
Work partly done while at Katholieke Universiteit Leuven, Belgium. An extended abstract
of this paper appeared in Nigel Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 52-69, Springer-Verlag, 2008 [Nev08].
This is the full version.

Efficient Sequential Aggregate Signed Data

Gregory Neven

IBM Research – Zurich
Säumerstrasse 4, 8803 Rüschlikon, Switzerland

nev@zurich.ibm.com

http://www.neven.org

Abstract

We generalize the concept of sequential aggregate signatures (SAS), proposed by Lysyan-
skaya, Micali, Reyzin, and Shacham at Eurocrypt 2004, to a new primitive called sequential

aggregate signed data (SASD) that tries to minimize the total amount of transmitted data,
rather than just signature length. We present SAS and SASD schemes that offer numerous
advantages over the scheme of Lysyanskaya et al. Most importantly, our schemes can be in-
stantiated with uncertified claw-free permutations, thereby allowing implementations based
on low-exponent RSA and factoring, and drastically reducing signing and verification costs.
Our schemes support aggregation of signatures under keys of different lengths, and the SASD
scheme even has as little as 160 bits of bandwidth overhead. Finally, we present a multi-
signed data scheme that, when compared to the state-of-the-art multi-signature schemes, is
the first scheme with non-interactive signature generation not based on pairings. All of our
constructions are proved secure in the random oracle model based on families of claw-free
permutations.

Keywords: Provable security, sequential aggregate signatures, message recovery.

1 Introduction

Aggregate signatures (AS) [BGLS03] allow any third party to compress individual signatures
σ1, . . . , σn by n different signers on n different messages into an aggregate signature σ of size con-
siderably shorter than the sum of the sizes of the individual signatures, preferably independent
of the number of signatures n. Sequential aggregate signatures (SAS) [LMRS04] are a slightly
restricted variant where the signers have to be organized in a sequence, each taking turns in
adding their signature share onto the aggregate. Example applications of (S)AS schemes in-
clude secure routing protocols [KLS00], where routers authenticate paths in the network, and
certificate chains in hierarchical public-key infrastructures, where certificate authorities (CA)
authenticate public keys of lower-level CAs. Another important application area is that of
battery-powered devices such as cell phones, PDAs, and wireless sensors that communicate over
energy-consuming wireless channels.

1

mailto:nev@zurich.ibm.com

Drawbacks of existing schemes. In the public-key (i.e., non-identity-based) setting, only
three (S)AS schemes are presently known: the pairing-based BGLS [BGLS03] and LOSSW [LOS+06]
schemes, and the LMRS [LMRS04] scheme based on families of certified [BY96] trapdoor per-
mutations, but that with some tricks can be instantiated with RSA. All three schemes have
some drawbacks though.

Pairings were rather recently introduced to cryptography, and for the time being do not yet
enjoy the same level of support in terms of standardization and implementations as for example
RSA. The main disadvantage of the LMRS scheme on the other hand is that one of the tricks
needed to turn RSA into a certified permutation is to use a verification exponent e > N .1 This
has a dramatic effect on the computational efficiency of signing and verification, because both
require n long-exponent exponentiations for an aggregate signature containing n signatures.

Comparing this to pairing-based alternatives, the BGLS scheme also has rather expensive
verification (n pairing computations), but at least has cheap signing (a single exponentiation).
The LOSSW scheme has quite cheap signing and verification (two pairings and 160n multipli-
cations), albeit at the price of only being secure in the weaker knowledge of secret key (KOSK)
model that requires signers to hand over (or at least prove knowledge of) their secret keys to a
trusted CA. Both pairing-based schemes have shorter signatures than the LMRS scheme: for a
typical security level of 80 bits, the BGLS and LOSSW schemes have 160 and 320-bit signatures,
respectively, versus 1024 bits for LMRS .

Finally, none of the existing schemes give the signers much freedom in choosing their own
key sizes. This is particularly important for the certificate chain application, where a top-level
CA probably wants higher-grade security than a private end-user. The pairing-based schemes
require all signers to use the same elliptic-curve groups, so the signers have no influence over
their key sizes whatsoever. The LMRS scheme offers a limited amount of freedom, but requires
that signers within a sequence are arranged according to increasing key size, which is exactly
the opposite of what is needed for certificate chains.

Our contributions. We first observe that if one is truly concerned about saving bandwidth,
then focusing solely on signature length is a bit arbitrary. Indeed, what really matters is the
total amount of transmitted data, which contains messages, signatures, and in many applications
the signers’ public keys. (In fact, replacing the latter with shorter identity strings is the main
motivation for identity-based aggregate signatures [GR06, BGOY07].) We therefore state our
results in terms of a new, generalized primitive that we call sequential aggregate signed data

(SASD). The verification algorithm takes as only input the signed data Σ, and outputs vectors
of public keys ~pk = (pk1, . . . , pkn) and messages ~M = (M1, . . . ,Mn) to indicate that Σ correctly
authenticates Mi under pk i for 1 ≤ i ≤ n, or outputs (⊥,⊥) to reject. The goal of the scheme
is to keep the net bandwidth overhead to a minimum, i.e., the difference between the length of
the signed data |Σ| and that of the useful content

∑n
i=1 |Mi|.

Next, we present our main construction, the SASD scheme, based on families of trapdoor
permutations in the random oracle model. Its main advantage over the LMRS scheme is that it
does not require the permutations to be certified, thereby allowing much more efficient instanti-
ations from low-exponent RSA and the first instantiation ever from factoring. The construction
itself can be seen as combining ideas from the LMRS scheme and the PSS-R signature scheme
with message recovery [BR96]; the main technical contribution, we think, lies in the security

1 Alternatively to choosing e > N , one could let each signer append to his public key a non-interactive
zero-knowledge (NIZK) proof [BFM88] that gcd(e, ϕ(N)) = 1. However, whether general NIZK proofs or special-
purpose techniques [CM99, CPP07] are used, this invariably leads to a blowup in public key size and verification
time, annihilating the gains of using aggregate signatures.

2

Scheme Type KOSK RO Prob Overhead Sign Vf

BGLS [BGLS03] AS N Y P kp 1E nP
LOSSW [LOS+06] SAS Y N P 2kp 2P + nℓM 2P + nℓM
LMRS [LMRS04] SAS N Y R kf nE nE
SASD SASD N Y R,F [ℓ, kf + ℓ+ n] 1E + 2nM 2nM
SAS SAS N Y R,F kf + ℓ+ n 1E + 2nM 2nM

Bol [Bol03] MS Y Y P kp 1E 2P + nM
LOSSW [LOS+06] MS Y N P 2kp 2E + ℓM 2P + (ℓ+ n)M
MSD MSD N Y R,F [ℓ+ n, nkf + ℓ] 1E 2nM

Table 1: Comparison of existing aggregate signature (AS), sequential aggregate signature (SAS),
sequential aggregate signed data (SASD), multi-signature (MS), and multi-signed data (MSD)
schemes. For each scheme we display whether its security relies on the knowledge of secret
key (KOSK) or random oracle (RO) assumptions, on which number-theoretic problems it can
be based (P for pairings, R for RSA, F for factoring), the net bandwidth overhead in bits,
the cost of signing, and the cost of verification. Only the predominant terms are displayed
in efficiency measures. Symbols used are security parameters kp, kf , ℓ for pairings, factoring,
and collision-resistance (typical values are kp = ℓ = 160, kf = 1024); n for the number of
signers in an aggregation; P for a pairing operation; E for a (multi-)exponentiation; and M for
a multiplication. The overhead of the SASD and MSD schemes is displayed as an interval, as
their overhead depends on the length of the messages being signed. More details on efficiency
are provided in the sections where the schemes are introduced.

proof, which requires complex “query bookkeeping” for the simulation to go through. The
impact on efficiency is spectacular (see Table 1): verification takes a mere 2n multiplications,
signing takes one exponentiation and 2n multiplications, and bandwidth overhead can be as low
as 160 bits — something that until now seemed the exclusive privilege of pairing-based schemes.
Moreover, the scheme allows signers to mix-and-match different key sizes at will, allowing much
more flexibility for use in real applications.

There is a small caveat that our scheme only achieves its optimal bandwidth overhead for
sufficiently long signed messages. Roughly, if the n signers in the aggregation have key sizes
k1, . . . , kn, then we need that |Mi| ≥ ki − ki−1. To show that our efficiency gains are not only
due to our generalization of the SAS primitive however, we also present a “purebred” SAS
scheme that in most cases will have a larger bandwidth overhead than the SASD scheme, about
max(k1, . . . , kn)+160 bits to be exact, but that otherwise shares all the advantages in efficiency
and flexibility of the SASD scheme.

Multi-signatures. A multi-signature (MS) scheme [IN83] is the natural equivalent of a
(S)AS scheme where all signers authenticate the same message. The current state-of-the-art
schemes based on RSA or factoring [BN06] have interactive signature generation; those based
on pairings [Bol03, LOS+06] are only secure in the KOSK setting. The BGLS scheme could be
seen as a MS scheme (taking into account the issues [BNN07] that arise when signing the same
message), but has significantly less efficient verification.

Analogously to what we did for SASD schemes, we generalize the concept of MS schemes
to multi-signed data (MSD) schemes. We present the MSD scheme that is the first RSA and
factoring-based scheme with non-interactive signature generation, and that is the first efficient

3

non-interactive scheme secure in the plain public-key setting, i.e. without making the KOSK
assumption. Unlike the SASD scheme however, the bandwidth gains here are solely due to
message recovery effects, and disappear completely when very short messages are being signed.

2 Sequential Aggregate Signed Data

Notation. If k ∈ N, then 0k is the bit string containing k zeroes, and {0, 1}k is the set of all
k-bit strings. If x, y are bit strings, then |x| denotes the length (in bits) of x, x‖y denotes a bit
string from which x and y can be unambiguously reconstructed, and (x, y) denotes a tuple of
bit strings. If k ∈ N, S is a set, and y ∈ S, then ~x = (x1, . . . , xk) ∈ Sk is a k-dimensional vector,
~x|y is the (k + 1)-dimensional vector (x1, . . . , xk, y), and ~x|i = (x1, . . . , xi). Let ε and ~ε denote

the empty string and the empty vector, respectively. If S is a set, then x
$

← S denotes the
uniform selection of an element from S. If δ ∈ [0, 1], then b

δ

← {0, 1} denotes that b is assigned
the outcome of a biased coin toss that returns 1 with probability δ and 0 with probability 1− δ.

If A is a randomized algorithm, then y
$

← AO(x) means that y is assigned the output of A on
input x when given fresh coin tosses and access to oracle O.

Syntax. A sequential aggregate signed data (SASD) scheme is a tuple of three algorithms

SASD = (Kg, Sign,Vf). Each signer generates his own key pair (pk , sk)
$

← Kg(1k) consisting
of a public key pk and a secret key sk with security parameter k ∈ N. The first signer in
the sequence with key pair (pk1, sk1) creates the signed data Σ1 for message M1 by computing

Σ1
$

← Sign(sk1,M1). The n-th signer in the sequence receives from the (n − 1)-st signer the
aggregate signed data Σn−1, and adds his own signature on message Mn onto the aggregation

by running Σn
$

← Sign
(

skn,Mn,Σn−1

)

. He then sends Σn on to the (n + 1)-st signer. The

verifier checks the validity of Σn by running the verification algorithm (~pk , ~M)← Vf(Σn). This
algorithm either returns lists of n public keys ~pk and messages ~M , indicating that the signature
correctly authenticates message Mi under public key pk i for 1 ≤ i ≤ n, or returns (⊥,⊥) to
indicate rejection. Correctness requires that the Vf(Σn) = (~pk , ~M) with probability one for all
messages ~M when all signers behave honestly as described above.

Security. We take our inspiration for the security notion of SASD from the unforgeability
notion of SAS schemes [LMRS04, BNN07]. The game begins with the generation of the key pair

(pk∗, sk∗)
$

← Kg(1k) of the honest user that will be targeted in the attack. The forger F is given
pk∗ as input and has access to a signing oracle Sign(sk∗, ·, ·). This oracle, on input a message

Mn and aggregate signed data Σn−1, returns Σn
$

← Sign(sk∗,Mn,Σn−1). In the random oracle
model [BR93], the forger is additionally given oracle access to one or more random functions.
At the end of its execution, F outputs its forgery Σ. The forger wins the game iff Vf(Σ) =
(~pk , ~M) 6= (⊥,⊥) and there exists an index 1 ≤ i ≤ | ~pk | such that (1) pk i = pk∗ and (2) F never
made a signature query Sign(sk∗,Mi,Σi−1) for any Σi−1 such that Vf(Σi−1) = (~pk |i−1, ~M |i−1).
We stress that our security notion does not use the KOSK assumption, i.e., the forger does
not need to register the secret keys of corrupted signers involved in its signing queries or in its
forgery.

The advantage of F is the probability that it wins the above game, where the probability
is taken over the coins of Kg, Sign, and F itself. In the random oracle model, the probability
is also over the choice of the random function(s) implemented by the random oracle(s). We
say that F (t, qS, nmax, ǫ)-breaks SASD if it runs in time at most t, makes at most qS signature

4

queries, and has advantage at least ǫ, and aggregates contain at most nmax signatures. This
means that the aggregate signed data that F submits to the signing oracle can contain at most
nmax − 1 signatures, and that its forgery can contain at most nmax signatures. In the random
oracle model, we additionally bound the number of queries that the adversary makes to each
random oracle separately.

3 Our Main Construction

Claw-free permutations. A family of claw-free trapdoor permutations Π consists of a
randomized permutation generation algorithm Pg that on input 1k outputs tuples (π, ρ, π−1)
describing permutations π, ρ over domain Dπ = Dρ of size |Dπ| ≥ 2k−1, and the corresponding
trapdoor information for the inverse permutation π−1. There must exist efficient algorithms
that given π, x compute π(x) in time tπ, that given ρ, x compute ρ(x), and that given π−1, x
compute π−1(x) for any x ∈ Dπ. A claw-finding algorithm A is said to (t, ǫ)-break Π if it runs
in time at most t and the probability

Pr
[

π(x) = ρ(y) | (π, ρ, π−1)
$

← Pg(1k) ; (x, y)
$

← A(π, ρ)
]

is at least ǫ.

Other ingredients. Let k, ℓ ∈ N be security parameters, where ℓ is a system-wide parameter
but k can be chosen by each signer independently as long as k > ℓ. (Typical values for a
security level of 80 bits in a factoring-based instantiation would be k = 1024 and ℓ = 160.)
Let Π be a family of claw-free trapdoor permutations so that associated to each permutation
π in the family there exists an additive abelian group Gπ ⊆ Dπ such that |Gπ| ≥ 2k−1. Let
d = minπ∈Π(|Gπ|/|Dπ|) be the minimal density of Gπ in Dπ. We stress that π need not be a
permutation over Gπ, and that π need not be homomorphic with respect to the group operation
in Gπ. Let encπ : {0, 1}∗ → {0, 1}∗×Gπ an efficient encoding algorithm that breaks up a message
M into a (shorter) message m and an element µ ∈ Gπ, and let decπ : {0, 1}∗ × Gπ → {0, 1}

∗

be the corresponding decoding algorithm that reconstructs M from (m,µ). We require that
the decoding function is injective, meaning that decπ(m,µ) = decπ(m

′, µ′)⇒ (m,µ) = (m′, µ′).
Finally, let H : {0, 1}∗ → {0, 1}ℓ and Gπ : {0, 1}ℓ → Gπ be public hash functions modeled as
random oracles.

Intuition. Before presenting our SASD scheme, we provide some intuition into the construc-
tion. First consider the following signature scheme with message recovery, that could be seen as
a non-randomized generalization of PSS-R [BR96]. The signer’s public key is a permutation π,
the secret key is π−1. To sign a message M , he computes (m,µ) ← encπ(M), h ← H(M), and
X ← π−1(Gπ(h) + µ). The signature consists of the pair σ = (X,h). Given partial message m
and signature σ, a verifier recomputes µ ← π(X) − Gπ(h), M ← decπ(m,µ), and returns M
iff H(M) = h. Observe that if the encoding is sufficiently dense (d ≈ 1), then the net signing
overhead is limited to |h| = ℓ bits, since the bandwidth of X is reused entirely for message
recovery.

Two observations lead from this scheme to our SASD scheme. First, the type of data that
can be “embedded” in X is not restricted to parts of the signed message; it could also be used
for example to embed the signature of the previous signer. (The same idea actually underlies
the LMRS scheme.) Second, suppose the signer wants to add a second signature on M2 on
top of σ1 = (X1, h1). One idea to keep the net overhead at a constant ℓ bits could be to

5

use h2 ← h1 ⊕ H(M2) and let the overall signed data be m1‖m2‖X1‖X2‖h2. The verifier can
then recover M2 from (m2, X2, h2); h1 from (h2,M2); and M1 from (m1, X1, h1). He accepts iff
H(M1) = h1. A number of additional tweaks would be needed to make this scheme secure (we
do not make any claims about its security here), but this is the rough idea.

The scheme. We associate to the above building blocks the SAS scheme as follows. Each

signer generates a pair of claw-free trapdoor permutations (π, ρ, π−1)
$

← Pg(1k). The public key
is pk ← π, the secret signing key is sk ← π−1. The aggregate signing and verification algorithms
are given below.

Algorithm SignH,G(π−1
n ,Mn,Σn−1):

If n = 1 then Σ0 ← (~ε, ε, ε, 0ℓ)
Parse Σn−1 as (~π,mn−1, Xn−1, hn−1)

If VfH,G(Σn−1) = (⊥,⊥) then return ⊥
(mn, µn)← encπn

(Mn‖mn−1‖Xn−1)
hn ← hn−1 ⊕H(~π|πn‖Mn‖mn−1‖Xn−1)
gn ← Gπn

(hn)
Xn ← π−1

n (gn + µn)
Return Σn ← (~π|πn,mn, Xn, hn)

Algorithm VfH,G(Σ):

Parse Σ as (~π,mn, Xn, hn) where n = |~π|
For i = n, . . . , 1 do

If |Gπi
| < 2ℓ then return (⊥,⊥)

gi ← Gπi
(hi) ; µi ← πi(Xi)− gi

Mi‖mi−1‖Xi−1 ← decπi
(mi, µi)

hi−1 ← hi ⊕ H(~π|i‖Mi‖mi−1‖Xi−1)
If (m0, X0, h0) = (ε, ε, 0ℓ)

Then return
(

~π, ~M = (M1, . . . ,Mn)
)

Else return (⊥,⊥).

Efficiency. Note that the verification algorithm only contains a simple check on the output
size of Gπi

(·), but does not check whether Gπi
⊆ Dπi

or whether πi really describes a permutation
over Dπi

. Indeed, unlike the LMRS scheme, our security analysis of the SASD scheme points
out that an honest signer’s security is not affected by adversarially generated keys of cosigners.
This opens the way to much cheaper instantiations from uncertified permutations such as low-
exponent RSA and factoring. The true reason for this difference only becomes clear in the details
of the security proof, but we try to give some intuition here. The crucial difference between
our SASD scheme and the LMRS scheme is that in SASD the data embedded in Xi, meaning
(Mi,mi−1, Xi−1), is passed as an argument to the hash function H(·), as was done in the signature
scheme with message recovery that we sketched before. This extra security measure cannot be
applied to the LMRS scheme however because the embedded data (the previous signature) is
only recovered after evaluating H(·). Lysyanskaya et al. overcome this problem in the security

proof by simulating random oracles mapping into Gπ by choosing x
$

← Dπ and returning π(x).
The correctness of this technique relies crucially on the fact that even adversarially generated
π are permutations. The security proof of SASD, on the other hand, only uses this simulation
technique for the honestly generated permutation π∗. See the proof in Section 5 for details.

Also note that signers can independently choose their own value of the security parameter k.
The system-wide parameter ℓ can be set to a comfortably high value like ℓ = 256 or 512 without
too much impact on performance. The exact overall bandwidth overhead depends on the length
of the signed messages, the efficiency of the encoding algorithm, the family of permutations being
used, the signers’ security parameters k1, . . . , kn and the density d. For typical instantiations
(see below), the net overhead varies from ℓ bits in case sufficiently long messages are being
signed, meaning |Mi| ≥ ki − ki−1, up to ℓ +max(k1, . . . , kn) bits for shorter messages. Finally,
it is worth noting that the list of public keys ~π contained in Σ can of course be omitted from
the transmitted data if the verifier already knows the public keys.

6

4 Instantiating our Construction

Instantiations from RSA. An RSA key generator [RSA78] is a randomized algorithm KgRSA

that on input 1kf outputs tuples (N, e, d) where N = pq is a kf -bit product of two large primes
and ed = 1 mod ϕ(N). The RSA function π(x) = xe mod N is generally assumed to be a
trapdoor one-way permutation over Dπ = Z

∗

N , where d is the trapdoor that allows to compute
π−1(x) = xd mod N . An algorithm A is said to (t, ǫ)-break the one-wayness of KgRSA if it runs
in time at most t and

Pr
[

xe = y mod N | (N, e, d)
$

← KgRSA ; y
$

← Z
∗

N ; x
$

← A(N, e, y)
]

≥ ǫ .

One can associate to KgRSA a claw-free permutation family Π by taking ρ(x) = xe · y mod N ,

where y
$

← Z
∗

N . It is easy to see that if an algorithm A (t, ǫ)-breaks this claw-free permutation,
then there exists an algorithm B that (t, ǫ)-breaks the one-wayness of KgRSA.

The most important advantage of our scheme over the LMRS scheme is that special RSA key
generators can be used with small verification exponents, e.g. e = 3 or e = 65537. These have
the advantage that the cost of a verification exponentiation (raising to exponent e) is reduced
to that of a couple of multiplications.

Several options are available for the groupGπ, the additive group operation, the hash function
Gπ(·), and the message encoding/decoding algorithms to be used. The most straightforward
choice would be to use GN,e = Z

∗

N with multiplication modulo N . A computationally more
efficient choice however is to use GN,e = {0‖x : x ∈ {0, 1}kf−1} with the XOR operation. To
make optimal use of the bandwidth, one could also use GN,e = ZN in combination with the
addition modulo N . Alternatively, one can use the permutation family of [HOT04] to save one
bit of bandwidth per signer, but this comes at the cost of doubling the verification and signing
time.

To estimate efficiency (see overview in Table 1), we consider the instantiation with e = 3 and
GN,e = 0‖{0, 1}kf−1 with the XOR operation, and we assume that signers use security parameter
kf or smaller. The exact bandwidth overhead depends on the amount of “recoverable” data µi,
but varies between ℓ bits in the best case and ℓ+kf+n bits in the worst case. Typical bandwidth
overhead will be around ℓ + n bits (for n signers using the same security parameter kf and
|M1| ≥ kf). The most expensive operations in signing and verification are the computations of π
and π−1, which for e = 3 take two modular multiplications and one modular exponentiation each,
respectively. Ignoring cheap operations such as XORs and hash function evaluations, verifying
aggregate signed data by n signers takes 2n modular multiplications. Placing a signature on top
of an aggregate of n signers takes 2n multiplications (to verify the existing aggregate) and one
exponentiation.

Instantiations from factoring. Let KgWil be a randomized algorithm that on input 1k

outputs tuples (N, p, q) where N = pq is a k-bit product of primes p, q such that p = 3 mod 8
and q = 7 mod 8. For such integers N , also called Williams integers, we have that the Legendre
symbols

(

−1
p

)

=
(

−1
q

)

= −1,
(

2
p

)

= −1, and
(

2
q

)

= +1. Therefore −1 is a quadratic residue

modulo N with Jacobi symbol
(

−1
N

)

= +1, and 2 is a non-quadratic residue with Jacobi symbol
(

2
N

)

= −1. Also, each quadratic residue modulo N has four square roots (x1, x2, x3, x4) of which
x1 = −x2 mod N , x3 = −x4 mod N ,

(

x1

N

)

=
(

x2

N

)

= +1, and
(

x2

N

)

=
(

x3

N

)

= −1. Consider the

7

permutation π : Z∗

N → Z
∗

N defined as

π(x) =















x2 modN if
(

x
N

)

= +1 and x < N/2
−x2 modN if

(

x
N

)

= +1 and x > N/2
2x2 modN if

(

x
N

)

= −1 and x < N/2
−2x2 modN if

(

x
N

)

= −1 and x > N/2 .

Note that the Jacobi symbol
(

x
N

)

can be computed in time O(|N |2) without knowing the factor-
ization of N , so the forward permutation is efficiently computable without knowing the trapdoor.
The inverse permutation π−1(y) can be computed using trapdoor information p, q by finding
c ∈ {1,−1, 2,−2} such that y/c is a quadratic residue modulo N and computing the four square
roots (x1, x−1, x2, x−2) of y/c modulo N , ordered such that

(

x1

N

)

=
(x−1

N

)

= +1, x1 < x−1,
(

x2

N

)

=
(x−2

N

)

= −1, x2 < x−2. The inverse of y is the root xc. Since this is a permutation over
Z
∗

N , the same group operations, hash functions and message encoding algorithms can be used
as described for RSA above.

One can associate a family of claw-free trapdoor permutations to KgWil by taking ρ(x) =

π(x) · r2 mod N where r
$

← Z
∗

N . Algorithm A is said to (t, ǫ)-factor KgWil if it runs in time at
most t and

Pr
[

x ∈ {p, q} | (N, p, q)
$

← KgWil ; x
$

← A(N)
]

≥ ǫ .

Given a claw π(a) = ρ(b), one can see that a/b mod N is a square root of r2, which with
probability 1/2 is different from±r mod N and thereby reveals the factorization ofN . Therefore,
if an algorithm A (t, ǫ)-breaks the claw-free permutation, then there exists an algorithm B that
(t, ǫ/2)-factors KgWil.

5 Security of our Construction

We prove the security of the SASD scheme in the random oracle model under the claw-freeness
of the permutation family Π. The following theorem gives a formal security statement with
concrete security bounds.

Theorem 5.1 If there exists a forger F that (t, qS, qH, qG, nmax, ǫ)-breaks SASD in the random
oracle model, then there exists a claw-finding algorithm A that (t′, ǫ′)-breaks Π with

ǫ′ ≥
ǫ

e(qS + 1)
−

4
(

qH + qG + 2nmax(qS + 1)
)2

2ℓ

t′ ≤ t+ (1/d+ 2)
(

qH + 2nmax(qS + 1) + nmax

)

· tπ .

We prove Theorem 5.1 in two steps. First, we restrict our attention to a particular class of
forgers that we call sequential forgers, defined in Definition 5.2. In Lemma 5.3 we show that
for any (non-sequential) forger F there exists a sequential forger S with about the same success
probability and running time. Next, we show in Lemma 5.5 how a sequential forger can be used
to find a claw in Π. The theorem then follows directly by combining Lemma 5.3 and Lemma 5.5.

Definition 5.2 We say that a forger S against SASD is sequential if:

1. it never makes the same H(·), G·(·), or Sign(·, ·) query twice, where H(·) denotes a query
to the random oracle for H, and where G·(·) denotes a query to the random oracle for Gπ

for some permutation π;

8

2. it only makes H(·) queries of the form H(~π‖Mn‖mn−1‖Xn−1) such that n = |~π| ≤ nmax

and |Gπi
| ≥ 2ℓ for all 1 ≤ i ≤ n;

3. for each query H(Qn) = H(~π‖Mn‖mn−1‖Xn−1) there exists a unique sequence of queries
Q1 = (~π|1‖M1‖ε‖ε), Q2 = (~π|2‖M2‖m1‖X1), . . . , Qn−1 = (~π|n−1‖Mn−1‖mn−2‖Xn−2) such
that S previously made queries H(Q1), . . . ,H(Qn−1), in that order, such that

decπi

(

mi , πi(Xi)−Gπi
(hi)

)

= Mi‖mi−1‖Xi−1 ,

where hi = hi−1 ⊕H(Qi) for 1 ≤ i ≤ n and such that (m0, X0, h0) = (ε, ε, 0ℓ).

4. it only makes signing queries Sign(π−1,Mn,Σn−1) for valid signed data Σn−1 = (~π,mn−1,
Xn−1, hn−1), meaning that n = |~π| + 1 ≤ nmax and VfH,G(Σn−1) 6= (⊥,⊥). Also, before
making such a signing query, it makes a random oracle query H(~π‖Mn−1‖mn−2‖Xn−2)
and all random oracle queries needed for the verification VfH,G(Σn−1);

5. it only outputs valid forgeries Σ = (~π,mn, Xn, hn), meaning that n = |~π| ≤ nmax, that
VfH,G(Σ) = (~π, ~M) 6= (⊥,⊥), and that there exists 1 ≤ i ≤ n such that πi = π∗ and S

never made a signing query Sign(π∗−1,Mi,Σi−1) for any Σi−1 such that VfH,G(Σi−1) =
(~π|i−1, ~M |i−1). Also, before halting, it makes all random oracle queries needed for the
verification VfH,G(Σ).

The following lemma shows that for any non-sequential forger F, there exists a sequential forger
S with approximately the same success probability and running time as F.

Lemma 5.3 If there exists a forger F that (t, qS, qH, qG, nmax, ǫ)-breaks SASD in the random
oracle model, then there exists a sequential forger S that (t′, qS, q

′

H, q
′

G, nmax, ǫ
′)-breaks SASD in

the random oracle model with

ǫ′ ≥ ǫ−
2
(

qH + qG + 2nmax(qS + 1)
)2

2ℓ
(1)

q′H ≤ qH + nmax(qS + 1)

q′G ≤ qH + qG + 2nmax(qS + 1)

t′ ≤ t+ (qH + 2nmax(qS + 1)) · tπ .

Proof: We first give an informal description of the sequential forger S to provide some intuition
into its strategy, and then give a formal description to derive the exact concrete security bounds.
Given a non-sequential forger F, we build a sequential forger S as follows. Algorithm S is given
input π∗ and access to oracles H′(·), G′

·
(·), and Sign′(π∗−1, ·, ·). It runs F on the same input π∗

and simulates responses to F’s H(·), G·(·) and Sign(π∗−1, ·, ·) oracle queries.

To satisfy Property 1 of Definition 5.2, S stores all previous responses to F’s oracle queries in
associative tables, retrieving the appropriate response from these tables when F asks the same
query again. Note that the Sign algorithm is deterministic, so in a real attack repeating the
same query to the signing oracle would result in the same signature being returned as well.
Property 2 is satisfied by returning random values for F’s malformed H(·) queries. To answer
F’s G·(·) queries, S simply relays responses from its own G′

·
(·) oracle.

Correctly formed H(·) queries are treated in a more complicated manner. S maintains a directed
graph G = (V , E) as illustrated in Figure 1 . Each node is uniquely identified by a tuple

9

(ε, ε, ε)

(π1,m1, Y1)

(

(π1, π2),m2, Y2

)

(π1,m
′

1, Y
′

1)

(

(π1, π2),m
′

2, Y
′

2

)

(

(π1, π2, π3),m3,⊥
)

(h1, Q1)

(h2, Q2)

(h′

1, Q
′

1)

(⊥, Q3)

(h′

2, Q
′

2)

Figure 1: The graph G = (V , E) maintained by algorithm S. The solid edges indicate the state
of G after F made sequential H(·) queries Q1 = π1‖M1‖ε‖ε, Q2 = (π1, π2)‖M2‖m1‖X1, Q

′

1 =
π1‖M

′

1‖ε‖ε, and a non-sequential query Q3 = (π1, π2, π3)‖M3‖m2‖X2. The dashed edges depict
the problematic cases when at that point F makes a new query H(Q′

2) = H
(

(π1, π2)‖M
′

2‖m
′

1‖X
′

1

)

that causes event Bad to occur.

(~π,m, Y) ∈ V , and each edge is uniquely identified by a tuple (h,Q) ∈ E . We explicitly allow
multiple directed edges between the same pair of nodes. Initially, the graph only contains a
so-called root node (ε, ε, ε). The idea is that all queries H(Qn) satisfying Property 3, so-called
sequential queries, appear in edges in a tree rooted at (ε, ε, ε), while all non-sequential queries
appear in edges not connected to (ε, ε, ε). We refer to the tree rooted at (ε, ε, ε) as the sequential
tree. Property 3 is then enforced by letting S return H′(Qn) for queries in the sequential tree,
and random values for all other queries.

When F makes a new query H(Qn) = H(~π‖Mn‖mn−1‖Xn−1), S updates the graph G as follows.
If n = 1 and m0 = X0 = ε, then the query trivially satisfies Property 3, so it creates a
new edge (h1, Q1) with the root as tail node and a new node vh = (π1,m1, Y1) as head node,
where (m1, µ1) = encπ1

(M1‖ε‖ε), h1 = H(Q1), and Y1 = µ1 + Gπ1
(h1). When 1 < n ≤ nmax,

algorithm S searches the graph for a node vt = (~π|n−1,mn−1, Yn−1) where Yn−1 = πn−1(Xn−1).
If such a node exists and it is in the sequential tree, then let (hn−1, Qn−1) be the incoming
edge into vt. We have that πn−1(Xn−1) = Yn−1 = µn−1 + Gπn−1

(hn−1), so the requirements of
Property 3 are satisfied by the sequence of queries (Q1, . . . , Qn−1) on the path from the root to
vt. Algorithm S creates a new edge (hn, Qn) with tail node vt and head node vh = (~π,mn, Yn)
where hn = hn−1 ⊕ H(Qn), (mn, µn) = encπn

(Mn‖mn−1‖Xn−1), and Yn = µn + Gπn
(hn). If vt

is not in the sequential tree, or if no such node vt exists in the graph, then the query is deemed
non-sequential. Algorithm S returns a random value as the random oracle response, and adds a
new edge (⊥, Qn) to the graph with tail node vt = (~π|n−1,mn−1, Yn−1) where Yn = πn−1(Xn−1)
and head node vh = (~π,mn,⊥) where (mn, µn) = encπn

(Mn‖mn−1‖Xn−1), adding these nodes
to the graph if they did not yet exist.

The creation of a new edge, however, should not violate the invariants that only sequential queries
are represented by edges in the sequential tree, and that all of these queries were responded to
using outputs of H′(·). Two types of problems that can occur are illustrated by the dashed
arrows for query Q′

2 in Figure 1 . The left arrow illustrates the situation when Q′

2 is such that

10

the head node vh of the new edge coincides with an existing node in the sequential tree. This is
a problem, because if F later makes a query H(Q′

3) that “connects” to vh, then there exist two
different sequences (Q1, Q2) and (Q′

1, Q
′

2) that satisfy the requirements of Property 3, violating
the uniqueness requirement. The right dashed arrow in Figure 1 illustrates the situation when
vh coincides with an existing node that is not part of the sequential tree. The newly created edge
would suddenly incorporate vh into the sequential tree, but this violates the invariant because
S responded the query H(Q3) with a random value, rather than with an output of H′(·).

To preempt these problems, S aborts its execution whenever a new edge is added to the sequential
tree with a head node that already exists in G. We say that event Bad occurs when this happens.

Claim 5.4 If Σn are valid signed data, meaning n ≤ nmax and VfH,G(Σn) 6= (⊥,⊥), and event
Bad does not occur, then all random oracle queries involved in the evaluation of VfH,G(Σn) are
sequential.

Proof: Let Σn be parsed as (~π,mn, Xn, hn). We prove the claim by induction on the number
of signatures n contained in Σn. The claim clearly holds for n = 1, because in this case the
verification involves only a single query H(π1‖M1‖ε‖ε) that is always sequential.

Suppose the claim is true for all signed data containing up to n− 1 signatures. Let Qn, . . . , Q1

be the H(·) queries made when evaluating VfH,G(Σn) = (~π, ~M), where Qi = ~π|i‖Mi‖mi−1‖Xi−1,
and let h′1, . . . , h

′

n−1 be the intermediate values obtained during the evaluation. If Σn is valid,

then Σn−1 = (~π|n−1,mn−1, Xn−1, h
′

n−1) is also valid, namely VfH,G(Σn−1) = (~π|n−1, ~M |n−1). By
the induction hypothesis, F must thus have made the queries H(Q1), . . . ,H(Qn−1) sequentially,
so they are represented in the graph G by edges (h1, Q1), . . . , (hn−1, Qn−1) in the sequential
tree. Clearly, we have that hi = h′i = H(Q1) ⊕ . . . ⊕ H(Qi) for 1 ≤ i ≤ n − 1, and that
hn = hn−1 ⊕H(Qn).

Suppose for contradiction that F queries H(Qn) non-sequentially, so it queries H(Qn) at least
before it queries H(Qn−1). At the moment that F queried H(Qn), S created an edge (⊥, Qn)
with tail node

(

~π|n−1,mn−1, Yn−1 = πn−1(Xn−1)
)

not connected to the sequential tree. When
F subsequently queries H(Qn−1), S adds an edge (hn−1, Qn−1) to the sequential tree with head
node

(

~π|n−1,mn−1, Y
′

n−1 = µn−1 + Gπn−1
(hn−1)

)

. Since decπn−1
is injective however, there is

only a single value of µn−1 so that decπn−1
(mn−1, µn−1) = Mn−1‖mn−2‖Xn−2. In the verification

of Σn, this value is recovered as µn−1 = πn−1(Xn−1) − Gπn−1
(hn−1), so we have that µn−1 =

πn−1(Xn−1) − Gπn−1
(hn−1) = Y ′

n−1 − Gπn−1
(hn−1) and hence, because Gπn−1

is a group, that
Yn−1 = Y ′

n−1. This however means that the head node of (hn−1, Qn−1) coincides with the tail
node of (hn, Qn), causing event Bad to occur. So if Bad does not occur, we conclude that F

must query H(Qn) after H(Qn−1), meaning sequentially.

When F makes a signing query Sign(π∗−1,Mn,Σn−1), algorithm S enforces Property 4 of Defi-
nition 5.2 by first verifying Σn−1 and simulating an additional query H(~π|π∗‖Mn‖mn−1‖Xn−1).
Only if Σn−1 verifies correctly does S consult its own signing oracle; it relays the response of
Sign′(π∗−1,Mn,Σn−1) to F. Note that by Claim 5.4, if the event Bad does not occur, all H(·)
queries involved in the verification VfH,G(Σn−1) = (~π, ~M) 6= (⊥,⊥) are sequential, so we also
have that VfH

′,G′

(Σn−1) = (~π, ~M).

Finally, S ensures Property 5 by first verifying the forgery, simulating the necessary random
oracle queries, and checking that the conditions with respect to the previous Sign(π∗−1, ·, ·)

11

Algorithm SH
′,G′,Sign′(π∗):

001 V ← {(ε, ε, ε)} ; E ← ∅ ; G ← (V, E)

002 Σ
$

← FH,G,Sign(π∗), answering queries
003 H(·) using H-Sim(·)
004 G·(·) using G-Sim(·, ·)
005 Sign(π∗−1, ·, ·) using S-Sim(·, ·)

006 (~π, ~M)← VfH-Sim,G-Sim(Σ)

007 If (~π, ~M) = (⊥,⊥) or 6 ∃ 1 ≤ i ≤ |~π| :
(

πi 6= π∗ and 6 ∃ Σi−1 : (ST [Mi,Σi−1] 6= ⊥

and VT [Σi−1] = (~π|i−1, ~M |i−1))
)

008 Then abort
009 Output Σ

Subroutine S-Sim(Mn,Σn−1):

101 If Σn−1 not parsable as (~π,mn−1, Xn−1, hn−1)
where n = |~π|+ 1 or n > nmax then return ⊥

102 If ST [Mn,Σn−1] = ⊥ then
103 H-Sim(~π|π∗‖Mn‖mn−1‖Xn−1)

104 VT [Σn−1]← VfH-Sim,G-Sim(Σn−1)
105 If VT [Σn−1] = (⊥,⊥) then return ⊥
106 ST [Mn,Σn−1]← Sign′(π∗−1,Mn,Σn−1)
107 Return ST [Mn,Σn−1]

Subroutine H-Sim(Qn):

201 If HT [Qn] 6= ⊥ then return HT [Qn]
202 If Qn not parsable as ~π‖Mn‖mn−1‖Xn−1

where n = |~π| or n > nmax or |Gπn
| < 2ℓ

203 Then HT [Qn]
$

← {0, 1}ℓ

204 Else
205 (mn, µn)← encπn

(Mn‖mn−1‖Xn−1)
206 If n = 1 then h0 ← 0ℓ ; vt ← (ε, ε, ε)
207 Else
208 vt ← (~π|n−1,mn−1, πn−1(Xn−1))
209 hn−1 ← HeadOf(vt)
210 If hn−1 6= ⊥ then // sequential query

211 HT [Qn]← H′(Qn)
212 hn ← hn−1 ⊕ HT [Qn]
213 gn ← G-Sim(πn, hn)
214 vh ← (~π,mn, µn + gn)
215 If vh ∈ V then abort // Bad occurred

216 Else // non-sequential query

217 HT [Qn]
$

← {0, 1}ℓ

218 vh ← (~π,mn,⊥) ; hn ← ⊥
219 NewEdge(vt, vh, (hn, Qn))
220 Return HT [Qn]

Subroutine G-Sim(π, h):

301 If GT [π, h] = ⊥ then GT [π, h]← G′

π(h)
302 Return GT [π, h]

Figure 2: Pseudo-code description of the strictly sequential forger S of Lemma 5.3.

queries hold. Again, we rely here on Claim 5.4 to guarantee that if event Bad does not occur,
then any valid signed data under random oracles H(·),G·(·) is also valid under H′(·),G′

·
(·).

It is clear that S is successful in breaking SASD whenever F is and event Bad does not occur.
To prove the concrete bounds stated in Lemma 5.3 and to correctly analyze the probability that
event Bad occurs, we give a more formal pseudocode description of the sequential forger S that
we just described in Figure 2 .

Algorithm S runs F on input π∗ and uses subroutines H-Sim, G-Sim, and S-Sim to simulate
responses to the H(·), G·(·), and Sign(·) queries made by F, respectively. We assume the avail-
ability of two subroutines NewEdge and HeadOf to manipulate the graph G. The subroutine
NewEdge(v1, v2, e) creates a new edge e from node v1 to node v2, creating these nodes if they
do not yet exist. The subroutine HeadOf(v) checks whether there exists an edge e = (h,X) ∈ E
that has v as a head node. If so, then HeadOf returns the value h; if not, it returns ⊥.

We first show the claimed bounds on S’s resource usage. For each signing query of F, S makes
at most one query to its own signing oracle, so

q′S ≤ qS .

Algorithm S makes at most qH+nmaxqS+nmax calls to H-Sim (see lines 003, 006, 103, and 104),
and at most qH + qG + (2nmax − 1)qS + 2nmax calls to G-Sim (see lines 004, 006, 104, and 213).

12

For each call to H-Sim and G-Sim, S makes at most one query to H′(·) and G′

·
(·), respectively,

so we have that

q′H ≤ qH + nmax(qS + 1)

q′G ≤ qH + qG + 2nmax(qS + 1) .

For the running time we ignore all costs other than permutation evaluations, which take time
tπ each. Algorithm S evaluates up to nmax permutations on line 006; up to (nmax − 1)qS on
line 104; and up to qH + nmax(qS + 1) on line 208; summing up to

t′ ≤ t+ (qH + 2nmax(qS + 1)) · tπ .

For the advantage ǫ′ of S in breaking SASD we have that

ǫ′ = Pr [S wins]

= Pr
[

S wins |Bad
]

· Pr
[

Bad
]

+ Pr [S wins ∧Bad]

≥ Pr
[

S wins |Bad
]

· (1− Pr [Bad])

≥ Pr
[

S wins |Bad
]

− Pr [Bad] (2)

From the strategy of S and Claim 5.4 it is clear that in the event Bad the simulation of F’s
environment provided by S is perfect, and that S wins whenever F wins:

Pr
[

S wins |Bad
]

≥ Pr [F wins] = ǫ . (3)

Equation (1) easily follows from Equation (2), Equation (3) and the following bound on the
probability that event Bad occurs:

Pr [Bad] ≤
2
(

qH + qG + 2nmax(qS + 1)
)2

2ℓ
.

To see why this bound is correct, observe that when event Bad occurs on line 215, HT [Qn] was
just assigned a fresh random value on line 211, so hn = hn−1 ⊕ HT [Qn] is random as well. We
distinguish between the case that the call to G-Sim on line 213 resulted in a new entry being
added to GT [·, ·], and the case that it didn’t. In the latter case, hn must already have appeared
in GT [·, ·], but this happens with probability at most |GT |/2ℓ ≤ (qH + qG + 2nmax(qS + 1))/2ℓ.
In the former case, gn is a random value from Gπn

, so the probability that Yn = µn+ gn already
occurred as part of a node identifier is at most |V|/|Gπn

| ≤ (qH + nmax(qS + 1))/2ℓ. Summing
up over all qH + nmax(qS + 1) calls to H-Sim gives

Pr [Bad] ≤ (qH + nmax(qS + 1)) ·

(

qH + qG + 2nmax(qS + 1)

2ℓ
+

qH + nmax(qS + 1)

2ℓ

)

≤
2
(

qH + qG + 2nmax(qS + 1)
)2

2ℓ
.

Lemma 5.3 says that we can safely restrict our attention to sequential forgers. The next lemma
shows that any such forger can be turned into a claw-finding algorithm for Π. The proof is given
below, and reuses ideas from [BR96, Cor00, LMRS04, BNN07].

13

Lemma 5.5 If there exists a sequential forger S that (t, qS, qH, qG, nmax, ǫ)-breaks SASD, then
there exists a claw-finding algorithm A that (t′, ǫ′)-breaks Π for

ǫ′ ≥
ǫ

e(qS + 1)
−

qH(qH + qG)

2ℓ

t′ ≤ t+ ((1/d+ 1)qH + nmax) · tπ .

Proof: Given a sequential forger S against SASD, consider the following claw-finding algorithm
A against Π. Algorithm A maintains initially empty associative arrays HT [·] and GT [·, ·]. On
input π∗, ρ∗, algorithm A runs S on target public key π∗, and responds to its oracle queries as
follows:

Random oracle query H(Qn): Parse Qn as ~π‖Mn‖mn−1‖Xn−1. If n > 1, then A finds the
unique sequence of queries (Q1, . . . , Qn−1) as per Property 3 of a sequential forger, and
looks up HT [Qn−1] = (c, x, hn−1). If n = 1, it sets h0 ← 0ℓ.

If πn 6= π∗ then A chooses h
$

← {0, 1}ℓ, computes hn ← h ⊕ hn−1, stores HT [Qn] ←
(⊥,⊥, hn), and returns h to S.

If πn = π∗ then A chooses h
$

← {0, 1}ℓ and c
δ

← {0, 1}, and computes (mn, µn) =

encπ∗(Mn‖mn−1‖Xn−1) and hn ← h⊕ hn−1. If c = 0 then A repeatedly chooses x
$

← Dπ∗

and computes gn ← π∗(x) − µn until gn ∈ Gπ∗ . If c = 1 then A repeatedly chooses

x
$

← Dπ∗ and computes gn ← ρ∗(x)− µn until gn ∈ Gπ∗ . (Each of these loops will require
1/d iterations on average.) If GT [π∗, hn] is already defined, then we say that event Bad1

occurred and A aborts; otherwise, it sets GT [π∗, hn] ← gn. It stores HT [Qn] ← (c, x, hn)
and returns h to S.

Random oracle query Gπ(h): If GT [π, h] is not defined, then A chooses GT [π, h]
$

← Gπ. It
returns GT [π, h] to F.

Signing query Sign(π∗−1,Mn,Σn−1) : Parse Σn−1 as (~π,mn−1, Xn−1, hn−1). Algorithm A

looks up the entry HT [~π|π∗‖Mn‖mn−1‖Xn−1] = (c,Xn, hn), which must exist by Prop-
erty 4 of a sequential forger. Let (mn, µn) = encπ∗(Mn‖mn−1‖Xn−1). If c = 0 then A

returns Σn = (~π‖π∗,mn, Xn, hn). If c = 1, then we say that event Bad2 occurred and A

aborts.

At the end of its execution, the forger outputs its forgery Σn = (~π,mn, Xn, hn). By Property 5
the forgery is valid, so VfH,G(Σn) = (~π, ~M) and there exists an index 1 ≤ i ≤ n such that
πi = π∗ and S never made a query Sign(π∗−1,Mi,Σi−1) for the unique tuple Σi−1 such that
VfH,G(Σi−1) = (~π|i−1, ~M |i−1). Let mi−1, Xi−1, µi, and Xi be the intermediate values obtained
during the computation of VfH,G(Σn).

Algorithm A looks up HT [~π|i‖Mi‖mi−1‖Xi−1] = (c, y, hi) and GT [π∗, hi] = gi. (We know that
these entries are defined by Property 5 of a sequential forger.) If c = 0 then we say that event
Bad2 occurred and A aborts. If c = 1 then we have that ρ∗(y) = gi + µi, but since Σn is valid
we also have that π∗(Xi) = gi+µi. Since Gπ∗ is a group we therefore have that π∗(Xi) = ρ∗(y);
algorithm A outputs (Xi, y) as the claw for (π∗, ρ∗).

14

We now use Coron’s technique [Cor00] for a detailed analysis of A’s success probability. Algo-
rithm A wins the game if forger S wins and neither of Bad1 and Bad2 occurs, i.e.

Pr [A wins] = Pr
[

S wins ∧Bad1 ∧Bad2

]

≥ Pr
[

S wins |Bad1 ∧Bad2

]

· Pr
[

Bad2

]

− Pr
[

Bad1

]

In the event Bad1 ∧Bad2 the environment of S is distributed exactly as in a real attack, so

Pr
[

S wins |Bad1 ∧Bad2

]

= ǫ .

Event Bad1 occurs only if hn = h⊕hn−1 already occurred in GT [·, ·], where h is a fresh random
ℓ-bit string. The probability that this happens is therefore the number of entries in GT [·, ·]
divided by 2ℓ. Summing over all qH queries to H(·) we have

Pr [Bad1] ≤
qH(qH + qG)

2ℓ
.

The probability that event Bad2 occurs is

Pr
[

Bad2

]

≥ δqS(1− δ) .

This probability is maximal for δ = 1/(qS + 1). Filling in this value gives

Pr
[

Bad2

]

≥
1

e(qS + 1)
,

so that the success probability of A in finding a claw for (π∗, ρ∗) is

ǫ′ ≥
ǫ

e(qS + 1)
−

qH(qH + qG)

2ℓ
.

To estimate the running time of A, we ignore all costs other than permutation evaluations.
Each H(·) query explicitly induces 1/d permutation evaluations on average, but in fact hides
an additional evaluation to maintain the graph structure that allows A to find the sequence
(Q1, . . . , Qn−1) (see the proof of Lemma 5.3). The verification of the forgery takes up to nmax

additional permutations. Overall, we have that t′ ≤ t+ ((1/d+ 1)qH + nmax) · tπ.

We can now shed some more technical light on how our security proof, unlike that of the
LMRS scheme, does not rely on the fact that the permutation family be certified. The LMRS
scheme involves a full-domain random oracle that essentially plays the combined role of our H(·)
and G·(·) oracles. In their proof, however, the responses of this oracle need to be simulated
such that the claw-finding algorithm A knows a related preimage for all permutations π, rather
than just the target permutation π∗. The standard way to do this is to choose a random

preimage x
$

← Dπ and compute the random oracle output as π(x). This output is only correctly
distributed, however, if π really is a permutation, hence the requirement that Π be certified.
In our proof, the algorithm A only needs to know preimages related to queries Gπ∗(·), and can
therefore sample random elements from Gπ directly to simulate responses for G·(·) with π 6= π∗.

15

6 Variations on the Main Construction

Sequential aggregate signatures. If the message recovery functionality of our SASD
scheme is undesirable, then the following “purebred” sequential aggregate signature scheme
SAS is easily derived from our SASD scheme. The signer’s public and private key are again a
permutation π and its inverse π−1; aggregate signing and verification are as follows:

Algorithm SignH,G(π−1
n ,Mn, ~π, ~M, σn−1):

If n = |~π| = 1 then σ0 ← (ε, ε, 0ℓ)
Parse σn−1 as (xn−1, Xn−1, hn−1)

If VfH,G(~π, ~M, σn−1) = 0 then return ⊥
(xn, ξn)← encπn

(xn−1‖Xn−1)

hn ← hn−1 ⊕H(~π|πn‖ ~M |Mn‖xn−1‖Xn−1)
gn ← Gπn

(hn)
Xn ← π−1

n (gn + ξn)
Return σn ← (xn, Xn, hn)

Algorithm VfH,G(~π, ~M, σn):

Parse σn as (xn, Xn, hn) where n = |~π|
For i = n, . . . , 1 do
If |Gπi

| < 2ℓ then return 0
gi ← Gπi

(hi) ; ξi ← πi(Xi)− gi
xi−1‖Xi−1 ← decπi

(mi, µi)

hi−1 ← hi ⊕ H(~π|i‖ ~M |i‖xi−1‖Xi−1)
If (x0, X0, h0) = (ε, ε, 0ℓ) then return 1
Else return 0.

Just like the SASD scheme, the SAS scheme allows for efficient instantiations based on low-
exponent RSA and factoring, and allows signers to independently choose their security parameter
k. The signature size depends on various issues such as the used encoding and permutation
family, but for the instantiation based on RSA with e = 3 and moduli of size at most kf , the
signature will be at most kf + ℓ + n bits long. Signing and verification take the same effort as
for the SASD scheme.

The scheme can be proved secure in the random oracle model under the standard (non-
KOSK) security notion of [LMRS04, BNN07]. The proof is almost identical to that of The-
orem 5.1; the definition of a sequential forger needs to be adapted to queries of the form
H(~π‖ ~M‖xn−1‖Xn−1), and nodes in the graph G will be identified by tuples (~π, ~M, x, Y). The
concrete security bounds are identical to those obtained in Theorem 5.1.

Achieving tight security. Closer inspection of Theorem 5.1 learns that the reduction
loses a factor qS in the success probability of the claw-finding algorithm A. In principle, this
means that higher security parameters have to be used in order to achieve the same security
level, thereby increasing the length of keys and signatures. One can apply the techniques of
Katz-Wang [KW03] however to obtain a scheme SASDt with a tight security reduction, at the
minimal cost of an increase in signature length of n bits. (The same techniques have also been
applied to achieve tight security for the LMRS scheme in [BNN07].) Key generation is as for
the SASD scheme, signing and verification are as follows:

16

Algorithm SignH,G(π−1,Mn,Σn−1):

If ST [Mn,Σn−1] = Σn 6= ε then return Σn

If n = 1 then Σ0 ← (~ε, ~ε, ε, ε, 0ℓ)

Parse Σn−1 as (~b, ~π,mn−1, Xn−1, hn−1)

If VfH,G(Σn−1) = (⊥,⊥) then return ⊥

bn
$

← {0, 1}
(mn, µn)← encπn

(Mn‖mn−1‖Xn−1)

hn ← hn−1 ⊕H(~b|bn‖~π|πn‖Mn‖mn−1‖Xn−1)
gn ← Gπn

(hn) ; Xn ← π−1
n (gn + µn)

ST [Mn,Σn−1]← (~b‖bn, ~π‖πn,mn, Xn, hn)
Return ST [Mn,Σn−1]

Algorithm VfH,G(Σ):

Parse Σ as (~b, ~π,mn, Xn, hn)

where n = |~b| = |~π|
For i = n, . . . , 1 do
If |Gπi

| < 2ℓ then return (⊥,⊥)
gi ← Gπi

(hi) ; µi ← πi(Xi)− gi
Mi‖mi−1‖Xi−1 ← decπi

(mi, µi)

hi−1 ← hi ⊕ H(~b|i, ~π|i,Mi,mi−1, Xi−1)
If (m0, X0, h0) = (ε, ε, 0ℓ)

Then return
(

~π, ~M = (M1, . . . ,Mn)
)

Else return (⊥,⊥).

The signing algorithm described here is stateful, but as already noted in [KW03] it can
easily be made stateless by using an additional random oracle F : {0, 1}∗ → {0, 1} to generate
bn as F(π−1‖Mn‖Σn−1). Alternatively, one can generate bn using a pseudo-random function
F(K,Mn‖Σn−1) and include the keyK in the signing key sk . In the latter case the security of the
scheme additionally relies on the pseudo-randomness of F, of course. The proof of the following
theorem is an adaptation of the proof of Theorem 5.1 using techniques from [KW03, BNN07].
For completeness it is given in detail in Appendix A.

Theorem 6.1 If there exists a forger F that (t, qS, qH, qG, nmax, ǫ)-breaks SASDt in the random
oracle model, then there exists a claw-finding algorithm A that (t′, ǫ′)-breaks Π with

ǫ′ ≥
ǫ

2
−

7
(

qH + qG + 2nmax(qS + 1)
)2

2ℓ

t′ ≤ t+ (2/d+ 4)(qH + nmax(qS + 1)) · tπ .

7 Non-Interactive Multi-Signed Data

When all signers are authenticating the same messageM , a more efficient scheme exists that does
not require any interaction among the signers at all (as opposed to the sequential interaction
required for the other schemes in this paper). Here, all signers independently generate their
signature shares, which can then be combined by any third party into the final signature.

Syntax and security. A multi-signed data (MSD) scheme is a tuple of algorithms MSD =

(Kg, Sign,Comb,Vf). A signer generates his own key pair via (pk , sk)
$

← Kg. Each signer creates

a partial signature on M via σ
$

← Sign(sk ,M). Any third party can combine a list of partial

signatures ~σ into the final signed data via Σ
$

← Comb(~pk ,M, ~σ). The verification algorithm
Vf(Σ) returns (~pk ,M) to indicate that Σ is valid for signers ~pk and message M , or returns
(⊥,⊥) to indicate rejection. Correctness requires that Vf(Σ) = (pk ,M) with probability one for
all messages M if all signers behave honestly.

In the experiment defining security, the forger F is given a freshly generated public key pk∗

as input, and has access to a signing oracle Sign(sk∗, ·) for the corresponding secret key sk∗. It
wins if it can output a forgery Σ such that Vf(Σ) = (~pk ,M) 6= (⊥,⊥) with pk i = pk∗ for some
1 ≤ i ≤ | ~pk | and F never queried M to the signing oracle. We say that F (t, qS, nmax, ǫ)-breaks
MSD if it runs in time at most t, makes at most qS signing queries, its forgery contains at most
nmax signatures, and wins the above game with probability at least ǫ. In the random oracle

17

model, we additionally bound the maximum number of queries that F can make to each random
oracle separately.

The scheme. Let k, ℓ ∈ N be security parameters where k is chosen by each signer inde-
pendently and ℓ is fixed system-wide. Let Π be a family of claw-free trapdoor permutations,
let Gπ ⊆ Dπ for π ∈ Π be a group, and let H : {0, 1}∗ → {0, 1}ℓ and Gπ : {0, 1}ℓ → Gπ

be random oracles, exactly as for the SASD scheme. The encoding and decoding functions
are different though: we assume two separate encoding algorithms encπ : {0, 1}∗ → Gπ,
enc(π1,...,πn) : {0, 1}

∗ → {0, 1}∗, and a decoding algorithm dec(π1,...,πn) : {0, 1}
∗×Gπ1

× . . .×Gπn

such that encπi
(M) outputs a group element µi ∈ Gπi

; enc~π(M) outputs a partial message m;
and the injective function dec~π(m, ~µ) reconstructs the original message M . Key generation con-
sists again of generating a random permutation π as the public key and its inverse π−1 as secret
key; the signing, combining, and verification algorithms are described below.

Algorithm SignH,G(π−1
n ,M):

µ← encπ(M) ; h← H(M)
g ← Gπ(h) ; X ← π−1(µ+ g)
Return X

Algorithm CombH,G(~π,M, ~X):
m← enc~π(M) ; h← H(M)

Return Σ← (~π,m, ~X, h)

Algorithm VfH,G(Σ):

Parse Σ as (~π,m, ~X, h) ; n← |~π|

If | ~X| 6= n then return (⊥,⊥)
For i = 1, . . . , n do
gi ← Gπi

(hi) ; µi ← πi(Xi)− gi
M ← dec~π

(

m, (µ1, . . . , µn)
)

If H(M) = h then return (~π,M)
Else return (⊥,⊥).

Security. We prove the scheme secure in the random oracle model under the claw-freeness
of the permutation family Π. The proof reuses techniques from [BR96, Cor00] and is given
below. The proof loses a factor qS in the reduction; a tight variant can be constructed using the
techniques of Katz-Wang [KW03].

Theorem 7.1 If there exists a forger F that (t, qS, qH, qG, ǫ)-breaks MSD in the random oracle
model, then there exists a claw-finding algorithm A that (t′, ǫ′)-breaks Π claw-free for

ǫ′ ≥
ǫ

e(qS + 1)
−

(qG + qH + qS + nmax + 1)2

2ℓ

t′ ≤ t+
qH + qS + nmax + 1

d
· tπ .

Proof: Given a forger F, consider the following claw-finding algorithm A. On input target
permutation π∗, A runs F on input π∗, answering its oracle queries as follows while keeping
associative tables HT [·],GT [·, ·].

Random oracle query H(M): If HT [M] = (c, x, h) is defined, then it returns h. Otherwise, it

chooses h
$

← {0, 1}ℓ. If GT [π∗, h] is already defined, then we say that event Bad1 occurred

and algorithm A aborts. Otherwise, it chooses c
δ

← {0, 1} and computes µ ← encπ∗(M).

If c = 0 then A repeatedly chooses x
$

← Dπ∗ and computes g ← π∗(x) − µ until g ∈ Gπ∗ .

If c = 1 then it repeatedly chooses x
$

← Dπ∗ and computes g ← ρ∗(x) − µ until g ∈ Gπ∗ .
Algorithm A stores GT [π∗, h]← g and HT [M]← (c, x, h), and returns h to F.

Random oracle query Gπ(h): If GT [π, h] is not defined, then A chooses GT [π, h]
$

← Gπ. It
returns GT [π, h] to F.

18

Signing query Sign(M): First, A simulates an additional query H(M) to ensure that entries
HT [M] = (c,X, h) and GT [π∗, h] = g have been defined. If c = 1 then we say that event
Bad2 occurred and A aborts. If c = 0 then it returns X as the partial signature.

Eventually, F outputs its forgery Σ = (~π,m, ~X, h). Algorithm A verifies that the forgery is
valid, meaning VfH,G(Σ) = (~π,M) 6= (⊥,⊥) where H(·) and G·(·) are simulated as above. Let
1 ≤ i ≤ |~π| be the index such that πi = π∗, and let µi ← encπ∗(M). Algorithm A looks up
HT [M] = (c, y, h) and GT [π, h] = g. If c = 0 then we say that event Bad2 occurred and
A aborts. Otherwise, since dec~π is injective, we have that π∗(Xi) − g = ρ∗(y) − g = µi, so
π∗(Xi) = ρ∗(y). Algorithm A outputs (Xi, y) as its claw for (π∗, ρ∗).

It is clear that A is successful in finding a claw if F succeeds in creating a valid forgery and A

doesn’t abort, meaning

ǫ′ ≥ Pr
[

A wins ∧Bad1 ∧Bad2

]

≥ Pr
[

A wins |Bad2 ∧Bad1

]

· Pr
[

Bad2

]

− Pr [Bad1] . (4)

It is also clear that A’s simulation of F’s environment is perfect as long as it doesn’t abort,
meaning

Pr
[

A wins |Bad2 ∧Bad1

]

≥ ǫ (5)

Event Bad1 occurs when a randomly chosen value h
$

← {0, 1}ℓ already appeared in GT [·, ·] as
an entry GT [π, h]. This happens with a probability that is the number of entries in GT [·, ·]
divided by 2ℓ, or at most (qH + qG + qS + nmax)/2

ℓ. Summing over all (qH + qS + 1) calls to the
simulation of H(·) gives

Pr [Bad1] ≤
(qH + qG + qS + nmax + 1)2

2ℓ
. (6)

The event Bad2 occurs if c = 0 during the simulation of all signature queries and c = 1 for the
forgery. In the event Bad1 the value of h used in the forgery must be different from any of the
ones involved in any of the signing queries, so we have that

Pr
[

Bad2 |Bad1

]

= δqS · (1− δ) . (7)

This expression reaches a minimum for δ = 1− 1/(qS + 1), where we have that

δqS · (1− δ) =

(

1−
1

qS + 1

)qS

·
1

qS + 1
>

(

1−
1

qS

)qS

·
1

qS + 1
>

1

e(qS + 1)
.

Putting together Equations (4), (5), (6), (7), and (7) yields the bound on ǫ′ in Theorem 7.1.
Ignoring the time needed for all computations other than permutation evaluations, the bound
on the running time t′ of A in Theorem 7.1 is clear from the construction of A.

Instantiations. One can obtain instantiations of MSD from low-exponent RSA and factoring
using the same permutation families and group structures described in Section 4. For the
encoding function, one could for example split the message in kmax-bit blocks (e.g. kmax =
4096 when using RSA) and let µ be the first k bits of the block with index h(π,M) where
h : {0, 1}∗ → {1, . . . , ⌊|M |/kmax⌋} is a non-cryptographic hash function. The function enc~π(M)
returns the remaining bits of M ; decoding works by reconcatenating the different message parts

19

in the correct order. For long enough messages M (in particular, |M | ≫ nkmax), there is no
overlap between the message parts of different co-signers, and MSD achieves the promised length
savings.

Alternatively, if the list of co-signers is known at the time of signing, one could modify the
scheme so that encoding is more effective for short messages. Namely, one could use a single
encoding function enc(π1,...,πn) : {0, 1}∗ → {0, 1}∗ × Gπ1

× . . . × Gπn
that ensures there is no

overlap between the different message parts. In this case, however, the scheme needs to be
modified to include ~π in the computation of h ← H(~π,M), because otherwise there may exist
(contrived) encoding algorithms that render the scheme insecure.

To explain the efficiency estimates in Table 1, we assume an RSA-based instantiation with
e = 3 and GN,e = 0‖{0, 1}kf−1 with the XOR operation. The net bandwidth overhead depends
on the length of the message and, related to that, on the number of “collisions” between the
recovered message parts for different signers. In the best case, i.e., |M | ≥ n ·kf and no collisions,
the net overhead is ℓ+ n bits. In the worst case, i.e., |M | = 0, the overhead is nkf + ℓ. Signing
involves a single modular exponentiation, while verification takes n evaluations of π, which can
be performed by 2n modular multiplications.

we consider the instantiation with e = 3 and GN,e = {0‖x : x ∈ {0, 1}kf−1} with the
XOR operation, and we assume that signers use security parameter kf or smaller. The exact
bandwidth overhead depends on the amount of “recoverable” data µi, but varies between ℓ bits
in the best case and ℓ+kf+n bits in the worst case. Typical bandwidth overhead will be around
ℓ+n bits (for n signers using the same security parameter kf and |M1| ≥ kf). The most expensive
operations in signing and verification are the computations of π and π−1, which for e = 3 take
two modular multiplications and one modular exponentiation each, respectively. Ignoring cheap
operations such as XORs and hash function evaluations, verifying aggregate signed data by n
signers takes 2n modular multiplications. Placing a signature on top of an aggregate of n signers
takes 2n multiplications (to verify the existing aggregate) and one exponentiation.

Acknowledgements

The author would like to thank the anonymous referees of EUROCRYPT 2008 and IEEE Trans-
actions on Information Theory for their helpful suggestions. This work was supported in part by
the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT
II, in part by a postdoctoral fellowship from the Research Foundation – Flanders (FWO), and
in part by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy).

References

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In 20th Annual ACM Symposium on Theory of Computing, pages
103–112. ACM Press, 1988. (Cited on page 2.)

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, Advances in Cryp-

tology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 416–432. Springer-Verlag, 2003. (Cited on pages 1, 2 and 3.)

20

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered
multisignatures and identity-based sequential aggregate signatures, with applications
to secure routing. In ACM CCS 07: 14th Conference on Computer and Communi-

cations Security, pages 276–285. ACM Press, 2007. (Cited on page 2.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In ACM CCS 06: 13th Conference on Computer and

Communications Security, pages 390–399. ACM Press, 2006. (Cited on page 3.)

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate
signatures. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki,
editors, ICALP 2007: 34th International Colloquium on Automata, Languages and

Programming, volume 4596 of Lecture Notes in Computer Science, pages 411–422.
Springer-Verlag, 2007. Full version available as Cryptology ePrint Archive, Report
2006/285. (Cited on pages 3, 4, 13, 16 and 17.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003: 6th International Workshop on Theory and Practice in Public Key Cryp-

tography, volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer-
Verlag, 2003. (Cited on page 3.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93: 1st Conference on Computer and

Communications Security, pages 62–73. ACM Press, 1993. (Cited on page 4.)

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In Ueli M. Maurer, editor, Advances in Cryptology –

EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages 399–
416. Springer-Verlag, 1996. (Cited on pages 2, 5, 13 and 18.)

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-
knowledge based on any trapdoor permutation. Journal of Cryptology, 9(3):149–166,
1996. (Cited on page 2.)

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In Jacques Stern, editor, Advances in Cryptology –

EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 107–
122. Springer-Verlag, 1999. (Cited on page 2.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare,
editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in

Computer Science, pages 229–235. Springer-Verlag, 2000. (Cited on pages 13, 15 and 18.)

[CPP07] Dario Catalano, David Pointcheval, and Thomas Pornin. Trapdoor hard-to-invert
group isomorphisms and their application to password-based authentication. Journal
of Cryptology, 20(1):115–149, 2007. (Cited on page 2.)

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th In-

ternational Conference on Theory and Practice of Public Key Cryptography, volume

21

3958 of Lecture Notes in Computer Science, pages 257–273. Springer-Verlag, 2006.
(Cited on page 2.)

[HOT04] Ryotaro Hayashi, Tatsuaki Okamoto, and Keisuke Tanaka. An RSA family of trap-
door permutations with a common domain and its applications. In Feng Bao, Robert
Deng, and Jianying Zhou, editors, PKC 2004: 7th International Workshop on Theory

and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in Computer

Science, pages 291–304. Springer-Verlag, 2004. (Cited on page 7.)

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research & Development, 71:1–8, 1983. (Cited on page 3.)

[KLS00] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol (S-
BGP). IEEE Journal on Selected Areas in Communications, 18(4):582–592, April
2000. (Cited on page 1.)

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with
tight security reductions. In ACM CCS 03: 10th Conference on Computer and

Communications Security, pages 155–164. ACM Press, 2003. (Cited on pages 16, 17

and 18.)

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential
aggregate signatures from trapdoor permutations. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 74–90. Springer-Verlag, 2004. (Cited on

pages 1, 2, 3, 4, 13 and 16.)

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Se-
quential aggregate signatures and multisignatures without random oracles. In Serge
Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 465–485. Springer-Verlag, 2006. (Cited on

pages 2 and 3.)

[Nev08] Gregory Neven. Efficient sequential aggregate signed data. In Nigel Smart, editor,
Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in

Computer Science, pages 52–69. Springer-Verlag, 2008. (Cited on page 1.)

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association

for Computing Machinery, 21(2):120–126, 1978. (Cited on page 7.)

A Proof of Theorem 6.1

As for the proof of Theorem 5.1, we will do the proof of Theorem 6.1 in two steps. First, we mod-
ify the definition of a sequential forger of Definition 5.2 to queries of the form H(~b, ~π,Mn,mn−1, Xn−1),
and we show that for any forger F there exists a sequential forger S achieving the same bounds
as those stated in Lemma 5.3 for the SASD scheme. The proof is a straightforward adaptation
of that of Lemma 5.3, and is omitted here. Theorem 6.1 follows easily from (the adaptation of)
Lemma 5.3 and the following lemma.

22

Lemma A.1 If there exists a sequential forger S that (t, qS, qH, qG, nmax, ǫ)-breaks SASDt , then
there exists a claw-finding algorithm A that (t′, ǫ′)-breaks Π for

ǫ′ ≥
ǫ

2
−

2qH(2qH + qG)

2ℓ

t′ ≤ t+ ((2/d+ 1)qH + nmax) · tπ .

Proof: Given a sequential forger S against SASDt , we build a claw-finding algorithm A against
Π. Algorithm A maintains initially empty associative arrays HT [·] and GT [·, ·]. On input π∗, ρ∗,
algorithm A runs S on target public key π∗, and responds to its oracle queries as follows:

Random oracle query H(Qn): Parse Qn as ~b‖~π‖Mn‖mn−1‖Xn−1 where n = |~b| = |~π|. If
n > 1, then A finds the unique sequence of queries (Q1, . . . , Qn−1) as per Property 3 of a
sequential forger, and looks up HT [Qn−1] = (c, x, h, hn−1). If n = 1 it sets h0 ← 0ℓ.

If πn 6= π∗ then A chooses h
$

← {0, 1}ℓ, computes hn ← h ⊕ hn−1, stores HT [Qn] ←
(⊥,⊥, h, hn), and returns h to S.

If πn = π∗ then A chooses c
$

← {0, 1} and h(0), h(1)
$

← {0, 1}ℓ, and computes (mn, µn) =

encπ∗(Mn‖mn−1‖Xn−1), h
(0)
n ← h(0) ⊕ hn−1, and h

(1)
n ← h(1) ⊕ hn−1. Let Q

(β)
n = ~b|n−1|β‖

~π‖Mn‖mn−1‖Xn−1 for β ∈ {0, 1}. Note that Q
(bn)
n = Qn.

Algorithm A repeatedly chooses x(c)
$

← Dπ∗ and computes g
(c)
n ← π∗(x(c)) − µn until

g
(c)
n ∈ Gπ∗ . It then repeatedly chooses x(1−c) $

← Dπ∗ and computes g
(1−c)
n ← ρ∗(x(1−c))−µn

until g
(1−c)
n ∈ Gπ∗ . If one of GT [π∗, h

(0)
n] or GT [π∗, h

(1)
n] is already defined, then we say

that event Bad1 occurred and A aborts; otherwise, it stores HT [Q
(0)
n]← (c, x(0), h(0), h

(0)
n),

HT [Q
(1)
n] ← (c, x(1), h(1), h

(1)
n), GT [π∗, h

(0)
n] ← g

(0)
n , and GT [π∗, h

(1)
n] ← g

(1)
n . It returns

the value h(bn) to S.

Random oracle query Gπ(h): If GT [π, h] is not defined, then A chooses GT [π, h]
$

← Gπ. It
returns GT [π, h] to F.

Signing query Sign(π∗−1,Mn,Σn−1) : Parse Σn−1 as (~b, ~π,mn−1, Xn−1, hn−1) where n = |~b|+

1. Algorithm A looks up the entries HT [~b|β‖~π|π∗‖Mn‖mn−1‖Xn−1] = (c,X
(β)
n , h(β), h

(β)
n)

for β ∈ {0, 1}, which must exist due to Property 4 of a sequential forger. Let (mn, µn) =

encπ∗(Mn‖mn−1‖Xn−1). Algorithm A returns signed data Σn =
(

~b‖c, ~π‖π∗,mn, X
(c)
n , h

(c)
n

)

.

At the end of its execution, the forger outputs its forgery Σn = (~b, ~π,mn, Xn, hn) where n = |~b|.
By Property 5 the forgery is valid, so VfH,G(Σn) = (~π, ~M) and there exists an index 1 ≤ i ≤ n
such that πi = π∗ and S never made a query Sign(π∗−1,Mi,Σi−1) for any tuple Σi−1 such that
VfH,G(Σi−1) = (~π|i−1, ~M |i−1). Let mi−1, Xi−1, µi, and Xi be the intermediate values obtained
during the evaluation of VfH,G(Σn).

Algorithm A looks up HT [~b|i‖~π|i‖Mi‖mi−1‖Xi−1] = (c, y, h, hi) and GT [π∗, hi] = gi. (We know
that these entries are defined by Property 5 of a sequential forger.) If c = bi then we say that
event Bad2 occurred and A aborts. If c 6= bi then we have that ρ∗(y) = gi + µi = π∗(Xi), so
algorithm A outputs (Xi, y) as the claw for (π∗, ρ∗).

23

Algorithm A wins the game if forger S wins and neither of Bad1 and Bad2 occurs, i.e.

Pr [A wins] = Pr
[

S wins ∧Bad1 ∧Bad2

]

≥ Pr
[

S wins |Bad1 ∧Bad2

]

· Pr
[

Bad2

]

− Pr
[

Bad1

]

In the event Bad1 ∧Bad2 S’s environment is distributed exactly as in a real attack, so

Pr
[

S wins |Bad1 ∧Bad2

]

= ǫ .

Event Bad1 occurs only if either of h
(0)
n = h(0) ⊕ hn−1 or h

(1)
n = h(1) ⊕ hn−1 already occurred

in GT [·, ·], where h(0), h(1) are fresh random ℓ-bit strings. The probability that this happens is
twice the number of entries in GT [·, ·] divided by 2ℓ. Summing over all qH queries to H(·) we
have

Pr [Bad1] ≤
2qH(2qH + qG)

2ℓ
.

Since for the forgery F’s view is independent of the bit c, we have that

Pr
[

Bad2

]

=
1

2
.

To estimate the running time of A, we ignore all costs other than permutation evaluations. Each
H(·) query explicitly induces 2/d permutation evaluations on average, but hides an another
evaluation to maintain the graph structure. The verification of the forgery takes up to nmax

permutations. Overall, we have that

t′ ≤ t+ ((2/d+ 1)qH + nmax) · tπ .

24

	Introduction
	Sequential Aggregate Signed Data
	Our Main Construction
	Instantiating our Construction
	Security of our Construction
	Variations on the Main Construction
	Non-Interactive Multi-Signed Data
	Acknowledgments
	References
	Proof of Theorem 6.1

