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Abstract 

 
This contribution proposes a modification of method 

of divisors group operation in the Jacobian of 
hyperelliptic curve over even and odd characteristic 
fields in projective coordinate. The hyperelliptic curve 
cryptosystem (HECC), enhances cryptographic security 
efficiency in e.g. information and telecommunications 
systems (ITS). 

Index Terms – hyperelliptic curves, explicit formulae. 
 

1. Introduction 
 
The sweeping progress in Information Technologies 

implies several requirements on modern ITS, especially to 
secure confidence level, integrity, observability and 
authenticity of the information that is created, circulates 
and is being stored. A typical example of such ITS is used 
for bank applications. ITS can be ensured by applying a 
data protection based on public key cryptographic. 

The transformation in a group of points over an elliptic 
curve (EC) is accepted as a modern public key primitive 
[1]. Standard [1] describes the main operator of EC scalar 
multiplication. Nowadays, the transformation in Jacobian 
of hyperelliptic curve (HEC) are considered the most 
promising substitution of EC. The cryptographic 
transformation in Jacobian is also grounded on scalar 
multiplication [2] of reduced divisors (hereinafter referred 
to as divisors).  

At the same time, the increasing number of security 
sensitive applications leads to continuous increase of load 
pressure on information protection system, and 
specifically on the public key cryptographic primitives. 
Thus, it is important to get a significant decrease in 
computational complexity (hereinafter, complexity) for 
these primitives. This decrease achieved by reducing the 
complexity of divisor scalar multiplication, and, therefore 
by reducing the complexity of group addition and 
doubling of divisors. 

Until recently, arithmetic transforms in Jacobian have 
been performed using Cantor’s method [10], with 
modifications introduced by Koblitz [2]. HECC were 
elaborate both in terms of description and in efficient 
calculations. In this context, the academic community put 
a lot of attention to enhancing efficiency of the HECC, 
e.g. [3-10]. The result has been improved methods of 

arithmetic transforms in Jacobian. Until today, there were 
many publications trying to improve the HECC. In this 
paragraph, the authors list only the ones most important 
for the contribution at hand. Methods of addition and 
doubling for curves of genus 2 were considered in papers 
[3, 4]. The first practical implementation of these methods 
was performed by Harley [5]. The extension of the results 
[5] for curves over even characteristic fields is given in 
[6]. Further development of methods of addition and 
doubling is given in papers [7, 8] and the results have also 
been extended for curves over even characteristic fields in 
[9, 10]. 

The analysis of complexity of the known methods of 
arithmetic transforms in Jacobian genus 2 HEC over even 
and odd characteristics demonstrates that the existent 
methods are already efficient, however there is still room 
for further improvements, as shown in this contribution. 

The most complex field operation during the operators 
of divisor addition and doubling in the HECC is the 
inversion, see e.g. [11, 13]. In [7], for the first time an 
approach for implementing arithmetic operations in 
Jacobian genus 2 HEC without having to compute field 
inversion were published. Further development of the 
proposed approach is given in [12, 13] while the results 
are improved and spread to a wider class of HEC over 
even characteristic field. The contribution at hand uses as 
basis the group operation algorithms as presented in 
[5, 6, 9]. 

In compliance with the introduced constructions, the 
objective of the paper is in providing more efficient group 
operations on the basis of genus 2 HEC using projective 
coordinates [ ]ZVVUU ,,,, 0101  [6, 12]. We were able to 
decrease the complexity of the scalar multiplication by 
4 % and therefore increase efficiency. 

 
2. Efficient Explicit Formulae for HECC 
Using Projective Coordinates 
 

The proposed improvement in complexity is based on 
Harley’s method [5] and the modifications of Harley 
algorithm published in [6]. 

Algorithm of addition and doubling can be computed 
using operations in the ring of polynomial functions: 
division, multiplicative inversion, modular reduction, 
multiplication. Our methods that were used to reduce the 
number of these field operations are listed below: 
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• In order to simplify arithmetic operation procedures in 
the ring of polynomial functions, we performed 
normalization of these functions [6, 12]; 

• In order to normalize and minimize Hamming weights 
of HEC parameters  and  we applied HEC of 
a special form [7, 9, 14, 15]; 

( )xh ( )xf

• In order to simultaneously invert several field elements, 
we applied the Montgomery method [5, 6, 9]; 

• In order to multiply polynomial functions with different 
powers, we applied the Karatsuba method [6]; 

• In order to modular reduce polynomial functions with 
different powers, we applied the Karatsuba method [5]; 

• In order to exclude inversion over field, we applied 
projective representation of divisors [6, 7, 12]. 
 

2.1. Group Operations for HECC over Odd 
Characteristics Field 
 

Based on the modifications proposed above, we obtain 
the following group arithmetic for the HECC which is 
specified by the equation  over , 
considering odd characteristic field and projective 
coordinates, where , 

( ) ( )ufvuhv =+2
qF

01
2

2 hxhxhh ++= 2F∈ih  and 

, , . 

Obtained algorithms for specified above curves, are 
presented in Tables II, III. 
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2.2. Group Operations for HECC over Even 
Characteristics Field 
 

In this subsection, we consider arithmetic transforms 
with divisors in Jacobian HEC over even characteristic 
fields. HEC application over such fields allows for a more 
efficient group arithmetic if compared to odd 
characteristics fields. 

For this case we used HEC with ( ) xxh =  and 

, . Obtained algorithms for the 
specified above curves are presented in Tables IV, V. 
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3. Analysis of Computational Complexity 
 

In Table I, we give the complexity evaluation, 
comparing our algorithms and the ones introduced in 
[5, 6, 9, 12-15]. The algorithm complexity is shown in 
field operations. 

The newly introduced algorithms are the most 
efficient, when considering projective coordinates over 
even and odd field. We were able to decrease the 
complexity of the algorithms, by up to 15 % compared to 
the fasted algorithm introduced in [6, 14]. We believe that 
even if our contribution is not to cause a speed increase of 

magnitudes, an aggregated effort of many contributions 
we will definitely be able to reach the speed sufficient for 
practical applications. 

 
4. Conclusions 

 
In accordance with the paper objective, there was 

developed a method of arithmetic transforms in Jacobian 
genus 2 HEC in projective coordinates which provides a 
lower complexity if compared to the most efficient 
methods known [6, 12, 14, 15] and, thus, allowing for 
increase in the efficiency of scalar multiplication. This 
modification is characterized by: 
• reduction of the number of recomputable values,  
• changes in the sequence of the computational steps; 
• using dependencies between polynomials in the 

resultant computation. 
 

The suggested modification of method of arithmetic 
transforms in Jacobian genus 2 HEC results in 3 to 15 % 
reduction of complexity dependant on arithmetic 
operations used and curve type. 

Thus, applying the introduced group operation reduces 
the complexity of the HECC scalar multiplication by 4 % 
compared to the best known formulae [6, 12, 14]. 
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TABLE I 

Addition Mixed addition Doubling Conditions ()-1 ^2 * ()-1 ^2 * ()-1 ^2 * 

Odd characteristic field 
Affine coordinates 

04 =f  [9] 1 3 22    1 5 22 
Projective coordinates 

( ) 2deg =h ,  [12] 2F∈ih  4 47  3 40  6 40 
( ) 2deg =h ,  [proposed] 2F∈ih  4 46  4 39  6 39 

 

Even characteristic field 
Affine coordinates 

04 =f  [6, 9] 1 3 22    1 5 22 
02 =h ,  [6, 9] 04 =f 1 3 21    1 5 17 

( ) xxh = , ,  [6] 04 =f 023 == ff       1 6 9 
( ) xxh = , , ( ) 0

23
3

5 fxxfxxf +++= ε 2F∈ε  [14] 1  24    1 5 13 

( ) 2deg =h , , , , 00 =h qh F∈1 ( ) 01
45 fxfxxxf +++= ε 2F∈ε [14] 1  25    1 4 22 

qh F∈1 , ,  [15] 002 == hh 014 == ff       1 5 9 
11 =h , , 002 == hh 014 == ff  [15]       1 6 5 
( ) 2deg =h , , ,  [15] 00 =h qh F∈1 023 == ff       1 5 17 
( ) 2deg =h , , ,  [15] 00 =h 21 F∈h 023 == ff       1 6 12 

Projective coordinates 
02 =h ,  [9] 04 =f  4 49  4 39  7 38 

( ) xxh = , ,  [6] 04 =f 023 == ff  5 45  5 38  7 31 
( ) xxh = , ,  [proposed] 04 =f 023 == ff  4 44  5 37  7 29 
( ) 2deg =h , ,  [14] qih F∈ 04 =f     3 42  6 39 

( ) 2deg =h , , , , 00 =h qh F∈1 ( ) 01
45 fxfxxxf +++= ε 2F∈ε [14]      45  6 38 

( ) xxh = , , ( ) 0
23

3
5 fxxfxxf +++= ε 2F∈ε  [14]     3 39  5 26 
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TABLE II. Algorithm 1. Mixed addition of divisors 
Input: [U11, U10, V11, V10, 1], [U21, U20, V21, V20, Z2]  
Output: [U’1, U’0, V’1, V’0, Z’] = [U11, U10, V11, V10, 1] + [U21, U20, V21, V20, Z2] 
 Operations Cost 
1 Precomputation: 11211

~ UZU ⋅= , 21111
~ UUy −= , 210202 ZUUy ⋅−= . 2M 

2 Computation of r  for  and : 1u 2u 21113 yyUy +⋅= , . 10
2
132 Uyyyr ⋅+⋅= 1S, 3M

3 Computation 12 mod uurinv = , 01 invxinvinv += : 11 yinv = , 30 yinv = .  
4 Computation of , ( ) 121 mod uinvvvs −= 01 sxss += : 202100 VZVw −⋅= , 212111 VZVw −⋅= , , 

,  
002 winvw ⋅=

113 winvw ⋅= ( ) ( ) ( )11132− − ⋅ +10101 wwinvinvs +⋅+= Uww , 31020 wUws ⋅−= .  
If  then <Special case is considered> 01 =s

7M 

5 
2ZrR ⋅= , , , 202 Zss ⋅= 213 Zss ⋅= 3

~ sRR ⋅= , 010 ssw ⋅= , 311 ssw ⋅= , 302 ssw ⋅= , , 
. 

2113 Uww ⋅=

14 sRw ⋅=

9M 

6 Computation of : , 2sul = 2000 Uwl ⋅= 232 wwl += , ( ) ( ) 302021011 wlUUwwl −−+⋅+= . 2M 
7 Computation of , ( )( ) 1

112 −−++=′ ukvhlsu ( ) 1
2
11 uvhvfk −−= : , 2

211321
~2~ RRhysswU −+⋅−=′

( ) ++⋅+⋅+−⋅⋅⋅+=′ RhVwwysUsyssU ~22~~
121412211111

2
20 ( ) ( )[ ]2421111122 2~ ZfUyrUsshR −+⋅+−⋅ . 

2S, 8M

8 Correction: , , . RUU ~~
00 ⋅′=′ RUU ~~

11 ⋅′=′ RsZ ~2
3 ⋅=′ 1S, 3M

9 Computation of , ( ) uvlshv ′++−≡′ mod21 01 vxvv ′+′=′ :  

( )++′−⋅′=′ RhUlUV ~~~
21211  ( )121410

2
3

~~ lVwRhUs −−−′⋅ , ( )−+′−⋅′=′ RhUlUV ~~~
21200 ( )20400

2
3

~ VwRhls ⋅++⋅ . 
5M 

4S, 39M 
 

TABLE III. Algorithm 2. Doubling of divisor 
Input: [U1, U0, V1, V0, Z] 
Output: [U’1, U’0, V’1, V’0, Z’] = 2[U1, U0, V1, V0, Z] 
 Operations Cost 
1 Precomputation: , 2

2 ZZ = 12111 2~ UhVZhV −+= , 02000 2~ UhVZhV −+= . 1S 

2 Computation of r  for  and  (while u vh 2+ ( ) uvhv mod2~ +≡ ): , , 2
10 Vw = 2

11 Uw =

1
2
202

2
1

2
12 4~ whwZhVw −== + , 1103

~~ VUZVw ⋅−⋅= , 0230
~ UwwVr ⋅+⋅= . 

2S, 4M

3 Computation uvrinv mod~≡ , 01 invxinvinv += : 11
~Vinv −= , 30 winv = .  

4 Computation of ( )[ ] uuvhvfk mod2−−≡ , 01 kxkk += :  

1233 wZfw +⋅= , ( )12144311 22 VhUfwZwwk ++⋅−+= , 04 2Uw = , 
( )( )+−++⋅⋅= 31214410 2 wVhUfwZUk  ( )( )00402112 2 wUfVhVhZfZZ −−−−⋅⋅⋅+ . 

7M 

5 Computation of , uinvks mod⋅= 01 sxss += : 000 invkw ⋅= , 111 invkw ⋅= , 1000 wUZws ⋅⋅−= , 
, ( ) ( ) ( )11010103 1 Uwwkkinvinvs +⋅−−+⋅+= Zss = ⋅31 . If 01 =s  then <Special case is considered> 

7M 

6 
2ZrR ⋅= , 1

~ sRR ⋅= , , 310 ssw ⋅= 301 ssw ⋅= , Zww ⋅= 13 , 34 sRw ⋅= . 6M 

7 Computation of : , sul = 100 wUl ⋅= 012 wUl ⋅= , ( ) ( ) 2001011 llUUwwl −−+⋅+= . 3M 

8 Computation of ( ) ( )[ ] 22112
22 uvvhfhvllu

ss −−−++=′ : 2
231

~2~ RRhwU −+=′ , 

( )( )RfshshZrUshRVwsU 4023211114
2
00 22~

−+−⋅⋅+⋅+⋅+=′ . 

2S, 4M

9 Correction: RUU ~~
00 ⋅′=′ , RUU ~~

11 ⋅′=′ , RsZ ~2
1 ⋅=′ . 1S, 3M

10 Computation of ( ) uvlshv ′++−≡′ mod21 , 01 vxvv ′+′=′ : ( )+++′−⋅′=′ RhwUlUV ~~~
231211  

( )11411
2
1

~~ lVwRhUs −−−′⋅ , ( ) ( )0400
2
1231200

~~~~ VwRhlsRhwUlUV ⋅++⋅−++′−⋅′=′ . 

5M 

6S, 39M 



 
TABLE IV. Algorithm 3. Mixed addition of divisors 

Input: [U11, U10, V11, V10, 1], [U21, U20, V21, V20, Z2] 
Output: [U’1, U’0, V’1, V’0, Z’] = [U11, U10, V11, V10, 1] + [U21, U20, V21, V20, Z2] 
 Operations Cost 
1 Precomputation: 11211

~ UZU ⋅= , 21111
~ UUy += , 210202 ZUUy ⋅+= . 2M 

2 Computation of r  for  and : 1u 2u 21113 yUyy +⋅= , . 10
2
132 Uyyyr ⋅+⋅= 1S, 3M

3 Computation of 12 mod uurinv = , 01 invxinvinv += : 11 yinv = , 30 yinv = .  
4  Computation of , ( ) 121 mod uinvvvs −= 01 sxss += : 202100 VZVw +⋅= , 212111 VZVw +⋅= , , 

, , 
002 winvw ⋅=

113 winvw ⋅= 31020 wUws ⋅+= ( ) ( ) ( )1113210101 +⋅+++⋅+= Uwwwwinvinvs . 
If  then <Special case is considered> 01 =s

7M 

5 
2ZrR ⋅= , , , , 202 Zss ⋅= 213 Zss ⋅= 3

~ sRR ⋅= 010 ssw ⋅= , 311 ssw ⋅= , 302 ssw ⋅= , , 
. 

2113 Uww ⋅=

14 sRw ⋅=

9M 

6 Computation of : , 2sul = 2000 Uwl ⋅= 232 wwl += , ( ) ( ) 302021011 wlUUwwl +++⋅+= . 2M 
7 Computation of , ( )( ) 1

112 −−++=′ ukvhlsu ( ) 1
2
11 uvhvfk −−= , : 01

2 uxuxu ′+′+=′

112111
2
1

2
20

~~ yrRRwyUyssU ⋅⋅++⋅+⋅+=′ , 2
111

~ RywU +⋅=′ . 

3S, 5M

8 Correction: RUU ~~
00 ⋅′=′ , RUU ~~

11 ⋅′=′ , RsZ ~2
3 ⋅=′ . 1S, 3M

9 Computation of , ( ) uvlshv ′++−≡′ mod21 01 vxvv ′+′=′ :  

( ) ( )12140
2
31211

~~~ lVwUsUlUV +⋅+′⋅+′+⋅′=′ , ( ) ( )2040
2
31200

~~ VwlsUlUV ⋅+⋅+′+⋅′=′ . 

6M 

5S, 37M 
 

TABLE V. Algorithm 4. Doubling of divisor 
Input: [U1, U0, V1, V0, Z] 
Output: [U’1, U’0, V’1, V’0, Z’] = 2[U1, U0, V1, V0, Z] 
 Operations Cost 

1 Precomputation: , , , 2
2 ZZ = 2

10 Vw = 2
11 Uw = 12 UZw ⋅= . 3S, 1M

2 Computation of r  for  and  (while u vh 2+ ( ) uvhv mod2~ +≡ ): . 2
20 ZUR ⋅= 1S, 1M

3 Computation of uvrinv mod~≡ , 01 invxinvinv += : Zinv =1 , 20 winv = .  
4 Computation of ( )[ ] uuvhvfk mod2−−≡ : 11 wk = , ( )01110 wVZZwUk +⋅⋅+⋅= . 3M 

5 Computation of , uinvks mod⋅= 01 sxss += : 000 invkw ⋅= , Zkw ⋅= 11 , 1000 wUZws ⋅⋅+= , 
, ( ) ( ) ( )1101003 1 UwwkkZinvs +⋅+++⋅+= Zss = ⋅31 . 

If  then <Special case is considered> 01 =s

7M 

6 
1

~ sRR ⋅= , , , 310 ssw ⋅= 301 ssw ⋅= Zww ⋅= 13 , 34 sRw ⋅= . 5M 

7 Computation of : , sul = 100 wUl ⋅= 012 wUl ⋅= , ( ) ( ) 2001011 llUUwwl +++⋅+= . 3M 
8 Computation of ( ) ( )[ ] 22112

22 uvvhfhvllu
ss −−−++=′ :  

RsU ~~ 2
00 +=′ , 2

1
~ RU =′ . 

2S 

9 Correction: RUU ~~
00 ⋅′=′ , RUU ~~

11 ⋅′=′ , RsZ ~2
1 ⋅=′ . 1S, 3M

10 Computation of ( ) uvlshv ′++−≡′ mod21 , 01 vxvv ′+′=′ :  

( ) ( )040
2
131200

~~ VwlswUlUV ⋅+⋅++′+⋅′=′ , ( )++′+⋅′=′ 31211
~~ wUlUV  ( )1140

2
1

~~ lVwRUs +⋅++′⋅ . 

6M 

7S, 29M 
 


