary’s selection of

shares. The adversary’s advantage is thenAdv ind−swiss
A [Π]

△
=2Pr

[

Expind−swiss
A [Π]⇒ 1

]

−1.

Recoverability. We require that any setS′ ⊆Wj with |S′| ≥ k shares suffices to recover the keys associated
with each share in the set, namely{κi : Si ∈ S′}. We define recoverability for a legitimate recipient in the
erasure model; in other words, shares may be lost but not corrupted. We can convert our SWISS schemes to a
corruption model by replacing our use of PSS schemes with robust PSS schemes, such as Krawczyk’s [20].

Definition 2 We define a(k,n)-SWISS scheme as a pair of algorithmsΠ as defined above whereShare

produces shares of size µ. The security is characterized by the pair(λ,ε), where (as explained above) k
shares are sufficient to revealλ “nearby” keys for time periods not contained in a window of n shares, and
Adv ind−swiss

A [Π]≤ ε.

Thus, an ideal SWISS scheme would have(λ,ε) = (0,0) with minimal µ.

6.2 A Family of SWISS Schemes

In our SWISS construction, we want to ensure that the secret for a case is only available given possession of
that case. To achieve this property, we make the keyκi for casei a function of both a window key and a secret
value associated with the case (or its RFID tag).

Ideally, the window key for a window ofn cases should be recoverable if and only if the receiver possesses
k or more cases within that window. A naive SWISS scheme would simply generate a key for every possible

12



window of sizen and share each key using a(k,n) scheme. But a case would then need a share for every
window covering it, and hence the per-case share size would grow linearly with the size (n) of each window.

Instead, we aim to bring the share size down to a small constant independent of k andn. We use two
techniques for this goal. First, we allow some sloppiness in our access structure. Our access structure (in our
main construction) depends on superwindows of size 2n that each overlap with the previous superwindow byn
(see Figure 6); each superwindow secret is shared using a(k,2n) scheme. Access to a window secret requires
recovery of the secrets for either one of its two corresponding superwindows. Anyk shares in a sequence of
sizen fall into some superwindow of size 2n, and therefore allow recovery of the superwindow secret. The
“sloppiness” is this: Recovery of shares in one window allows for recovery of secrets in nearby windows.

Given the superwindow scheme described above, we could encrypt thesecretκi for each casei under each
of its corresponding superwindow secrets,σ andσ′. However, using a second technique based on bilinear
maps, we can derive a common secret directly from either of the two superwindow secretsσ or σ′.

Below, we first explain the assumptions necessary for our schemes. Then we present our main SWISS
construction (Section 6.2.2) and show how to generalize it to a wider range of parameters (Section 6.2.3).

6.2.1 Assumptions

Our family of SWISS schemes uses bilinear pairing to reduce storage costs.In the full version of this paper,
we describe a variant of our SWISS construction based on the more standard RSA assumption. Unfortunately,
that version does not generalize to large window sizes in the same way as thebilinear map scheme, and hence
we focus on the latter.

We give some very brief preliminaries on bilinear maps, referring the reader to Boneh and Franklin [7]
for details. LetE be a multiplicative cyclic group of prime orderp under a bilinear operator ˆe as defined in
Boneh-Franklin [7]. Thus we have ˆe : E×E→ E′ for a second groupE′. The bilinear operator ˆe has the
property that ˆe(Ga,Hb) = ê(G,H)ab; it is also non-degenerate, meaning that ˆe(G,H) 6= 1.

Our work relies on the hardness of a slightly modified Bilinear Diffie-Hellman Exponent (BDHE) prob-
lem [6, 8]. Specifically, letg and γ be random generators ofE, and α be a random element inZ∗p. Our
(ℓ,L)-BDHE problem is defined as:

Giveng,γ,g(αi) for i = 1,2, ..., ℓ−L, ℓ+1, ...,2ℓ

andγ(αi) for i = 1,2, ...,L−1
compute ˆe(g,γ)(αℓ).

In the original framing of theℓ-BDHE problem [6,8], onlyγ (rather than additionalα powers ofγ) is assumed
to be known. Loosely speaking, the(ℓ,L)-BDHE assumption inE says that no efficient algorithm can solve
the(ℓ,L)-BDHE problem inE with non-negligible probability.

We can apply the “master” theorem of Boneh et al. [6] to bound the difficultyof (ℓ,L)-BDHE. In their
terminology, we haveP = (1,y,y2, ...,yL−1,x,x2, ...,xℓ−L,xℓ+1, ...,x2ℓ), Q = (1) and f = xℓy. This implies that
an attackerA with advantage 1/2 in solving the decision(ℓ,L)-BDHE problem in a generic bilinear groupE

must take time at leastΩ
(

√

p/(4ℓ)−2ℓ
)

. E.g., if we assume the distributor sends one billion windows (or

less), then solving the decision(ℓ,L)-BDHE problem in a generic bilinear groupE of size 192 bits takes time
at least 280. Of course, a lower bound in a generic group does not imply a lower bound in any specific group.

6.2.2 Our Main SWISS Construction

In Section 6.2.3, we present a fully generic overlapping SWISS scheme, but first, to simplify the exposition,
we describe a single member of the family (see Figure 6). This example provides a(k,n)-SWISS scheme with
µ= 3τ and security parameters(2n−k,ε).

Starting at time 0, the sender defines a series of superwindowsW0,Wn,W2n, ...,Wℓn, each of size 2n. Thus,
each superwindow consists of two windows of sizen, with one window overlapping a window from the previ-

13



ous superwindow, and one window overlapping a window from the subsequent superwindow. Each superwin-
dowWℓn defines a(k,2n) perfect secret sharing (PSS) of the superwindow secretσℓn. Since each time period
i is covered by two superwindows, each comprising its own secret sharingscheme, the shareSi distributed in
each time period consists of two sub-shares(sℓn

i ,s(ℓ+1)n
i ), one forσℓn and one forσ(ℓ+1)n. We also augment the

share with a random noncer i
R←{0,1}τ. Thus, the share emitted during time periodi is Si = (sℓn

i ,s(ℓ+1)n
i , r i).

Because any time periodi is covered by two superwindows
...

W0

Wn

W2n

n

A

Figure 6: Each superwindow of2n shares (in
this example, n= 3) overlaps with the previous
superwindow by n shares. Each superwindow
Wℓn is a (k,2n) sharing of the superwindow se-
cret σℓn. Each time period is covered by two su-
perwindows. For example, the share labeled A
is covered by superwindows W0 and Wn. As a re-
sult the key for that periodκA can be recovered
from either superwindow secret,σ0 or σn.

(sayWℓn andW(ℓ+1)n), we would like the keyκi to be recover-
able from the superwindow secret of either one (since we do not
know a priori in which superwindow the recipient will havek
shares). Like many problems in computer science, we can solve
this by adding another layer of indirection. Leta,y,z∈ E and
let (P0,P1) = (y,ya) be a public key. Let each of the superwin-
dow secrets be defined so thatσℓn = zaℓ

. We define a series of
window secretsω0,ωn, ...,ωℓn so that

ωℓn = ê(P1,σℓn) = ê(P0,σ(ℓ+1)n) = ê(y,z)aℓ+1
.

That is, knowledge ofσℓn allows a recipient to deriveωℓn and
ω(ℓ+1)n.

Finally, we define each keyκi based on the window it be-
longs to (say windowkn), as well as the random noncer i distributed with shareSi , asκi = h(r i ,ωkn), whereh
is a hash function modeled as a random oracle [1] that maps{0,1}∗→{0,1}τ.

In the next section, we show how to generalize this construction to decrease λ at the cost of increasing the
size of each share. In Appendix C, we define an adversary and demonstrate the security of the generalized
scheme (and hence this specific instantiation) by proving the following theorem:
Theorem 1 For any polynomial-time(ℓ,L,q)-adversary A withAdv ind−swiss

A = ε and ℓ > L ≥ 3, there is a
polynomial-time adversary A′ that solves the(ℓ,L)-BDHE problem with probability(ε−2−τ)/qℓ−1/2τ.
Essentially the theorem states that given an adversary who achieves a non-negligible advantage in our privacy
experiment, we can construct an attacker who violates the(ℓ,L)-BDHE assumption. We also demonstrate that
this construction satisfies our recoverability requirement.

Remark 2 As described, our SWISS construction uses a PSS scheme to create superwindow shares. Thus, the
construction tolerates erasures but not errors. However, we could readily replace the PSS scheme with a robust
scheme, such as our TSS scheme from Section 5, which would both decrease the size of the individual shares
and add error tolerance to the SWISS construction.

6.2.3 A Generic SWISS Family

The above scheme can be generalized to allow decreased values ofλ at the cost of increased storage (see
Figure 7). Specifically, for any value ofψ < n, we can create a(k,n) SWISS scheme withµ = (ψ + 2)τ and
security parameters((1+ 1

ψ)n−k,ε).
Essentially, we divide each superwindowW into ψ + 1 windows of sizen

ψ . The superwindows form

(k, (ψ+1)n
ψ ) sharing schemes of the superwindow secrets, and each superwindow overlaps the previous super-

window byψ windows. Thus, any given window is covered byψ+1 superwindows, and the window secret can
be recovered from any of the superwindow secrets, using the same ellipticcurve pairings technique as before.
In other words, we define a public key(P0,P1, ...,Pψ) = (x,xa, ...,xaψ

), and a window secretωℓn is defined as:

ωℓn = ê(Pψ,σℓn) = ê(Pψ−1,σ(ℓ+1)n) = ... = ê(P0,σ(ℓ+ψ)n) = ê(x,z)ℓ+ψ.

To determineλ, we consider the worst case, in whichk≤ n
ψ , and the adversary’sk shares fall within a single

window. In that case, the window is covered byψ+1 superwindows, allowing the adversary to recover secrets

14



...

n

2

(a) A SWISS scheme withψ = 2,n = 4. Each su-
perwindow shown is a(k,3n/2) sharing of the super-
window secret.

...

n

3

(b) A SWISS scheme withψ = 3,n= 6. Each superwindow shown
is a(k,4n/3) sharing of the superwindow secret.

Figure 7:Additional SWISS examplesWe can create additional SWISS schemes by increasing the number of windows
per superwindow while decreasing the number of shares in each window. As we increase the number of windows,λ
decreases, but the number of shares that must be held in each time period increases.

for 2ψ+1 windows, or(2ψ+1) n
ψ = 2n+ n

ψ secrets. These secrets can be at most a superwindow (ψ+1
ψ n) away

from thek secrets held by the adversary, soλ = ψ+1
ψ n− k = (1+ 1

ψ)n− k. If k > n
ψ , then fewer thanψ + 1

superwindows will containk shares, and henceλ will be even smaller.
In our example scheme from Section 6.2.2,ψ = 1, so each superwindow formed a(k,2n) secret sharing

scheme, but we could also useψ = 2, with each superwindow consisting of 3 windows ofn
2 shares, and the

superwindow as a whole constituting a(k, 3
2n) sharing of the superwindow secret (see Figure 7(a)). This would

produce a smaller value ofλ = 3
2n− k, but at the cost of larger shares: each share issued would now contain

three shares (one for each superwindow overlapping a particular window).

6.2.4 Real World Instantiation

To make our SWISS construction more concrete, we suggest parameters that might be used in real world
deployments. Suppose the sender needs to ship one million shares or fewer. We divide those shares into
10,000 windows of 100 shares each, giving usℓ = 5,000,n = 100. A legitimate recipient will receive at least
k = 20 shares in any window. If we use the scheme from Section 6.2.2, thenΨ = L = 1. Finally, if we use
τ = 128 bit keys, then the share for each period will be 3τ = 384 bits in size. In contrast, the naive scheme
described in the beginning of this section would requirenτ = 12,800 bits per share.

We described both our SWISS scheme and the naive scheme using PSS as acomponent. If we replace the
PSS scheme with our TSS scheme from Section 5, then we have a share size of 16 bits. In our scheme, we still
need a random nonce of at least 60 bits, but that still gives us shares of size 2·16+ 60= 92 bits, just small
enough to fit on an EPC tag. In contrast, the naive scheme would still requiren·16= 1,600 bits.

7 Conclusions and Future Work

We have described two approaches to secret sharing in unidirectional channels: secret-sharing across space
and secret-sharing across time. As we have shown, secret-sharing across space is a tool of practical promise
for privacy protection in real-world RFID-enabled supply chains. OurSWISS scheme for secret-sharing across
time can, similarly, help address the challenges of RFID tag and reader authentication. An open problem of
particular interest in our SWISS construction, however, is elimination of its reliance the non-standard(ℓ,L)-
BDHE problem in our fully generic overlapping SWISS scheme. We also planto investigate extended SWISS
schemes that leverage the entire history of interaction between a sender and receiver, rather than simply a
window of recent history.

More broadly, we believe that a holistic view of the special operational requirements of RFID tags and the
highly constrained resources of tags can give rise to important new cryptographic problems. Our future work

15



will aim to calibrate cryptographic tools like those presented here to RFID supply-chain infrastructure as it
evolves and its special operational demands come into clearer focus.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In ACM CCS, pages 62–73, 1993.

[2] M. Bellare and P. Rogaway. Robust computational secret sharing and a unified account of classical
secret-sharing goals. InACM CCS, 2007.

[3] C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer. Generalized privacy amplification. InISIT:
Proceedings IEEE International Symposium on Information Theory, 1994.

[4] G. Blakley. Safeguarding cryptographic keys. InAFIPS Conference Proceedings, volume 48, pages
313–317, 1979.

[5] G. Blakley and C. Meadows. Security of ramp schemes. InAdvances in Cryptology: Proceedings of
CRYPTO, 1984.

[6] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext.
In EUROCRYPT, volume 3494 ofLecture Notes in Computer Science, pages 440–456, 2005.

[7] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.SIAM Journal of Computing,
32(3):586–615, 2003.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and
private keys.Advances in Cryptology: Proceedings of CRYPTO, 2005.

[9] E. F. Brickell and D. R. Stinson. Some improved bounds on the information rate of perfect secret sharing
schemes.Journal of Cryptology, 5:153–166, 1992.

[10] R. M. Capocelli, A. D. Santis, L. Gargano, and U. Vaccaro. On thesize of shares for secret sharing
schemes.Journal of Cryptology, 6:157–167, 1993.

[11] J. Daemen.Hash Function and Cipher Design: Strategies Based on Linear and Differential Cryptanaly-
sis. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium, Mar. 1995.

[12] EPC Global. EPCR© Radio-Frequency Protocols Class-1 Generation-2 UHF RFID Protocolfor Commu-
nications at 860 MHz – 960 MHz Version 1.1.0.EPC Global, 2006.

[13] EPC Global. EPCR© Item Level Tagging Joint Requirements Group.EPC Global, 2007.
[14] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomonand algebraic-geometry codes.IEEE

Transactions on Information Theory, 45(6):1757–1767, 1999.
[15] A. Juels. Strengthing EPC tags against cloning. InACM Workshop on Wireless Security (WiSe), pages

67–76. ACM Press, 2005.
[16] A. Juels, D. Molnar, and D. Wagner. Security issues in e-passports. InSecureComm, 2005.
[17] A. Juels and M. Sudan. A fuzzy vault scheme.Des. Codes Cryptography, 38(2):237–257, 2006.
[18] E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharingsystems. IEEE Transactions on

Information Theory, 29(1):35–41, 1983.
[19] A. Kiayias and M. Yung. Directions in polynomial reconstruction based cryptography.IEICE Transac-

tions, E87-A(5):978–985, 2004.
[20] H. Krawczyk. Secret sharing made short. InAdvances in Cryptology: Proceedings of CRYPTO, pages

136–146, New York, NY, USA, 1994. Springer-Verlag New York, Inc.
[21] M. Langheinrich and R. Marti. Practical minimalist cryptography for RFID privacy. In submission, 2007.
[22] M. Langheinrich and R. Marti. RFID privacy using spatially distributed shared secrets. InProceedings

of UCS 2007, LNCS, Berlin Heidelberg New York, Nov. 2007. Springer. (To appear).
[23] J. L. Massey. Shift register synthesis and BCH decoding.IEEE Transactions on Information Theory,

15(1):122–127, 1969.

16



[24] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-Believing: Using camera phones for human-
verifiable authentication. InProceedings of the IEEE Symposium on Security and Privacy, May 2005.

[25] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.Communications of the
ACM, 24(9):583–584, 1981.

[26] W. Ogata and K. Kurosawa. Some basic properties of general nonperfect secret sharing schemes.Journal
of Universal Computer Science, 4(8), 1998.

[27] M. O. Rabin. The information dispersal algorithm and its applications, 1990.
[28] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal SIAM, 8:300–304, 1960.
[29] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient authenticated

encryption.ACM TISSEC, Nov. 2001.
[30] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. InACM Workshop on

Wireless Security (WiSe 2003), pages 1–10, Sept. 2003.
[31] B. Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish). In R. J. Anderson,

editor,FSE, volume 809 ofLecture Notes in Computer Science, pages 191–204. Springer, 1993.
[32] A. Shamir. How to share a secret.Communications of the ACM, 22(11):612–613, 1979.
[33] F. Stajano and R. Anderson. The resurrecting duckling: Securityissues for ad-hoc wireless networks. In

Security Protocols, 7th International Workshop. Springer Verlag, 1999.

A Overinformed Adversaries

In the body of the paper, we discuss the notion of an underinformed adversary, one that has an insufficient set
of shares to reconstruct a secret key. We also briefly mention the notion of anoverinformedadversary. Such an
adversary possesses a set of shares sufficient to reconstruct one or more secret keys, but in fact has too many
shares to feasibly determine such keys. We cannot naturally create a situation in which an adversary scanning
a single case becomes overinformed. But we can design our system suchthat an adversary is overinformed in
settings where the adversary is forced to scan the contents ofmultiplecases simultaneously.

Consider for example, an attacker who periodically scans a store shelf, hoping to accumulate enough shares
to recover the associated key. During this process, the adversary’s reader may receive responses from items
that arrived in multiple independent cases. In this situation, we would like it to be hard for the adversary to
recover any case secret from the full set of secrets, even if a subset of the adversary’s shares would suffice to
reconstruct the secret. We can appeal to the fact that when shares from multiple cases are mixed together, the
large set of shares can make it hard to decode any individual secret.

To help render an attacker overinformed, we can deliberately introduce “chaff” among the sharesSi in
a case. Essentially, we replaceζ shares ofκ̃ with randomly chosen values. The choice of 0≤ ζ < D/2
represents a tradeoff between security against an overinformed attacker and the error-tolerance of the scheme.
For example, by choosingζ = D

3 , an adversary who recovers the shares from two secrets will hold2D
3 chaff

values—potentially exceeding the recovery threshold for the ECC scheme,as we now show. In this situation,
though a legitimate recipient can still tolerateD

6 errors in the shares she receives.
The following experiment formalizes the notion of an overinformed adversary.

ExperimentExpind′
A [Π,X,α,β]

(x1, ...,xα)
R← X;

C
R←Sz

i=1Ci , whereCi
R
⊆ Share(xi), and|Ci |= β;

H←{h : h = H(xi),1≤ i < α};
x′← Acorrupt(C,·)(H, “corrupt”);
output ‘1’ if x∈ (x1, ...,xα), else ‘0’

In this experiment, we chooseα random secrets. The adversary has access to an unlabeled set of shares, which
containsβ randomly chosen shares from each secret. The adversary also receives the hashH of each secret.

17



Given this information, the adversary must recover one of the original secrets. In this experiment, we define

the advantage of adversaryA asAdv ind′
A [Π,X,α,β]

△
=Pr

[

Expind′
A [Π,X,α,β]⇒ 1

]

.

A.1 Polynomial Reconstruction

We can characterize the challenge facing an overinformed adversary interms of thepolynomial reconstruction
(PR)problem. This is a curve-fitting problem that corresponds, in the setting of coding theory, to the decoding
of a Reed-Solomon codeword in the presence of errors. See, e.g., Kiayias and Yung’s work [19] for discussion
of the problem.

A common and efficient choice in practice for Reed-Solomon decoding is the classical Peterson-Berlekamp-
Massey (PBM) algorithm [23]. Given an underlying(N,K)-Reed-Solmon code, and a set oft symbols, of
which ζ are corrupted, the PBM algorithm successfully decodes a set of symbolsif t − ζ ≥ (t + K)/2 (or,
equivalently,ζ≤ (t−K)/2.

A more powerful decoding scheme, however, is that of Guruswami and Sudan (GS) [14], which success-
fully decodes fort− ζ >

√
KN in any field of cardinality at most 2N. Indeed, it is conjectured that decoding

beyond the error bound represented by GS is infeasible in a general sense. That is, GS is the best known
algorithm for the PR problem. Thus, while GS is not efficient for practical use, it offers a likely bound on the
hardness of the PR problem.

That said, there are several different formulations of the PR problem, and little work characterizing the
concrete hardness of the problem. Thus, while the GS bound may hold in a worst-case sense or asymptotic
sense, there is no consensus on what distributions over problem instances are hard in a practical sense.

For this reason, Juels and Sudan [17] propose a scheme that involves chaff shares in a Reed-Solomon code,
but aims at unconditional, rather than computational hardness. Their scheme relies on problem instances in
which the number of underlying polynomials of degreeK is too large for feasible search by an adversary.
Practical parameterizations of our scheme, however, do not support the Juels-Sudan approach.

A.2 Parameterization of Our RFID Secret-Sharing Scheme

We give a brief characterization of what we believe to be secure and feasible parameterizations of our scheme.
These parameterizations permit PBM decoding for the legitimate reading of a single RFID-tagged case and at
the same time exceed the GS bound for security against overinformed adversaries. We emphasize, however,
that further research is needed for firm determination of the security of our scheme in a concrete sense.

Suppose that a case containsN tags, of whichζ are chaff values. Then PBM decoding for a scanned case
is always possible when the number of corruptions (or erasures) of valid symbolse is such thatN− (e+ζ)≥
(N+K)/2.

Example 3 Suppose that K= 8, N = 200, andζ = 86. Then it is possible to recover the secret associated with
a case for e≤ 10, and thus up to a 5% corruption of tag symbols.

Suppose that an adversary reads symbols associated withq cases and attempts to recover the secretx
associated with a particular case. We can establish a lower bound on the hardness of this problem by rendering
the problem easier for the adversary. In particular, let us assume that the adversary has access to an oracle that
identifies valid shares associated with theq−1 untargeted cases (but does not otherwise reveal which shares
correspond to which case). Then the adversary can reduce the problem of recoveringx to a decoding problem
with N−ζ valid shares andζq chaff shares, and thust = N+(q−1)ζ shares in total. The GS bound implies
that recovery ofx is hard ifN−ζ <

√

K(N+(q−1)ζ).

Example 4 Suppose that K= 8, N = 200, andζ = 86. Then the problem of recovering a target case secret x
is hard under the GS bound if114<

√
848+688q, and thus for q≥ 18.

A stronger bound is possible assuming that valid symbols, i.e., secret-bearing data, in untargeted cases may
be regarded as chaff. This gives us a slightly unorthodox problem distribution in which a problem instance

18



hasq embedded, secret polynomials. In this case, however, the GS bound impliesthat recovery ofx is hard if
N−ζ <

√
qKN. With an appropriate parameter choice, we can obtain strong concrete results.

Example 5 Suppose that K= 100, N = 200, and ζ = 40 (giving a 5% correction buffer in the single-case
setting, as above). Then the problem of recovering a target case secret x is hard under the GS bound if
160<

√
20000q, and thus for q≥ 2.

B Proofs of Security for Our Tiny Secret Sharing (TSS) Scheme

B.1 Proof of Privacy

Since many of our applications only require the distribution of a secret key,we first define a simplified ex-
periment to measure the indistinguishability ofκ. Note that for this experiment, we excise the portion of our
scheme in the dotted box in Figure 3. Effectively, we share out a null secret x, and writeShare() to indicate
this fact. The proof of privacy for secrets of arbitrary size then follows in a straightforward manner.

We define a key indistinguishability experiment as:

ExperimentExpind−κ
A [Π,X]

(κ0,S0)
R← Share();

(κ1,S1)
R← Share();

b
R←{0,1};

b′
R← Acorrupt(Sb,·)(κ0,κ1, “corrupt”);

output ‘1’ if b = b′, else ‘0’

In this experiment, the adversary receives two secret keys generatedby our sharing algorithm, as well as the
shares corresponding to one of the keys and must determine to which key they correspond. We define the

advantage of adversaryA asAdv ind−κ
A [Π,X]

△
=2Pr

[

Expind−κ
A [Π,X]⇒ 1

]

−1.

For a generic ECC, if the adversary makes at mostqu corrupt queries, then her total amount of information
is upper-bounded byQqu. Since we model the hash function applied to pre-keyκ̃ as a random oracle, the
adversary’s advantage in distinguishingκ0 andκ1 is bounded above byAdv ind−κ

A [Π,X]≤ 1/Qk−qu. Assuming
an encryption algorithm in which key indistinguishability implies ciphertext indistinguishability (e.g., in an
ideal cipher model), this bound then translates to the more general sharing of an arbitrary secret. Thus, we
haveAdv ind

A [Π,X]≤ εu≤ 1/Qk−qu. This yields Claim 1 from Section 5.3.

B.2 Proof of Robustness

With a generic linear(N,K,D)-ECC, it is possible to recover a message from a codeword with fewer than
D/2 errors. Thus, as long as the adversary does not corruptD/2 shares,εr = 0. Similarly, such a code
can recover fromD− 1 erasures; and can also detect up toD− 1 errors. As discussed in Appendix A, we
can deliberately introduceζ chaff shares into the ECC to confound the overinformed adversary. This would
change are security parameters such that ifqr < D/2− ζ, thenAdvrec

A [Π,X] = 0 = εr , and if qr ≤ D−1− ζ,
thenAdvrec−or−detect

A [Π,X] = 0. This yields Claim 2 from Section 5.3.

C Proofs of Security and Recoverability for our SWISS Scheme

We prove that our generic family of SWISS schemes from Section 6.2.3 meets our privacy and recoverability
requirements. Since our main construction from Section 6.2.2 is a specific instantiation (with Ψ = 1), its
security follows from the security of the generic family of schemes.

19



C.1 Proof of Privacy.

To demonstrate that our generic family of SWISS schemes achieves our privacy requirement, we define an
adversary for our schemes and prove Theorem 1. Recall that our generic family of SWISS schemes is param-
eterized byΨ, one less than the number of overlapping superwindows.

Definition 3 We define an(ℓ,L,q)-adversary A as an attacker who achieves anAdv ind−swiss
A [Π] < ε advantage

in our privacy experiment (defined in Section 6.1), whereΠ is an instantiation of our generic SWISS family
with Ψ = L that produces at most2ℓ shares. The adversary makes at most q random oracle queries.

Given this definition, we can now prove Theorem 1.

Proof of Theorem 1: Suppose we are given an(ℓ,L)-BDHE instance comprisingγ(αi) for i = 1,2, ...,L−1
and the sequenceU ′ = g′(α

i) for i = 1,2, ..., ℓ−L, ℓ+1, ...,2ℓ. We construct a SWISS-scheme simulator based
on an(ℓ,L,q)-adversaryA as follows.

Simulator Construction. First, we construct an appropriate public key by letting(P0,P1, ...,PL)= (γ,γα, ...,γαL
).

Then, we select a randomj ∈ {1, ..., ℓ}. This index is our guess as to the superwindow in which the adversary
will select a challenge key. If we letg= g′(α

ℓ− j ), thenU ′ contains the subsequenceU = gα,gα2
, ...,gα j−L

,gα j+1
, ...,gαℓ

.
We use this subsequenceU as the set of underlying superwindow keys in the procedure describedin Sec-

tion 6.2.2, with each superwindow representing a(k,2n) sharing ofg(αi). For the superwindows corresponding
to g(α j−L+1), ...,g(α j) (which are unknown), we simply share a random value. This procedurecreates a setSof
shares. IfA queriescorrupt(S, i), we respond withSi .

To respond to hash queries, we keep a listV of previous queries. Thus, whenA invokesh(y,z) for the first

time, we choose a random valuev
R←{0,1}τ and add(y,z,v) to the internal listV . If A has previously invoked

h on (y,z), then we return the corresponding value ofv from V . This creates a perfect implementation of the
random oracle contract.

WhenA terminates, we ignore its output, choose a random entry from our list of hash responses(y,z,v)
R←

V and returnz.

Simulator Correctness. From the SWISS adversary’s point of view, the construction above accurately sim-
ulates theind-swissExperiment. Our replies to the hash queries perfectly instantiate a random oracle, so they
offer the adversary no information with which to distinguish a real experiment from a simulation. Our construc-
tion deviates from the true protocol in one important respect: the keys for the superwindows corresponding to
g(α j−L+1), ...,g(α j) are chosen at random (since we do not know the appropriate values).However, the definition
of ρ precludes the adversary from recovering these superwindow secrets, and hence, she cannot determine
that these values do not conform to the expected structure. Nonetheless, because we choose the superwindow
secrets at random, we cannot provide the adversary with the correct value ofκi . In other words, from our
perspective, the value ofκi provided to the adversary is a random value. At some point, the adversary will
queryh(r i ,ωkn), but since we cannot recognizeωkn, we will not know that we should returnκi . Fortunately,
by the time the adversary makes this query, we have already extracted the necessary information, namelyωkn,
so that even if the adversary quits upon determining a discrepancy, we willstill succeed.

Probability of Success. Our guessj for the superwindow from whichA selects a challenge keyκi is correct
with probability≥ 1/ℓ. Sinceh has a range of{0,1}τ andA has anε advantage, it is clear under the random
oracle assumption onh thatA inputsω jn with probability≥ ε−2−τ. If A has queriedh with ω jn in the course

of the simulation, then the probability that we output the correctω jn = ê(g,γ)(αℓ) is just 1/q.
The only other way the adversary can succeed is by recovering a key for a share she does not hold. However,

without the share, the adversary has no knowledge ofr i . The random oracle assumption onh guarantees that
the adversary succeeds in guessingκi with probability less than 1/2τ. Our theorem bound follows.

20



C.2 Proof of Recoverability

A legitimate receiver (one who recovers at leastk shares out of some windowW′ of n shares) can determine the
key corresponding to each share. We demonstrate this by observing thatgiven the overlapping superwindow
construction, the windowW′ must be entirely contained within at least one superwindowWℓn. Thus,k elements
from W′ suffice to reconstruct the superwindow secretσℓn, which can be used to calculate the window secrets
ωℓn, ω(ℓ+1)n, ..., ω(ℓ+Ψ)n. Each window is of lengthn/Ψ, and hence these two window secrets cover all
(Ψ+1)n/Ψ elements in superwindowWℓn. Using the random noncer i in each shareSi , the legitimate receiver
can calculateκi by hashingr i with the appropriate window secret.

21


