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Abstract. This paper presents fair traceable multi-group signatures (FTMGS), which have enhanced
capabilities, compared to group and traceable signatures, that are important in real world scenarios
combining accountability and anonymity. The main goal of the primitive is to allow multiple groups
that are managed separately (managers are not even aware of the other ones), yet allowing users (in
the spirit of the Identity 2.0 initiative) to manage what they reveal about their identity with respect
to these groups by themselves. This new primitive incorporates the following additional features.

– While considering multiple groups it discourages users from sharing their private membership keys
through two orthogonal and complementary approaches. In fact, it merges functionality similar to
credential systems with anonymous type of signing with revocation.

– The group manager now mainly manages joining procedures, and new entities (called fairness
authorities and consisting of various representatives, possibly) are involved in opening and revealing
procedures. In many systems scenario assuring fairness in anonymity revocation is required.

We specify the notion and implement it in the random oracle model.

1 Introduction

Group signatures. Group signatures, introduced by Chaum and Van Heyst [11], and later studied
and improved [9, 2, 23, 25], were a major step in designing cryptographic primitives supporting
anonymity. In these schemes, users join groups and issue signatures on behalf of the group. When
these signatures are verified, we learn that some member of the group generated them, but not
which one. It is also impossible to link two signatures generated by the same member of the group.
However, the group manager has the capability of opening a signature and trace its signer among
the members of the group (in [23] managing join of users and tracing by separate authorities was
suggested).

Multi-group signatures and sharing private keys. Ateniese et al. [3] extended group signatures to
deal with the case where a single anonymous user has to prove that she is simultaneously a member
of several groups. In this scenario, a multi-group membership is proved by zero-knowledge proof
of equality on some discrete logarithms in the signatures from different groups. Though multi-
group signatures are based on the ability of linking some designated group signatures (via equality
proofs), such a fact does not affect the main properties of group signatures such as anonymity
and unlinkability for other signatures. Note that the multi-group feature is very interesting in
anonymous authorization scenarios, since in these environments it is quite common for a user to
prove simultaneous possession of some properties in order to be authorized to carry out some
transaction. However, the scheme due to [3], as mentioned in the paper, presents some problems
when linking signatures from groups that are managed separately with unrelated group keys.



Also, if a user is able to share some of the private keys with other users in a multi-group anony-
mous environment, it is a severe handicap in a system where privileges depend upon membership
to some groups, since this sharing of private keys would undermine the whole system assumptions.

Embedding some valuable information into sensitive data is a commonly used method to dis-
suade users from sharing their private key. Dwork et al. [12] embedded some user’s valuable infor-
mation, such as the credit card number, into a key in order to protect digital content from illegal
redistribution. Also, Goldreich et al. [18] presented several schemes to deter propagation of sec-
ondary secret keys in the field of self-delegation of personalized rights. Moreover, Lysyanskaya et
al. [24] embedded a user’s master secret key into the secret that allows a user to prove possession
of a credential on a pseudonym.

Traceable signatures. In group signatures, under critical circumstances such as dishonest behavior,
the group manager is able to open a signature and identify the dishonest user. If a user is under
suspicion, a judge may decide to identify which transactions were performed by such user. In this
latter case, the group manager has to open all selected signatures to identify which ones were issued
by the user under suspicion. This approach has two main disadvantages: (i) it discloses the identity
of the issuers of the signatures, violating their privacy, even for honest members; and (ii) the group
manager has to be involved in this heavy task, being a potential bottleneck for scalability.

Taking into account the above scenario, Kiayias et al. [22] introduced traceable signatures as
a group signature scheme with further refinement of tracing under anonymity. This primitive in-
corporates a feature that enables the group manager to reveal a trapdoor for a given member of
the group. The trapdoor allows the tracing agents to identify which signatures were issued by the
member under suspicion without revealing any further information. This approach benefits us by
removing the aforementioned disadvantages: (i) the privacy of non-involved members remains un-
altered; and (ii) the group manager is relieved from this task, which can be performed by several
tracing agents. Additionally, traceable signatures also incorporate a claiming facility, that allows a
member to claim that a given signature was issued by herself.

Splitting roles of the group manager. It is usually accepted that the group manager is a trusted
party with respect to joining new members to the group. However, in many scenarios the group
manager is a party in interest, and therefore it can not be trusted with respect to user’s privacy.
For example, a company can manage a group for employees and a group for clients, and can be
trusted with respect to joining users that are actually employees or clients respectively. However,
the company does not offer any guarantee with respect to keep users’ privacy, specially when they
carry out anonymous transactions with the company itself.

We note that in group signatures, there have been several proposals to divide the duties of the
group manager into two entities [23, 25], one responsible for joining new members and the other one
responsible for opening signatures. However, in the context of traceable signatures such splitting of
duties has not been considered yet.

Our contribution. This paper presents Fair Traceable Multi-Group Signatures (FTMGS, pronounced:
fat-mugs), a new primitive that supports anonymity with extended concerns that rise in realistic
scenarios. It can be regarded as a primitive that has the flavor of anonymous signatures with various
revocations but with a refined notion of access control (via multiple groups) and thus supporting
anonymous activities in a fashion similar to anonymous credential systems [24, 7]. The main issues
that make this primitive suitable to various trust relationships are:

– It provides anonymous and unlinkable signatures in the way group and traceable signatures do.
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– It includes multi-group features to guarantee that several signatures have been issued by the
same anonymous user with no detriment of user’s anonymity. This allows limited local linkability
most useful in many cases (linking are user controlled).

– It includes a mechanism to dissuade the group members from sharing their private membership
keys. This is very useful in increasing the incentive for better “access control” to anonymous
credentials.

– It further splits the duties of the group manager into several authorities, allowing better control
over opening and tracing operations. Now the group manager manages only joining. Newly
introduced parties, whom we call fairness authorities, by cooperating with each other, manage
opening signatures and revealing tracing trapdoors. A single fairness authority alone cannot do
the opening or revealing. In this way, a user’s sensitive information can be guaranteed only to
be disclosed when there exist enough reasons.

Let us next further elaborate on some of the above characteristics of the primitive. With respect
to multi-group features, as opposed to the scheme introduced in [3], group management is separate
and groups are formed where group managers are not necessarily aware of each other. There is
no coordination and group keys are solely under the control of its group manager (based on some
accepted security parameters). At the user level, however, management of identity is up to herself;
linking signatures and claiming identity are executed according to her desire. This latter approach
is in concordance with the identity 2.0 [19] effort.

General scenario for this new primitive. The group manager creates a group with the collaboration
of designated fairness authorities4. A user, that has been authorized by some external procedure, is
able to join the group by engaging in an interactive protocol with the group manager. The external
user’s authentication can be based on her identity5 or even an anonymous authentication supported
by this new primitive. At the end of the procedure, the group manager gets some sensitive data
regarding the new member (i.e. join transcript with authentication information), and the user gets
a membership private key that enables her to issue signatures on behalf of the group.

When a user wants to carry out a transaction with a server, she sometimes has to generate a
proof to show she has the required privilege. This proof usually implies that she belongs to several
groups. In this case, she issues suitable signatures for the involved groups, and establishes a link
among them to guarantee that they have been issued by the same single anonymous user.

Under critical circumstances, fairness authorities and the judge open a signature to identify a
malicious user. If necessary, they may also reveal her tracing trapdoor so that tracing agents, using
the trapdoor, trace all the transactions she issued.

2 A Model for Fair Traceable Multi-Group Signatures

In this section, we present our model for fair traceable multi-group signatures. We describe the
types of entities and operations in the system. See Figure 1 for the notations used in the model.

Participating Entities. There are five types of participating entities: users, group managers,
fairness authorities, tracing agents, and the judge.

4 Roughly Speaking, in order to split the roles, the group manager creates a part of group key related to joining
procedure, and the fairness authorities create the other part related to opening and tracing procedures.

5 A certified public key via PKI based on discrete logarithm (e.g., DSA, El-Gamal signatures, Schnorr signatures).
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1. parameters
ν: security parameter ζ: the number of fairness authorities

2. Gv: the group (i.e., service provider) with index v

3. participating entities

GMv: group manager of the group Gv Ui: user i J: judge
FAj

v: j-th fairness authority of Gv TAj
v: j-th tracing agent of Gv

4. various keys and data

gpkv: group public key of Gv gskv: private key of GMv

fgskv: fairness private key of Gv fgskj
v: FAj

v’s share for fgskv

umki: master secret key of Ui. uskv
i : signing key of Ui w.r.t. Gv

jlogv
i : join transcript generated while Ui joins the group Gv

σ: signature authi: authentication string issued by Ui

τi
v: tracing key for Ui in Gv

ωσ: member reference (locator used to search for the corresponding join transcript)

5. predicates w.r.t jlogv
i , uskv

i and authi

mkey(uskv
i or authi): master secret key of uskv

i or authi

mref(jlogv
i or uskv

i ): member reference of jlogv
i or uskv

i

tkey(jlogv
i or uskv

i ): tracing key of jlogv
i or uskv

i

6. etc
acc: accept ⊥: error m: message γ: challenge string

Fig. 1. Legends of our model for fair traceable multi-group signatures

– Users join groups and generate signatures, claims, link-claims, etc. Usually, users join groups if
the group manager authorizes it.

– Each group has one group manager, which manages joining and the corresponding database.

– Each group has multiple fairness authorities. They cooperate together, under the judge’s super-
vision, to either open a signature or to reveal a tracing key of a user under suspicion.

– Each group has multiple tracing agents. They trace the transaction databases and find out
signatures related to the revealed tracing key.

– The judge manages opening and tracing operations with the help of the group manager, fairness
authorities and tracing agents.

– It is assumed that an external PKI provides legal binding between users and public keys, such
that users do not want to lend their corresponding private keys to any other user, since actions
performed under these public keys entail legal responsibilities.

Operations. A fair traceable multi-group signature scheme consists of the following operations.
Two operations are newly added compared with original traceable signatures: ClaimLink and
VerifyLink. The rest of the operations are slightly changed so that fairness authorities may be
involved.

1. Setup(1ν , ζ). This interactive procedure generates the group public key gpkv, the secret key

gskv for the group manager and the secret keys {fgskj
v}ζj=1 for the fairness authorities.

2. Join(gpkv, [gskv], [umki]). This interactive procedure is used when a user joins a group, where
the group public key gpkv is common input, and the group secret key gskv and user master key
umki are private inputs of the group manager and the user respectively. As result, the group
manager gets a join transcript jlogv

i and the user gets a membership private key uskv
i .
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3. JoinOnAuth(gpkv, authi, [gsk
v], [umki]). This interactive procedure is used when an authenti-

cated user joins a group, where the group public key gpkv and user authentication string authi

are common input, and the group secret key gskv and user master key umki are private inputs
of the group manager and the user respectively. Depending on the situation, the authentication
string authi can be a public key, a digital signature, a traceable signature of another group or
combination of them. We require that the key used to generate authi should have umki as its
part. As result, the group manager gets a join transcript jlogv

i and the user gets a membership
private key uskv

i .
4. Sign(gpkv, uskv

i ,m). With this algorithm, a member generates a group signature σ on message
m.

5. Verify(gpkv,m, σ). Any entity can verify a signature σ on a message m.

6. Open(gpkv, σ, [{fgskj
v}ζj=1]). This interactive procedure opens a signature σ, generating a ref-

erence ωσ to the member that issued it. It requires the private inputs of the fairness authorities’
secret keys {fgskj

v}ζj=1.

7. Reveal(gpkv, jlogv
i , [{fgskj

v}ζj=1]). This interactive procedure reveals the member tracing key
τi

v from the join transcript jlogv
i . It requires the private inputs of the fairness authorities’ secret

keys {fgskj
v}ζj=1.

8. Trace(gpkv, σ, τi
v). This tracing algorithm allows the tracing agents to check if the signature

σ is associated with the tracing key τi
v.

9. Claim(gpkv, uskv
i , σ, γ). This algorithm generates an authorship proof π for a signature σ on

the challenge γ.

10. VerifyClaim(gpkv, σ, γ, π). Any entity can verify an authorship proof π of a signature σ on a
challenge γ.

11. ClaimLink(gpkv1 , uskv1
i , σ1, gpkv2 , uskv2

i , σ2, γ). This algorithm generates a link proof λ between
two signatures σ1, σ2 on the challenge γ, if the two signatures have been issued with the same
master key.

12. VerifyLink(gpkv1 , σ1, gpkv2 , σ2, γ, λ). Any entity can verify a link proof λ between two signa-
tures σ1, σ2 on a challenge γ.

3 Preliminaries

Notation. We denote {0, . . . , ℓ− 1} by [ℓ]. Throughout the paper we work mostly in the group of
quadratic residues modulo n, denoted by QR(n), with n = pq, for safe primes p and q (p = 2p′ + 1
and q = 2q′ + 1). Let the security parameter ν := ⌈log p′q′⌉. We define the following sets:

Λ = {1, . . . , 2ν/4 − 1}, M = {1, . . . , 2ν/2 − 1},
Γ = {23ν/4−1 + 1, . . . , 23ν/4−1 + 2ν/2 − 1},

Λk
ǫ = {1 + ∆ν/4, . . . , 2

ν/4 − 1−∆ν/4}, Mk
ǫ = {1 + ∆ν/2, . . . , 2

ν/2 − 1−∆ν/2},

Γ k
ǫ = {23ν/4−1 + 1 + ∆ν/2, . . . , 2

3ν/4−1 + 2ν/2 − 1−∆ν/2},

where ∆µ = 2µ−1 − 2
µ−2

ǫ
−k for ǫ > 1 and k > 128. Sometimes we will call the sets Λ,M, Γ spheres,

and Λk
ǫ ,M

k
ǫ , Γ

k
ǫ inner spheres.

Assumptions. Below are listed the assumptions we use in the paper.

Definition 1. (Strong-RSA [4]). Given n = pq, where p and q are both safe primes, and z ∈ QR(n),
it is hard to find u ∈ Zn and e > 1 such that ue = z (mod n).
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Definition 2. (Decision Composite Residuosity [26]) n is as above. Consider the group Zn2 and
the subgroup P of Z

∗
n2 consisting of all n-th powers of elements in Z

∗
n2, it is hard to distinguish

random elements of Z
∗
n2 from random elements of P.

Definition 3. (Discrete-Logarithm) Given two values a, b of a multiplicative group Z∗
n or Z

∗
n2 it

is hard to find x such that ax = b even if the factorization of n is known.

Definition 4. (Decisional Diffie-Hellman [22]) Given a generator g of a cyclic group QR(n) where
n is as above, define D := {(g, gx, gy , gxy) : x ∈ B1, y ∈ B2} and R := {(g, gx, gy , gz) : x ∈ B1, y ∈
B2, z ∈ B3}, where Bi (1 ≤ i ≤ 3) is Λ,M, Γ , or [p′q′]. Define the DDH advantage of A as

AdvDDH
A (ν) =

∣

∣

∣
Prv∈D[A(1ν , v) = 1]− Prv∈R[A(1ν , v) = 1]

∣

∣

∣
.

Then for any PPT algorithm A, we have AdvDDH
A (ν) = neg(ν).

Kiayias et al. [23] showed that DDH over QR(n) does not depend on the hardness of factoring, that
is, if AdvDDH

A (ν) = neg(ν) for a cyclic group modulo a safe prime, then AdvDDH-KF
A (ν) = neg(ν) for

the cyclic group of quadratic residues modulo a safe composite with known factorization.

Definition 5. (Cross Group DDH [20]) Given generators g1, g2 of QR(n1) and QR(n2) where n1

and n2 are as above, n1 6= n2, and ν1 = ν2, we define D := {(g1, g
x
1 , g2, g

x
2 ) : x ∈ B1 ∩ B2} and

R := {(g1, g
x
1 , g2, g

y
2) : x, y ∈ B1 ∩ B2}, where Bi (1 ≤ i ≤ 2) is Λi,Mi, Γi, or [p′iq

′
i]. Define the

advantage of A as

AdvCG-DDH
A (ν1) =

∣

∣

∣
Prv∈D[A(1ν1 , v) = 1]− Prv∈R[A(1ν1 , v) = 1]

∣

∣

∣
.

Then for any PPT algorithm A, we have AdvCG-DDH
A (ν1) = neg(ν1).

We also assume that AdvCG-DDH-KF
A (ν1) = neg(ν1) for the cyclic group of quadratic residues modulo

a safe composite with known factorization.

In other words, the CG-DDH assumption states that it is infeasible to test equality of discrete logs
across groups.

4 Building Blocks

Signature of Knowledge of Discrete Logarithm. We use the notation due to Camenisch and
Stadler [9] for signatures of knowledge of discrete logarithms. For example, SK{(a, b) : y = ga; z =
haf b}(m) denotes a signature of knowledge of integers a and b on m such that y = ga and z = haf b

holds.

Kiayias et al. [22] presented a scheme for signatures of knowledge in discrete-log relation sets
and proved its security. Here we only briefly describe how it works by taking an example6. Consider
the following signature of knowledge of a discrete logarithm: SK{ (x) : y = gx (mod n) ; γ =
βx (mod ρ) }(m). It can be represented as the following triangular discrete-log relation set:





Objects : y g γ β

y = gx : −1 x 0 0 (mod n)
γ = βx : 0 0 −1 x (mod ρ)



 .

The signature of knowledge for this relation is 〈c, sx〉, where B1 = gtx (mod n) (tx is chosen ran-
domly), B2 = βtx (mod ρ), c = Hash(B1, B2, g, n, y, β, ρ, γ, env–data, m) and sx = tx − cx. Verification is done
by computing B′

1 = gsxyc (mod n), B′
2 = βsxγc (mod ρ) and checking if c

?
= Hash(B′

1, B
′
2, g, n, y, β, ρ, γ, env–data, m).

6 For simplicity, we ignored details on range checking of discrete log variable. See [22] for more technical detail.

6



DL-Representations. In the exposition below we use some fixed values a0, a, b ∈ QR(n).

Definition 6. (DL-Representation [22]) A discrete-log representation is a tuple 〈A, e, x, x′〉 such
that Ae = axbx′

a0 holds where x ∈M, x′ ∈ Λ and e ∈ Γ .

Note that we changed the range of x to M (originally the range was Λ) in order to ensure the
hardness of the following problem in the adaptive setting.

Definition 7. (Adaptive One-More Representation Problem) Let Qrep be an oracle that, on input
x′

i ∈ Λ, ouputs Ai, ei, xi such that Aei

i = axibx′
ia0 holds with xi ∈ M, ei is a prime number in Γ

(i.e., 〈Ai, ei, xi, x
′
i〉 is a DL-representation.) The “adaptive one-more representation problem” is to

find another DL- representation where it is allowed to query to the Qrep oracle K times adaptively.

Lemma 1. Under the Strong RSA assumption, the adaptive one-more representation problem is
hard.

Non-adaptive Drawing of Random Powers. Kiayias et al. [22] showed an efficient two-party
protocol for the non-adaptive drawing of random powers, where n and a ∈ QR(n) are the common
input parameters to the protocol. As result one party gets a random secret x in a certain sphere,
and the other party gets ax ∈ QR(n) with the guarantee that the unknown x was non-adaptively
selected at random. See [22] for more details.

Threshold Cryptosystems. It is often dangerous for only one person to have the power of
decryption. By distributing the decryption ability, threshold cryptosystems [28, 10, 15, 1] avoid the
risk. Following the notation due to [15], a (t, ζ)-threshold cryptosystem consists of the following
components:

– A key generation algorithm 〈pk, {skj}
ζ
j=1, {vkj}

ζ
j=1〉 ← K(1ν , t, ζ), where 1ν is a security pa-

rameter, ζ is the number of decryption servers, t is the threshold parameter, pk is the public
key, and skj (resp. vkj) is the secret key share (resp. the verification key) of the j-th decryption
server.

– An encryption algorithm c← E(pk,m), where m is cleartext, and c is ciphertext.
– Partial decryption algorithms σj ← Dj(skj , c), for j ∈ [1, ζ]. Here, σj is called a decryption

share, and it may include a verification part to achieve robustness.
– A recovery algorithm m ← R(c, {σj}

ζ
j=1, {vkj}

ζ
j=1), which recovers the plaintext m from the

ciphertext c.

The security of threshold cryptography must satisfy two properties: security of the underlying
encryption (IND-CPA or IND-CCA2) and robustness. Robustness means that corrupted players
should not be able to prevent uncorrupted servers from decrypting ciphertexts. In our scheme, we
use two simplified (ζ − 1, ζ) threshold IND-CPA cryptosystems by assuming all decryption servers
do not abort.

ElGamal Cryptosystem. Consider the following ElGamal encryption scheme [13]:

Let g ∈ QR(n) be a generator. Let y = gx be the public key for the secret key x. The encryption
of a message m is (gr,m · yr) for r ∈R [1, p′q′]. The decryption of a ciphertext (α, β) is β/αx.

The threshold version is as follows [27, 16, 17, 6]:
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Let g ∈ QR(n) be a generator. Let yj = gxj and xj be the verification key and the secret

key respectively for the j-th decryption server. Let y =
∏ζ

j=1 yj be the encryption public key.
Encryption of a message m is as ElGamal above. To decrypt a ciphertext (α, β), each decryption
server computes a decryption share αj = αxj , and proves that logg yj = logα αj. The combiner

gets the shares and computes απ =
∏ζ

j=1 αj. Finally, the combiner recovers the message by
computing β/απ.

Under the DDH assumption, this threshold ElGamal cryptosystem is semantically secure and ro-
bust.

Simplified Camenisch-Shoup (sCS) Cryptosystem. The Camenisch-Shoup encryption scheme [8] can
be simplified into a semantically secure encryption scheme by removing the CCA checking tag.7

Let n be as above: n = pq, where p, q are safe primes. In this encryption scheme, multiplications
and exponentiations are done in Zn2. Let g = g′2n where g′ ∈R Zn2 . Denote h = 1 + n. Then
public key is y = gx and secret key is x ∈R [1, n2/4]. The encryption of a message m ∈ Zn

is (gr, hmyr) for r ∈R [1, n/4]. To decrypt a ciphertext (α, β), compute m̂ = (β/αx)2t for
t = 2−1 (mod n); if m = m̂−1

n is an integer in Zn, then output m, otherwise output ⊥.

The threshold version can be constructed by using the similar technique for the ElGamal encryption,
but generating the modulus n, with unknown factorization is done by means of a suitable distributed
key generation protocol [14] to guarantee that QR(n) is cyclic and has large prime factors. Under
the Decision Composite Residuosity assumption, this threshold sCS cryptosystem is semantically
secure and robust.

5 Design of a FTMGS Scheme

Our scheme is based on the original traceable signature scheme from [22]8; the main differences
lie in the setup and join procedures. Here, in our scheme, the user owns a single master key (i.e.,
x′

i), and this key is embedded in every membership private key of hers. Because this master key
is actually the private key corresponding to her public key (e.g., published via the PKI), she is
dissuaded from sharing her membership private keys. Moreover, this binding also guarantees that
different users have different master keys.

This master key provides a common nexus among all membership private keys that belong to
each user, so that she can link any two signatures of hers by proving that the signatures have been
issued by membership private keys into which the same master key is embedded. This capability
of linking helps our scheme to enjoy multi-group features. Note that even when the user joins the
group by means of an anonymous authentication, the join procedure forces her to use the same
master key, so that the relationship between her master key and public key still holds.

The group is created by the collaboration among the group manager and the fairness authorities.
The GM knows the factorization of n, and therefore is able to join new members. Fairness authorities
are also involved in the setup process, in such a way that the keys related opening (oj) and revealing
(ôj) are distributed among the fairness authorities. Therefore, opening a signature or revealing a
member tracing key requires the participation of fariness authorities.

7 Jarecki and Shmatikov [21] showed that this holds even when the length of the secret key is shortened. However,
in the paper, we use a version with only the CCA checking tag removed.

8 Which is in turn based on the state of the art in group signatures [2].
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Opening a signature is a matter of the distributed decryption, by the fairness authorities (with-
out GM), of part of the signature (i.e., encrypted Ai). Likewise, revealing a member tracing key
is also a matter of the distributed decryption, by the fairness authorities (without GM), of the
encrypted member tracing key (xi). This key, however, has to be generated when a user joins the
group and cannot be generated randomly without GM. Therefore, we employ a little more com-
plicated mechanism: verifiable encryption. The user encrypts the member tracing key using the
public key (ŷ ∈ QR(n̂)) of verifiable encryption scheme, where the corresponding private key is
shared among fairness authorities (ôj). Still, GM can verify the validity of the encryption without
decryption. Later, if the user becomes under suspicion, then the fairness authorities collaborate to
decrypt the encrypted form of her member’s tracing key.

Finally, the join transcript (jlogi) also holds some non-repudiable proofs that allow to verify the
integrity of the record, making the scheme robust against some kind of database manipulation.

• System Parameters. ǫ ∈ R such that ǫ > 1, k ∈ N, three spheres Λ,M, Γ as specified in Section
3, the inner spheres Λk

ǫ ,M
k
ǫ , Γ k

ǫ and the security parameter ν.

• FA0–Setup. Played by the fairness authorities to seed the computation of the public key. It
generates a public modulus n̂ with unknown factorization by using a suitable distributed key gen-
eration protocol [14] that guarantees that QR(n̂) is cyclic and its order has no small prime factors.
It also selects ĝ′ ∈R Zn̂2 and sets ĝ = ĝ′2n̂. Denote the output of this procedure by fpk0 = 〈n̂, ĝ〉.

• FAj–Setup. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to compute the private and
public key pair to manage membership tracing keys. Given fpk0 = 〈n̂, ĝ〉, the j-th authority selects
a random prime ôj ∈ Zn̂2/4 and computes ŷj = ĝôj (mod n̂2). Denote the private and public output
by fskj = 〈ôj〉 and fpkj = 〈ŷj〉 respectively.

• Group–Setup. It is an interactive procedure composed of the following procedures: GM–Init–
Setup, FAj–Group–Setup, and GM–Group–Setup.

• GM–Init–Setup. Played by GM to seed the creation of the group. It generates the prime
numbers p, p′, q, q′ such that p = 2p′ + 1, q = 2q′ + 1, and sets n = pq. It also selects a0, a, b, g ∈R

QR(n). Let gsk = 〈p, q〉 and gdef = 〈n, a0, a, b, g〉 be the private and public output respectively.

• FAj–Group–Setup. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to compute the opening
private and public key pair for the group. Given gdef = 〈n, a0, a, b, g〉, it selects hj ∈R QR(n) and
a random prime oj ∈ Zν/2, then computes yj = goj (mod n). Let fgskj = 〈oj〉 and 〈hj , fgpkj〉 be
the private and public output respectively, where fgpkj = 〈yj〉.

• GM–Group–Setup. Played by GM to compute the group public key from previously com-
puted public values. Given 〈gdef , fpk0, {hj , fgpkj , fpkj}

ζ
j=1〉, it computes h =

∏ζ
j=1 hj (mod n),

y =
∏ζ

j=1 yj (mod n) and ŷ =
∏ζ

j=1 ŷj (mod n̂2). Let gpk = 〈n, a, a0, b, g, h, y, n̂, ĝ, ŷ〉 be the public
output of the procedure.

• JoinOnAuth.9 Interactive procedure played between a user and the GM when the user joins the
group as a new member. Let 〈gpk, authu〉 be the common input of the procedure, and let gsk and
umku be the GM’s and the user’s private inputs respectively, where authu may be 〈ρ, β, γ〉 (then
γ = βumku (mod ρ)) or empty (then umku is empty). First, the user sets x′

i = umku (if umku is
empty then chooses a random x′

i ∈ Λk
ǫ ). She computes Ci = bx′

i (mod n) and send it to the GM.
Second, the user and the GM engage in a protocol for non-adaptive drawing a random power, and
as a result the user gets xi ∈R Mk

ǫ and GM gets Xi = axi (mod n). The user encrypts xi using sCS
encryption scheme (see Section 4), i.e., Ei = 〈Ui = ĝr̂ , Vi = ŷr̂ · ĥxi〉 (mod n̂2), where ĥ = 1 + n̂

9 The design of Join and JoinOnAuth have been merged due to space limitations.
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and r̂ ∈R Zn̂/4. Now, the user computes the following signatures of knowledge that guarantee that
Ci and Ei are well formed10.

E℘
i = SK{(x′, r, x) : Ci = bx′

(mod n); γ = βx′
(mod ρ); Xi = ax (mod n);

Ui = ĝr (mod n̂2); Vi = ŷrĥx (mod n̂2)}(authu, Ci,Xi, Ui, Vi).

The GM, having received E℘
i from the user, verifies E℘

i . Then GM selects a random prime ei ∈ Γ k
ǫ ,

computes Ai = (CiXia0)
e−1
i (mod n), sends 〈Ai, ei〉 to the user. Let jlogi = 〈Ai, ei, Ci,Xi, Ui, Vi, E

℘
i , authu〉

and uski = 〈Ai, ei, xi, x
′
i〉 be the GM’s and User’s private outputs respectively.

• Sign. Played by a member of the group to issue signatures. Let 〈m, gpk, uski〉 be the input of the
procedure, then it computes

T1 = Aiy
r, T2 = gr, T3 = geihr, T4 = gxik, T5 = gk, T6 = gx′

ik
′
, T7 = gk′

.
where r, k, k′ ∈R M, and then computes the following signature of knowledge:

σ℘ = SK{(x, x′, e, r, h′) : T2 = gr ; T3 = gehr ; T e
2 = gh′

; T x
5 = T4 ;

T x′

7 = T6 ; a0a
xbx′

yh′
= T e

1 }(m) .
Let σ = 〈T1, · · · , T7, σ

℘〉 be the public output of the procedure.

• Verify. Played by any entity that wants to verify a signature. Let 〈m, gpk, σ〉 be the input of the
procedure, then it verifies if σ℘ specified in the Sign procedure holds.

• Open. It is an interactive procedure composed of the following procedures: OpenSigDShare,
OpenSignature, OpenRefCheck.

• OpenSigDShare. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to decrypt a share of the
member reference from the signature. Let 〈σ, gpk, fgpkj, fgskj〉 be the input of the procedure, then

computes ω̂jσ = T
oj

2 (mod n) and a signature of knowledge that the share is correct:

ω̂℘
jσ = SK{(o) : yj = go (mod n) ; ω̂jσ = T o

2 (mod n)}(σ) .

Let 〈ω̂jσ, ω̂℘
jσ〉 be the public output of the procedure.

• OpenSignature. Played by Judge, combines the shares to compute a member reference. Let
〈σ, gpk, {fgpkj , ω̂jσ, ω̂℘

jσ}
ζ
j=1〉 be the input of the procedure, then it verifies if {ω̂℘

jσ}
ζ
j=1 specified in

the OpenSigDShare procedure holds. and computes ωσ = T1/(
∏ζ

j=1 ω̂jσ) (mod n). Let ωσ be the
public output of the procedure.

• OpenRefCheck. Played by Judge or the GM to check the matching of the member reference
with a given join transcript. Let 〈ωσ, jlogi〉 be the input of the procedure, then it verifies the jlogi

integrity, by means of the VerifyJoinLog procedure (described later), and checks if ωσ equals Ai

from jlogi.

• Reveal. It is an interactive procedure composed of the following procedures: RevealDShare and
RevealTKey.

• RevealDShare. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to decrypt a share of the
member tracing key from the join transcript. Let 〈jlogi, gpk, fpkj, fskj〉 be the input of the procedure,

then it verifies if E℘
i specified in the JoinOnAuth procedure holds, and computes τ̂ji = U

ôj

i (mod n̂2)
and a signature of knowledge that the share is correct:

τ̂℘
ji = SK{(o) : ŷj = ĝo (mod n̂2) ; τ̂ji = Uo

i (mod n̂2)}(jlogi) .

Let 〈τ̂ji, τ̂
℘
ji〉 be the public output of the procedure.

• RevealTKey. Played by Judge, combines the shares to compute a member tracing key. Let
〈jlogi, gpk, {fpkj , τ̂ji, τ̂

℘
ji}

ζ
j=1〉 be the input of the procedure, then it verifies the jlogi integrity by

means of the VerifyJoinLog procedure, and if {τ̂℘
ji}

ζ
j=1 specified in the RevealDShare procedure

10 If authu is empty, the part γ = βx′

(mod ρ) is ignored.
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hold, then computes x̂i = (Vi/(
∏ζ

j=1 τ̂ji))
2t (mod n̂2) with t = 2−1 (mod n̂), and τi = (x̂i − 1)/n̂.

Let τi be the public output of the procedure.

• Trace. Played by the Tracing Agents to identify if the member tracing key matches a signature.
Let 〈gpk, τi, σ〉 be the input of the procedure, then checks if T4 equals T τi

5 (mod n).

• Claim. Played by a member of the group to prove that issued the signature. Let 〈gpk, σ, γ, usk〉 be
the input of the procedure, where γ is a challenge string, then it computes a signature of knowledge:

π℘ = SK{(x′) : T6 = T x′

7 (mod n)}(σ, γ) .

Let π℘ be the public output of the procedure.

• VerifyClaim. Played by any entity that wants to verify a claim. Let 〈gpk, σ, γ, π℘〉 be the input
of the procedure, then it verifies if π℘ specified in the Claim procedure holds.

• ClaimLink. Played by a member of both groups to create a link between two signatures. Let
〈gpk1, σ1, gpk2, σ2, γ, usk1, usk2〉 be the input of the procedure, such that mkey(usk1) = mkey(usk2)
and γ is a challenge string, then it computes a signature of knowledge:

λ℘ = SK{(x′) : T6σ1 = T x′

7σ1
(mod nσ1) ;T6σ2 = T x′

7σ2
(mod nσ2)}(σ1, σ2, γ) .

Let λ℘ be the public output of the procedure.

• VerifyLink. Played by any entity that wants to verify a link between two signatures. Let
〈gpk1, σ1, gpk2, σ2, γ, λ℘〉 be the input of the procedure, then it verifies if λ℘ specified in the Claim-
Link procedure holds.

• VerifyJoinLog. It checks that the integrity of the join transcript holds. Let 〈gpk, jlogi〉 be the
input of the procedure then it verifies if Aei

i equals a0XiCi (mod n) and if E℘
i holds. Note that E℘

i

is a user’s non-repudiable proof that binds 〈authu, Ci,Xi, Ei〉.

Note 1. Note that the order of QR(n̂) must be unknown because the security of the verifiable
encryption scheme is based on the Decision Composite Residuosity assumption, which does not
hold if the factorization of n̂ is known.

Note also that h is computed by the fairness authorities because if dloggh is known by any
party, then such party would be able to open and trace the signatures for this group.

Note 2. The JoinOnAuth procedure accepts both: (i) a string that identifies the user, in this
case authu relates the user’s public key, which in case of a DSA public key would be 〈ρ, β, γ〉,
such that γ = βα (mod ρ); and (ii) a string that anonymously authenticates the user, such as a
FTMG–signature, and then authu takes the values 〈n, T7, T6〉 from the signature.

In any case, the user master key is the private key (α) that corresponds with the user’s public
key (α = dlogβγ and α = dlogT7

T6 respectively), and remains unaltered even if a user joins a group,
and then uses this group for being authenticated to join another group, an so on successively. Note
that if a signature is opened or traced, the non-repudiable binding with the user holds even through
multiple nested anonymous joins.

If the authentication string in JoinOnAuth is used in the aforementioned way, then different
users have different master keys, and therefore it is not possible to link signatures issued by different
users.

6 Performance Analysis

This section analyzes the performance of the proposed scheme and compares it with related works,
considering the features provided by each one.
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Table 1. Performance Analysis

ACJT00 CL01 FTMGS

Member-Size 1280 608 1488
Sign-Size 656 1728 1312

Sign-Exp 12 28 21
Vrfy-Exp 11 30 21

Table 2. Summary of Features

ACJT00 CL01 FTMGS

Anonymous + + +

Unlinkable + –(⋆) +
Reversible + + +
Traceable – – +

Revocable – –(‡) +

MultiGroup – +(⋆) +
DeterSharing – + +
Fairness – + +

Non-Repudiation +(†) + +

Table 1 shows the performance for the proposed scheme (FTMGS) and compares it with the
state of the art in group signatures (ACJT00 [2]), and a anonymous credential systems (CL01 [7]).
In this analysis, joining to a group and sign/verify11 in both ACJT00 and FTMGS are compared
with credential issuance and showing a credential under a pseudonym with revocation in CL01
respectively.

In this table, the member-size row refers to the size12 of data (in bytes) the group manager
(organization) has to keep for each member of the group (credential issued). The sign-size row
shows the length (in bytes) of a signature (credential show). Moreover, the sign-exp and vrfy-exp
rows show the number of exponentiations required to generate and verify a signature (credential
show).

Additionally, Table 2 shows a summary of the main features that the proposed scheme (FT-
MGS) exhibits, and compares it with the above schemes. In this case, ACJT00(†) assumes that
during the join phase, the user signs some binding term. Also, CL01(‡) calls revocation to what we
call reversibility, and by revocability we means the ability to remove a member from the group, or
in the CL01 case, the ability to make sure that a given user can not succeed in showing a credential
if the given credential has been revoked (without breaking the anonymity of non-revoked users).
Additionally, when a user shows several credentials to an organization in CL01(⋆), she guarantees
that the credentials belong to the same person by exposing the pseudonym under which the orga-
nization knows that user. In this case the scheme exhibits multi-group features, but then protocols
showing credentials are linkable. Otherwise, if the pseudonym is not exposed, then the protocols
showing credentials are unlinkable, but then they do not enjoy the multi-group feature.

Finally, both ACJT00 and FTMGS can be incorporated into standard frameworks [5] to provide
support, with very interesting features, for anonymous authentication and authorization inside
standard infrastructures.

7 Conclusion

We have presented a new cryptographic primitive in the scope of group signatures. This primitive
combines features from traceable signatures and multi-group signatures. It also incorporates a
mechanism to dissuade users from sharing their private keys, and introduces a threshold scheme to

11 In FTMGS, the overhead of linking signatures is included in the signature analysis.
12 In the measures, the elements of QR(n), the free variable witnesses, and the hashed challenges are 1024, 512 and

128 bits long respectively.

12



guarantee fairness in the process of opening or tracing signatures. All this combination of features
makes the scheme very suited to support anonymity in real world scenarios.
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A Security of Our Scheme

A.1 Correctness of Fair Traceable Multi-Group Signature Schemes.

Definition 8. A fair traceable multi-group signature scheme with security parameter ν is correct

if the following six conditions are satisfied (with overwhelming probability in ν). See Fig 2 for
abbreviations.

1. (Join-Correctness) For any v, Ui 6∈ Gv, and 〈uskv
i , jlog

v
i 〉 ← Join

v/JoinOnAuth
v (authi), it

holds that mkey(uskv
i ) = mkey(authi), tkey(uskv

i ) = tkey(jlogv
i ) and mref(uskv

i ) = mref(jlogv
i ).

2. (Sign-Correctness) For any v, Ui ∈ Gv, and m, it holds that
Verify

v(m,Sign
v
i (m)) = acc.

3. (Open-Correctness) For any v, Ui ∈ Gv, and m, it holds that
Open

v(Sign
v
i (m)) = mref(jlogv

i ).
4. (Trace-Correctness) For any v, Ui ∈ Gv, and m, it holds that

Trace
v(Sign

v
i (m),Reveal

v(jlogv
i )) = acc; on the other hand, for any v, Uj 6= Ui, and m, it

holds that Trace
v(Sign

v
j (m),Reveal

v(jlogv
i )) = ⊥.

5. (Claim-Correctness) For any v, Ui ∈ Gv, m, and γ, it holds that
VerifyClaim

v(Claim
v
i (Sign

v
i (m), γ)) = acc.

6. (ClaimLink-Correctness) For any v1, v2, Ui ∈ Gv1 ∩ Gv2 , m1, m2, and γ where mkey(uskv1
i ) =

mkey(uskv2
i ), it holds that

VerifyLink
v1,v2(ClaimLink

v1,v2
i (Sign

v1
i (m1),Sign

v2
i (m2), γ)) = acc.

A.2 Security Model for Fair Traceable Multi-Group Signature Schemes

Now we define the security of fair traceable multi-group signature schemes. The security definitions
will be formulated via experiments in which an adversary’s attack capabilities are modelled by
providing it with access to certain oracles. Below is the list of oracles provided in our model. See
Figure 2 for the bookkeeping variables shared by the oracles.

– Qp−gengroup(). This oracle runs Setup algorithm, sets Ng ← Ng + 1 and ginfoNg ← 〈gpkNg , gskNg , {fgsk
Ng

j }
ζ
j=1〉,

adds Ng into Gp and returns 〈Ng , gpkNg 〉.
– Qb−gengroup(). The group generated by this oracle allows the adversary to control its group manager. This oracle

runs Setup algorithm, sets Ng ← Ng + 1 and ginfoNg ← 〈gpkNg , gskNg , {fgsk
Ng

j }
ζ
j=1〉, adds Ng into Gb and returns

〈Ng , gpkNg , gskNg 〉.

– Qstat(). It returns Ng and (N1
u, . . . , N

Ng
u ).

– Qfa−share(v, j). This oracle leaks a fairness authority’s secret key. Specifically, if |Fv | < ζ − 1 and j ≤ ζ then it
adds j into Fv and returns 〈fgskv

j 〉 from ginfov; otherwise it returns ⊥.
– Qp−join(v). This oracle simulates the Join protocol in private. Let i = Nv

u + 1. If v ∈ Gp then it sets Nv
u ← i, adds

〈i, jlogv
i , uskv

i 〉 into uinfov, adds i into Uv
p, and returns i; otherwise it returns ⊥.

– Qp−authjoin(v1, v2). If v1 6∈ Gp or v2 6∈ Gp then it returns ⊥ and terminates. If Uv1
p = ∅, then it executes Qp−join(v1).

Now, it firstly chooses i1 ∈R Uv1
p , and computes authi1 ← Sign

v1

i1
(m) for a random message m,13 and simulates

the JoinOnAuth protocol on Gv2 in private with mkey(usk
v1

i1
) on the user’s side. The rest is similar to Qp−join’s

bookkeeping of variables (here, bookkeeping is done for Gv2). It returns i2.
– Qa−join(v). This oracle allows the adversary to introduce an adversarially controlled user to the system. If v 6∈ Gp

then returns ⊥ and terminates. The oracle, taking the role of GMv, executes Join with the adversary who takes
the role of a joining user. Let i be the value of Nv

u +1. When the protocol terminates successfully, it sets Nv
u ← i,

uinfov
i ← 〈i, jlog

v
i ,⊥〉, and adds i into Uv

a. The adversary will obtain 〈i, uskv
i 〉.

13 The authentication string can also be a digital signature by generalizing that G0 is PKI. The combination of
traceable signatures and digital signatures with link or proof of same master secret key can also be used. However,
in the modeling we choose a single traceable signature for the purpose of clear exposition.
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Abbreviations.

Sign
v
i ,Claim

v
i ,ClaimLink

v,v′

: signing, claiming, and link-claim algorithm using
uskv

i w.r.t. Gv and Gv′

Open
v,Reveal

v: opening and revealing procedure using gskv
i and fskv

i w.r.t. Gv

Join
v,JoinOnAuth

v: joining procedures w.r.t. Gv

Verify
v,VerifyClaim

v,VerifyLink
v,v′

: verification algorithms for signatures,
claims, and link-claims w.r.t. Gv and Gv′

Bookkeeping variables.

Ng , Nv
u: the number of existing groups and users in Gv respectively.

ginfov, uinfov: 〈v, gpkv, gskv, {fgskv
j}

ζ
j=1〉, and {〈i, uskv

i , jlogv
i 〉}Ui∈Gv respectively.

sigsv: signatures by Qsig

Gp, Gb: groups created by Qp−gengroup and Qb−gengroup respectively.
Fv: fskv

j ’s leaked by Qfa−share

Uv
r : users revealed by Qreveal

Uv
p: users in Gv from Qp−join, Qp−authjoin

Uv
a: users in Gv from Qa−join, Qa−authjoin

Uv
b : users in Gv from Qb−join, Qb−authjoin

Fig. 2. Abbreviations and Bookkeeping variables

– Qa−authjoin(v1, v2, i1, authi1). If v1 6∈ Gp or v2 6∈ Gp or i1 6∈ Uv′

a then returns ⊥ and terminates. The oracle, taking
the role of GMv2 , executes JoinOnAuth with the adversary playing as a joining user with mkey(usk

v1

i1 ). The rest
is similar to Qa−join’s bookkeeping of variables (here, bookkeeping is done for Gv2). The adversary will obtain
〈i2, usk

v2

i2
〉.

– Qt−join(v, x′), Qt−authjoin(v1, v2, i1, x
′). As in [22], we introduce these oracles for technical reasons. The oracles which

are identical to Qp−join and Qp−authjoin except that x′ is chosen by the adversary, i is added to Uv
a, and they return

〈i, uskv
i 〉 at the end.

– Qb−join(v). If v 6∈ Gb then returns ⊥ and terminates. The oracle, taking the role of a joining user, executes Join

with the adversary playing as GMv. Let i be the value of Nv
u + 1. When the protocol terminates successfully, it

sets Nv
u ← i, uinfov

i ← 〈i,⊥,uskv
i 〉, and adds i into Uv

b . The adversary will obtain (i, jlogv
i ).

– Qb−authjoin(v1, v2). If v1 6∈ Gb or v2 6∈ Gb or Gv1 = ∅ then it returns ⊥ and terminates. Now, it firstly chooses
i1 ∈R U

v1

b , and computes authi1 ← Sign
v1

i1
(m) for a random message m, and executes JoinOnAuth, using

mkey(usk
v1

i1
) as a joining user, with the adversary playing as GMv2 . The rest is similar to Qb−join’s bookkeeping

of variables (here, bookkeeping is done for Gv2). The adversary will obtain (i2, jlog
v2

i2
).

– Qsig(v, i, m). If i 6∈ Uv
p ∪ Uv

b , then it returns ⊥ and terminates. Otherwise, it generates a signature σ using uskv
i ,

adds 〈i, σ〉 into sigsv, and returns σ.
– Qreveal(v, i). This oracle reveals the tracing key τ for member i ∈ Gv. If i ∈ Uv

p ∪ Uv
b , then it adds i into Uv

r , and
returns tkey(jlogv

i ); otherwise it returns ⊥.

Now we define various experiments to capture the security we need. See Figure 3 and 4 for
the description of the experiments. In misidentification attack (Expmis

A ), the adversary tries to
produce a signature that does not open or trace to any of the adversarially controlled users. In
framing attack (Expfra

A ), the adversary is allowed to act as a group manager, and tries to generate
a signature, a claim, or a link-claim that traces to an honest user. When an authentication string
is used during the joined procedure, we require stronger non-framability; the adversary is allowed
to control the join database. In anonymity attack (Expanon

A ), the adversary is allowed to act as
a group manager, and tries to break the anonymity of signatures. Note that anonymity here is
stronger than that in the original traceable signature in the sense that even the group manager does
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Experiment Expmis
A (1ν)

〈st1, v〉 ← A( : Qp−gengroup);
If v 6∈ Gp, then return 0;
〈m, σ〉 ← A(st1 : Qa−join, Qa−authjoin, Qstat, Qp−join, Qp−authjoin, Qsig, Qreveal);
If σ ∈ sigsv or Verify

v(m,σ) = ⊥, then return 0;
If ∀ i ∈ Uv

a, Open
v(σ) 6= mref(jlogv

i ), then return 1;
If ∀ i ∈ Uv

a, Trace
v(σ, tkey(jlogv

i )) = ⊥, then return 1;
return 0;

Experiment Expfra
A (1ν)

〈st1, v, v′〉 ← A( : Qb−gengroup);
〈m, σ, γ, π, m′σ′, λ〉 ← A(st1 : Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);
If Verify

v(m, σ) = ⊥, then return 0;
If σ 6∈ sigsv and ∃i ∈ Uv

b : Open
v(σ) = mref(uskv

i ), then return 1;
If σ 6∈ sigsv and ∃i ∈ Uv

b \ Uv
r : Trace

v(Reveal
v(i), σ) = acc, then return 1;

If σ ∈ sigsv and VerifyClaim
v(σ, γ, π) = acc, then return 1;

If σ ∈ sigsv and Verify
v′

(m′, σ′) = acc and VerifyLink
v,v′

(σ, σ′, γ, λ) = acc,
then return 1;

return 0;

Experiment Expanon
A (1ν)

〈st1, v, i0, i1, m〉 ← A( : Qb−gengroup, Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If i0 6∈ Uv
b or i1 6∈ Uv

b , then return e where e
R
← {0, 1};

δ
R
← {0, 1}; σ ← Sign

v
ib

(m);
δ∗ ← A(st1, σ : Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If {i0, i1} ∩ Uv
r 6= ∅, then return ξ where ξ

R
← {0, 1};

If δ = δ∗ then return 1;
return 0;

Fig. 3. Experiments in the original traceable signatures

not know which member signed. In link-forgery attack (Explink
A ), the adversary tries to forge a false

link. In join-anonymity attack (Exp
j−anon
A ), the adversary is allowed to act as a group manager, and

tries to track a member’s joining situation. In addition to experiments, we define another security
aspect: trusted-fairness, which means fairness authorities function as a trusted party collectively.

Definition 9. A fair traceable multi-group signature scheme is said to be secure if the following
conditions are satisfied:

1. For any PPT algorithm A, Pr[Expmis
A (1ν) = 1] = neg(ν).

2. For any PPT algorithm A, Pr[Expfra
A (1ν) = 1] = neg(ν).

3. For honest users who joined with an authentication string, the scheme remains secure
against framing attack even the GM maliciously manages the jlog database.

4. For any PPT algorithm A, |Pr[Expanon
A (1ν) = 1]− 1/2| = neg(ν).

5. For any PPT algorithm A, |Pr[Exp
j−anon
A (1ν) = 1]− 1/2| = neg(ν).14

6. For any PPT algorithm A, Pr[Explink
A (1ν) = 1] = neg(ν).

7. The above statements remain true even when Qfa−share is allowed to A.

14 Our scheme guarantees that joining protocols are unlinkable among them and reveals nothing about the joining
user’s master secret key. However, a collusion of GMs may be able to establish an external connection among them
if the authentication string is not anonymous. This fact does not affect at all to the anonymity of the scheme.
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Experiment Exp
j−anon
A (1ν)

〈st1, v, v′, i0, i1〉 ← A( : Qb−gengroup, Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If i0 or i1 is not in Uv
b or has already joined Gv′

, then return ξ where ξ
R
← {0, 1};

δ
R
← {0, 1};

Execute JoinOnAuth
v′

with A(st1) using mkey(uskv
ib

), and thereafter A returns st2;
δ∗ ← A(st2 : Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If {i0, i1} ∩ Uv
r 6= ∅, then return ξ where ξ

R
← {0, 1};

If δ = δ∗ then return 1;
return 0;

Experiment Explink
A (1ν)

〈st1, v, v′, m,m′, γ〉 ← A( : Qb−gengroup, Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

i
R
← Uv

b , i′
R
← Uv′

b s.t. mkey(uskv
i ) 6= mkey(uskv′

i′ );

σ ← Sign
v
i (m), σ′ ← Sign

v′

i′ (m′);

λ← A(st1, σ, σ′, γ, uskv
i , uskv′

i′ : Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If VerifyLink
v,v′

(σ, σ′, γ, λ) = acc, then return 1;
return 0;

Fig. 4. New experiments to handle multi-group scenarios

A.3 Correctness of Our Fair Traceable Multi-Group Signature Scheme

Theorem 1. The proposed fair traceable multi-group signature scheme is correct.

From now on, we prove Theorem 1.

For Join-Correctness, the first condition is satisfied because a joining user chooses x′ and the
GM issues an adaptive DL-representation for the x′, The other two conditions are also satisfied
by observing that uski = 〈A, e, x, x′〉, jlogi = 〈A, e,Efpk(x), . . .〉, mref(usk) = mref(jlog) = A and
tkey(usk) = x = Dfgsk(Efgpk(x)) = tkey(jlog).

Sign-Correctness follows immediately from the completeness of the zero-knowledge proof that
is employed for the signing algorithm.

For Open-Correctness, note that any signature σ ← Sign
v
U(m) contains the values T1, T2 that

constitute an ElGamal encryption over QR(n) of the value Ai of the user’s membership certificate
〈Ai, ei, xi, x

′
i〉 with FAs’ public key. The decryption of such value (OpenSignature) by using

FAs’ decryption shares (OpenSigKShare) equals the Ai value in jlogv
i (OpenRefCheck). With

overwhelming probability, user’s certificate is unique for each user, thus for any other user Ui′ 6= Ui

we have Ai′ 6= Ai, and therefore the decryption of such value is not equal to the Ai′ in jlogv
i′ .

For Trace-Correctness, observe that jlogv
i contains the verifiable encryption of xi, where 〈Ai, ei, xi, x

′
i〉

is the membership certificate of user Ui. The decryption of such value (RevealTKey) by FAs’
decryption shares (RevealTShare) yields the tracing trapdoor xi for such a member Ui. Now
observe that any σ ← Sign

v
Ui

(m) contains the values T4, T5 that satisfy the property T4 = T xi
5 ; thus

it holds that Trace
v(σ, xi) = acc. On the other hand, for any other user Ui′ 6= Ui, it holds with

overwhelming probability that xi′ 6= xi, and thus if σ ← Sign
v
Ui′

(m), then we have that T4 = gkxi′

and T5 = gk for some k ∈ M , which implies T4 = T xi

5 . Since xi′ 6= xi, the tracing condition
(T4 = T xi

5 ) does not hold.

For Claim-Correctness, observe that the Claim
v
U algorithm produces a non-interactive proof of

knowledge for the discrete-logarithm of the value T6 base T7 for σ ← Sign
v
U(m); the correctness

follows from the completeness of the PoK.
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For ClaimLink-Correctness, observe that the ClaimLink
v1,v2

U algorithm produces a non-interactive
proof of knowledge for the unique discrete-logarithm of the value T6 base T7 for both σv1 ←
Sign

v1
U (m) and σv2 ← Sign

v2
U (m). If such a unique value exists, the correctness follows from the

completeness of the PoK.

A.4 Security of Our Fair Traceable Multi-Group Signature Scheme

Theorem 2. Under the assumptions described in Section ??, our FTMGS scheme is secure in the
random oracle model.

From now on, we prove Theorem 2. The proof consists of several lemmas, from which the
theorem directly follows. Hereafter, we suppress the use of inner sphere notation, and use the
notation Λ,M,Γ (this does not affect the argumentation of th proof).

Lemma 2. For any PPT A, we have

Pr[A( : . . . ,Qa−join,Qa−authjoin, . . .) = A( : . . . ,Qt−join,Qt−authjoin, . . .)] = 1− neg(ν).

Proof: Consider an output usk = 〈A, e, x, x′〉 after a joining protocol. The secure implementation
ImpRP due to [22] for drawing a random x guarantees that the distribution of x from Qa−join∗

and the distribution of x from Qt−join∗ are computationally indistinguishable. The values e, x′

are identically distributed, and A is simply (axbx′
a0)

1/e. Therefore, the distribution of the DL-
representation output by Qa−join∗ are computationally indistinguishable from that by Qt−join∗.

Thanks to Lemma 2, we will use Qt−join∗ instead of Qa−join∗ hereafter.

Lemma 3. Under the Strong-RSA assumption, for any PPT algorithm A,
Pr[Expmis

A (1ν) = 1] ≤ neg(ν).

Proof: First observe that Join-Correctness holds even if the joining user is malicious from the
soundness of E℘

i proofs.

Let A be an adversary such that Pr[Expmis
A (1ν) = 1] is non-negligible in ν. We, using A,

construct an algorithm B that solves the adaptive one-more representation problem. Denote by

Omrpv the v-th instance of one-more representation problem, i.e., 〈n(v), a(v), b(v), a
(v)
0 〉. Then, after

B fetches polynomially many Omrp instances, it solves one of them. B simulates oracles provided
for A as follows:

– Qp−gengroup(). Let v := Ng + 1. B brings the v-th instance of one-more representation problem,

〈n(v), a(v), b(v), a
(v)
0 〉. Then it sets

gpk = 〈n(v), a(v), b(v), a
(v)
0 , g, h, y, n̂, ĝ, ŷ〉, where other values are appropriately chosen as de-

scribed in our scheme. Finally, B updates bookkeeping variables and returns (v, gpk).

– Qstat(). B simply returns the specified booking variables.

– Qp−join(v),Qp−joinauth(v1, v2). B chooses A ∈R QR(n), a prime e ∈R Γ , x ∈R M , and x′ ∈R Λ
(In the case of Qp−joinauth, x′ = uskv1

i1
for i1 ∈R Uv1

p ). Let i := Nv
u + 1. B sets uskv

i = 〈A, e, x, x′〉,

and jlogv
i accordingly; i.e., Ci = bx′

, Xi = ax, Ei = (ĝr̂, ŷr̂ · hx) for r̂ ∈R Zn̂/4, and E℘
i can be

constructed easily. Finally, B updates bookkeeping variables.
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– Qt−join(v, x′),Qt−joinauth(v1, v, i1, x
′). B invokes Qrep of an instance Omrpv2

, and obtains a DL-

representation uskv
i = 〈A, e, x, x′〉. B sets uskv

i = 〈A, e, x, x′〉, and jlogv
i accordingly; i.e., Ci = bx′

,
Xi = ax, Ei = (ĝr̂, ŷr̂ · hx) for r̂ ∈R Zn̂/4, and E℘

i can be constructed easily. Finally, B updates
bookkeeping variables.

– Qsig(v, i,m). If i 6∈ Uv
p, B returns fail. Otherwise, B finds an entry uskv

i (which may not be a
DL-representation), and generates a signature using the simulator of the NIZK proof used in
Sign algorithm.

– Qreveal(v, i). B returns tkey(uskv
i ) from uinfov

i .

Observe that A’s view of its interaction with B is indistinguishable from the interaction with
oracles in the security definition. Now, suppose that A exits with a successful output 〈m,σ∗

1〉.
Then by the generalized forking lemma [22] B can get another valid output 〈m,σ∗

2〉. Note that
the protocol used in Sign is a proof of knowledge, which implies existence of an extractor for the
protocol. Therefore, we can extract a witness 〈x∗, x′∗, e∗, r∗, h′∗〉 from σ∗

1 and σ∗
2 . The signature σ∗

1

will be of the following form:

〈T ∗
1 , . . . , T ∗

7 , c, sx∗ , sx′∗ , se∗ , sr∗ , sh′∗〉.

Now we have two cases:

(i) ∀i ∈ Uv
a: Open

v(σ∗
1) 6= mref(jlogv

i ). This means that A∗ =
(

T1/T
logy

g

2

)

is different from any Ai of

jlogv
i ∈ Uv

a, which implies 〈A∗, e∗, x∗, x′∗〉 is a DL-representation that is different from the ones
generated by Qrep oracle. Therefore, we solve the adaptive one-more representation problem.

(ii) ∀i ∈ Uv
a: Trace

v(σ, tkey(jlogv
i )) = ⊥. This means that, for any i ∈ Uv

a, the value xi = tkey(jlogv
i )

is different from x∗ = logT4
T5

, which implies 〈A∗, e∗, x∗, x′∗〉 is a DL-representation that is different
from the ones generated by Qrep oracle. Therefore, we solve the adaptive one-more representation
problem.

Lemma 4. Under the discrete logarithm assumption and semantic security of sCS encryption
scheme, for any PPT algorithm A, Pr[Expfra

A (1ν) = 1] ≤ neg(ν).

Proof: Let A be an adversary such that Pr[Expfra
A (1ν) = 1] is non-negligible in ν.

Denote by DLP an instance of discrete logarithm problem (z, Z, n, p, q), i.e., a problem to find
an δ such that zδ = Z (mod n), where z, Z ∈ QR(n) and n = pq for safe primes p and q. We, using
A, construct an algorithm B that solves DLP problems with non-negligible probability. B plays
one of two games at randomly. Observe that playing the two games at random covers all possible
behaviors of the algorithm A.
Game-1
Let V be the number of groups the adversary generated using Qb−gengroup. B first chooses j ∈R

{1, . . . , V }, and simulates Qb−gengroup oracle as follows. Hereafter, we assume all the booking vari-
ables are appropriately updated.

– Qb−gengroup().
Suppose the adversary makes ℓ-th query on this oracle. If ℓ 6= j, then B executes the Setup

algorithm as described in our scheme. Otherwise, B uses the DLP instance to construct the keys,
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i.e.,
gpk = 〈n, a = zα, b = z, a0 = zβ , g, h, y, n̂, ĝ, ŷ〉 and gsk = 〈p, q〉, where α, β ∈R M and other
values are chosen as described in Setup of our scheme. B returns (ℓ, gpk, gsk).

Now, A returns 〈st1, v, v′〉. If j 6= v, B aborts. Otherwise, B proceeds and simulates the other
oracles provided for A as follows.

– Qb−join(ℓ).
If ℓ 6= v, then B, as a joining user, executes Join protocol with A as described in our scheme.
Otherwise, B chooses x̂′

i ∈R Λ and executes Join protocol using Ci = bx̂′
i ·Z with the adversary

who takes the role of GMℓ, where i := Nℓ
u + 1. During the protocol, the proof related to Ci

(i.e., E℘
i ) is simulated. When B obtains 〈Ai, ei, xi〉 at the end of the joining protocol, it sets

uskℓ
i = 〈Ai, ei, xi, x̂

′
i〉, and jlogℓ

i = ⊥.
– Qb−joinauth(ℓ1, ℓ2).

Let i2 := Nℓ2
u + 1. If v 6∈ {ℓ1, ℓ2}, then B, as a joining user, executes JoinOnAuth protocol

with A as described in our scheme.
If ℓ1 = v, then B firstly chooses i1 ∈R Uℓ1

b , and computes a simulated signature authi1 on a
random message m using Qsig(ℓ1, i1,m). Then, B chooses ui2 ∈R M,x′

i2
∈R Λ, and executes

JoinOnAuth with the adversary. During the protocol, the proof related to Ci2 (i.e., E℘
i ) is

simulated. When B obtains 〈Ai2 , ei2 , xi2〉 at the end of the joining protocol, it sets uskℓ2
i2

=

〈Ai2 , ei2 , xi2 , x
′
i2
〉, and jlogℓ2

i2
= ⊥.

Otherwise (i.e., ℓ2 = v), B firstly chooses i1 ∈R Uℓ1
b , and computes a signature authi1 on a random

message m by executing Sign
ℓ1
i1

(m). Then, B chooses x̂′
i2
∈R Λ, and executes JoinOnAuth

with the adversary using Ci2 = aui2 b
x̂′

i2 · Z. During the protocol, the proof related to Ci2

(i.e., E℘
i ) is simulated. When B obtains 〈Ai2 , ei2 , xi2〉 at the end of the joining protocol, it sets

uskv2
i2

= 〈Ai2 , ei2 , xi2 , x̂
′
i2
〉, and jlogv2

i2
= ⊥.

– Qstat(). B simply returns the specified booking variables.
– Qsig(ℓ, i,m). If ℓ 6= v, B executes Sign

ℓ
i(m). Otherwise, B finds an entry uskℓ

i and generates a
signature using the simulator of the proof used in Sign algorithm Specifically, the simulator
chooses T1, . . . , T5 as described in our scheme, but

T6 =
(

bx̂′
iZ
)k′

, T7 = bk′

,

where k′ ∈M . Note that the distribution of these T6 and T7 is computationally indistinguishable
to that of T6 and T7 in the description of our scheme.

– Qreveal(ℓ, i). B returns tkey(uskℓ
i) from uinfoℓ

i .

Let 〈m∗, σ∗, γ∗, π∗,m′∗σ′∗, λ∗〉 be a successful output from A. It holds that Verify
v(m∗, σ∗) =

acc. Now we have the following cases:

1. σ 6∈ sigsv and ∃i ∈ Uv
b : Open

v(σ) = mref(uskv
i ).

By applying the generalized forking lemma [22], B can get another valid output 〈m,σ∗
2 , · · ·〉 such

that that Verify
v(m∗, σ∗

2) = acc. Note that the protocol used in Sign is a proof of knowledge,
which implies existence of an extractor for the protocol. Therefore, we can extract a witness
〈x∗, x′∗, e∗, r∗, h′∗〉 from σ∗, σ∗

2 . The signature σ∗ will be of the following form:

〈T ∗
1 , . . . , T ∗

7 , c, sx∗ , sx′∗ , se∗, sr∗ , sh′∗〉.
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Let A∗ =
(

T1/T
logy

g

2

)

. Then, it holds that (A∗)e
∗

= a0a
x∗

bx′∗
.

Since Open
v(σ) = mref(uskv

i ), we have A∗ = Ai. Moreover we have

A∗ =
(

a0a
x∗

bx′∗
)1/e∗

= z
β+αx∗+x′∗

e∗ ,

and

Ai =
(

a0a
xibx̂iZ

)1/ei

= z
β+αxi+x̂i+δ

ei .

Or equivalently

(β + αx∗ + x′∗) · (e∗)−1 = (β + αxi + x̂i + δ) · (ei)
−1 (mod p′q′).

So we can find δ, which is logz Z.
2. σ 6∈ sigsv and ∃i ∈ Uv

b \ Uv
r : Trace

v(Reveal
v(i), σ) = acc.

B fails in this case.
3. σ ∈ sigsv and VerifyClaim

v(σ, γ, π) = acc.
Let 〈i, σ〉 is the entry in the sigsv. Note that the values T6 and T7 of σ has the following form:

T6 =
(

bx̂′
iZ
)k′

, T7 = bk′

,

which means logT7
T6 = x̂′

i + δ. By applying the generalized forking lemma [22] B can extract
the witness x′∗ for the proof in Claim such that x′∗ = logT7

T6, which means x̂′
i + δ = x′∗.

4. σ ∈ sigsv and Verify
v′(m′, σ′) = acc and VerifyLink

v,v′(σ, σ′, λ) = acc.
By using the similar argument in the case 3, δ can be found.

Game-2
Let V be the number of groups the adversary generated using Qb−gengroup. B first chooses jg ∈R

{1, . . . , V }, and simulates Qb−gengroup oracle as follows. Again, we assume all the booking variables
are appropriately updated.

– Qb−gengroup().
Suppose the adversary makes ℓ-th query on this oracle. If ℓ 6= jg, then B executes the Setup

algorithm as described in our scheme. Otherwise, B uses the DLP instance to construct the keys,
i.e.,
gpk = 〈n, a = z, b = zα, a0 = zβ , g, h, y, n̂, ĝ, ŷ〉 and gsk = 〈p, q〉, where α, β ∈R M and other
values are chosen as described in Setup of our scheme. B returns (ℓ, gpk, gsk).

Now, A returns 〈st1, v, v′〉. If jg 6= v, B aborts; otherwise, B proceeds. Let N be the number
of users in Gv the adversary generated by invoking Qb−join(v), Qb−joinauth(v

′, v). Now B chooses
ju ∈R {1, . . . , N}, and simulates the other oracles provided for A as follows.

– Qb−join(ℓ).
Let i := Nℓ

u + 1. If ℓ 6= v or ju 6= i, then B, as a joining user, executes Join protocol with A
as described in our scheme. Otherwise, B executes Join protocol with the adversary who takes
the role of GMv. During the protocol, B simulates ImpRP protocol such that output is Z (i.e.,
ax = Z, where x is unknown) by using the simulator of ImpRP. Moreover B chooses rx ∈ M
and computes Ei = Efpk(rx), and simulates E℘

i . Note that the adversary does not notice that
B used rx instead of x from the semantic security of the Efpk(). When B obtains 〈Ai, ei〉 at the
end of the joining protocol, it sets uskℓ

i = 〈Ai, ei, rx, x′〉 (x′ are chosen honestly), and jlogℓ
i = ⊥.
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– Qb−joinauth(ℓ1, ℓ2).
Let i := Nℓ

u+1. If ℓ2 6= v or ju 6= i, then B, as a joining user, executes JoinOnAuth protocol with
A as described in our scheme. Otherwise, B firstly chooses i1 ∈R Uℓ1

b , and computes a signature

authi1 on a random message m by executing Sign
ℓ1
i1

(m). Then B executes JoinOnAuth protocol
with the adversary who takes the role of GMv. During the protocol, B simulates ImpRP protocol
such that output is Z (i.e., ax = Z, where x is unknown) by using the simulator of ImpRP.
Moreover B chooses rx ∈ M and computes Ei = Efpk(rx), and simulates E℘

i . When B obtains

〈Ai, ei〉 at the end of the joining protocol, it sets uskℓ
i = 〈Ai, ei, rx, x′

i = mkey(uskℓ1
i1

)〉, and

jlogℓ
i = ⊥.

– Qstat(). B simply returns the specified booking variables.
– Qsig(ℓ, i,m). If ℓ 6= v, B executes Sign

ℓ
i(m). Otherwise, B finds an entry uskℓ

i and generates a
signature using the simulator of the proof used in Sign algorithm Specifically, the simulator
chooses T1, . . . , T5 as described in our scheme, but

T 4 = Zk, T 5 = ak,

where k ∈M . Note that the distribution of these T4 and T5 is computationally indistinguishable
to that of T4 and T5 in the description of our scheme.

– Qreveal(ℓ, i). If ℓ = v and i = ju, then B aborts. Otherwise, B returns tkey(uskℓ
i) from uinfoℓ

i .

Let 〈m∗, σ∗, γ∗, π∗,m′∗σ′∗, λ∗〉 be a successful output from A.

1. σ 6∈ sigsv and ∃i ∈ Uv
b : Open

v(σ) = mref(uskv
i ).

This means A∗ = Ai. Let 〈x∗, x′∗, e∗, r∗, h′∗〉 be the extracted witness for the signature σ∗:

〈T ∗
1 , . . . , T ∗

7 , c, sx∗ , sx′∗ , se∗, sr∗ , sh′∗〉.

It also holds that (A∗)e
∗

= a0a
x∗

bx′∗
.

If i = ju, we have

A∗ =
(

a0a
x∗

bx′∗
)1/e∗

= z
β+x∗+αx′∗

e∗ ,

and

Ai =
(

a0Zbx′
i

)1/ei

= z
β+δ+αx′i

ei .

Or equivalently

(β + x∗ + αx′∗) · (e∗)−1 = (β + δ + αx′
i) · (ei)

−1 (mod p′q′).

So we can find δ, which is logz Z. This happens with probability 1/N .
2. σ 6∈ sigsv and ∃i ∈ Uv

b \ Uv
r : Trace

v(Reveal
v(i), σ) = acc.

If i = ju, we know that x∗ = δ. This happens with probability 1/N .
3. σ ∈ sigsv and VerifyClaim

v(σ, γ, π) = acc.
B fails in this case.

4. σ ∈ sigsv and VerifyLink
v,v′(σ, σ′, λ) = acc.

B fails in this case.

As a result, using A, the algorithm B can solve the discrete logarithm problem by playing the
above games with non-negligible probability.

22



Lemma 5. For honest users who joined with an authentication string, the scheme remains secure
against framing attack even the GM maliciously manages the jlog database.

Proof: This lemma holds from the unforgeability of E℘
i : the group manager cannot forge another

valid E℘
i with the same auth and different Ci,Xi.

Now we prove the anonymity of our scheme.

Lemma 6. Under the DDH assumption and semantic security of sCS encryption, For any PPT

algorithm A,
∣

∣

∣
Pr[Expanon

A (1ν) = 1]− 1/2
∣

∣

∣
≤ neg(ν).

Proof: First, we introduce a non-adpative version of the experiment:

Experiment Expanon−na
B (1ν)

〈st1, v, i0, i1〉 ← B();

〈st2, m〉 ← B(st1 : Qb−gengroup, Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If i0 6∈ Uv
b or i1 6∈ Uv

b , then return ξ where ξ
R
← {0, 1};

δ
R
← {0, 1}; σ ← Sign

v
ib

(m);

δ∗ ← B(st2, σ : Qstat, Qb−join, Qb−authjoin, Qsig, Qreveal);

If {i0, i1} ∩ Uv
r 6= ∅, then return ξ where ξ

R
← {0, 1};

If δ = δ∗ then return 1;

return 0;

Define

Advanon
A (1ν) :=

∣

∣

∣
Pr[Expanon

A (1ν) = 1]− 1/2
∣

∣

∣

Advanon−na
B (1ν) :=

∣

∣

∣
Pr[Expanon−na

B (1ν) = 1]− 1/2
∣

∣

∣
.

We prove the lemma by showing the following two statements are true (proof by contradiction);
(i) Let A be an adversary against such that Advanon

A (1ν) is non-negligble. Then we can construct
an algorithm B such that Advanon−na

B (1ν) is non-negligible using A. (ii) For any PPT algorithm B,
Advanon−na

B (1ν) = neg(ν).

We first show that (i) holds. We construct an algorithm B as follows:

– B selects 〈v, i0, i1〉 randomly.
– All the oracle queries from A are relayed to the oracles provided for B.

– When A returns 〈v∗, i∗0, i
∗
1,m

∗〉, B checks if 〈v, i0, i1〉
?
= 〈v∗, i∗0, i

∗
1〉. If so, B proceeds execution

by returning m to the outer world; otherwise B aborts.
– Now B gets a challenge signature σ from the outer world. B just forwards σ to A.
– When A outputs δ∗, B outputs the same δ∗.

Let V be the number of groups generated by A, and let N = maxj∈{1,...,V } |U
j
b|. Then it holds

that
Advanon−na

B (1ν) ≥ Advanon
A (1ν)/(V ·N2) = Advanon

A (1ν)/poly(ν),

which is non-negligible.

Now we go over to (ii). To show that Advanon−na
B (1ν) is negligible, we consider a series of games.
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Game H1. This game is actually Expanon−na
B (1ν). Simulation of all the oracles is done as described

in our scheme.

Game H2. The difference between H1 and H2 lies in the simulation of Qb−join∗ oracles.

– Qb−join(ℓ). Let i := Nℓ
u + 1. If ℓ 6= v or i 6∈ {i0, i1}, then H2, as a joining user, executes

Join protocol with B as described in our scheme. Otherwise, during the joining protocol,
H2 encrypts a different message from xi in Ei, i.e.,

Ci = bx′
i ,Xi = axi , Ei = Efgpk(Rxi

),

and then simulates E℘
i using the simulator. Other parts are remains as they are.

– Qb−joinauth(ℓ1, ℓ2). Simulation is similar to Qb−join.

Let AdvsCS
A be the advantage of A on the IND-CPA experiment of sCS encryption scheme. Since

revealing tkey(jlogv
i0) or tkey(jlogv

i1) is not allowed, it holds that

∣

∣

∣
Pr[H1(·) = 1]− Pr[H2(·) = 1]

∣

∣

∣
≤ 2 · AdvsCS

B .

Game H3. The difference between H2 and H3 lies in the challenge signature σ. In H2, the challenge
signature has the following form:

T1 = Aiby
w, T2 = gw, T3 = geib hw, T4 = gxib

k, T5 = gk, T6 = g
x′

ib
k′

, T7 = gk′

,

where 〈Aib , eib , xib , x
′
ib
〉 is uskv

ib
. In H3, however, the challege signature is as follows:

T1 = R1, T2 = yw, T3 = geib hw, T4 = gxib
k, T5 = gk, T6 = g

x′
ib

k′

, T7 = gk′

,

where R1, R2 ∈ QR(n). It holds that

∣

∣

∣
Pr[H2(·) = 1]− Pr[H3(·) = 1]

∣

∣

∣
≤ AdvDDH−KF

B .

Game H4. The challenge signature is modified further in this game:

T1 = R1, T2 = R2, T3 = R3, T4 = gxib
k, T5 = gk, T6 = g

x′
ib

k′

, T7 = gk′

,

where R3 ∈ QR(n). It holds that

∣

∣

∣
Pr[H3(·) = 1]− Pr[H4(·) = 1]

∣

∣

∣
≤ AdvDDH−KF

B .

Game H5. Further modification of the challenge signature:

T1 = R1, T2 = R2, T3 = R3, T4 = R4, T5 = R5, T6 = g
x′

ib
k′

, T7 = gk′

,

where R4, R5 ∈ QR(n). It holds that

∣

∣

∣
Pr[H4(·) = 1]− Pr[H5(·) = 1]

∣

∣

∣
≤ AdvDDH−KF

B .
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Game H6. Another modification of the challenge signature:

T1 = R1, T2 = R2, T3 = R3, T4 = R4, T5 = R5, T6 = R6, T7 = R7,

where R6, R7 ∈ QR(n). It holds that

∣

∣

∣
Pr[H5(·) = 1]− Pr[H6(·) = 1]

∣

∣

∣
≤ AdvDDH−KF

B .

Moreover, H6 does not retain any information about ib, which implies that Pr[H6(·) = 1] = 1/2.

In overall, we have

Advanon−na
B (1ν) ≤ 2 · AdvsCS

B + 4 · AdvDDH−KF
B .

Lemma 7. Under the CG-DDH assumption, for any PPT algorithm A,
∣

∣

∣
Pr[Exp

j−anon
A (1ν) = 1]− 1/2

∣

∣

∣
= neg(ν).

Proof: Applying similar argument used to prove the anonymity lemma, we only have to show
join-anonymity for non-adaptive adversaries.

Experiment Exp
j−anon−na
B (1ν)

〈st1, v, v′, i0, i1〉 ← B();
st2 ← B(st1 : Qb−gengroup,Qj−anon);
If i0 or i1 is not in Uv

b or has already joined Gv′ ,

then return ξ where ξ
R
← {0, 1};

δ
R
← {0, 1};

Execute JoinOnAuth
v′ with A(st1) using mkey(uskv

iδ
),

and at the end of the protocol A returns st2;
δ∗ ← B(st2 : Qvj−anon);

If {i0, i1} ∩ Uv
r 6= ∅, then return ξ where ξ

R
← {0, 1};

If δ = δ∗ then return 1;
return 0;

Let Adv
j−anon−na
B (1ν) := |Pr[Exp

j−anon−ns
B (1ν) = 1] − 1/2|. To show that Adv

j−anon−na
B (1ν) is

negligible, we consider a series of games.

Game H1. This game is actually Exp
j−anon−na
B (1ν). Simulation of all the oracles is done as de-

scribed in our scheme.

Game H2. The difference between H1 and H2 lies in the challenge protocol JoinOnAuth
v′ . In

H1, the adversary B, playing as the GMv′ , wlll receive:

authiδ = 〈T1, . . . , T6 = g
x′

iδ
k′

, T7 = gk′

, . . .〉, (in group Gv)

Ci′ = b
x′

iδ ,Xi′ = axi′ , Ei′ = Efgpk(xi′), E℘
i′ (in Gv′).
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However, H2 gives to B:

authib = 〈T1, . . . , T6 = g
x′

ib
k′

, T7 = gk′

, . . .〉, (in group Gv)

Ci′ = brx′ ,Xi′ = axi′ , Ei′ = Efgpk(xi′), E℘
i′ (in Gv′)

where rx′ ∈R M . From the CG-DDH assumption and the zero-knowledge property of E℘
i , we

have
∣

∣

∣
Pr[H2(·) = 1]− Pr[H1(·) = 1]

∣

∣

∣
= neg(ν).

Observe that Lemma 6 gurantees authiδ remains anonymous. Moreover Ci′ , Ei′ does not retain

any information about iδ, which implies that
∣

∣

∣
Pr[H2(·) = 1]− 1/2

∣

∣

∣
= neg(ν).

In overall, we have

Adv
j−anon−na
B (1ν) =

∣

∣

∣
Pr[H1(·) = 1]− 1/2

∣

∣

∣
= neg(ν).

Lemma 8. For any PPT algorithm A, Pr[Explink
A (1ν) = 1] = neg(ν).

Proof: This lemma simply holds from the soundness of the proof of knowledge used in ClaimLink

algorithm.

Lemma 9. Our scheme satisfies trusted fairness.

Proof: This holds simply from the fact that we used threshold cryptosystem. Therefore, even if
ζ−1 fairness authorities collaborate toghether, they cannot decrypt any messages. This means that
the view of an adversary with Qfa−share is computationally indistinguishable to the view without
the oracle. Note that we assumed that fairness authorities do not abort, which made us use more
simplified threshold schemes.

B The Adaptive One-More Representation Problem

We prove the Lemma 1 in this section. Firstly, to make our life easier, we use the following the
lemma due to [23]. For completeness, we prove the lemma. Recall that the Strong-RSA problem is,
given an RSA modulus n and z ∈ Z

∗
n, to find a pair 〈u, e〉 such that ue = z (mod n).

Lemma 10. Let n = pq with p = 2p′+1 and q = 2q′+1 with p, q, p′, q′ all prime numbers. Suppose
we know y, z ∈ QR(n) and t,m ∈ Z such that yt = zm (mod n) with gcd(t,m) < t and t > 1. Then
we can find e > 1 and u ∈ Z

∗
n such that z = ue (mod n), or we can factor n.

Proof:

– Case (i): gcd(t,m) = 1.
We can compute α, β ∈ Z such that αt + βm = 1. From this, in turn, we obtain:

z = zαt+βm = (zα)t)(zβ)t = (zαyβ)t

and thus, we return the pair 〈u, e〉 = 〈zαyβ, t〉 as a solution.
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– Case (ii): gcd(t,m) = δ > 1 and gcd(δ, p′q′) = 1.
It follows that δ ≤ min(|t|, |m|) and if t′ = t/δ and m′ = m/δ, it holds that (yt′)δ = (zm′

)δ .

Since gcd(δ, p′q′) = 1 we obtain that yt′ = zm′
with gcd(t′,m′) = 1; moreover t′ > 1 since

gcd(t,m) = δ < t. Thus we reduce the case (ii) to case (i).

– Case (iii): gcd(δ, p′q′) > 1.
It follows that δ is a multple of p′ (WLOG). Then we can factor n as follows: choose a random
integer w less than n; if gcd(w,n) > 1 then we are done; otherwise w ∈ Z

∗
n and w is a square

modulo p with probability about 1/2. It follows that wp′ = (w1/2)2p′ = (w1/2)p−1 = 1 (mod p).
Now compute the integer U = wδ = wπp′ (mod n), where δ = πp′ for some π ∈ Z. Then we have
U = wπp′ = (wp′)π = 1 (mod p). It follows that there exists an r ∈ Z such that U − 1 = rp.
Observe that it has to be that r < q since U < n. From this we obtain that gcd(U − 1, n) = p.

Now, we start to prove Lemma 1. Recall that Qrep is an oracle that, on input x′
i ∈ Λ, ouputs

Ai, ei, xi such that Aei

i = axibx′
ia0 holds with xi ∈ M , and a prime ei ∈ Γ (i.e., 〈Ai, ei, xi, x

′
i〉 is a

DL-representation). We show that, if there is a PPT algorithm A that solves the adaptive one-more
representation problem with non-negligible probability, there is a PPT algorithm B that solves the
Strong-RSA with non-negligible probability using A. This proof is very similar to the non-adaptive
case [22].

Suppose that A outputs 〈Â, ê, x̂, x̂′〉. The algorithm B is composed of four games that are played
at random. Each game may fail according to the following specifications:

1. Game 1 will fail if ê has a non-trivial common divisor with any of the values e1, . . . , ek.

2. Game 2 will fail if (i) ê is relatively prime to all values e1, . . . , ek, and (ii) it is not possible to

find a j ∈ [1,K] for which it holds that ax̂−xjbx̂′−x′
j = 1 with either x̂ 6= xj or x̂′ 6= x′

j.

3. Game 3 will fail if (i) ê is relatively prime to all values e1, . . . , ek, and (ii) for a pre-selected
value j it does not hold that ej divides ê and it does not hold that xj = x̂ and x′

j = x̂′.

4. Game 4 will fail if (i) ê is relatively prime to all values e1, . . . , ek and (ii) for a pre-selected value

j it does not hold that ej divides ê and it does not hold that ax̂−xjbx̂′−x′
j 6= 1.

Observe that playing the above games at random covers all possible behaviors of the algorithm
A with respect to the relation of the output DL-representation to the initial ones. We follow the
notation described in the Preliminaries. The description of the games follows:

Game-1

1. B selects prime numbers e1, · · · , ek randomly from Γ , sets a = ze1···eK , a0 = ar and b = ar′

where r, r′ ∈R M . B gives 〈n, a0, a, b〉 to A. Note that a0, a, b are indistinguishable from random
elements from QR(n).

2. When A invokes Qrep(x
′
i), B selects xi ∈ M , and computes Ai = z

(xi+r+r′x′
i)

e1···eK
ei . It returns

〈Ai, ei, xi, x
′
i〉, which is a DL-representation. In this way, B can simulate Qrep at most K times.

3. If A aborts, then B also aborts. If A outputs a valid DL-representation 〈Â, ê, x̂, x̂′〉 such that
gcd(ê, ei) > 1 for some i ∈ [1,K], then B aborts. Otherwise, now B has

Âê = a0a
x̂bx̂′

= z(r+x̂+r′x̂′)e1···eK .
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If we let ẽ := (r+x̂+r′x̂′)e1 · · · eK , we have Âê = zẽ. Compute δ := gcd(ê, ẽ) = gcd(ê, r+x̂+r′x̂′).
Since r, r′, x̂ ∈M , x̂′ ∈ Λ, and ê ∈ Γ , we have

δ ≤ r + x̂ + r′x̂′ < ê.

Therefore, from Lemma 10, we can solve the problem.

Game-2

1. B selects prime numbers e1, · · · , ek randomly from Γ . Then it flips a random coin bit σ ∈R {0, 1},
if σ = 0 it sets va = z and vb = zr′ , otherwise it sets va = zr′ and vb = z, where r′ ∈R M . Then
it sets a = ve1···eK

a , a0 = ar and b = ve1···eK

b where r ∈R M . B gives 〈n, a0, a, b〉 to A. Note that
a0, a, b are indistinguishable from random elements from QR(n).

2. When A invokes Qrep(x
′
i), B selects xi ∈ M , and computes Ai = (vr

av
xi
a v

x′
i

b )
e1···eK

ei . It returns
〈Ai, ei, xi, x

′
i〉, which is a DL-representation. In this way, B can simulate Qrep at most K times.

3. If A aborts, then B also aborts. Otherwise A outputs a valid DL-representation 〈Â, ê, x̂, x̂′〉.

4. If gcd(ê, ei) = 1 for all i ∈ [1,K], then B aborts.

5. If ax̂−xi 6= bx′
i−x̂′

or x̂− xi = x′
i− x̂′ = 0 for all i ∈ [1,K], then B aborts. Otherwise, there is an

index j such that ax̂−xj = bx′
j−x̂′

and either x̂ − xj or x′
j − x̂′ is not zero. Denote ∆ := x̂− xj

and ∆′ := x′
j − x̂′. Then we have

ve1···eK∆
a = a∆ = b∆′

= ve1···eK∆′

b ,

which implies

v∆
a = v∆′

b

since gcd(e1 · · · eK , p′q′) = 1 (otherwise we can factor n.)

6. When ∆ 6= 0 and ∆′ 6= 0, compute Compute δ := gcd(∆,∆′), and α, β such that δ = α∆+β∆′.
We know that δ ≤ ∆′.

If δ < ∆′ and σ = 0, then we have

z = va = v
α∆+β∆′

δ
a = (vα

b vβ
a )∆

′/δ.

we found u = vα
a vβ

b and e = ∆′/δ > 1 such that z = ue.

If δ = ∆′ and σ = 1, then ∆/∆′ is an integer, which implies

z = vb = v∆/∆′

a .

So we found u = va and e = ∆/∆′ > 1 such that z = ue.

7. When ∆ = 0 and ∆′ 6= 0 then we have

v∆′

b = 1,

which means ∆′ is non-trivial divisor of |QR(n)|. So we can factor n (see Lemma 10), and solve
the Strong-RSA problem. The case where ∆ 6= 0 and ∆′ = 0 is symmetric.

Game-3
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1. B selects prime numbers e1, · · · , ek randomly from Γ , and j randomly from [1,K]. Then it sets

a = v

e1···eK
ej

a , a0 = A
ej

j /as and b = v

e1···eK
ej

b where Aj = z
e1···eK

ej , va = zr and vb = vr′
a with

r ∈R M , r′ ∈R [1, 2ν/4], s ∈R [r′ · 2ν/4, 2ν/2]. B gives 〈n, a0, a, b〉 to A. Note that a0, a, b are
indistinguishable from random elements from QR(n).

2. B answers to A’s query with Qrep(x
′
i). If i = j (i.e., j-th query), then B computes xj = s− r′x′

j

(note that xj ∈M) and returns 〈Aj , ej , xj , x
′
j〉; otherwise B selects xi ∈R M and computes

Ai = (zejvxi
a v

x′
i

b v−s
a )

e1···eK
eiej =

(

(

zej

vs
a

)

e1···eK
ej

)1/ei

· (axibx′
i)1/ei .

It returns 〈Ai, ei, xi, x
′
i〉, which is a DL-representation. In this way, B can simulate Qrep at most

K times.
3. If A aborts, then B also aborts. Otherwise A outputs a valid DL-representation 〈Â, ê, x̂, x̂′〉.
4. If gcd(ê, ej) = 1, then B aborts.

5. If x̂ 6= xj or x̂′ 6= x′
j, then B aborts. Otherwise, we have x̂ = xj and x̂′ = x′

j, which implies

Âê = a0a
x̂bx̂′

= a0a
xjbx′

j = A
ej

j = ze1···eK .

Compute δ = gcd(ê, e1 · · · eK). If δ < ê, we are done from Lemma 10. If δ = ê, it means
either ê = ej (impossible; then the representation output would not be fresh) or ê = ejej′ (also
impossible from the sphere restriction).

Game-4

1. B selects prime numbers e1, · · · , ek randomly from Γ , and j randomly from [1,K]. Then it sets

a = z
e1···eK

ej (mod n), a0 = A
ej

j /as and b = ar′ where Aj = ar with r ∈R M , r′ ∈R [1, 2ν/8],

s ∈R [r′ ·2ν/4, 2ν/2]. B gives 〈n, a0, a, b〉 to A. Note that a0, a, b are indistinguishable from random
elements from QR(n).

2. B answers to A’s query with Qrep(x
′
i). If i = j (i.e., j-th query), then B computes xj = s− r′x′

j

(note that xj ∈M) and returns 〈Aj , ej , xj , x
′
j〉; otherwise B selects xi ∈R M and computes

Ai = z
(xi+r′x′

i+rej−s)
e1···eK

eiej = z
(xi+r′x′

i+rej−s)
e1···eK

eiej =
(

arej−saxibx′
i

)1/ei

.

It returns 〈Ai, ei, xi, x
′
i〉, which is a DL-representation. In this way, B can simulate Qrep at most

K times.
3. If A aborts, then B also aborts. Otherwise A outputs a valid DL-representation 〈Â, ê, x̂, x̂′〉.
4. If gcd(ê, ej) 6= ej , then B aborts. Otherwise, we have ê = tej for some t ∈ Z. Next we check

whether x̂ − xj + r′(x̂′ − x′
j) 6= 0 and in this case we proceed as follows. Let Z := Ât/Aj and

γ := x̂− xj + r′(x̂′ − x′
j). Then we have

Zej =

(

Ât

Aj

)ej

=
Âê

A
ej

j

=
a0a

x̂bx̂′

a0axjbx′
j

= ax̂−xj+r′(x̂′−x′
j) = aγ = z

γ
e1···eK

ej .

If aγ = 1, then we can factor n (see Lemma 10). Otherwise, let ẽ := γ e1···eK

ej
. The it follows

Zej = zẽ. Compute δ := gcd(ej , |ẽ|) = gcd(ej , |γ|). Since ej ∈ Γ is a prime number, δ = 1.
Therefore by Lemma 10 we can solve the Strong-RSA problem.
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As a result, using A, the algorithm B can solve the Strong-RSA problem by playing the above
games. If α is the success probability of A, it is easy to see that the above algorithm will solve the
Strong-RSA problem with success probability at least α/2K.
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