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Abstract

We explore the problem of secret-key distributioruimdirectionalchannels, those in which a sender
transmits information blindly to a receiver. We consideo @pproaches: (1) Key sharing acregsicei.e.,
across simultaneously emitted values that may follow diffié data paths and (2) Key sharing acrise,

i.e., in temporally staggered emissions. Our construstieme of general interest, treating, for instance,
the basic problem of constructing highly compact secreteshaOur main motivating problem, however,

is that of practical key management in RFID (Radio-FrequdBentification) systems. We describe the

application of our techniques to RFID-enabled supply chaind a prototype privacy-enhancing system.

1 Introduction

Key management is a cornerstone of cryptography, but also its majorydeghd challenge. Textbook crypto-
graphic protocols often presuppose keys held by a pair of principatdatally dubbed Alice and Bob. From
birth, as it were, Alice and Bob are presumed to share a passwordred key, or the public key of some
mutually trusted entity.

In practice, the conceptually simple goals of key distribution—even betwespadvties—are fraught with
complexity. Disparate naming conventions and requirements for key imoand recovery have hobbled
many public-key infrastructures. Password management remains a vaddsghallenge thanks to obstacles
as varied as limited human memory, caps-lock keys, and social-enginettdoksasuch as phishing.

Ultimately, key distribution must rely on secure channels established thraegéxisting trust relation-
ships or special physical considerations. For example, browserasefshipped with new computing systems
carries the root public keys of a number of certificate authorities. Spatyaical assumptions and adversarial
constraints can shape the problem of key distribution in interesting wayseaRshers have explored a host
of different physical models to support key establishment between ghdsvices, including optical chan-
nels [16, 24], distance-bounding [30] based on signal velocity, dydipal contact [33]. Such models treat
a range of different adversarial capabilities. For instance, prigagplification [3], which strengthens keys
using shared sources of noise or quantum phenomena, appeals ¢ lbouedversarial data access or storage.

In this paper, we focus on the problem of key distribution between two partismunicating via anidi-
rectionalchannel. This special constraint means that one party (Alice) acts metjuas a sender, while the
other (Bob) acts exclusively as a receiver. We consider the chaltgngedirectional key transport when Alice
and Bob have no pre-existing relationship, but share a channel with lindiestsarial access. We believe that
such special unidirectional models have broad applicability, as theytrifeenatural broadcast characteristics
of many media. The starting point and motivation for our investigation, thougtheispecific, real-world
problem of key transport in RFID-enabled supply chains.

Organization In Section 2, we give details on the RFID challenges motivating our work.pkbfeide an
overview of our technical contributions in Section 3 and review related\woBection 4. In Section 5, we



present what we caBecret sharing in spacea key-distribution system that supports privacy protection in
RFID applications. We also briefly describe a prototype RFID implementatieeatkt sharing in space. In
Section 6, we presestcret sharing in timea separate body of techniques applicable to RFID access-control
and authentication, and also of broad interest for key distribution in uptthreal channels. We conclude in
Section 7 with a brief discussion of future research directions.

2 Motivation: The RFID Landscape

The ratio of terrestrial radio and cellular telephone systems to the numbenwdits on earth is approaching
unity and, in the past decade, a completely different kind of radio de@seimerged and is poised to eclipse
this ratio by three orders of magnitude. Rapid advances in CMOS technioéngyenabled the production of
low-costtagsthat are capable of reporting their identity over a wireless link. These taggally costing on
the order of tens of cents - are typically composed of a few thousand gfaddicon, and have little, if any,
general-purpose computing power available to them beyond respondingitmands from an interrogator or
reader. This asymmetry between the interrogators and the tags is further amplifie@ ligctithat, in many
applications, tags are passive, lacking an on-board source of povegead, they harvest power from the
electric, magnetic or electromagnetic field generated by the interrogators.

Recent developments in Radio Frequency IDentification (RFID) techpa@ad corresponding interna-
tional standards [12] have spurred the deployment of passive systeapplications ranging from supply-
chain and inventory management of consumer goods, to tracking medigpfreant in hospitals, to counting
poker chips on gaming tables.

The heir apparent to the optical barcode, RFID is becoming a prevatdmtdidgy in supply-chain man-
agement. Ultimately, manufacturers and retailers envisage RFID tagging\ifliredl consumeitems Today,
tagging is most common at the granularitycaseswhich contain consumer items, andpafilets which carry
cases. In this paper, we use the term “case” as the generic term faretelisollection of goods.

For supply-chain operations, the predominant RFID standard is omerka®the Electronic Product Code
(EPC) (in particular, Class-1 Gen-2 EPC, hereatfter referred to a2)GEPC tags act effectively as wireless
barcodes, emitting short strings of information known as EPC codes. Stk&e has four basic components:
(1) A header which denotes the EPC version number; (2jidmain managerwhich typically specifies the
manufacturer or creator of the item; (3) Abject classwhich specifies the item type, and (43erial numbey
a unique identifier for the item. Thigense plateapproach makes it possible to store an unlimited amount of
metadata about the tagged object on the network and keep the memorymegug®n the tag itself small.

2.1 Security and Key Distribution in Gen2

There are two features in the Gen2 standard that require secret kegtegal:

Locking and perma-locking: It is possible to lock part (or all) of the tag’s memory, either temporarily under
a 32-bit password, or permanently with no possibility of unlocking anditegrthe memory. While this
feature prevents unauthorized entities from tampering with the contents afgawry, it does not prevent
unauthorized readers from reading the contents.

The kill command: The only security function that completely disables tags is a command knowifi .as
When transmitted by a reader along with a tag-specific kill PIN (32 bits long m2§;ehe kill command
causes a tag to disable itself permanently.

The EPC Kkill function is envisaged as a privacy-enhancing featunefail environments with item-level
tagging. In principle, as EPC tags identify the items to which they are affixaahsumer carrying EPC-tagged
items would be subject to clandestine inventorying attacks. Such attacksdiscilose sensitive information
about medications, reading materials, luxury goods, and so forth. Bgydeg the kill function at the point of
sale, a retail shop can protect against such privacy infringemenisnolering tags inoperable. Additionally,
researchers have proposed techniques that co-opt the kill andagdéss commands in EPC to support reader
authentication of tags and to protect PINs from untrusted readers, thies{ing against cloning [15].
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Figure 1:0bject hierarchies in RFID-enabled supply chainsThis schematic represents the path taken by an individual
pack of razor blades from the factory to the consumer’s hd?fease refer to Section 2.2 for details.

Both locking and killing pose a significant implementation hurdle: They requielation to thekey-
distribution problem. The initialization of tag-specific kill PINs in tags and the securegmafon of these
PINs to point-of-sale devices are formidable operational challenggglyschains include entities with widely
disparate data-processing capabilities. Information transfer acrgasipational boundaries, moreover, intro-
duces a host of regulatory and technical burdens. Hence supgpiy-ehtities commonly lack data-network
mechanisms for timely, reliable, and secure transport of PINs. While it magrs straightforward matter
for Alice (a manufacturer) to share EPC PINs with Bob (a retailer) thraughata network, in practice it is
often quite difficult. Indeed, with all of the intermediaries through which mactwfred goods regularly pass,
Alice may even ship cases without knowing that Bob is the ultimate receiver.

In this paper, we show that RFID-enabled supply chains possesseumigperties that allow us to:

e Provide consumer privacy with respect to unauthorized scanning gédagpjects;

e Provide a robust protocol-independent mechanism to distribute PINsaassvordsvithout requiring a
network connection, changes to the air interface protocol, or change®tmthhardware

The only resource our method requires is memory on the tag, and we peoridans to trade-off memory
usage against security.

2.2 Object Hierarchies in RFID-Enabled Supply Chains

Our techniques for key distribution in RFID applications rely in part on tlcetfzat supply chains are hierar-
chical in nature. To highlight the properties we utilize, we use Figure 1 te titge path of a single pack of
razor-blades in a consumer’s home back to the manufacturing facility.

Typically, items start off in large collections and progressively get whittmardinto smaller aggregates as
they make their way from the factory to the store shelf [13]. In the exampuleealbazor blades are assembled
into a pallet containing 90 cases, each with 72 packs of blades. Assumintgrige cases, and pallet are
tagged, we have a total of 6571 tags on this particular pallet. The pallet idrdmesported, possibly with
many other pallets, to a distribution center (DC). The DC de-palletizes thepatlpt and assembles a mixed
pallet with a smaller quantity of cases that has been ordered by the storpicAltyumber of cases from the
original pallet that make it onto this new pallet is 10 [13]. Assuming a new paligis added, 730 of the 6571
original tags are now available on the new pallet. This new pallet is then traedpo the store and stored in
the backroom. Of these 730 tags, typically up to two cases’ worth, or 14ds éee laid out on the store shelf
for customers. From this collection, consumers pick up a few packs actigae them. Therefore, the object
hierarchy is as follows.

Razor blades6571— 730— 144—5
Similarly, for DVDs a typical object hierarchy is



DVDs 5040— 2520— 400— 24
where the last number represents an estimate of the number of DVDs fraseaald to an individual con-
sumer. Finally, for pharmaceuticals, we have

Pharmaceuticals7200— 1920— 150— 6
where again the last number represents an estimate of the maximum numbedgfréBeriptions from one
case in possession of a consumer at the same time.

While these numbers may vary between different types of retailers anchgss, the important point to
note is that the number of tagged items starts off large and ends up being smatheAimportant insight
is that larger numbers of tags are typically found in physically secures avegile smaller numbers of tags
are found in physical locations that are accessible to adversariesxpldit ¢he fact that tags share the same
space-time context earlier in the supply chain, but this history is progedgsost as tagged objects emerge
from the supply chain into the front of the retail store and thereon into thewvoer’'s home.

3 Our Contribution

The challenges of EPC PIN distribution motivate us to consider a new agproamely that ofransporting
secret keys in RFID tags themselv&his approach allows a unidirectional model of key transport. The sende
(Alice) encodes secrets in a collection of tags or cases. The rec&wb) (ecovers these secrets without
communicating with Alice—and, potentially, without even knowing her identity.

To support this unidirectional model of key transport, we propose potgdor dispersing keys or PINs
across tags by means sdcret sharingWe consider two distinct modes of secret sharing:S@é¢ret sharing
across spaceand (2)Secret sharing across time

Secret sharing across space: Alice can share a secret keyacross a set of tags = {11,...,Tn} In a case.
To do so, she transformsinto a collection of shareS, ..., S,, and store§ on tagt;, such thak can only be
recovered by scanning alltags in the cases. (We later consider threshold secret sharing, i.eneschach
thatk < n shares suffice for recovery &f)

Such secret sharing across tags permits a new approach to privaoyeanent for item-level tagging that
largelyeliminates the need for killing tagSuppose that, consists of the data, e.g., EPC code, associated with
tagti. Suppose that Alice replaces with E,[m] in all tags, whereE, represents symmetric-key encryption
underk. Then the contentsy of any tag can only be deciphered by scanning the full set offags

On receiving a case from Alice, a retailer (Bob) can recavend decrypt the EPC codes of the associated
tags.Once the items and their associated tags are dispersed by sale to custboweser, a would-be eaves-
dropper has no practical way to recover We assume here that access to tags is secured in the supply chain,
i.e., the pre-sale environment. We illustrate the principle by means of an example.

Example 1 Alice ships a case containing three bottles of medicine bearing RFIDtiags and 13 with data
strings m,mp, and my. She generates a secret kegnd transforms it into a triplet of shard$;, S, S3) via a
(3,3)-secret sharing scheme. Alice writes the vajue (Ex[m],S) to tagT;.

Bob, a pharmacist, receives Alice’s case. He scans the three tags/ers& and decrypts the data
strings of the tags in the cases, enabling him to read=nfHigh street-value drug, 500 mg, 100 count,
bottle #8278732," as well as yrand ny. Bob dispenses the first bottle to Carol.

Later in the day, a drug thief surreptitiously scans Carol's RFID tags as [gésses on the street. The
thief obtains the valueyv= (E¢m,), S1)—a ciphertext and key share that by themselves carry no meaning and
therefore do not reveal the presence of high-value pharmaceuticals.

As this example illustrates, Bob does not have to perform any explicit actipnotect his customers’
privacy. He does not have to kill or rewrite tags. Secret sharingsacspace enforces privacy implicitly
through the physical dispersion of tags. Unlike killing, though, secraiist) does not enforce privacy against
tracking attacks. The value is itself a unique identifier that can serve to correlate different instanfces o



scanning of Carol's tags and potentially track Carol herself. This is i& bastation of our scheme, but one
we consider to be of considerably smaller importance than revelation of tagalatents.

Of course, it is possible to encodein a case-specific tag, rather than across items within a case. The
advantage of sharing across space is twofold, though: (1) As we #redlews for robust secret recovery, i.e.,
recovery ofk even in the face of scanning errors or lost data and (2) It eliminates gwefoean extra tag, i.e.,
one on each case.

Our main research challenge in applying secret sharing across sietcs the development of schemes
with tiny secret shares. While the literature on computational secret sharinigleenshares of length equal
to that of a secret key, e.g., 128 bits, space constraints on EPC tags/argemaller share sizes, e.g., 16 bits.

In Example 1, the adversary (thief) imderinformedi.e., lacks the shares needed to recaveAnother
facet of our research aims to create situations in which an adversavgiimformedhaving too many shares
to identify and extract tag keys. In Appendix A, we consider situations iiclwan adversary is overinformed
when scanning retail shelves where the contents and thus RFID tags ytases are mixed together.

Secret sharing across time: Suppose that is not an encryption key, but a write-access key. In that case, the
ability to recoverk by scanning a case would enable a malefactor with access to a single eagepaint in
the supply chain to modify the data contents of tags. Similarly, suppose thate a symmetric key used to
authenticate tags. Then simply by scanning a case, an attacker couldrraiaf the data required to clone
its tags.

For this reason, we consider another form of secret sharing in widehrat ke is distributed not across
the tags in a single case, but across multiple cases. Given that casesHikauwtdta packets—depart and
arrive at staggered times in a supply chain, we refer to this approaetiast sharing across time.

Example 2 Alice is shipping RFID-tagged items to Bob. She would like to communicate aegtsss PINs
for the tags to Bob as securely as possible.

Suppose that Alice employs trucks that hold up to ten cases. She mightadloaws. She selects a window,
i.e., sequence, of eleven casegg, 1,...,Cj10 designated for delivery to Bob. She creates a master secret
from which it is possible to derive the write-access PIN for any tag within theamiraf cases. She distributes
K into eleven shares;$5, ..., Sy via an (11,11)-secret sharing scheme, and writes shar® $ase ¢.4_1.
(She might distribute the secret across tags on individual items, or osexg@ecific tag.)

An adversary that gains access to the contents of a small collection @ ,caiseven an entire truckload,
is unable to reconstruat or to obtain the write-access PINs for the RFID tags. On the other hand,cBob
reconstructk once he receives the full sequence of eleven constituent cases.

Of course, in practice, it may be difficult for Alice to identiéypriori a window of cases that Bob will
receive in its entirety, particularly if the cases pass through intermediaripdi®rs. Hence the main thrust of
our work here is the development of more flexible secret sharing schéffeepropose what we caliliding-
Window Information Secret-Sharif@WISS) schemes, constructions such that for a sequancg ... of
cases, Bob need only receive a minimal numberf cases in any contiguous window of simen order to
reconstruct the associated secret keys. SWISS schemes providerkelentiality against adversaries that
intercept cases on a sporadic basis.

As we explain, itis a straightforward matter to create a SWISS scheme in wiackssare linear in, and
thus potentially large in practice. Our contribution is a SWISS scheme whasesséire constant in size, i.e.,
have length independent kiandn.

4 Related Work

Since its invention in 1979 by Shamir [32] and independently by Blakeleys@dret sharing has played a
foundational role in cryptography. However, our work differs frpmevious work in two key aspects: the
privacy goal we adopt and the size of the shares employed.



The majority of secret sharing literature evaluates the privacy of atsgtaging scheme from an information-
theoretic perspective, largely seeking to create efficient schemearious access structures. In this regime,
a perfect secret-sharing (PSS) scheme is one in which an adveraary @ information about the secret in
an information-theoretic sense (i.e., even if the adversary has unlsaond®utational resources). Shamir's
scheme [32] qualifies as a PSS scheme. Statistical secret-sharing ¢688&gs, such as Blakeley’s [4], allow
a small amount of information leakage, again in the information-theoretic sense

A narrower literature concerns complexity (or computational) theoreticessbiaring (CSS), in which
privacy depends on computational bounds on an adversary. Ky&vicgt introduced the notion of a CSS
scheme [20], and Bellare and Rogaway later refined and formalized i@tk in this area has focused on
privacy based oall-or-nothingindistinguishability. In other words, in Krawczyk’s construction, an adagy
either has no information about the secret or she has complete informationialn this work, we introduce
constructions that accommodagedatedkey information. This allows us to consider schemes in which the
leakage of secret information is proportional to and thus gigraduallywith the number of revealed shares.

The other dimension in which this work differs from previous work is the lerad the shares involved. It
is well known that in any natural PSS scheme, the size of every partigrdre must be at least that of the
secret itself [10, 18]. For specific access structures, strongerlomands have been shown [9].

Any scheme in which shares are shorter than the secret is necessariffeichp@gata and Kurosawa [26]
give information-theoretic lower bounds on share sizes in such schénasigh level, they show that a share
must have length equal to at least that of the “gap” in knowledge betvwatsmishares outside the permitted

access structures and the secret itself. More formally, suppose thatebs™ D is selected at random from
distributionD. Let X denote a random variable farandS one forS, i.e., theit" share generated by a natural
secret-sharing scheme.lfrepresents the set of access structures that are allowed to recosectég then it
is the case thatl () > minygrH (X| {é}iey), whereH (A|B) denotes the entropy @ conditional onB.

In terms of concrete proposals, in the information-theoretic literature, MuoEkaed Sarwate note that
Shamir's scheme can be generalized as a Reed-Solomon code and nitiis therteralization permits a trade-
off between share size and security [25]. Blakeley and Meadowsopeop class of ramp secret sharing
schemes [5] which define two thresholds. Giteiares, it is easy to reconstruct the secret. Lessttishiares
reveals no information about the secret, and given some number o$ gtsaieh that’ <y < t, the information
gained about the secret is proportional‘{gﬁ. Larger “ramps” provide weaker security but allow a reduction
in share size. In both of these proposals, the size of the shares igléapen the size of the secret.

By moving to the CSS realm, Krawczyk introduces a scheme with “short” stk lengths independent
of the secret’s size [20]. A cryptographic key is shared using a PisSree, while the secret is encrypted using
the key. The resulting ciphertext is shared using an information-did@dgsaithm, e.g., Rabin’'s IDA [27]. A
share then consists of a cryptographic portion and a ciphertext pofi@length of the cryptographic portion
is at least that of a cryptographic secret key and a hash function irttage in practice, at least 384 bits). We
use a similar mechanism to make the size of our shares independent ofrétetagtdnstead of using PSS and
IDA schemes, we employ error correcting codes to reduce the size didhessand add robustness.

We are aware of no investigation, however, of the particular problemeationg shares of size smaller than
the short ones introduced by Krawczyk, that is, shares of length faltgrdessthan that of a cryptographic
secret key (perhaps 16 bits in length). Here, we characterize saokssidiny.

The omission from the literature of CSS schemes with tiny shares appearseiséneral underlying
causes. First, short shares are indeed quite compact enough forapglications. A second reason is the
solid anchoring of the literature in PSS. Even CSS schemes, such as Kratafzyk, typically rely on PSS
as a primitive to share out cryptographic keys.

Secret-sharing in RFID: Langheinrich and Marti suggest using secret sharing to conceaF#d Rg's
information from adversaries with time-limited access to the tag [21]. The tafpsmiation is split using
Shamir's scheme [32], and the tag periodically emits a share. A readentiespthe tag over the course of
several minutes will receive enough shares to reconstruct the tagtsnafion, while a casual attacker who



only obtains a few emissions cannot reconstruct any tag information. dbanees, in contrast, spread shares
across multiple tags and consider sliding time windows with evolving secreter thm a single fixed secret.
In other work, Langheinrich and Marti propose using Shamir's schentistabute an item’s ID over
hundreds of RFID tags integrated into the item’s material [22]. They aim toremfprivacy by requiring a
reader to access multiple tags. In contrast, we look to dispersion, ratheaggeegation, of tags, as a privacy-
enforcing mechanism. We also reduce the size of each share to well bel@iz¢hof standard Shamir shares.

5 Secret Sharing Across Space

Sharing a secret (e.g., a cryptographic key) across space in anapplization imposes severe limitations
on the size of each share. As discussed in Section 4, previous schegimadiytyrequire 128 bits or more
for each share, whereas with RFID tags, we would like shares of 16 higs® Hence, in this section we
provide a generic robust secret sharing scheme with tiny shares, whichafer to as a Tiny Secret Sharing
(TSS) scheme. We define our scheme in a general problem framewsel ba adversarial games, describe
our prototype implementation, and suggest parameters that would be épamrapa real world deployment.

5.1 Preliminaries

Secret Sharing. We adhere closely to the notation and definitional framework of Bellare agdwRay [2].
An n-party secret-sharing schems a pair of algorithmg$1 = (Share, Recover) that operates over a message
spaceX, where:

e Share is a probabilistic algorithm that takes inpxe X and outputs the-vectorS & Share(x), where
S € {0,1}*. On invalid inputX’¢ X, Share outputs am-vector of the special (“undefined”) symbal

e Recover is a deterministic algorithm that takes inf@« ({0,1}* U ¢)", where{> represents a share that
has been erased (or is otherwise unavailable). The ofguver(S) € X|J L, where L is a distin-
guished value indicating a recovery failure.

In our security definitions, we assume an honest dealer, i.e., correctiteon ofShare (although the
adversary may choose the secret that is shared).

Adversaries. While secret sharing literature traditionally defines goals with respect &sactructures, we
predicate our definitions below on a clasf probabilistic adversarial algorithms. We define the security of
a TSS scheme in terms of a particular classWe can reconcile our adversarial model with the traditional
access-structure view by restricticg to only adversaried\ that respect a particular access structure. For
example, we might consider only adversaries that compromise fewed tlegitimate shares for sonte

Error Correcting Codes. Our construction utilizes an error-correcting code (ECC), a genetialivaf secret
sharing that we formally define as a pair of algorithPh¥° = (Share®®‘, Recover®®). An (N,K,D)qo-ECC
operates over an alphabEtof size |3| = Q. Share®®® mapszX — =N such that the minimum Hamming
distance in symbols between (valid) output vecto3.i-or such a functioShare®S, there is a corresponding
function Recover®““that recovers a message successfully given an attacker that captagartoD /2 players

or erase the shares bf— 1 players—or some combination of the two, depending on the specific EGC. (I
some cases, correction beyond the minimum distance is possible [28].)

5.2 Problem Definition

Informally, the adversary may attack either the privacy or the robustrfetf&e scheme or both. A privacy
attacker attempts to recover the sectgfiven some number of shares. To break robustness, the adversary
aims to corrupt shares such thdcover fails to outputx. We define these security goals formally below and
conclude with a definition of a TSS scheme.



ExperimenExpx°[M,X]
X — A(“choose”;
s& Share(X);
S« Acrmupt(S) (“corrupt”);

X« Recover({§}ics U{S}ize):
output ‘1’ if x # X, else ‘0’

ExperimenExp/td[, X]
(Xo,X1) «— A(“choose”;
b & 10,1}; S& Share(x);
b/« AcoruPt(S:) (“corrupt”);
output ‘1’ if b=/, else ‘0’

(a) Privacy Experiment .
(b) Robustness Experiment

Figure 2:TSS Experiments.These experiments capture our notion of privacy and rotasstfior TSS schemes.

5.2.1 Privacy

We consider two subtypes of privacy attackers:uaderinformedadversary and aaverinformedadversary.
An underinformed adversary can corrupt a limited number of playerg8ewah overinformed adversary can
obtain alln shares, but also receives some number of additional “shares” #agasimot distinguish from the
correct shares. Due to lack of space, we relegate details on ovengdlcadversaries to Appendix A. (Briefly,
an overinformed adversary is one that sees shares from multiple ¢asétaseously, and cannot feasibly
extract secrets due to the hardness of decoding in the face of marfl/ ‘sieres.)

Underinformed Attacks. Here, we consider an attacker who obtains a limited number of legitimate shares
(recall Example 1). In this setting, Bellare and Rogaway define privasgdon a notion of indistinguisha-
bility. Given ann-party secret-sharing schenid, X), they define the oracleorrupt(S,i) as a function that
returnsS. (“Corruption” in this setting—corresponding to compromise of a shatdimg player—results in
disclosure, not change, of a share.) Then the Bellare and Rogavian 06 privacy is defined based on the
experiment shown in Figure 2(a)

In the experiment, the adversary is asked to choose two values to be.sfiairexperiment selects one
of the secrets at random and generates a set of shares. Theaaglwans then corrupt (or see the value of)
individual shares and must eventually produce a guess as to whiat s&s shared. Using this experiment,

Bellare and Rogaway defins advantage aadvi{?[r, X] 2 2Pr [ExpRdn,X] = 1] — 1.

5.2.2 Robustness

We desire our scheme to allow a legitimate user to recover the original seemetf the adversary tampers with
some of the shares. To model a scheme’s resilience to such an attacKineeadebustness experiment. In our
robustness experimerhare is invoked on a secretof the adversary’s choosing. The adversary then corrupts
a number of players angplaces their share valueIhe adversary is successfuREcover fails to recoverx
given the corrupted and uncorrupted shares as input. This expeismauath like that for robustness in Bellare
and Rogaway. We define the robustness experiment as shown in Figure 2(b), I&teyresent the indices of

the shares corrupted by the adversary. We define the advantagessfdv x°[I1, X] 2 Pr[Expy ‘N, X] = 1].

Itis also useful to consider a modified experimErp®-°"~9eteCtihat outputs ‘1’ ifx £ X andx’ #.L, else
‘0. In other words A is successful if it causes a recovery failure tRatover does not deteciThis is a weaker
requirement, of course, than that representedtkyc, but an important condition not explored by Bellare
and Rogaway. Given the above experiments, we define a TSS scheaflews.f

1The Bellare and Rogaway definition additionally includes the technical rmeint that the adversary identify an uncorrupted
playerj. This is not necessary for our purposes.
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Figure 3:Secret Sharing with Tiny Shares.Schematic of our T SS construction in a toy example with nt=8an be
used to distribute a key, or optionally a secret x of arbitrary size. Whe&rand x are provided at the same time, the two
error-correcting codes may be coalesced into a single one.

5.2.3 TSS Definition

Definition 1 A (k,n)-TSS scheme is a pdifl, X), such thafl distributes n shares of a secreexX, of which

any set of k correct shares suffices to recover x. The securitecfdireme is characterized by an adversary
classa and the tuple:(qu,&y,0r, &), where an underinformed attacker@.2 making g corrupt queries
hasAdvii9[N, X] < g,; likewise, the pair(q,, ;) applies to robustness attackers. (An extended definition can
include overinformed attackers as well; see Appendix A.)

5.3 Our Construction

Figure 3 illustrates a high-level schematic of our TSS scheme. Skhe" SSalgorithm accepts as input an

arbitrarily-sized secret. It then generates a large random pre-keyWe apply a hash to redugeto the size
of a cryptographic kex. The hash function also constitutes good cryptographic hygiene (arseé:dsin our
proofs) in the sense that it rendersndistinguishable even in the face of partial compromis&.ofe use
the keyk to perform authenticated encryptionfnd then use a(N, K, D)-error correcting code (ECC) to
share bottk and the ciphertext. We focus in this paper on the basic construction that assigns a singlelsymbo
to each share. Thus we assukie- k. More general constructions are possible, but we don't address them
in this paper. A recipient with enough shares can apply the ECC decoltjagtiam to recovek and the
ciphertextx; and then us& to derive the ke necessary to authenticate and decrypin some applications
(e.g., transporting the master key used to derive RFID kill codes), we migywant to distribute a key. In that
case, we can simply useas the desired key, and eliminate the portion of the schematic shown in thaldashe
box.

Our construction assumes that the hash function behaves as a raradend}, and for large secrets, we
assume the use of an authenticated encryption mode, such as OCB [29].

Below, we state our claims for the security of this construction. We deferrt@pto Appendix B.

Claim 1 Given our construction above, an underinformed attacker's advansageunded by, such that
AdvIIM, X] < g, < 1/Q %,

Claim 2 Against an attacker who makesaprrupt queries, if g< D/2,i.e.,q< [ (D—1)/2], thenAdvx°[M,X] =
0=¢, andif ¢ <D — 1, thenAdve°r~detei ] = 0.



Figure 4:Implementation setup and resultsAn example implementation setup shows an RFID reader armhaat 20
TSS-encoded tags, and two screenshots depicting exangpjgtsd and decrypted reads.

Thus, our construction is @y, 1/Q %, | (D — 1)/2|,0)-TSS scheme.

Remark 1 With an appropriate choice of an ECC, we can generalize the construcbiowea For example,
using a systematic version of Reed-Solomon as the K@, be encoded in the initial code symbols. We then
apply a hash function (SHA-256 with truncation) to those code symbolsitederf we choose @= 2/ (and

do not release @ then Shark“C becomes a robust PSS scheme, as in Krawczyk’s scheme [2@] cliawse
Q= 2", then we have the scheme described above. Intermediate choicesanfeQricreased share size for
increased security.

5.4 Implementation Sketch and Real World Parameterization

In order to demonstrate the real-world viability of our TSS scheme, we impletherites, 20)-TSS scheme
to encrypt commercially-available 96-bit Gen2 tags using a Reed-Solomancerrection code. Use of a
(15,20)-TSS scheme means that of the 20 available tags, we need to read at gyt $Gccessfully in order
to recover the secret key and decrypt tag data. We work over thedr(8'%), so a share (codeword symbol)
is 16 bits long.

Since we use 16 bits for each share, the remaining 80 bits (of the 96 bitshéwailaan EPC tag) can
be used to store the encryption of the tag’s unique ID. This parameterizatjoires a cipher with an 80-bit
block size. To achieve this, we use Blowfish [31], which has a block difd dits, and employ Ciphertext-
Stealing [11] to expand the block size to 80 bits. (We omit integrity protection irenaryption at present,
assuming that the system provides it implicitly by checking valid structure in EfR&s.) The length of the
secret key was 128-bits; we derive by choosing a random 240-bit valée hashing it with SHA-256, and
then taking the first half of the output. We diviéento 15 16-bit symbols and apply the Reed-Solomon ECC
to generate 20 16-bit shares, one for each tag. Figure 4 shows tpeasetthe results.

Inan ECC, a codeword consists ofaleredsequence of symbols. Because there is no fixed reading order
for tags in our implementation, however, it mustdreer invariant That is, since shares are not distributed
among players with fixed identities, as in our robustness experiment, we xplisttyy associate an index with
each share (effectively assigning a player index to each tag). Thausythbol on a tag must be accompanied
by an index specifying its codeword position. Rather than specifying thexiedplicitly, and thereby using
an additional 16 bits of storage, we derive it implicitly based on the encryptetD. In particular, we hash
the ID using SHA-256, and interpret the last 16 bits as the index; of epurs must do thideforesharing
the encryption key. This optimization potentially introduces a new problem: dwmo6re) tags within a case
may have ciphertexts that hash to the same index. A sufficiently large indegaizminimize this problem.
(By the Birthday ParadoxGF (2%) accommodates roughly 256 tags without many collisions.)
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Figure 5:In this example, if the adversary holds a Satf k= 3 shares (shown as shaded boxes), then we dp(é)eas
the union of all (three) windows of-a 6 shares containing the original k shares. We require thatdtieersary be unable
to recover keys for periods outside(fS). The figure assumes= 0. If A = 1, thenp(S) would include two additional
shares: one before and one after the &%) currently shown.

In general, the first step in parametrizing the TSS scheme for real-walgkliavolves determining the
total number of tags and the key-recovery threshokd As noted earlier (section 2.2), these numbers can
vary widely between use cases. Today, pallets typically carry from 1@a&§s each. In a normal setting,
an RFID reader will often fail to perceive 2-3% (i.e., 4-6) of the tags if@ifem pallet, and it may pick
up 3-10 tags from a pallet in the adjacent dock door. This means thatrwseeaup to 6 erasures, and 10
errors in reading. Thus the choice of a (200, 170)-Reed Solomorf catich can correct up to 15 errors or
30 erasures, would provide sufficient error correction for realldvibeployments. As discussed in Section 2.2,
individual consumers typically have fewer than 40 tags from the sames@mse could alternatively choose a
(200, 40)-Reed Solomon code that would maintain privacy and providi@tal robustness to read errors.

Lastly, we remark on the choice of the field size. As the field size is the primgbdarminant of the extra
tag memory consumed by our scheme, smaller fields correspond to smaller memorgments. Larger field
sizes reduce the number of index collisions, which is useful both to egsoeedecoding rates and to enforce
security against an overinformed adversary (see Appendix A). W that in applications where only the
underinformed attacker must be considered, we can potentially redusgeabe requirement on each tag down
to a single bit, for sufficiently large and an appropriate ECC scheme.

6 Secret Sharing Across Time

Thus far, we have considered sharing schemes for a single shipmentevetp a distributor may wish to
increase security by leveraging the fact that a legitimate recipient shocgiveemore shipments than an
attacker can access (recall Example 2 from Section 3). In this sectiogplere a class of schemes that use
this information disparity across sliding time windows. Section 7 describesirgngmrk on schemes that
leverage the entropy of the entire history of interactions between a sanderlegitimate recipient.

6.1 Defining SWISS: Sliding-Window Information Secret Shamg

In the schemes below, we assume a sehperiodically emits a shar§. Each period also has an associated
key ki. Thus, we have a sequence of shéBes{S,S;,... } that expands indefinitely over time. We assume
that within any window oh elements, only a legitimate recipient will receive at ldasf the shares emitted
in that window, and given those shares, the recipient should be abledeerethe corresponding keys. An
adversary receiving fewer shares should learn nothing about yise ke

More formally, a SWISS scheme is defined as a pair of algoritiimas(Share, Recover), where:

e Share(k,n, 1) is a probabilistic algorithm that takes as input a threshold for recoverakilaywindow
sizen, and a security parameter|t outputs two “infinite” vectork andS, wherek; € {0,1}" is the key

2(The minimum distanc® = N — K + 1 is typically omitted from Reed-Solomon parameterization.
SFor RFID purposes, we may suppose the sender is a manufactusgresibdically ships out containers of RFID-labeled items.
Each share may optionally be further shared out amongst the RFIIntdgs container as described in Section 5.
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for periodi, and§ is the share for period On invalid input,Share outputs the special symbal.

e Recover is a deterministic algorithm that takes as inBut W; whereW, defines a sequence nthares
starting at timej such thaV; = {S : j <i < j+n}, and|S| > k. The output oRecover(S)) is a set of
keysK = {k; : § € S} for the shares provided 8 or L, a special value indicating a recovery failure.

In our security definitions, we again assume an honest dealer, i.e ¢cttexeeution oShare. Below, we
give formal definitions for our privacy and recoverability requirements

Privacy. To define privacy, we require that the adversary cannot obtain théokeiny share she does not
possess. If the adversary holds fewer thashares, she should not learn any keys. We deal with the case in
which the adversary holds more thiashares as follows.

Define the set of shares held by the adversarg. dset p(é) be the set of all shares that lie in a window
of sizen+ A for which the adversary has recovered at léashhares. We require the adversary to be unable to
recover the key for any eIementﬁSrQé), the complement qﬂ(é). Sincek shares allow the adversary to recover
all of the keys in a window of size, the value of\ indicates the amount of informatidnshares “leak” about
keys not contained within a window afshares. Figure 5 illustrates these requirements.

More formally, we can define privacy based on the following experiment:

ExperimenExp/id-sWisq]
(SK) & Share(k,n,1);
i — A(“choose”;
KRE (0,23 b & {0,1);
b — Acemupt(S) (m(b, kR, ki), “corrupt”);
if i Zp(S) ori¢Sthen
output ‘1’ if b’ = b, else ‘0’;
else output '0’;

wherem(0,x,y) = (x,y) and1(1,x,y) = (y,X). Essentially, the adversary is asked to choose a time period
After corrupting some number of shares, the adversary must distingetaieén the key for periodand a

randomly selected key. We consider the adversary successful if thue mihosen does not correspond to a
share held by the adversary, or if the period lies outside thp(@tinduced by the adversary’s selection of

shares. The adversary’s advantage is the"S"isyr] 2 2py [Expg‘d*SWiss[l'l] = 1} —1.

Recoverability. We require that any s& C W; with |S| > k shares suffices to recover the keys associated
with each share in the set, namdly; : S € S}. We define recoverability for a legitimate recipient in the
erasure model; in other words, shares may be lost but not corrupedakiconvert our SWISS schemes to a
corruption model by replacing our use of PSS schemes with robust P88ies, such as Krawczyk’s [20].

Definition 2 We define ak,n)-SWISS scheme as a pair of algorithisas defined above whe&hare
produces shares of size yu. The security is characterized by the(}a&iy, where (as explained above) k
shares are sufficient to reveal“nearby” keys for time periods not contained in a window of n shareg] an
AdvRISWs{M] < e,

Thus, an ideal SWISS scheme would h@kee) = (0,0) with minimal p.

6.2 A Family of SWISS Schemes

In our SWISS construction, we want to ensure that the secret foreaicasly available given possession of
that case. To achieve this property, we make thexkdgr case a function of both a window key and a secret
value associated with the case (or its RFID tag).

Ideally, the window key for a window af cases should be recoverable if and only if the receiver possesses
k or more cases within that window. A naive SWISS scheme would simply gengikey for every possible
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window of sizen and share each key using(lan) scheme. But a case would then need a share for every
window covering it, and hence the per-case share size would growlinvei#n the size () of each window.

Instead, we aim to bring the share size down to a small constant indepexideandn. We use two
techniques for this goal. First, we allow some sloppiness in our accestustu®©ur access structure (in our
main construction) depends on superwindows of sizéhat each overlap with the previous superwindowby
(see Figure 6); each superwindow secret is shared usik@a) scheme. Access to a window secret requires
recovery of the secrets for either one of its two corresponding supgows. Anyk shares in a sequence of
sizen fall into some superwindow of sizen2and therefore allow recovery of the superwindow secret. The
“sloppiness” is this: Recovery of shares in one window allows for repowf secrets in nearby windows.

Given the superwindow scheme described above, we could encrygechek; for each caseunder each
of its corresponding superwindow secratsando’. However, using a second technique based on bilinear
maps, we can derive a common secret directly from either of the two surakw secret or o’.

Below, we first explain the assumptions necessary for our schemes ild@resent our main SWISS
construction (Section 6.2.2) and show how to generalize it to a wider rdmggameters (Section 6.2.3).

6.2.1 Assumptions

Our family of SWISS schemes uses bhilinear pairing to reduce storage tosite full version of this paper,
we describe a variant of our SWISS construction based on the morasieR8A assumption. Unfortunately,
that version does not generalize to large window sizes in the same waylzBribar map scheme, and hence
we focus on the latter.

We give some very brief preliminaries on bilinear maps, referring the reaad®@oneh and Franklin [7]
for details. LetE be a multiplicative cyclic group of prime ordgrunder a bilinear operata ds defined in
Boneh-Franklin [7]. Thus we have: E x E — E’ for a second groufe’. The bilinear operatoe has the
property thae(G?, H?) = &(G,H)?; it is also non-degenerate, meaning tb@, H) # 1.

Our work relies on the hardness of a slightly modified Bilinear Diffie-Hellmapdgent (BDHE) prob-
lem [6, 8]. Specifically, leg andy be random generators &, anda be a random element ii;,. Our
(¢,L)-BDHE problem is defined as:

Giveng,y,g@) fori=21,2,...0—L,0(+1,..,20
andy®) fori=1,2...L—1
computee(g, y)@").

In the original framing of thé-BDHE problem [6, 8], onlyy (rather than additionat powers ofy) is assumed
to be known. Loosely speaking, tiié L)-BDHE assumption irE says that no efficient algorithm can solve
the (¢,L)-BDHE problem inE with non-negligible probability.

We can apply the “master” theorem of Boneh et al. [6] to bound the difficfit{/,L)-BDHE. In their
terminology, we hav® = (1,y,y?,...,y= "1, x, %%, ..., x"L x*1 . x?)), Q= (1) and f = x'y. This implies that
an attackeA with advantage A2 in solving the decisionf/,L)-BDHE problem in a generic bilinear growp
must take time at lea$2 (x/p/(4£) — 26). E.g., if we assume the distributor sends one billion windows (or

less), then solving the decisidh, L)-BDHE problem in a generic bilinear groipof size 192 bits takes time
at least 8°. Of course, a lower bound in a generic group does not imply a lowerdivuany specific group.

6.2.2 Our Main SWISS Construction

In Section 6.2.3, we present a fully generic overlapping SWISS schamérdi, to simplify the exposition,
we describe a single member of the family (see Figure 6). This example ps@/kg)-SWISS scheme with
p = 3t and security parametef&n —k €).

Starting at time 0, the sender defines a series of superwindgws,,Won,, ..., W, each of size & Thus,
each superwindow consists of two windows of siz&ith one window overlapping a window from the previ-
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ous superwindow, and one window overlapping a window from the sulesd superwindow. Each superwin-
dow W, defines gk, 2n) perfect secret sharing (PSS) of the superwindow segretSince each time period
i is covered by two superwindows, each comprising its own secret shsuirggne, the sha® distributed in

each time period consists of two sub-sha&g s(“l)”), one foras, and one foo ;. 1),. We also augment the

share with a random nonce {0,1}". Thus, the share emitted during time peridgsl§ = (sf”,q(”l)”, ri).

i Because any time peridds covered by two superwindows
OO0OOOOOOOn e (sayWin andW,.1)n), we would like the key; to be recover-

b t able from the superwindow secret of either one (since we do not
know a priori in which superwindow the recipient will hake
shares). Like many problems in computer science, we can solve

Figure 6: Each superwindow a2n shares (in ;[h;s Ft))y;dd_lng anotbher Iayglr_ oLlndlrLe(;tlon.hLa:fl%hz €E and. i
this example, r= 3) overlaps with the previous = (Po,P1) = (y.¥7) )€ @ public key. Let each ot the superwin

superwindow by n shares. Each superwindo®OW secrets be defined so timh = 7. We define a series of

Win is a (k, 2n) sharing of the superwindow se-window secretsog, W, ..., Wy SO that

cretoy,. Each time period is covered by two su-

perwindows. For example, the share labeled A win = &(P1,0/m) = &(Po,0(r11)n) = &(Y,2)

is covered by superwindows\&ihd V4. As a re- _ o _
sult the key for that perioéa can be recovered That is, knowledge oby, allows a recipient to derivey, and

from either superwindow secrety or oy,. W4 1)n-

Finally, we define each kex; based on the window it be-
longs to (say windovkn), as well as the random noncedistributed with shar&, ask; = h(r;, wxn), whereh
is a hash function modeled as a random oracle [1] that f@ds* — {0,1}".

In the next section, we show how to generalize this construction to dedredthe cost of increasing the
size of each share. In Appendix C, we define an adversary and dématenthe security of the generalized
scheme (and hence this specific instantiation) by proving the following timreore
Theorem 1 For any polynomial-time(/, L, q)-adversary A withAdvii9-SWiSS— ¢ and ¢ > L > 3, there is a
polynomial-time adversary’Ahat solves thé/, L)-BDHE problem with probabilitye —2-") /g¢ — 1/2".
Essentially the theorem states that given an adversary who achievasnagi@mible advantage in our privacy
experiment, we can construct an attacker who violate$thg-BDHE assumption. We also demonstrate that
this construction satisfies our recoverability requirement.
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Remark 2 As described, our SWISS construction uses a PSS scheme to createiisdpw shares. Thus, the
construction tolerates erasures but not errors. However, we caadily replace the PSS scheme with a robust
scheme, such as our TSS scheme from Section 5, which would botasgeitre size of the individual shares
and add error tolerance to the SWISS construction.

6.2.3 A Generic SWISS Family

The above scheme can be generalized to allow decreased valdest dfie cost of increased storage (see
Figure 7). Specifically, for any value df < n, we can create é&,n) SWISS scheme with = (¢ + 2)t and
security parameter§1+ %)n —k,¢€).

Essentially, we divide each superwindd into  + 1 windows of size%. The superwindows form
(k, %) sharing schemes of the superwindow secrets, and each superwirnddaps the previous super-
window by windows. Thus, any given window is coveredby- 1 superwindows, and the window secret can
be recovered from any of the superwindow secrets, using the same d@lipti pairings technique as before.

In other words, we define a public kéRo, P, ..., Py) = (X, x4, ...7xaw), and a window secreby, is defined as:

win = &Py, 0n) = &Py_1,0(11)n) = - = &(Po, O yyn) = &(%,2)" Y.

To determine\, we consider the worst case, in whikk< I, and the adversarylsshares fall within a single
window. In that case, the window is coveredipy 1 superwindows, allowing the adversary to recover secrets
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(@) A SWISS scheme withyy = 2,n = 4. Each su- (b) A SWISS scheme withp = 3,n = 6. Each superwindow shown
perwindow shown is &, 3n/2) sharing of the super- is a(k,4n/3) sharing of the superwindow secret.
window secret.

Figure 7:Additional SWISS examplesWe can create additional SWISS schemes by increasing theenaiwindows
per superwindow while decreasing the number of shares ih @acdow. As we increase the number of windols,
decreases, but the number of shares that must be held in ieaelpériod increases.

for 2@+ 1 windows, or(2y + 1)5 =2n+ % secrets. These secrets can be at most a superwir#%w)(away

from thek secrets held by the adversary, se- ”’T“n —k=(1+ %)n —k. If k> 5 then fewer thanp + 1
superwindows will contaik shares, and henewill be even smaller.

In our example scheme from Section 6.2|P= 1, so each superwindow formeda 2n) secret sharing
scheme, but we could also uge= 2, with each superwindow consisting of 3 windowsgoshares, and the
superwindow as a whole constitutingla%n) sharing of the superwindow secret (see Figure 7(a)). This would
produce a smaller value &f= %n— k, but at the cost of larger shares: each share issued would nowrconta

three shares (one for each superwindow overlapping a particulaow)nd

6.2.4 Real World Instantiation

To make our SWISS construction more concrete, we suggest parametermigft be used in real world
deployments. Suppose the sender needs to ship one million shares ar Weativide those shares into
10,000 windows of 100 shares each, givingfus 5,000, n = 100. A legitimate recipient will receive at least
k = 20 shares in any window. If we use the scheme from Section 6.2.2Yther. = 1. Finally, if we use

T = 128 bit keys, then the share for each period will le=3384 bits in size. In contrast, the naive scheme
described in the beginning of this section would require= 12 800 bits per share.

We described both our SWISS scheme and the naive scheme using P&&wgsoment. If we replace the
PSS scheme with our TSS scheme from Section 5, then we have a shatfel§ate. In our scheme, we still
need a random nonce of at least 60 bits, but that still gives us shiaseze®- 16+ 60 = 92 bits, just small
enough to fit on an EPC tag. In contrast, the naive scheme would still eagui6 = 1,600 bits.

7 Conclusions and Future Work

We have described two approaches to secret sharing in unidirectioaahels: secret-sharing across space
and secret-sharing across time. As we have shown, secret-shamsg apace is a tool of practical promise
for privacy protection in real-world RFID-enabled supply chains. 8SS scheme for secret-sharing across
time can, similarly, help address the challenges of RFID tag and readenacdiien. An open problem of
particular interest in our SWISS construction, however, is elimination of liishee the non-standard,L)-
BDHE problem in our fully generic overlapping SWISS scheme. We alsotplaivestigate extended SWISS
schemes that leverage the entire history of interaction between a semdezcaiver, rather than simply a
window of recent history.

More broadly, we believe that a holistic view of the special operationalireqpents of RFID tags and the
highly constrained resources of tags can give rise to important newogngphic problems. Our future work
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will aim to calibrate cryptographic tools like those presented here to RFIPIgghain infrastructure as it
evolves and its special operational demands come into clearer focus.
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A Overinformed Adversaries

In the body of the paper, we discuss the notion of an underinformedsatyeone that has an insufficient set
of shares to reconstruct a secret key. We also briefly mention the ndt@orowerinformedadversary. Such an
adversary possesses a set of shares sufficient to reconsteust otore secret keys, but in fact has too many
shares to feasibly determine such keys. We cannot naturally createtisiinavhich an adversary scanning
a single case becomes overinformed. But we can design our systerthatieh adversary is overinformed in
settings where the adversary is forced to scan the contenisiltible cases simultaneously.

Consider for example, an attacker who periodically scans a store shygifigto accumulate enough shares
to recover the associated key. During this process, the adverseaglsrmay receive responses from items
that arrived in multiple independent cases. In this situation, we would like ie tbabd for the adversary to
recover any case secret from the full set of secrets, even if &sabthe adversary’s shares would suffice to
reconstruct the secret. We can appeal to the fact that when shamesnultiple cases are mixed together, the
large set of shares can make it hard to decode any individual secret.

To help render an attacker overinformed, we can deliberately introdttef* among the share§ in
a case. Essentially, we replageshares ofk with randomly chosen values. The choice oK@ < D/2
represents a tradeoff between security against an overinformedeattaukthe error-tolerance of the scheme.
For example, by choosing= %, an adversary who recovers the shares from two secrets Willﬁgoh‘.haff
values—potentially exceeding the recovery threshold for the ECC sclaames now show. In this situation,
though a legitimate recipient can still toler%eerrors in the shares she receives.

The following experiment formalizes the notion of an overinformed adwgrsa

ExperimentExp? [M, X, a, B
(Xl,...,Xa) <B X:
. R .
C & 2.,C', whereC' C Share(x), and|C'| = B;
H«—{h:h=H(x),1<i<a};
X Amupt(C) (H “corrupt”);
output ‘1" if X € (Xq,...,Xq), €lse ‘0’

In this experiment, we chooserandom secrets. The adversary has access to an unlabeled swesf sfhich
containsp randomly chosen shares from each secret. The adversary alsessite hash of each secret.

17



Given this information, the adversary must recover one of the origirakte In this experiment, we define
the advantage of adversatyasAdv/l¥ [, X, a, ] 2 Pr |[Expl® [, X, a, B] = l} :

A.1 Polynomial Reconstruction

We can characterize the challenge facing an overinformed adverdaryria of thepolynomial reconstruction
(PR)problem. This is a curve-fitting problem that corresponds, in the settingdifig theory, to the decoding
of a Reed-Solomon codeword in the presence of errors. See, e.ga¥#nd Yung's work [19] for discussion
of the problem.

A common and efficient choice in practice for Reed-Solomon decoding i¢atbsical Peterson-Berlekamp-
Massey (PBM) algorithm [23]. Given an underlyiriy, K)-Reed-Solmon code, and a settadymbols, of
which ¢ are corrupted, the PBM algorithm successfully decodes a set of syifiliols > (t +K)/2 (or,
equivalently < (t —K)/2.

A more powerful decoding scheme, however, is that of Guruswami addrs§(GS) [14], which success-
fully decodes fott —Z > /KN in any field of cardinality at most™2 Indeed, it is conjectured that decoding
beyond the error bound represented by GS is infeasible in a genesa.s&hat is, GS is the best known
algorithm for the PR problem. Thus, while GS is not efficient for practisal, it offers a likely bound on the
hardness of the PR problem.

That said, there are several different formulations of the PR problathlitle work characterizing the
concrete hardness of the problem. Thus, while the GS bound may hold inskaase sense or asymptotic
sense, there is no consensus on what distributions over problem mestaechard in a practical sense.

For this reason, Juels and Sudan [17] propose a scheme that invoifesiares in a Reed-Solomon code,
but aims at unconditional, rather than computational hardness. Themsadtedies on problem instances in
which the number of underlying polynomials of degt€as too large for feasible search by an adversary.
Practical parameterizations of our scheme, however, do not suppaltighs-Sudan approach.

A.2 Parameterization of Our RFID Secret-Sharing Scheme

We give a brief characterization of what we believe to be secure asibfe@arameterizations of our scheme.
These parameterizations permit PBM decoding for the legitimate reading dfla 8ikRID-tagged case and at
the same time exceed the GS bound for security against overinformedadesr We emphasize, however,
that further research is needed for firm determination of the securityrafaheme in a concrete sense.

Suppose that a case contahsags, of which( are chaff values. Then PBM decoding for a scanned case
is always possible when the number of corruptions (or erasures)idfsyanbolse is such thalN — (e+¢) >
(N+K)/2.

Example 3 Suppose that K= 8, N =200 and{ = 86. Then it is possible to recover the secret associated with
a case for e< 10, and thus up to a 5% corruption of tag symbols.

Suppose that an adversary reads symbols associatedjwilises and attempts to recover the sexret
associated with a particular case. We can establish a lower bound ondmne$sof this problem by rendering
the problem easier for the adversary. In particular, let us assume ¢hatltlersary has access to an oracle that
identifies valid shares associated with the 1 untargeted cases (but does not otherwise reveal which shares
correspond to which case). Then the adversary can reduce tHemrobrecovering to a decoding problem
with N — C valid shares andq chaff shares, and thus= N + (q— 1) shares in total. The GS bound implies
that recovery ok is hard ifN — Z < \/K(N+ (q— 1)0).

Example 4 Suppose that k&= 8, N = 200, and{ = 86. Then the problem of recovering a target case secret x
is hard under the GS boundifi4 < /848+ 688, and thus for g~ 18.

A stronger bound is possible assuming that valid symbols, i.e., secretgpdata in untargeted cases may
be regarded as chaff. This gives us a slightly unorthodox problenibdigém in which a problem instance
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hasq embedded, secret polynomials. In this case, however, the GS bound ithpliescovery ok is hard if
N — { < +/gKN. With an appropriate parameter choice, we can obtain strong concrelisres

Example 5 Suppose that K= 100, N = 200, and { = 40 (giving a 5% correction buffer in the single-case
setting, as above). Then the problem of recovering a target casetsegcs hard under the GS bound if
160< +/2000@, and thus for ¢~ 2.

B Proofs of Security for Our Tiny Secret Sharing (TSS) Scheme

B.1 Proof of Privacy

Since many of our applications only require the distribution of a secretvkeyijrst define a simplified ex-
periment to measure the indistinguishabilitykof Note that for this experiment, we excise the portion of our
scheme in the dotted box in Figure 3. Effectively, we share out a nuksecand writeShare() to indicate
this fact. The proof of privacy for secrets of arbitrary size then foflémva straightforward manner.

We define a key indistinguishability experiment as:

ExperimentExpid—¥[M, X]
(K%, %) & Share();
k1, S & Share();
b& {0,1};
b & Acorrupt($:) (k0 1 “corrupt”);
output ‘1'if b=1b/, else ‘0’

In this experiment, the adversary receives two secret keys gendératad sharing algorithm, as well as the
shares corresponding to one of the keys and must determine to whichésegdhrespond. We define the
advantage of adversafyasAdvil® [, X] 2 2Pr [Expg‘d*"[ﬂ,x] = 1} 1.

For a generic ECC, if the adversary makes at mgsorrupt queries, then her total amount of information
is upper-bounded b@%. Since we model the hash function applied to pre-kegs a random oracle, the
adversary’s advantage in distinguishikfjandk? is bounded above b&dv',&‘d*K[Fl,X] < 1/QX %, Assuming
an encryption algorithm in which key indistinguishability implies ciphertext indistisigability (e.g., in an
ideal cipher model), this bound then translates to the more general shaangaobitrary secret. Thus, we
haveAdv/?9[M, X] < g, < 1/Q% %. This yields Claim 1 from Section 5.3.

B.2 Proof of Robustness

With a generic lineafN,K,D)-ECC, it is possible to recover a message from a codeword with fewer than
D/2 errors. Thus, as long as the adversary does not coByptsharesg, = 0. Similarly, such a code
can recover fronD — 1 erasures; and can also detect ute 1 errors. As discussed in Appendix A, we
can deliberately introducé chaff shares into the ECC to confound the overinformed adversaig. Widuld
change are security parameters such that if D/2 — ¢, thenAdvy°[M,X] =0= ¢, and ifg <D -1,
thenAdv'ee-o"~deteci ) — 0. This yields Claim 2 from Section 5.3.

C Proofs of Security and Recoverability for our SWISS Scheme
We prove that our generic family of SWISS schemes from Section 6.2.3 mespsivacy and recoverability

requirements. Since our main construction from Section 6.2.2 is a specifiatiaitan (with W = 1), its
security follows from the security of the generic family of schemes.
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C.1 Proof of Privacy.

To demonstrate that our generic family of SWISS schemes achieves wacyrequirement, we define an
adversary for our schemes and prove Theorem 1. Recall that narigéamily of SWISS schemes is param-
eterized byW, one less than the number of overlapping superwindows.

Definition 3 We define ait/, L, q)-adversary A as an attacker who achievestatv!i4-S"sYM] < ¢ advantage
in our privacy experiment (defined in Section 6.1), wheres an instantiation of our generic SWISS family
with W = L that produces at mo&’ shares. The adversary makes at most g random oracle queries.

Given this definition, we can now prove Theorem 1.

Proof of Theorem 1: Suppose we are given &, L)-BDHE instance comprising@‘i) fori=12..,L-1
and the sequend#’ = g'(®) fori =1,2,...,¢ —L,¢+1,..., 2. We construct a SWISS-scheme simulator based
on an(4,L,g)-adversanA as follows.

Simulator Construction.  First, we construct an appropriate public key by lettiRg Pi, ..., PL) = (v, ¥, ...,y“L).
Then, we select a randoire {1, ...,¢}. This index is our guess as to the superwindow in which the adversary
will select a challenge key. Ifwe lgt=g'@ "), thenU’ contains the subsequeride= g%, g®°, ...,g* ,g® ", ...,g*".
We use this subsequenideas the set of underlying superwindow keys in the procedure desdriliget-
tion 6.2.2, with each superwindow representing.n) sharing ofg(@). For the superwindows corresponding
to g@ ", ...,g@) (which are unknown), we simply share a random value. This procexiaates a se$ of
shares. IfA queriescorrupt(S;i), we respond witl§.
To respond to hash queries, we keep aMisdf previous queries. Thus, whéninvokesh(y, z) for the first

time, we choose a random value™ {0,1}" and addy, z,v) to the internal listV. If A has previously invoked
hon (y,z), then we return the corresponding valuevdfom 4/. This creates a perfect implementation of the
random oracle contract.

WhenA terminates, we ignore its output, choose a random entry from our list bfreaponsegy, z,v) a
7 and returre.

Simulator Correctness. From the SWISS adversary’s point of view, the construction aboveratsy sim-
ulates thand-swissExperiment. Our replies to the hash queries perfectly instantiate a randwaie,@o they
offer the adversary no information with which to distinguish a real experifinem a simulation. Our construc-
tion deviates from the true protocol in one important respect: the keysd@uperwindows corresponding to
g@ ™™, .., g@) are chosen at random (since we do not know the appropriate valimsgver, the definition

of p precludes the adversary from recovering these superwindowtsearel hence, she cannot determine
that these values do not conform to the expected structure. Nonetlmeasse we choose the superwindow
secrets at random, we cannot provide the adversary with the coak& ofk;. In other words, from our
perspective, the value ef provided to the adversary is a random value. At some point, the adyevdhr
queryh(ri, wxn), but since we cannot recogniz#,, we will not know that we should retum. Fortunately,

by the time the adversary makes this query, we have already extracteccdssae information, nametyn,

so that even if the adversary quits upon determining a discrepancy, wailvBlucceed.

Probability of Success. Our guesg for the superwindow from whiclA selects a challenge key is correct
with probability > 1/¢. Sinceh has a range of0,1}" andA has are advantage, it is clear under the random
oracle assumption omthatA inputsw;, with probability> € — 27", If A has queriedh with wj, in the course
of the simulation, then the probability that we output the coreggt= é(g,y)(“[> is just 1/q.

The only other way the adversary can succeed is by recovering akaghhare she does not hold. However,
without the share, the adversary has no knowledgg. afhe random oracle assumption loiguarantees that
the adversary succeeds in guessingith probability less than A27. Our theorem bound follows. |
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C.2 Proof of Recoverability

A legitimate receiver (one who recovers at ldashares out of some winddw’ of n shares) can determine the
key corresponding to each share. We demonstrate this by observirgjvimathe overlapping superwindow
construction, the windoW’ must be entirely contained within at least one superwindéy Thus k elements
from W’ suffice to reconstruct the superwindow seargt which can be used to calculate the window secrets
Wrny Wyrt)n, - Werwyn. Each window is of lengtm/W, and hence these two window secrets cover all
(W+1)n/W elements in superwindoW;,. Using the random nonaegin each shar§, the legitimate receiver
can calculate; by hashing; with the appropriate window secret.
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