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Abstract

In this work we deal with one-round key-agreement protocols, called Merkle’s Puzzles,
in the random oracle model, where the players Alice and Bob are allowed to query a random
permutation oracle n times. We prove that Eve can always break the protocol by querying
the oracle O(n2) times. The long-time unproven optimality of the quadratic bound in the
fully general, multi-round scenario has been proven recently by Barak and Mahmoody-
Ghidary. The results in this paper have been found independently of their work.

1 Introduction

In this work we prove the tight upper-bound on the number of queries needed to break a key-
agreement protocol in the random oracle model. The key-agreement protocol called Merkle’s
puzzles, developed by Merkle in 1974 a published in 1978 [3] is one of the earliest example of
public-key encryption.

Following the protocol, two parties can agree on a secret-key by exchanging messages, as-
suming that they share no secrets beforehand. Informally, Alice creates a message for Bob in
the following way - she constructs a large number of puzzles of moderate difficulty, each of them
being possible to solve with Bob’s computational resources. All of them are in the form of an
encrypted message with an unknown key that is short enough to allow the brute force attack.
After receiving the message from Alice, Bob chooses one puzzle uniformly at random and solves
it. The solution contains an identifier and a key. Bob encrypts the identifier with the key, and
announces it back to Alice. The solution of the puzzle solved by Bob becomes Alice’s and Bob’s
secret-key. Since the puzzle’s identifier is sent to Alice as a message encrypted with a key that
is unknown to Eve, the eavesdropper’s best strategy to attack the key-agreement protocol is to
solve as many puzzles as possible. To achieve constant probability of success, she has to solve
a constant fraction of them, which might require much more computational power than Alice
and Bob have.

In a similar way we construct a key-agreement protocol in the random oracle scenario, where
the computational difficulty of key-agreement is expressed by the number of oracle queries that
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Alice and Bob make to agree on a secret-key. Instead of creating many puzzles, Alice queries the
oracle in many positions that are unknown to both Bob and Eve, and sends the images of the
queried elements to Bob. Bob queries the oracle in sufficiently many positions to get a collision
with Alice’s set of queries with high probability. He recognizes the collision from Alice’s message
and reports it back to Alice by its identifier – the oracle image. The pre-image becomes Alice’s
and Bob’s secret-key. The communication gives Eve almost no information about the key, since
the oracle is random. With the same number of queries as Bob, she would find a collision with
Alice’s set of queries with high probability, but not necessarily the one found by Bob. Hence,
finding the right element might require significantly more oracle queries than Alice and Bob
needed to agree on the secret-key.

Until recently, the best upper-bounds on Eve’s number of queries needed to break such
protocols have been proven by Impagliazzo and Rudich [2]. They have shown that in any key-
agreement protocol based on a random permutation-oracle, where Alice and Bob agree on the
secret-key in n rounds in such a way that they query only one query per round, Eve needs O(n3)
oracle queries to output a secret-key guess that matches with Bob’s secret-key with the same
probability as Alice’s key does. They call this form of protocols the normal form, and proved
that every protocol can be put into the normal form with at most quadratic blow-up in the
number of oracle queries used. Here the question is studied in the larger context to show that
any proof that secure key-agreement relative to some random permutation oracle is possible
implies P 6= NP. In other words, no proof that the existence of one-way function implies the
existence of secure key-agreement relativizes.

The bound from [2] has been improved recently by Barak and Mahmoody-Ghidary [1] to
the optimal O(n2).

In our paper we deal with one-round key-agreement protocols where Alice and Bob query
the oracle a and b times, respectively, is a subset of protocols whose normal form consists of
a+ b rounds. We prove the tight – O((a+ b)2) upper-bound on the number of queries Eve needs
to break the protocol.

2 One-Round Key-Agreement Protocols

In this section, we model one round key-agreement protocols between Alice and Bob. We
assume that Alice, Bob, and an eavesdropper Eve have access to an oracle computing a random
permutation f on {1, . . . , n}. We define a one-round key-agreement protocol as follows:

Protocol 1

Given n ∈ N and an oracle computing a random permutation f on {1, . . . , n},

1. Alice queries the oracle f in positions A1 ∈ {1, . . . , n}≤a, computes a message CA and
sends it to Bob.

2. Bob, given CA, queries the oracle f in positions B ∈ {1, . . . , n}≤b, computes message CB

and sends it to Alice. Bob generates the secret-key kB ∈ {0, 1}ℓ, kB = gB(B, f(B), C, RB),
where C = (CA, CB), and RB denotes some randomness.
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3. Alice, given C, queries the oracle in positions A2 ⊆ {1, . . . , n} such that for A := A1 ∪A2,
|A| ≤ a, and generates the secret-key kA ∈ {0, 1}ℓ, kA = gA(A, f(A), C, RA), where RA

denotes some randomness.

We denote by (a, b, ε)–key-agreement any one-round key-agreement protocol defined as above
and satisfying the following condition: Pr [kA 6= kB ] ≤ ε where ε < 1 is a constant.

In fact, a, and b are functions of n, but for simplicity we keep this notations instead of a(n)
and b(n), if the latter one is not explicitly needed. Since key-agreement protocols take place

between players Alice and Bob sharing no initial secret, the key generation mechanism must
involve common queries to the oracle f . We will say that Eve breaks the protocol, if she outputs
the string that agrees with Bob’s secret-key with the same probability as Alice does.

Let E denote the set of oracle queries of an attacker Eve.

Lemma 2.1 In order to break an (a, b, ε)–key-agreement protocol it is sufficient for Eve to query

all intersection queries of Alice and Bob used for the generation of Alice’s secret-key.

Proof Eve querying all elements in A1 ∩B can construct a permutation f ′ matching with f on
E, and a set A′

1 of queries to the oracle computing f ′ such that CA = CA′

1
and f ′ is consistent

with CB. Therefore, after querying B, Bob has exactly the same view about A1 as he has
about A′

1. Eve constructs the set A′
2 according to A′

1 and C and then “queries” the f ′-oracle
on the positions in A′

2. Finally, she generates her secret-key kE = gA(A′, f(A′), C, RA′) for
A′ := A′

1 ∪ A′
2. From Bob’s point of view, both kE and kA are generated from the same set

K ⊆ A ∩ B, i.e. Pr[kB = kE ] = Pr[kB = kA].

3 Proof of the Quadratic Upper-Bound

We will consider the following attack of an (a, b, ε)–key-agreement protocol:

1. Eve repeats Bob’s querying strategy γa times for some constant γ (γab oracle queries) in
order to query all queries in A1 ∩ B with constant probability

2. Eve extracts the position of the A2-queries from CB and queries the oracle on these posi-
tions (a oracle queries)

Next we prove that with the proposed strategy Eve breaks the protocol with constant prob-
ability.

Lemma 3.1 By repeating Bob’s strategy independently 5a times, Eve finds all elements in

A1 ∩ B with constant probability.

Proof Let A, B denote the random variables associated with Alice querying the elements
in A1 and Bob querying the elements in B, respectively. Let E denote the random variable
associated with the set of Eve’s queries. Assume that for x, y ∈ {1, . . . , n}, x ≤ y, PχB=1|CA

(x) ≤
PχB=1|CA

(y).
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Define A0
1 := A1, B0 := B, A0 = A, B0 := B, s0 := 〈|A1 ∩ B|〉CA

, n0 := n. In the i-th
step (starting with i = 0), let us consider ni+1, Ai+1

1
, Bi+1, Ai+1, Bi+1, si+1 with the following

properties:

∀x ∈ {ni+1 + 1, . . . , ni} : PχB=1|CA
(x) ≥ si

2a
,

Ai+1
1

:= A1\{ni+1+1, . . . , n}, Bi+1 := B\{ni+1+1, . . . , n}, Ai+1, Bi+1 denote the corresponding
random variables, si+1 := 〈|Ai+1

1
∩ Bi+1|〉CA

.
Furthermore, consider u such that

Pr[A1 ∩ B ⊆ {nu + 1, . . . , n}|CA] ≥ 1

2
.

First we prove that

1. there exists u ∈ N with the desired property

2. ni+1 < ni for i ∈ {0, . . . , u − 1}

3. si − si+1 ≥ 1 for i ∈ {0, . . . , u − 1}

4. su ≥ 1

Proof of 1.,2.,3.,4.

si = 〈|Ai
1 ∩ Bi|〉CA

=
∑

|A|≤a

PAi|CA
(A)

∑

|B|≤b

PBi|CA
|A ∩ B|,

thus there exists at least one Ā ⊆ {1, . . . , n}≤a such that
∑

|B|≤b PBi|CA
(B)|Ā ∩ B| ≥ si.

Let us choose one such Ā. Then

si ≤
∑

|B|≤b

PBi|CA
(B)|Ā∩B| =

∑

|B|≤b

∑

x∈|Ā∩B|

PBi|CA
(B) =

∑

x∈Ā

∑

B: x∈Ā∩B

PBi|CA
(B) =

∑

x∈Ā

Pχ
Bi=1|CA

(x).

Since |Ā| ≤ a, there is an x ∈ {1, . . . , ni} such that Pχ
Bi=1|CA

(x) ≥ si
a . If we remove

x ∈ {1, . . . , ni} such that Pχ
Bi=1|CA

(x) ≥ si
2a , then si+1 ≤ si

2
.

Since in every step we remove at least one x ∈ {1, . . . , n}, the procedure terminates after
finitely many steps, thus u is well-defined and is at most n. Clearly, for si < 1 we have
Pr[Ai+1

1
∩Bi+1 = ∅|CA] > 1

2
, thus with probability at least 1/2 we have A1∩B ⊆ {ni+1, . . . , n},

therefore su ≥ 1 and for i ∈ {0, . . . , u − 1} :

si − si+1 ≥ si

2
≥ su−1

2
≥ 1.

Now let us finish the proof of the statement by showing that by repeating Bob’s strategy 5a
times independently Eve does not query all elements in A1 ∩ B with probability at most 7/8.
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For x ∈ {ni+1 + 1, . . . , ni} Eve does not query x with probability

PχE=0|CA
(x) ≤

(

1 − si

2a

)a
≈ e−si/2.

That means that in the case when

|Ai
1 ∩ Bi ∩ {ni+1 + 1, . . . , ni}| ≤

esi/2

2s2
i

the probability that Eve does not query at least one element in {ni+1, . . . , ni} ∩ Ai
1 ∩ Bi is

Pr





∏

x∈{ni+1,...,ni}∩Ai
1
∩Bi

χE(x) = 0|CA



 ≤ esi/2

2s2
i

· e−si/2 =
1

2s2
i

.

Since the expected number of elements in Ai
1 ∩Bi ∩{ni+1 +1, . . . , ni} is si, Markov’s inequality

tells us that this happens with probability at most
2s3

i

esi/2 . This implies that there is at least one

0 ≤ i < u such that |Ai
1 ∩ Bi ∩ {ni+1 + 1, . . . , ni}| > esi/2

2s2
i

with probability at most
∑u

i=0

2s3
i

esi/2 .

The function 2x3

ex/2 is decreasing for x ≥ 6, thus

u′−1:su′≥6
∑

i=0

2s3
i

esi/2
≤

u′−1:su′≥6
∑

i=0

(si − si+1)
2s3

i

esi/2
≤

∫ ∞

x=su′

2x3

ex/2
dx.

Then for su′ ≥ 28 we have
u′−1:su′≥28

∑

i=0

2s3
i

esi/2
<

1

8
.

Furthermore, for si < 28 (there are at most 5 of them, since si+1 ≤ si/2 and su ≥ 1), the
probability that Ai

1 ∩Bi ∩ {ni+1 + 1, . . . , ni} contains more than 40si elements is at most 1/40,
by Markov’s inequality.

Thus the probability that there exists an i, 0 ≤ i < u such that

|A1 ∩ B ∩ {ni+1, . . . , ni}| > max{40si,
esi/2

2s2
i

}

is at most 1

8
+ 5

40
= 1

4
. This is the probability that A1 ∩B has a “bad structure” for finding all

its elements by Eve.
It is sufficient for Eve to repeat Bob’s algorithm (log 80 + 3 log si)a/si ≤ 5a times to get all

elements in A1 ∩B ∩{ni+1, . . . , ni}, i ≥ u′, assuming that there are no more than 40si of them,
with probability at least 1 − 1

2s2
i
.
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That means that with 5a independent iterations of Bob’s strategy Eve does not query at
least one element of A1∩B∩{nu+1, . . . , n} = A1∩B for well-structured A1∩B with probability

Pr





∏

x∈{nu+1,...,n}∩A1∩B

χE(x) = 0|CA



 ≤ 1

2
·

u
∑

i=0

1

s2
i

≤
u−1
∑

i=0

(si − si+1) ·
1

2s2
i

+
1

2s2
u

≤ 1

2
·
∫ ∞

x=su

dx

x2
=

1

2su
≤ 1

2
.

Since A1 ∩ B ( {nu + 1, . . . , n} with probability at most 1

2
, and A1 ∩ B is malstructured

with probability at most 1

4
, A1 ∩B ⊆ {nu + 1, . . . , n} and is well-structured with probability at

least 1

4
must hold. In this case Eve queries all intersection elements with probability at least 1

2
,

thus Eve finds all intersection queries of A1 and B with probability at least 1

8
.

Theorem 3.2 Eve can break an (a, b, ε)–key-agreement protocol with O((a + b)2) queries with

constant probability.

Proof As was claimed in the proof of Lemma 2.1, Eve querying all queries in A1 ∩B needs at
most |A2| ≤ a queries more to generate the key that matches with Bob’s secret-key with the
same probability as Alice’s key does. Lemma 3.1 shows that Eve can always query all elements
in A1 ∩B with probability 1/8 with at most 5ab queries. Therefore, Eve can break the protocol
with constant probability with 5ab + a ∈ O((a + b)2) oracle queries.

4 Optimality of the Bound

Consider the following protocol:

Protocol 2

1. Alice chooses a set A ⊆ {1, . . . , n}, |A| = a = ⌈√n⌉ uniformly at random, queries the
oracle for the elements of A, and sends CA = {f(x) : x ∈ A} to Bob.

2. Bob chooses a set B ⊆ {1, . . . , n}, |B| = b = ⌈√n⌉ uniformly at random, queries the
elements of B, chooses a collision element k ∈ {f(y) : y ∈ B} ∩ CA at random, and sends
CB = {f(k)} to Alice. He outputs his secret-key k.

3. Alice recognizes k according to CB and A, and outputs her secret-key k.

Attack: Bob finds at least one collision with Alice’s set of queries due to the birthday
argument, therefore, the given protocol is an example of (

√
n,

√
n, ε)-key-agreement protocol for

a constant ε < 1. Given C, the secret-key is uniformly distributed on {1, . . . , n} and furthermore,
since the oracle is random, Eve knowing the oracle image for o(n) elements still has (1 −
o(1)) log n entropy about f(x) for x /∈ E. Hence, Eve has to query the oracle in Θ(n) positions
to get the right secret-key with constant probability, i.e the best Eve’s attack to break the
protocol with constant probability has to involve O(n) = O((a + b)2) oracle queries.
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5 Conclusion

We provided an analysis of the most commonly considered attack of these type of key-agreement
protocols where the attacker iterates the players’ strategies with gradually updated information
in the case of one-round protocols. We were hoping to generalize the result to apply in the
multi-round scenario, which has been done very recently by Barak and Mahmoody-Ghidary.
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