
Fast explicit formulae for genus 2 hyperelliptic curves
using projective coordinates (Updated)

Thomas Wollinger

Escrypt – embedded security GmbH
twollinger@escrypt.de

Vladyslav Kovtun
Kharkiv Air Force University
vladislav.kovtun@gmail.com

Abstract

This contribution proposes a modification of method

of divisors group operation in the Jacobian of
hyperelliptic curve over even and odd characteristic
fields in projective coordinate. The hyperelliptic curve
cryptosystem (HECC), enhances cryptographic security
efficiency in e.g. information and telecommunications
systems (ITS).

Index Terms – hyperelliptic curves, explicit formulae.

1. Introduction

The sweeping progress in Information Technologies

implies several requirements on modern ITS, especially to
secure confidence level, integrity, observability and
authenticity of the information that is created, circulates
and is being stored. A typical example of such ITS is used
for bank applications. ITS can be ensured by applying a
data protection based on public key cryptographic.

The transformation in a group of points over an elliptic
curve (EC) is accepted as a modern public key primitive
[1]. Standard [1] describes the main operator of EC scalar
multiplication. Nowadays, the transformation in Jacobian
of hyperelliptic curve (HEC) are considered the most
promising substitution of EC. The cryptographic
transformation in Jacobian is also grounded on scalar
multiplication [2] of reduced divisors (hereinafter referred
to as divisors).

At the same time, the increasing number of security
sensitive applications leads to continuous increase of load
pressure on information protection system, and
specifically on the public key cryptographic primitives.
Thus, it is important to get a significant decrease in
computational complexity (hereinafter, complexity) for
these primitives. This decrease achieved by reducing the
complexity of divisor scalar multiplication, and, therefore
by reducing the complexity of group addition and
doubling of divisors.

Until recently, arithmetic transforms in Jacobian have
been performed using Cantor’s method [10], with
modifications introduced by Koblitz [2]. HECC were
elaborate both in terms of description and in efficient
calculations. In this context, the academic community put
a lot of attention to enhancing efficiency of the HECC,
e.g. [3-10]. The result has been improved methods of

arithmetic transforms in Jacobian. Until today, there were
many publications trying to improve the HECC. In this
paragraph, the authors list only the ones most important
for the contribution at hand. Methods of addition and
doubling for curves of genus 2 were considered in papers
[3, 4]. The first practical implementation of these methods
was performed by Harley [5]. The extension of the results
[5] for curves over even characteristic fields is given in
[6]. Further development of methods of addition and
doubling is given in papers [7, 8] and the results have also
been extended for curves over even characteristic fields in
[9, 10].

The analysis of complexity of the known methods of
arithmetic transforms in Jacobian genus 2 HEC over even
and odd characteristics demonstrates that the existent
methods are already efficient, however there is still room
for further improvements, as shown in this contribution.

The most complex field operation during the operators
of divisor addition and doubling in the HECC is the
inversion, see e.g. [11, 13]. In [7], for the first time an
approach for implementing arithmetic operations in
Jacobian genus 2 HEC without having to compute field
inversion were published. Further development of the
proposed approach is given in [12, 13] while the results
are improved and spread to a wider class of HEC over
even characteristic field. The contribution at hand uses as
basis the group operation algorithms as presented in
[5, 6, 9].

In compliance with the introduced constructions, the
objective of the paper is in providing more efficient group
operations on the basis of genus 2 HEC using projective
coordinates []ZVVUU ,,,, 0101 [6, 12]. We were able to
decrease the complexity of the scalar multiplication by
4 % and therefore increase efficiency.

2. Efficient Explicit Formulae for HECC
Using Projective Coordinates

The proposed improvement in complexity is based on
Harley’s method [5] and the modifications of Harley
algorithm published in [6].

Algorithm of addition and doubling can be computed
using operations in the ring of polynomial functions:
division, multiplicative inversion, modular reduction,
multiplication. Our methods that were used to reduce the
number of these field operations are listed below:

mailto:twollinger@escrypt.de
mailto:vladislav.kovtun@gmail.com

• In order to simplify arithmetic operation procedures in
the ring of polynomial functions, we performed
normalization of these functions [6, 12];

• In order to normalize and minimize Hamming weights
of HEC parameters and we applied HEC of
a special form [7, 9, 14, 15];

()xh ()xf

• In order to simultaneously invert several field elements,
we applied the Montgomery method [5, 6, 9];

• In order to multiply polynomial functions with different
powers, we applied the Karatsuba method [6];

• In order to modular reduce polynomial functions with
different powers, we applied the Karatsuba method [5];

• In order to exclude inversion over field, we applied
projective representation of divisors [6, 7, 12].

2.1. Group Operations for HECC over Odd
Characteristics Field

Based on the modifications proposed above, we obtain
the following group arithmetic for the HECC which is
specified by the equation over ,
considering odd characteristic field and projective
coordinates, where ,

() ()ufvuhv =+2
qF

01
2

2 hxhxhh ++= 2F∈ih and

, , .

Obtained algorithms for specified above curves, are
presented in Tables II, III.

01
2

2
3

3
4

4
5 fxfxfxfxfxf +++++= 24 F∈f qif F∈

2.2. Group Operations for HECC over Even
Characteristics Field

In this subsection, we consider arithmetic transforms
with divisors in Jacobian HEC over even characteristic
fields. HEC application over such fields allows for a more
efficient group arithmetic if compared to odd
characteristics fields.

For this case we used HEC with () xxh = and

, . Obtained algorithms for the
specified above curves are presented in Tables IV, V.

01
5 fxfxf ++= 2F∈if

3. Analysis of Computational Complexity

In Table I, we give the complexity evaluation,
comparing our algorithms and the ones introduced in
[5, 6, 9, 12-15]. The algorithm complexity is shown in
field operations.

The newly introduced algorithms are the most
efficient, when considering projective coordinates over
even and odd field. We were able to decrease the
complexity of the algorithms, by up to 15 % compared to
the fasted algorithm introduced in [6, 14]. We believe that
even if our contribution is not to cause a speed increase of

magnitudes, an aggregated effort of many contributions
we will definitely be able to reach the speed sufficient for
practical applications.

4. Conclusions

In accordance with the paper objective, there was

developed a method of arithmetic transforms in Jacobian
genus 2 HEC in projective coordinates which provides a
lower complexity if compared to the most efficient
methods known [6, 12, 14, 15] and, thus, allowing for
increase in the efficiency of scalar multiplication. This
modification is characterized by:
• reduction of the number of recomputable values,
• changes in the sequence of the computational steps;
• using dependencies between polynomials in the

resultant computation.

The suggested modification of method of arithmetic
transforms in Jacobian genus 2 HEC results in 3 to 15 %
reduction of complexity dependant on arithmetic
operations used and curve type.

Thus, applying the introduced group operation reduces
the complexity of the HECC scalar multiplication by 4 %
compared to the best known formulae [6, 12, 14].

5. References

[1] IEEE P1363-2000. Standard Specifications for Public
Key Cryptography. Available at: http://www.ieee.org.
[2] N. Koblitz Hyperelliptic cryptosystems. Journal of
cryptology, No 1, 1989, pp.139-150.
[3] A. M. Spallek, “Kurven vom geschlecht 2 und ihre
anwendung in public-key-kryptosystemen”, PhD thesis,
Universitat Gesamthochschule Essen, 1994.
[4] U. Kriger, “Anwendung hyperellipischer kurven in
der kryptographie”, Master’s thesis, Universitat
Gesamthochschule, Essen, 2001.
[5] R. Harley, “Fast arithmetic on genus 2 curves”,
available at: http://cristal.infra.fr/~harley/hyper. 2000.
[6] T. Wollinger, “Software and hardware implementation
of hyperelliptic curve cryptosystems”, PhD dissertation.
Bochum, Germany, May 2004.
[7] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, S. Tsujii,
“A fast addition algorithm of genus two hyperelliptic
curve”, In the 2002 Symposium on cryptography and
information security – SCIS 2002, IEICE Japan, pp. 497-
502, 2002. In Japanese.
[8] M. Takahashi, “Improving Harley algorithms for
Jacobians of genus 2 Hyperelliptic curves”, In Proc. of
SCIS2002, IEICE Japan, 2002. In Japanese.
[9] T. Lange, “Efficient arithmetic on genus 2
hyperelliptic curves over finite fields via explicit
formulae”, Cryptology ePrint Archive, report 2002/121,

http://www.ieee.org/
http://cristal.infra.fr/%7Eharley/hyper.%202000

2002. Available http://eprint.iacr.org. [12] T. Lange, “Inversion-free arithmetic on genus 2
hyperelliptic curves”, Cryptology ePrint Archive, report
2002/147, 2002. Available http://eprint.iacr.org.

[10] H. Suguzaki, K. Matsuo, J. Chao, S. Tsujii, “An
extension of Harley algorithm addition algorithm for
hyperelliptic curves over finite fields of characteristic
two”, Technical report ISEC2002-9, IEICE Japan, 2002.
pp. 49-56.

[13] T. Lange, “Weighted coordinates on genus 2
hyperelliptic curves”, Cryptology ePrint Archive, Report
2002/153, 2002. Available http://eprint.iacr.org.
[14] B. Byramjee and S. Duquesne, “Classification of
genus 2 curves over F2 and optimization of their
arithmetic", Cryptology ePrint Archive, Report 2004/107,
2002. Available http://eprint.iacr.org.

[11] D. Hankerson, J. Lopez Hernandez, A. Menezes,
“Software implementation of elliptic curve cryptography
over binary fields”, Cryptographic Hardware and
Embedded Systems, CHES'2000, Springer-Verlag, LNCS
1965, 2001, pp 1-24.

[15] T. Lange, M. Stevens, “Efficient Doubling on Genus
Two Curves over Binary Fields”, Selected Areas in
Cryptography, Springer-Verlag, LNCS 3357, 2004,
pp. 170 – 181.

TABLE I

Addition Mixed addition Doubling Conditions ()-1 ^2 * ()-1 ^2 * ()-1 ^2 *

Odd characteristic field
Affine coordinates

04 =f [9] 1 3 22 1 5 22
Projective coordinates

() 2deg =h , [12] 2F∈ih 4 47 3 40 6 40
() 2deg =h , [proposed] 2F∈ih 4 46 4 39 6 39

Even characteristic field
Affine coordinates

04 =f [6, 9] 1 3 22 1 5 22
02 =h , [6, 9] 04 =f 1 3 21 1 5 17

() xxh = , , [6] 04 =f 023 == ff 1 6 9
() xxh = , , () 0

23
3

5 fxxfxxf +++= ε 2F∈ε [14] 1 24 1 5 13

() 2deg =h , , , , 00 =h qh F∈1 () 01
45 fxfxxxf +++= ε 2F∈ε [14] 1 25 1 4 22

qh F∈1 , , [15] 002 == hh 014 == ff 1 5 9
11 =h , , 002 == hh 014 == ff [15] 1 6 5
() 2deg =h , , , [15] 00 =h qh F∈1 023 == ff 1 5 17
() 2deg =h , , , [15] 00 =h 21 F∈h 023 == ff 1 6 12

Projective coordinates
02 =h , [9] 04 =f 4 49 4 39 7 38

() xxh = , , [6] 04 =f 023 == ff 5 45 5 38 7 31
() xxh = , , [proposed] 04 =f 023 == ff 4 44 5 37 7 29
() 2deg =h , , [14] qih F∈ 04 =f 3 42 6 39

() 2deg =h , , , , 00 =h qh F∈1 () 01
45 fxfxxxf +++= ε 2F∈ε [14] 45 6 38

() xxh = , , () 0
23

3
5 fxxfxxf +++= ε 2F∈ε [14] 3 39 5 26

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

TABLE II. Algorithm 1. Mixed addition of divisors
Input: [U11, U10, V11, V10, 1], [U21, U20, V21, V20, Z2]
Output: [U’1, U’0, V’1, V’0, Z’] = [U11, U10, V11, V10, 1] + [U21, U20, V21, V20, Z2]
 Operations Cost
1 Precomputation: 11211

~ UZU ⋅= , 21111
~ UUy −= , 210202 ZUUy ⋅−= . 2M

2 Computation of r for and : 1u 2u 21113 yyUy +⋅= , . 10
2
132 Uyyyr ⋅+⋅= 1S, 3M

3 Computation 12 mod uurinv = , 01 invxinvinv += : 11 yinv = , 30 yinv = .
4 Computation of , () 121 mod uinvvvs −= 01 sxss += : 202100 VZVw −⋅= , 212111 VZVw −⋅= , ,

,
002 winvw ⋅=

113 winvw ⋅= () () ()11132− − ⋅ +10101 wwinvinvs +⋅+= Uww , 31020 wUws ⋅−= .
If then <Special case is considered> 01 =s

7M

5
2ZrR ⋅= , , , 202 Zss ⋅= 213 Zss ⋅= 3

~ sRR ⋅= , 010 ssw ⋅= , 311 ssw ⋅= , 302 ssw ⋅= , ,
.

2113 Uww ⋅=

14 sRw ⋅=

9M

6 Computation of : , 2sul = 2000 Uwl ⋅= 232 wwl += , () () 302021011 wlUUwwl −−+⋅+= . 2M
7 Computation of , ()() 1

112 −−++=′ ukvhlsu () 1
2
11 uvhvfk −−= : , 2

211321
~2~ RRhysswU −+⋅−=′

() ++⋅+⋅+−⋅⋅⋅+=′ RhVwwysUsyssU ~22~~
121412211111

2
20 () ()[]2421111122 2~ ZfUyrUsshR −+⋅+−⋅ .

2S, 8M

8 Correction: , , . RUU ~~
00 ⋅′=′ RUU ~~

11 ⋅′=′ RsZ ~2
3 ⋅=′ 1S, 3M

9 Computation of , () uvlshv ′++−≡′ mod21 01 vxvv ′+′=′ :

()++′−⋅′=′ RhUlUV ~~~
21211 ()121410

2
3

~~ lVwRhUs −−−′⋅ , ()−+′−⋅′=′ RhUlUV ~~~
21200 ()20400

2
3

~ VwRhls ⋅++⋅ .
5M

4S, 39M

TABLE III. Algorithm 2. Doubling of divisor
Input: [U1, U0, V1, V0, Z]
Output: [U’1, U’0, V’1, V’0, Z’] = 2[U1, U0, V1, V0, Z]
 Operations Cost
1 Precomputation: , 2

2 ZZ = 12111 2~ UhVZhV −+= , 02000 2~ UhVZhV −+= . 1S

2 Computation of r for and (while u vh 2+ () uvhv mod2~ +≡): , , 2
10 Vw = 2

11 Uw =

1
2
202

2
1

2
12 4~ whwZhVw −== + , 1103

~~ VUZVw ⋅−⋅= , 0230
~ UwwVr ⋅+⋅= .

2S, 4M

3 Computation uvrinv mod~≡ , 01 invxinvinv += : 11
~Vinv −= , 30 winv = .

4 Computation of ()[] uuvhvfk mod2−−≡ , 01 kxkk += :

1233 wZfw +⋅= , ()12144311 22 VhUfwZwwk ++⋅−+= , 04 2Uw = ,
()()+−++⋅⋅= 31214410 2 wVhUfwZUk ()()00402112 2 wUfVhVhZfZZ −−−−⋅⋅⋅+ .

7M

5 Computation of , uinvks mod⋅= 01 sxss += : 000 invkw ⋅= , 111 invkw ⋅= , 1000 wUZws ⋅⋅−= ,
, () () ()11010103 1 Uwwkkinvinvs +⋅−−+⋅+= Zss = ⋅31 . If 01 =s then <Special case is considered>

7M

6
2ZrR ⋅= , 1

~ sRR ⋅= , , 310 ssw ⋅= 301 ssw ⋅= , Zww ⋅= 13 , 34 sRw ⋅= . 6M

7 Computation of : , sul = 100 wUl ⋅= 012 wUl ⋅= , () () 2001011 llUUwwl −−+⋅+= . 3M

8 Computation of () ()[] 22112
22 uvvhfhvllu

ss −−−++=′ : 2
231

~2~ RRhwU −+=′ ,

()()RfshshZrUshRVwsU 4023211114
2
00 22~

−+−⋅⋅+⋅+⋅+=′ .

2S, 4M

9 Correction: RUU ~~
00 ⋅′=′ , RUU ~~

11 ⋅′=′ , RsZ ~2
1 ⋅=′ . 1S, 3M

10 Computation of () uvlshv ′++−≡′ mod21 , 01 vxvv ′+′=′ : ()+++′−⋅′=′ RhwUlUV ~~~
231211

()11411
2
1

~~ lVwRhUs −−−′⋅ , () ()0400
2
1231200

~~~~ VwRhlsRhwUlUV ⋅++⋅−++′−⋅′=′ . 

5M 

6S, 39M 



 
TABLE IV. Algorithm 3. Mixed addition of divisors 

Input: [U11, U10, V11, V10, 1], [U21, U20, V21, V20, Z2] 
Output: [U’1, U’0, V’1, V’0, Z’] = [U11, U10, V11, V10, 1] + [U21, U20, V21, V20, Z2] 
 Operations Cost 
1 Precomputation: 11211

~ UZU ⋅= , 21111
~ UUy += , 210202 ZUUy ⋅+= . 2M 

2 Computation of r  for  and : 1u 2u 21113 yUyy +⋅= , . 10
2
132 Uyyyr ⋅+⋅= 1S, 3M

3 Computation of 12 mod uurinv = , 01 invxinvinv += : 11 yinv = , 30 yinv = .  
4  Computation of , ( ) 121 mod uinvvvs −= 01 sxss += : 202100 VZVw +⋅= , 212111 VZVw +⋅= , , 

, , 
002 winvw ⋅=

113 winvw ⋅= 31020 wUws ⋅+= ( ) ( ) ( )1113210101 +⋅+++⋅+= Uwwwwinvinvs . 
If  then <Special case is considered> 01 =s

7M 

5 
2ZrR ⋅= , , , , 202 Zss ⋅= 213 Zss ⋅= 3

~ sRR ⋅= 010 ssw ⋅= , 311 ssw ⋅= , 302 ssw ⋅= , , 
. 

2113 Uww ⋅=

14 sRw ⋅=

9M 

6 Computation of : , 2sul = 2000 Uwl ⋅= 232 wwl += , ( ) ( ) 302021011 wlUUwwl +++⋅+= . 2M 
7 Computation of , ( )( ) 1

112 −−++=′ ukvhlsu ( ) 1
2
11 uvhvfk −−= , : 01

2 uxuxu ′+′+=′

112111
2
1

2
20

~~ yrRRwyUyssU ⋅⋅++⋅+⋅+=′ , 2
111

~ RywU +⋅=′ . 

3S, 5M

8 Correction: RUU ~~
00 ⋅′=′ , RUU ~~

11 ⋅′=′ , RsZ ~2
3 ⋅=′ . 1S, 3M

9 Computation of , ( ) uvlshv ′++−≡′ mod21 01 vxvv ′+′=′ :  

( ) ( )12140
2
31211

~~~ lVwUsUlUV +⋅+′⋅+′+⋅′=′ , ( ) ( )2040
2
31200

~~ VwlsUlUV ⋅+⋅+′+⋅′=′ .

6M

5S, 37M

TABLE V. Algorithm 4. Doubling of divisor
Input: [U1, U0, V1, V0, Z]
Output: [U’1, U’0, V’1, V’0, Z’] = 2[U1, U0, V1, V0, Z]
 Operations Cost

1 Precomputation: , , , 2
2 ZZ = 2

10 Vw = 2
11 Uw = 12 UZw ⋅= . 3S, 1M

2 Computation of r for and (while u vh 2+ () uvhv mod2~ +≡): . 2
20 ZUR ⋅= 1S, 1M

3 Computation of uvrinv mod~≡ , 01 invxinvinv += : Zinv =1 , 20 winv = .
4 Computation of ()[] uuvhvfk mod2−−≡ : 11 wk = , ()01110 wVZZwUk +⋅⋅+⋅= . 3M

5 Computation of , uinvks mod⋅= 01 sxss += : 000 invkw ⋅= , Zkw ⋅= 11 , 1000 wUZws ⋅⋅+= ,
, () () ()1101003 1 UwwkkZinvs +⋅+++⋅+= Zss = ⋅31 .

If then <Special case is considered> 01 =s

7M

6
1

~ sRR ⋅= , , , 310 ssw ⋅= 301 ssw ⋅= Zww ⋅= 13 , 34 sRw ⋅= . 5M

7 Computation of : , sul = 100 wUl ⋅= 012 wUl ⋅= , () () 2001011 llUUwwl +++⋅+= . 3M
8 Computation of () ()[] 22112

22 uvvhfhvllu
ss −−−++=′ :

RsU ~~ 2
00 +=′ , 2

1
~ RU =′ .

2S

9 Correction: RUU ~~
00 ⋅′=′ , RUU ~~

11 ⋅′=′ , RsZ ~2
1 ⋅=′ . 1S, 3M

10 Computation of () uvlshv ′++−≡′ mod21 , 01 vxvv ′+′=′ :

() ()040
2
131200

~~ VwlswUlUV ⋅+⋅++′+⋅′=′ , ()++′+⋅′=′ 31211
~~ wUlUV ()1140

2
1

~~ lVwRUs +⋅++′⋅ .

6M

7S, 29M

