
Physical Cryptanalysis of KeeLoq Code Hopping

Applications

Thomas Eisenbarth1, Timo Kasper1, Amir Moradi2,⋆, Christof Paar1,
Mahmoud Salmasizadeh2, and Mohammad T. Manzuri Shalmani2

1 Horst Görtz Institute for IT Security
Ruhr University of Bochum, Germany

2 Department of Computer Engineering and Electronic Research Center
Sharif University of Technology, Tehran, Iran

{eisenbarth,kasper,moradi,cpaar}@crypto.rub.de

{salmasi,manzuri}@sharif.edu

Abstract. KeeLoq remote keyless entry systems are widely used for
access control purposes such as garage door openers or car anti-theft sys-
tems. We present the first successful differential power analysis attacks
on numerous commercially available products employing KeeLoq code
hopping. Our new techniques combine side-channel cryptanalysis with
specific properties of the KeeLoq algorithm. They allow for efficiently
revealing both the secret key of a remote transmitter and the manu-
facturer key stored in a receiver. As a result, a remote control can be
cloned from only ten power traces, allowing for a practical key recovery
in few minutes. Once knowing the manufacturer key, we demonstrate
how to disclose the secret key of a remote control and replicate it from a
distance, just by eavesdropping at most two messages. This key-cloning
without physical access to the device has serious real-world security im-
plications. Finally, we mount a denial-of-service attack on a KeeLoq

access control system. All the proposed attacks have been verified on
several commercial KeeLoq products.

1 Motivation

The KeeLoq block cipher is widely used for security relevant applications, e.g.,
in the form of passive Radio Frequency Identification (RFID) transponders for
car immobilizers [15] and in various access control and Remote Keyless Entry
(RKE) systems. In the last months, the KeeLoq algorithm has moved into
the focus of international cryptographic research community. Shortly after the
first cryptanalysis of the cipher [1], more analytical attacks were proposeed [4,
5], revealing mathematical weaknesses of the cipher. The best known analyti-
cal attacks targeting Identify Friend or Foe (IFF) systems require at least 216

plaintext-ciphertext pairs in order to recover the secret key of one transponder
employing the KeeLoq algorithm. The described approach allows, after several

⋆ Amir Moradi performed most of the work described in this contribution as a visiting
researcher at the Ruhr-University of Bochum.



days of calculations, for a simple cloning of the transponder and, only in case
of a very weak key derivation method1, for obtaining the manufacturer key that
is required to generate keys for new valid transponders. Despite the impressive
contribution to the cryptanalysis of the cipher, the real-world impact of the pre-
vious attacks are somewhat limited: First, they cannot be directly applied to the
widespread KeeLoq code hopping applications[9] on which most RKE systems
rely (which appears to be the dominant commercial application of KeeLoq).
The required minimum of 216 plaintext-ciphertext pairs cannot be obtained in
case of a code hopping scheme, because an adversary has only access to the
ciphertexts that are transmitted by a remote control, while the corresponding
plaintexts remain a secret stored in the device. Second, physical access to the
transmitter device is needed in order to obtain the 216 plaintext-ciphertext pairs.
Third, and perhaps most importantly, the manufacturer key which is located in
the receiver can only be recovered if a weak key derivation function is being used
which is not the case in many commercial systems. An overview on the previous
work is given in Sect. 2.4.

Motivated by the ongoing research we investigate the vulnerability of real-
world KeeLoq implementations with respect to side-channel analysis, in order
to tackle the security of code hopping applications in a realistic manner. As
a result, we present three very practical key recovery attacks and a denial-of-
service attack with severe implications for RKE systems that are currently used
in the field. These new attacks — which combine side-channel cryptanalysis with
specific properties of the KeeLoq algorithm — can be applied to various imple-
mentations of KeeLoq. In particular, we have been able to successfully attack
hardware realizations, i.e., the Microchip HCSXXX family of chips, as well as
software implementations running on Microchip PIC microcontrollers. In con-
trast to the hitherto existing attacks, the techniques proposed by us are also
applicable in case of more sophisticated key derivation schemes (c.f. Sect. 2.3)
and are appropriate for the KeeLoq code hopping schemes. We elaborate in
Sect. 3 how the secret key of a transmitter and the manufacturer key used in a
receiver can be revealed in less than one hour and less than one day, respectively.
Finally, we describe how to recover the secret key of a transmitter and hence
clone it from a distance, just by eavesdropping at most two hopping code mes-
sages. We detail how an attacker can gain access to sites that are protected with
KeeLoq code hopping systems with our methods and show how to put the access
control out of operation, i.e., illustrate how to mount a denial-of-service attack.
In contrast to the hitherto existing work, the techniques proposed by us are also
applicable in case of more sophisticated key derivation schemes (c.f. Sect. 2.3)
and are appropriate for the KeeLoq code hopping schemes. Note that our key
recovery attacks can also be applied to IFF applications. All our attacks have
been extensively tested and verified. We present various experimental results and
provide ascertained figures for attacks both based on the current consumption
and the electromagnetic (EM) emanation of different KeeLoq devices.

1 If the key of the transmitter is derived from XORing a simple function of the device
serial number with the manufacturer key, the latter can easily be obtained



Since the introduction of power analysis in 1999 [6], it has become an es-
tablished measure to access protected information from security related systems
by exploiting power consumption traces of cryptographic hardware. Almost ten
years later, the most powerful attack in this area, called Differential Power Anal-
ysis (DPA), remains an attack mostly performed in smart card test labs and uni-
versities. The targets are often own or known implementations on platforms that
are well-known to be vulnerable to side-channel attacks, employing no counter-
measures and examined in an ideal environment [18, 8, 16], for example with an
artificially generated trigger signal for the measurements. The practical relevance
for real-world realizations of cryptography sometimes remains an open question.
During our investigations, we were confronted with black box implementations,
i.e., with no previous knowledge or information about the devices except for the
known cipher and the characterization in the data sheet, which demanded for
some extra efforts and reverse engineering of the unknown targets. Despite these
obstructions, we were able to mount highly effective attacks with considerable
implications on the security of KeeLoq code hopping systems that allow for

– recovering the secret key of a KeeLoq code hopping encoder with as few as
ten power traces and only minutes of computation time,

– obtaining the manufacturer key used in a receiver in less than one day,
– cloning a remote control from the distance by eavesdropping at most two

hopping codes2, and
– putting an access control system out of service.

The described complete break of the KeeLoq code hopping mechanism was
performed with no previous knowledge about the implementations and is appli-
cable to all KeeLoq key derivation schemes we are aware of. Our DPA attacks
were performed on commercial KeeLoq implementations and are highly effec-
tive with regard to complexity and computational cost — for example finding
the 64 bit key of a transmitter is possible after measuring the power consumption
of only ten encryptions, i.e., press the button of a transmitter ten times, with a
sample rate as low as 20 MS/s. The required time for the post-processing is in
the order of minutes.

2 Background

2.1 Description of KeeLoq

KeeLoq is a block cipher with a 64-bit key and 32-bit plaintext and ciphertext.
As illustrated in Fig. 1, it can be viewed as a non-linear feedback shift register
(NLFSR) where the feedback depends linearly on two register bits, one key
bit, and a non-linear function (NLF). The NLF maps five other register bits to
a single bit with the output vector 3A5C742Ex

3. Prior to an encryption, the

2 The manufacturer key is assumed to be known, e.g., from a previous attack
3 NLF (i) is the ith bit of this hexadecimal constant, where bit 0 is the least significant

bit [1, 4, 5]



given key and plaintext are loaded in the key register and the state register,
respectively. In each clock cycle, the key register is rotated to the right and the
state register is shifted to the right so that the fresh bit prepared by the XOR
function becomes part of the state. After 528 clock cycles, the state register
contains the ciphertext. The decryption process is similar to the encryption,
except for the direction of shifts and the taps for the NLF and the XOR function.

0

1 17 02 4 0

Key Register,

State Register,

k

y

Fig. 1. Block diagram of the KeeLoq encryption

32

Synchronization Counter

Secret

Key

Discrimination 

Value
Func.

Hopping Code

32

64

Fig. 2. Structure of KeeLoq

hopping codes

2.2 Code Hopping Protocol

In addition to KeeLoq IFF systems which provide authentication of a trans-
mitter to the main system using a simple challenge-response protocol, KeeLoq

is used in code hopping (or rolling code) applications [9]. In this mechanism,
which is widely used, e.g. in car anti-theft systems and garage door openers,
the transmitter is equipped with an encoder and the receiver with a decoder.
Both share a secret key and a fixed value with 10 or 12 bits, referred to as
discrimination value. In addition, they are synchronized with a 16- or 18-bit
synchronization counter. According to Fig. 2, the transmitter constructs a hop-
ping code by encrypting a 32-bit message formed of the discrimination value,
the counter and a 4-bit function information. The synchronization counter is
incremented in the encoder each time a hopping code is transmitted. It is used
in the decoder to determine whether a transmission is a repetition of a previous
transmission. Previous codes are rejected to safeguard against replay attacks.
The function information determines which task is desired by the transmitter,
for instance, it enables a remote control to open or close more than one door in
a garage opener system.



One message sent via the radio frequency (RF) interface consists of a hopping
code followed by the serial number of the transmitter. The receiver decrypts the
hopping code using the shared secret key to obtain the discrimination value
and the current counter value. The transmitter is authenticated if the received
discrimination value is identical to the one stored in the receiver and the counter
fits in a window of valid values. Three windows are defined for the counter. If the
difference between a received counter value and the last stored value is within
the first window, i.e., 16 codes, the intended function will be executed after a
single button press. Otherwise, the second window containing up to 215 codes4

is examined. In this so-called resynchronization window, the desired function is
carried out only if two consecutive counter values are within it, i.e., after pressing
the button twice. The third window contains the rest of the counter space. Any
transmission with a counter value within this window will be ignored, to exclude
the repetition of a previous code and thus prevent replay attacks.

2.3 Key Derivation Schemes

There are two types of keys involved in a typical KeeLoq application. The
device key is unique to each transmitter and is shared by the transmitter and
the receiver. The device key is established during a learning phase. The other
type of key is the manufacturer key which is only stored in the receiver, and
which is (to our knowledge) identical in all receivers of a given manufacturer. Its
main use is the derivation of the device key.

In order to prevent a leakage of the device key during the learning phase
(during which the transmitter and the receiver exchange the secret key, discrim-
ination value and synchronization counter), several key derivation schemes are
defined. The use of a manufacturer’s key allows for a unique relationship be-
tween a specification of the transmitter, e.g., the serial number, and the secret
key. This enables each manufacturer to produce transmitters that cannot be
cloned by competitors. Since the manufacturer’s key is critical for the product
security, it is stored in a read protected memory in the microcontroller of the
receivers.

The known key derivation schemes are reviewed in the following:

(a) According to Fig. 3.a, the device key is obtained by two KeeLoq decryp-
tions. The two functions F1 and F2 (which are usually simple paddings) are
applied to the transmitter’s serial number, which then form the plaintexts
for the decryptions. This scheme is proposed by Microchip as ‘Normal Key
Generation’ method.

(b) The key derivation scheme shown in Fig. 3.b is similar to the previous one,
except for a randomly generated seed value which is stored in the transmitter
and is used to generate the device key. During the learning phase, a trans-
mitter can be forced to send its seed value in some way, e.g., by pressing all
of its buttons at the same time.

4 These window sizes are recommended by Microchip, but they can be altered to fit
the needs of a particular system



(c) Sometimes, the device key is generated straightforwardly from an XOR of a
simple function of the device serial number with the manufacturer key. This
scheme is presented in Fig. 3.c.

(d) The last scheme, illustrated in Fig. 3.d, is similar to the third one. The device
key is derived from an XOR of the manufacturer key and a simple function
of the seed value of the device. This scheme is referred to as ‘Secure Key
Generation’ method by Microchip.

Due to their simplicity, the last two key derivation schemes, including the
‘Secure Key Generation’ method, allow for directly concluding to the manufac-
turer key if the adversary has access to the transmitter. In contrast to the first
two (more sophisticated) derivation schemes, they can be broken by the exist-
ing attacks that are described below. Note that a manufacturer may develop a
proprietary key derivation scheme not included in the above list.

Serial Number

1

32

32

64

Serial Number

2

Device Key

32

Manufacturer

Key

32

64

(a)

Device Key

SEED

1

32

32

64

2

32

Manufacturer

Key

32

64

(b)

Serial Number

1

32

64

64

Serial Number

2

Device Key

32

Manufacturer

Key

64

(c)

1

32

64

64

2

Device Key

32

Manufacturer

Key

64

SEED

(d)

Fig. 3. Key derivation schemes



2.4 Previous Work

The first two attacks on the KeeLoq algorithm were published by Bogdanov [1].
One attack is based on slide and guess-and-determine techniques and needs about
250.6 KeeLoq encryptions. The other one additionally uses a cycle structure
analysis technique and requires 237 encryptions. However, both attacks require
the entire codebook, i.e. all 232 plaintext-ciphertext pairs.

Afterwards, Courtois et. al [4] proposed two attacks. One is a slide-algebraic
attack demanding for 251.4 KeeLoq encryptions and 216 known plaintext-ciphertext
pairs. The second slide attack can be carried out knowing almost the entire code-
book. It reveals the secret key with a complexity of approximately 227 KeeLoq

encryptions.
Recently, Indesteege et. al improved the existing work significantly and pre-

sented more practical attacks on the KeeLoq algorithm [5]. All of them are also
based on slide and meet-in-the-middle attacks. The best one requires 216 known
plaintext-ciphertext pairs and has a complexity of 244.5 KeeLoq encryptions.
It allows for finding the secret key of the transmitter (and thus the manufac-
turer key for the weak key derivation schemes) in two days using 50 Dual Core
machines.

The above attacks are appropriate for KeeLoq IFF systems because it is
possible to collect 216 plaintext-ciphertext pairs in about one hour [5] from a
commercial KeeLoq IFF system. However, none of these attacks works on ap-
plications employing the KeeLoq code hopping technique, because the plain-
text of the hopping codes is not known to an attacker. It is mentioned in [5]
that knowing the sequence of 216 ciphertexts of a code hopping application is
sufficient to perform their attack as this sequence is simply repeated. However,
just two products of Microchip (HCS200 and HCS201) use a 16-bit synchroniza-
tion counter [10, 11] and the other ones (such as HCS300, HCS301, HCS361,
...) employ two overflow bits to not repeat a hopping code message for more
than 64K transmissions [12–14], i.e. extend the number of unique transmissions
to more than 192K. Even if the sequence of the synchronization counter was
known, the discrimination value would still be required to perform the men-
tioned attack. The commercial products employing the KeeLoq code hopping
protocol, i.e., HCS modules, do not allow an attacker to access this informa-
tion. To our knowledge, most of the commercial applications using KeeLoq as
a remote entry system employ the code hopping mechanism5, and the attacks
described above are not considered a major threat to their security.

3 DPA on KeeLoq

When we started to analyze the targets using KeeLoq, we were exposed to
a “classical” situation in implementation attacks: even though the algorithm is

5 It can be verified by comparing the number of different products of Microchip as
KeeLoq code hopping encoder with the number of products as KeeLoq transpon-
der



known, hardly anything was known about the implementation. We had to de-
velop DPA attacks to allow for an efficient key recovery for the different KeeLoq

implementations, i.e., both transmitter and receiver devices. We found that the
transmitters usually employ HCSXXX modules of Microchip, featuring a hard-
ware implementation of the cipher. The receivers we looked at do not employ a
dedicated KeeLoq hardware module. Instead, they are equipped with a (typi-
cally read-protected) microcontroller on which a KeeLoq decryption routine is
implemented in software. This section explains the details of attacking transmit-
ters and receivers, starting with a general approach that is appropriate for both
types of realizations.

We will first give a short outline of the single steps for performing the key
recovery, as illustrated in Fig. 4, before taking a closer look at the different
targets.

Cipher Analysis Measurement Alignment DPA

Fig. 4. Steps taken for key recovery

Initial Cipher Analysis Before being able to actually perform a DPA on a
particular implementation of a cipher, one needs to make certain assumptions
about the leakage produced by it. Then, a DPA scheme for exploiting that leakage
must be developed, which depends on the cipher structure as well as on the
particularities of the given implementation.

Even though we were unaware of the implementation details, we were able to
make a few assumptions about the leakage, e.g., a software executed on a PIC
microcontroller often exhibits leakage of the Hamming weight, while a hardware
realization is more likely to leak the Hamming distance. Measuring the power
consumption can expose the clock frequency of the device and often allows for
roughly distinguishing between different parts of operation. Since hopping codes
employ short messages there is no need for a high throughput, hence we assume
straightforward implementations in both hardware and software.

Measurement The power traces are gathered by measuring the current via
a shunt resistor connected to the ground pin of the target chip. In addition,
we acquire the EM radiation of the device by means of near field probes6. For
convenience, we have built a special printed circuit board (PCB) that allows for
emulating KeeLoq chips and for controlling the transmitter or receiver from a
PC so that a measurement sequence can be executed automatically. The power
traces were acquired using an Agilent Infiniium 54832D digital oscilloscope with
a maximum sampling rate of 4GS/s.

6 RF U 5-2 from www.langer-emv.de



Data Pre-Processing and Alignment One problem of aligning the power
traces of an unknown implementation is the absence of a suitable trigger signal.
The solution for this is target-specific and detailed in Sect. 3.2 and Sect. 3.3 for
transmitters and receivers, respectively. Another problem is that all of the target
devices are clocked by a noisy internal RC-oscillator. Hence we had to find a way
to remove the clock jitter. We know that most of the data-dependent leakage
occurs in the instant when the registers are clocked, a point in time which the
power consumption peaks within each clock period. These peaks directly cor-
respond to the dynamic power consumption of the target circuit and thus hold
most of the information we are looking for. We developed an application to ex-
tract the peaks from the power consumption, and to base our DPA attack solely
on the amplitude of the peaks. This peak extraction step has two advantages
for the subsequent analysis: (i) the amount of data is greatly reduced, which
facilitates the post-processing, the data storage and furthermore speeds up the
subsequent steps significantly. (ii) more importantly, the peak extraction allows
for an accurate alignment of the traces. Other methods for removing the clock
jitter, such as Fourier transform, filtering, etc., turned out to be much more
complicated and less effective.

Developing and Performing the DPA After the peak extraction and align-
ment steps have been performed, the traces can be processed by the DPA al-
gorithm. For the transmitter modules we only knew the ciphertext and hence
had to perform our attacks starting from the last round of the encryption. For
the software implementation of the PICs we knew the plaintexts and started the
attack of the first round of the decryption. The algorithms for a known plaintext
attack on the decryption and for a known ciphertext attack on the encryption
are the same, due to the simple structure and key management of the KeeLoq

cipher.

3.1 Building a Powerful DPA for KeeLoq

It is known that for successfully performing a DPA attack, some intermediate
value of the cipher has to be identified that (i) depends on known data (like
the plaintext or the ciphertext), (ii) depends on the key bits and (iii) is easy to
predict. Furthermore, it is advisable to choose a value that has a high degree of
nonlinearity with respect to the key, to avoid so-called ‘ghost peaks’ for ‘similar’
keys [2]. The latter one can be easily achieved by predicting as many registers as
possible, since registers have a strong leakage. This is especially true for KeeLoq,
since it basically consists of 98 registers, a few XORs and a 5x1 non-linear
function. As mentioned in Sect. 2, KeeLoq consists of two shift registers, i.e. the
key register and the state register. Compared to these, the power consumption
of the combinational part, i.e. a few XORs and the 5× 1 non-linear function, is
small and can be neglected.

Finally, a model for estimating the power consumption is needed. As men-
tioned above, classical approaches for modelling it are the Hamming weight and



Hamming distance models. For our attack it is important to note that the Ham-
ming distance of the key register does not change, since the key is simply rotated.
This leads to a theoretically constant power consumption of the key register in
each clock cycle. Therefore it is not possible to find a correlation between key
register bits and power traces using Hamming distance model. Hence, we focus
on the state register y. We execute a correlation DPA attack (CPA) [2] based
on the following hypothetical power model

P
(i)
Hyp = HD

(

y
(i)

)

= HW
(

y
(i) ⊕ y

(i−1)
)

(1)

where P
(i)
Hyp denotes the hypothetical power consumption in the ith round, HD

and HW are Hamming distance and Hamming weight, respectively, y
(i) indicates

the content of the state register in the ith round, and ⊕ is a 32-bit bitwise XOR
function. As mentioned before, the known ciphertext attack on the encryption
is identical to the known plaintext attack on the decryption7. We describe the
known ciphertext attack on the encryption. Starting from the 528th round, 32

bits of the final state y
(528) =

(

y
(528)
0 , . . . , y

(528)
31

)

, are known. Furthermore, 31

bits of y
(527), i.e.,

(

y
(527)
1 , . . . , y

(527)
31

)

, are known because they are identical to
(

y
(528)
0 , . . . , y

(528)
30

)

. Therefore, just y
(527)
0 is unknown. According to Fig. 1, we

can write

y
(i+1)
31 = k

(i)
0 ⊕ y

(i)
16 ⊕ y

(i)
0 ⊕ NLF

(

y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)

(2)

where k
(i)
0 is the rightmost bit of the key register in the ith round. Resolving

Eq. (2) to y
(i)
0 and knowing that k

(i)
j = k(i+j) mod 64, we obtain

y
(527)
0 = k15 ⊕ y

(527)
16 ⊕ y

(528)
31 ⊕ NLF

(

y
(527)
31 , y

(527)
26 , y

(527)
20 , y

(527)
9 , y

(527)
1

)

(3)

Thus, recovering y
(527)
0 directly reveals one bit of the key register. This pro-

cess is the same for recovering the LSB of the state register of the previous

rounds, i.e., y
(i)
0 , i = (526, 525, . . .). However, Eq. (3), and hence the whole state

y
(527) depends linearly on the key bit k15. Above we stated that nonlinearity

helps distinguishing correct key hypotheses from wrong ones. Hence, recovering
the key bit by bit might not be the best choice. Simulations show that an attack
recovering the key bit by bit is much weaker than an attack that recovers several
key bits at a time. Still, the key can also be recovered for single bit key guesses –
in other words even a classical DPA on the LSB of the state register is feasible.

Fortunately, according to Fig. 1, the LSB of the round state, y
(i)
0 , enters the

NLF leading to a nonlinear relation between the key bit k15 and the state y
(526).

Accordingly, the nonlinearity for one key bit kj increases in each round after it
was clocked into the state.

7 both attacks target state y
(l) of the decryption, which is the same as state y

(528−l)

of the encryption.



Algorithm 1 A Scalable DPA for KeeLoq

Input: m : length of key guess, n: number of surviving key guesses, k: known previous
key bits

Output: SurvivingKeys
1: KeyHyp ← {0, 1}m

2: for all KeyHypi; 0 ≤ i < 2m do

3: Perform CPA on round (528−m) using PHyp and k

4: end for

5: SurvivingKeys ← n most probable partial keys of KeyHyp

Prior to the practical execution, we modelled the attack described in Algo-
rithm 1, assuming a Hamming distance leakage model for all involved registers,
and simulated it. Based on this knowledge we predicted the leakage of the cipher.
The generated traces allow for testing our attacks and also to evaluate how well
an attack would work under ‘perfect’ conditions.

514516518520522524526
0.6

0.7

0.8

0.9

1

Round

C
or

re
la

tio
n

Fig. 5. Simulated correlation of key hypotheses over the KeeLoq rounds. Correct key
guess (black solid line) vs. wrong key guesses (thin gray lines).

We generated a set of encryption traces with random plaintext input and
computed the Hamming distance of all involved registers for each round. We
performed a correlation DPA where we predicted the Hamming distance of the
state register of round 522, PHyp = HD(y(522)). Fig. 5 shows the correlation for
the 26 = 64 key hypotheses over the first few rounds. Of course the correlation
is 1 for the right key (thick solid line) in round 522. One can further see that
some of the wrong key guesses (thin gray lines), that are sometimes called ghost
peaks, also yield a high correlation. This is due to the high linearity between
the state and the key guesses and between the different states. Furthermore we
get a high correlation in the rounds before and after the predicted round. This
is because most of the bits of the shift register remain unchanged in the nearby
rounds. The most probable wrong key guess is always the one that differs only
in the least significant bit. This underlines our expectation that the linearity
increases the error probability of guessing the less significant key bits.



To improve the strength of our attack and to take care of the misleading
high correlations, we added another attack step. Algorithm 1 can be repeated
to guess all partial keys, one after the other. These iterations of the attack need
to be done serially, because we require the previous key bits and thus the state
y as a known input for each execution of the algorithm. Since some of the bits
of the previous key guess might be faulty, we want keep a number n of the most
probable partial key guesses as survivors. The wrong surviving candidates of
the previous round will result in a wrong initial state y for the following attack
round and hence strongly decrease the correlation of subsequent key guesses.
This does not only allow for an assertion of the correct previous key guess, but
also allows for detecting faulty previous keys. Hence the attack has an error-
correcting property, since the correlation becomes worse as soon as a prediction
is wrong. In case that all key guesses of one round show a low correlation, we
can take one step back and broaden the number of possible key guesses.

Algorithm 2 Pruning for the Best Key Hypothesis

Input: m : length of key guess, n: number of surviving key guesses
Output: K: recovered key
1: K ← Algorithm 1(m, n, ∅)
2: for round = 1 to ⌈ 64

m
⌉ do

3: K′ ← ∅
4: for all ki ∈ K, 0 ≤ i < n do

5: K′ ← K′∪ Algorithm 1(m, n, ki)
6: end for

7: K ← n most probable keys of K′

8: end for

9: return K

Algorithm 2 describes this procedure, which is similar to the ‘pruning process’
described by Chari et al. in [3]. The last round (i = ⌈ 64

m
⌉) chooses the best of

the last n surviving keys and verifies if an error occurred. If an error occurred,
the attack can be repeated with an increased n. It will be shown in the following
subsections that Algorithm 2 results in a quite strong attack.

3.2 Details of the Hardware Attack

Since we did not have any information about the architecture and design details
of commercial KeeLoq code hopping encoders such as HCS200 [10], HCS201 [11],
HCS300 [12], HCS301 [13], the first problem we encountered was finding the
points in time in the power consumption traces that correspond to the encryp-
tion function. As depicted in Fig. 6.a, the highest amplitude is for the period of
between 15ms to 20ms. Comparing this period with the high amplitude periods
of Fig. 6.b (a power trace of the programming mode) indicates that this part
corresponds to writing in the internal EEPROM cells. After several thousand
measurements we found by trial and error that the encryption happens after



writing to the EEPROM, i.e. between 20.5ms to 24ms (see Fig. 6.c). The power
traces furthermore reveal that the internal operating frequency of the chips is
approximately 1.25MHz.

(a) from trigger point to start sending (b) during programming

(c) encryption part (d) end of encryption part

Fig. 6. Power consumption traces of a HCS module

We performed the attack described in Sect. 3.1 on HCS200, HCS201, HCS300,
HCS301, HCS361, HCS362, and HCS410 in both DIP and SOIC packages. Since
it was obvious that each power value is relevant to which round of the algorithm,
we modified the attack algorithm to contribute the power values of all known
rounds in the CPA. The power traces were collected by measuring the voltage
of a small resistor in the GND path with a sampling rate of 200MS/s. With this
sample rate, we were able to recover the secret key of DIP packages from only 10
power traces. However, the power consumption of devices in SOIC packages is
smaller compared to those in DIP packages. Hence, the decreased signal-to-noise
ratio (SNR) of the attack demands for more power traces. At most 30 power
traces are sufficient to reveal the secret key of an HCS module in an SOIC
package. Fig. 7 compares the correlation coefficient of the correct key of HCS201
chips in DIP and SOIC packages for a different number of traces. The sudden
increase of the correlation is due to the error correcting property of our attack
and also due to the fact that we repeated the attack for all 528 rounds of the
algorithm in order to verify the revealed key.



5 10 15 20 25 30 35 40 45 50

0.4

0.2

0

0.2

0.4

0.6

0.8

Number of traces

C
o

r
r
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

(a) DIP package

5 10 15 20 25 30 35 40 45 50

0.4

0.2

0

0.2

0.4

0.6

0.8

Number of traces

C
o

r
r
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

(b) SOIC package

Fig. 7. Correlation coefficients of the correct key of HCS201 chips

To estimate how costly the attack is for differently equipped adversaries, we
performed experiments with varying sampling rates and compared the number
of traces required in order to recover the correct key. Fig. 8 shows the results for
a HCS201 chip in a DIP package.

Moreover, we repeated the experiments with an EM probe to directly mea-
sure the electromagnetic emanation instead of power consumption values. Sur-
prisingly, the results and the number of the traces needed are similar to the case
of power traces based on the current consumption. This implies that in practice
our attacks can be carried out non-invasively from a distance, i.e., requiring no
modification such as placing a resistor in the power supply of the remote con-
trollers. Note that collecting the power (or EM) traces and finding the secret
key is performed in less than one hour.

(125, 10)(100, 30)(50, 60)
(200, 10)

(40, 90)

(25, 135)

(20, 160)

(10, 1250)

0

250

500

750

1000

1250

0 50 100 150 200

Sampling Rate [MS/s]

N
u

m
b

e
r 

o
f 

th
e
 n

e
e
d

e
d

 t
ra

c
e
s

Fig. 8. The number of the needed measurements for different sampling rates. The
numbers in parentheses give the exact coordinates of the points.

3.3 Details of the Software Attack

The next target of our attack is the code hopping decoder implemented in the
receiver. We recall that the receiver contains the manufacturer key, which is



an attractive target for a complete break of the system. The receiver does not
employ a dedicated KeeLoq hardware implementation. Instead the receiver is
equipped with a standard PIC microcontroller. The microcontroller handles the
key management, controls e.g. the motor of the garage door or the locking system
of the car and performs the KeeLoq decryption in software.

Receivers usually offer a so-called ‘learning mode’. In this learning mode the
user can register new transmitters to cooperate with the receiver. As shown
in Sect. 2.3 we know that the receiver uses the serial number or the seed of
the new transmitter together with the manufacturer key to derive the device
key. Our goal is to target the KeeLoq algorithm during the ‘learning mode’ to
directly identify the manufacturer key kM of that receiver, which is identical for
all receivers of one product line.

From recovering two keys of transmitters of the same product line, as de-
scribed above, we knew that neither key derivation scheme c) nor d) is used8.
Hence we expected the receiver to perform a KeeLoq decryption using the
manufacturer key during the ‘learning mode’.

The receiver we looked at uses a PIC16F687 microcontroller running at a
clock rate of 4MHz. We decided to keep the receiver box fully operational and
perform only minimal invasive changes. Hence we disconnected the GND-pin of
the microcontroller from the PCB and inserted a shunt resistor in series in order
to measure the power consumption. Finally the receiver was put into learning
mode and we sent hopping code messages with random serial numbers to the
receiver, emulating a transmitter by connecting the RF interface of a transmitter
to the parallel port of a PC with a PCB tailored for this purpose. Our receiver
can be set to training mode by pressing one button (We later just connected
this button to the parallel port to perform this automatically). If the receiver
obtains a message of an unknown device in the learning mode, it performs the
following steps:

1. Derive the device key kDev using the received serial number of the transmitter
and the stored manufacturer key kM (by applying one of the key derivation
schemes from Sect. 2.3).

2. Decrypt the hopping portion of the message using kDev.
3. Check the discrimination value. If it is valid, the transmitter is obviously of

the same manufacturer and may be used with the receiver. Hence it stores
(i) the serial number, (ii) the counter value and possibly (iii) the device key
(to avoid the need to derive it each time).

4. If the discrimination value of the message is not correct, the message is
simply ignored.

5. Approx. 90 seconds after pressing the button or, respectively, after the last
correct transmitter was registered, the receiver leaves the ‘learning mode’
and only accepts messages of transmitters with known serial numbers.

Most of this procedure was explained in the manual of the receiver. Of course
it was not stated which key derivation method was used, but obviously it did

8 Reference [5] can only recover manufacturer keys if one of these key derivation
schemes is employed.



not involve the seed value, since we did not need to transmit it in learning mode
(it is actually possible to do that with the transmitters we used). The choices
of possibly used key derivation schemes are now reduced to method (a) or an
unknown other scheme. Hence we knew, if the manufacturer did not come up with
an own key derivation scheme that we do not know, they used the one involving
KeeLoq decryption with the manufacturer key during ‘learning mode’.

We set up a simple communication channel to the receiver by directly con-
necting the parallel port of a PC to the communication pin of a transmitter with
a removed HCS module. To verify the functionality we simply sent a valid mes-
sage using a known serial number, key pair and discrimination value to register
the PC to our receiver. It worked fine. The probability to accidentally generate
a correct discrimination value is 2−12 and hence rather unlikely.

We could identify the key derivation scheme of the target receiver as scheme
(a) of Sect. 2.3 by trial-and-error. As stated in Sect. 2.3, scheme a) performs
a decryption of the received serial number using the manufacturer key kM as
decryption key. Hence we can recover the manufacturer key by performing a
DPA key recovery on the KeeLoq decryption that is performed during ‘learning
mode’.

Although we do not know the exact code of the KeeLoq software imple-
mentation, one is able to make a few assumptions about how a straightforward
implementation of the KeeLoq algorithm in software would look like. Before
performing the DPA, we adapted the power model of the attack of Sect. 3.1 to
a PIC software implementation. Typically, PIC microcontrollers leak the Ham-
ming weight of the processed data [17].

Furthermore, one can assume that the state is stored in the 8-bit registers
of the PIC microcontroller, since the content of the state is constantly accessed
and changed. While the NLF is probably implemented as some kind of look-up
table, we can be almost certain that the shifting of the registers is implemented
using the rotate operation of the PIC. Hence, instead of predicting the Hamming
distance of the whole state (HD(y)) – as we did for the hardware attack in
Sect. 3.2 – we now predict the Hamming weight of the least significant byte
(LSB) of the KeeLoq state register.

P
(i)
Hyp = HW(y

(i)
LSB) =

7
∑

k=0

y
(i)
k

For the hardware attack it was very likely that one KeeLoq round was
performed in each clock cycle. This is not true for the software implementation.
Accordingly, we correlated the power traces for a single intermediate state only
for each iteration of the attack.

We performed the attack by putting the receiver into learning mode and
sending hopping code messages with random serial numbers to the receiver.
Lacking any special features in the power consumption of the PIC that could
have been used as trigger, we triggered the oscilloscope directly after transmitting
the last bit via the RF interface. This results in our power traces not being
well-aligned, leading to a high number of power samples needed to perform



a successful DPA attack. We then generated an arbitrary number of random
ciphertexts (the serial number) to perform a successful DPA on the decryption.
Since we did not know how much time the KeeLoq decryption needed, we chose
a low sampling frequency (125MS/s) to be able to gather a long time span with
each measurement.

While performing the attack we noticed that the correlation of the correct
key became continuously worse with an increasing number of rounds. For the
first few key bits 1000 traces sampled at 125MS/s are roughly sufficient to find
the key. Surprisingly, we need roughly ten times as many to be able to recover the
full 64-bit key. This gradual decrease of the correlation is due to a misalignment
that occurs during the execution of the KeeLoq algorithm. It is not due to the
bad trigger condition, since the trigger affects all time instances in the same way.
Also we were pretty confident that it is not due to the clock jitter, since this was
removed easily using the peak detection. We conclude that the code is likely to
have a data-dependent execution time, resulting in an increasing misalignment
with an increasing number of rounds.

4 Attack Scenarios

In the previous section we showed how the keys of hardware and software imple-
mentations of KeeLoq can be recovered. We will now evaluate the vulnerability
of real-world systems to our attacks and illustrate the implications, assuming a
moderately skilled adversary. We detail four different attack scenarios, which
allow for breaking basically any system using KeeLoq with modest efforts. We
focus on code hopping applications, since they are more commonly used and,
due to the lack of known plaintexts, harder to cryptanalyze than IFF systems.
Still, IFF systems are just as vulnerable to our DPA attacks as the code hopping
devices. Some of the transmitters we analyzed even offer both operating modes.

The success of some of our attacks depends on the knowledge about the
particular key derivation scheme, as described in Sect. 2.3. However, the attacks
are appropriate for all the key derivation schemes we are aware of.

4.1 Cloning a Transmitter

For cloning a transmitter using power analysis, an adversary needs physical ac-
cess to it to acquire at least 10 to 30 power traces. Hence, the button of the
remote control has to be pressed several times, while measuring the power con-
sumption and monitoring the transmitted hopping code messages. After recov-
ering the device key kDev with the side-channel attack described in Sect. 3.2, the
recorded messages can be decrypted, disclosing the discrimination and counter
values of the original transmitter at the time of the attack. Now, the HCS module
of a spare remote control can be programmed with the serial number, counter
value and discrimination value of the master. Consequently, the freshly produced
transmitter appears to be genuine to a receiver and allows for accessing the same
target as the original.



4.2 Recovering a Manufacturer Key

The actual key recovery of the manufacturer key kM depends on the applied key
derivation scheme.

If scheme (c) or (d) of Sect. 2.3 is used, i.e., an XOR of a known input and
the manufacturer key kM , disclosing the latter is trivial. After a successful key
recovery attack on one transmitter of the same brand, kM is found by reversing
the XOR function. The known input is either part of each hopping code message,
in case of the serial number, or can be extracted from the remote control, in
case of a seed. The derived manufacturer key can be verified with a second
transmitter.

An adversary targeting the manufacturer key for scheme (a) or (b) of Sect. 2.3
requires physical access to one receiver of the same brand and model as is used
at the destination site. Obtaining these is a realistic assumption, as the number
of manufacturers of access systems is small. The different brands can even be
distinguished from only viewing a remote control or receiver from the distance,
as each manufacturer likes to invent its own special design for the product.
Prior to attacking the receiver, an adversary performs the above attack from
Sect. 4.1 on one transmitter, to get known to its device key KDev. Then, the
key of the KeeLoq decryption performed inside the receiver during the key
derivation step can be recovered, according to the attack described in Sect. 3.3.
The adversary now possesses the manufacturer key kM of that device family and
can hence generate an arbitrary number of new valid remote controls with chosen
serial numbers and counter values. In this case, all the prior cryptanalyses [5,
1, 4] of KeeLoq will fail, unless they recovered the key of at least 216 different
transmitter devices.

4.3 Cloning any Transmitter Without Physical Access

Assuming an adversary that knows the result of the previous attack, namely the
manufacturer key kM , and the key derivation method of a target device family,
a remote control can be cloned by eavesdropping. The attacker has to intercept
at most two hopping code messages, c1 and c2, sent by an unknown transmitter
of the same brand. The process of finding the secret key of the eavesdropped
transmitter and copying it depends on the key derivation scheme.

If the key is derived from the serial number of the transmitter, finding its
device key is straightforward, since the intercepted messages contain the serial
number. Knowing the manufacturer key, the attacker can simply perform the
key derivation process to obtain the device key.

kDev = kM ⊕ [F1 (SerialNumber) ,F2 (SerialNumber)]

Afterwards, the adversary decrypts one of the messages, c1 or c2 in order to
disclose the current counter value. It is now possible to generate valid hopping
code messages to spoof the receiver and gain access to a protected site. Note
that for this scenario a single intercepted message is sufficient — the other one



can be used for a verification of the found key. The computational complexity
of this attack is two KeeLoq decryptions, in the worst case.

However, if a seed value plays a role in the key derivation scheme, ,i.e.,
schemes (b) and (d) of of Sect. 2.3, recovering of the secret key of the eaves-
dropped transmitter is more difficult. During the attack, an exhaustive search
needs to be performed to find the seed value. For recovering kDev, the adversary
decrypts the two intercepted messages using the known manufacturer key kM

and a guessed seed value. This has to be repeated for all possible values of the
seed.

k
(i)
Dev = KeyDerivation

(

kM , seed(i)
)

(

Counter
(i)
1 ,Disc

(i)
1

)

= DEC
(

c1, k
(i)
Dev

)

(

Counter
(i)
2 ,Disc

(i)
2

)

= DEC
(

c2, k
(i)
Dev

)

Once both messages show the same discrimination value, i.e., Disc
(i)
1 = Disc

(i)
2 ,

and similar counter values9, the correct device key is found with a high proba-
bility.

There are three different seed sizes used for KeeLoq systems in the field. If a
32-bit seed value is used, for example in HCS200, HCS201, HCS300, HCS301 and
HCS320 KeeLoq code hopping encoders, the adversary has to run in average
232 KeeLoq decryptions to find the correct seed. According to our practical im-
plementations, this number of KeeLoq decryptions takes less than three hours
on a 2.4GHz Quad-core PC. On a special-purpose computing machine such as
COPACOBANA [7], the correct 32-bit seed value and hence the key can be re-
covered in one second. In case of a 48-bit seed value, as used in HCS360 and
HCS361 modules, it is not promising to recover the correct seed value using
standard PCs. Still, it is possible to perform the 248 required KeeLoq decryp-
tions in average in about 9 hours using COPACOBANA. However, chips like
the HCS410, using a 60-bit seed, are not vulnerable to this attack. Running 260

KeeLoq decryptions is not feasible in a reasonable time with currently existing
equipment. Note that, if physical access to the transmitter is given, even 60-bit
seed values are obtained by pressing one button.

4.4 Denial of Service

As mentioned in Sect. 2.2, the synchronization counter of a receiver and a trans-
mitter is synchronized with every valid hopping code message received. As men-
tioned above, three windows are defined for the counter, determining whether a
message is accepted by a receiver. If the difference between a received synchro-
nization counter and the last stored value is within the first window, ,i.e., 16
codes, the intended function will be executed after a single button press. Other-
wise, the second window containing up to 215 codes is examined. In this window,

9 ‘Similar’ counters means that the difference Counter
(i)
2 − Counter

(i)
1 is less than a

small threshold, e.g. 16, depending on the period between the two eavesdrops.



the function is carried out only if two consecutive counter values are within it.
The third window represents the rest of the counter space. Any transmission
with a synchronization counter value within his window will be ignored. This
window excludes previously used, perhaps code-grabbed transmissions from ac-
cessing the system. The behaviour can be exploited for putting an access control
system out of operation.

We assume the adversary has recovered the device key kDev of a target trans-
mitter by performing one of the attacks described in Sect. 4.1 or Sect. 4.3, and
thus possesses a cloned remote control. The counter value of this remote control
can now be set to the maximum value inside the second window. After sending
two consecutive valid hopping codes, the receiver updates its counter to the new
value, which is in the third window. As a result, the original transmitter button
needs to be pressed very often, namely 215 times, to increase the counter value
back into the first window and hence produce a valid hopping code message.

5 Conclusion

We presented the first successful cryptanalysis of a whole device family em-
ploying cryptography – namely the KeeLoq algorithm – by performing DPA
and DEMA attacks against implementations that are unknown to the adversary.
These attacks can be applied to both IFF and code hopping devices.

We attacked both, software and hardware implementations of KeeLoq. We
revealed a manufacturer key from a receiver and recovered the device key of a re-
mote control acquiring only 10 power traces. By doing this we showed that even
an adversary with little knowledge about the target implementation and almost
no special equipment is able to recover device keys and even the manufacturer
key. Surprisingly, we showed that dedicated lightweight hardware implementa-
tions are even easier to break than software implementations. This is opposing
the common belief that performing DPA attacks on dedicated hardware is much
more difficult than DPA attacks on microcontrollers.

Analyzing real-world applications of KeeLoq and taking into account sev-
eral key derivation schemes, we developed an eavesdropping attack that allows
for cloning a transmitter from a distance. Just two intercepted hopping code
messages suffice to open a car or a garage door protected by a system that
claims to be highly secure [19]. In addition, we introduced a denial-of-service
attack for the KeeLoq code hopping scheme. It ensures, that the owner of a
remote control, authorized to gain access to a certain site, will be locked out and
the original transmitter is rendered useless.

Summarized, we conduct a complete break of the KeeLoq code hopping
scheme, with severe implications for many KeeLoq systems currently used in
the field. Some manufacturers of security sensitive devices still do not seem to
care about the threat of side channel cryptanalysis. This contribution shows, that
widespread commercial applications, claiming to be secure, can be practically
broken with modest cost and efforts.



References

1. A. Bogdanov. Attacks on the KeeLoq Block Cipher and Authentica-
tion Systems. In 3rd Conference on RFID Security 2007 (RFIDSec 2007),
2007. http://www.crypto.rub.de/imperia/md/content/texte/publications/

conferences/keeloq_rfidsec2007.pdf.
2. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage

Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

3. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. Cryptographic Hardware and
Embedded Systems-Ches 2002: 4th International Workshop, Redwood Shores, CA,
USA, August 13-15, 2002: Revised Papers, 2002.

4. N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and Slide Attacks on
KeeLoq. In Fast Software Encryption - FSE 2008, Lecture Notes in Computer
Science. Springer, 2008. to appear. Also available in http://eprint.iacr.org/

2007/062.
5. S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Practical

Attack on KeeLoq. In Advances in Cryptology - EUROCRYPT 2008, Lecture Notes
in Computer Science. Springer, 2008. to appear.

6. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO ’99:
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, pages 388–397, London, UK, 1999. Springer-Verlag.

7. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In L. Goubin and
M. Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006,
volume 4249 of Lecture Notes in Computer Science, pages 101–118. Springer, 2006.

8. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In Cryptographic Hardware and Embedded Systems -
CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 157–171.
Springer, 2005.

9. Microchip. An Introduction to KeeLoq Code Hopping. Available in http://ww1.

microchip.com/downloads/en/AppNotes/91002a.pdf.
10. Microchip. HCS200, KeeLoq Code Hopping Encoder. Available in http://ww1.

microchip.com/downloads/en/DeviceDoc/40138c.pdf.
11. Microchip. HCS201, KeeLoq Code Hopping Encoder. Available in http://ww1.

microchip.com/downloads/en/DeviceDoc/41098c.pdf.
12. Microchip. HCS300, KeeLoq Code Hopping Encoder. Available in http://ww1.

microchip.com/downloads/en/DeviceDoc/21137f.pdf.
13. Microchip. HCS301, KeeLoq Code Hopping Encoder. Available in http://ww1.

microchip.com/downloads/en/DeviceDoc/21143b.pdf.
14. Microchip. HCS410, KeeLoq Code Hopping Encoder and Transponder. Available

in http://ww1.microchip.com/downloads/en/DeviceDoc/40158e.pdf.
15. Microchip. HCS410/WM, KeeLoq Crypto Read/Write Transponder Module.

Available in http://ww1.microchip.com/downloads/en/DeviceDoc/41116b.pdf.
16. S. B. Örs, E. Oswald, and B. Preneel. Power-Analysis Attacks on an FPGA -

First Experimental Results. In CHES, volume 2779 of Lecture Notes in Computer
Science, pages 35–50. Springer, 2003.

17. E. Peeters, F. Standaert, and J. Quisquater. Power and electromagnetic analysis:
Improved model, consequences and comparisons. Integration, the VLSI Journal,
40(1):52–60, 2007.



18. K. Schramm, G. Leander, P. Felke, and C. Paar. A Collision-Attack on AES:
Combining Side Channel- and Differential-Attack. In Cryptographic Hardware and
Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer Sci-
ence, pages 163–175. Springer, 2004.

19. E. Sells. Lexus RX 300 Uses Keeloq Code-Hopping Technology for Highly Secure
RKE System. http://www.thefreelibrary.com/Lexus+RX+300+Uses+Keeloq+

Code-Hopping+Technology+for+Highly+Secure...-a021122718.


