
REMARKS ON THE NFS COMPLEXITY

PAVOL ZAJAC

Abstract. In this contribution we investigate practical issues with imple-
menting the NFS algorithm to solve the DLP arising in XTR-based cryptosys-
tems. We can transform original XTR-DLP to a DLP instance in Fp6 , where
p is a medium sized prime.

Unfortunately, for practical ranges of p, the optimal degree of an NFS
polynomial is less than the required degree 6. This leads to a problem to find
enough smooth equations during the sieve stage of the NFS algorithm. We
discuss several techniques that can increase the NFS output, i.e. the number
of equations produced during the sieve, without increasing the smoothness
bound.

1. Introduction

This research was motivated by the problem of finding discrete logarithms in
XTR based systems [7]. XTR uses a subgroup of F∗p6 with prime order q dividing
p2 − p + 1 (called XTR group). Its elements are represented by their traces, and
efficient arithmetic is developed to allow fast exponentiation. Thus XTR-DL prob-
lem is to find the unknown exponent d from Q = Gd, where G,Q are known XTR
traces.

The XTR-DL problem can be solved in XTR group by generic methods of as-
ymptotic complexity O(q1/2). If q is chosen as large as possible, i.e. p2 − p + 1,
then the complexity becomes O(p). The computation becomes quickly infeasible
with growing p. On the other hand, XTR-DL can be transformed (in a polynomial
time) to an instance of the discrete logarithm problem in the finite field Fp6 . Then
it can be solved by the Number Field Sieve (NFS) in subexponential time with
complexity Lp6(1/3, c), where

(1) Lx(α, c) = exp((c + o(1))(log x)α(log log x)1−α).

The constant c in asymptotic complexity estimate is connected to a choice of optimal
smoothness bound B in the NFS algorithm. Using the complexity estimates of [4],
the complexity of NFS becomes smaller than complexity of general methods for
p ≈ 240.

In practical experiments, the situation becomes more complicated. The real NFS
is in fact a rather general method (or a set of related algorithms) than an exact
algorithm with exactly defined parameters. This leads to many implementation
and parameterization options that affect the actual performance.

Other problems can arise from the fact that the polynomial of degree 6 is actually
too large for smaller p. Joint degree of two polynomials used in NFS for Fp6 is
at least 12 (two polynomials of degree 6 are required). Method of [3] uses two

Key words and phrases. cryptanalysis, discrete logarithm problem, number field sieve.
This work was supported by Grant VEGA 1/3115/06 and ESF SORO/JPD3-038/2005.

1

2 PAVOL ZAJAC

polynomials of degrees d + 1, d. Degree d = 6 is optimal for fields of sizes 2780,
corresponding to our p ≈ 2130. For smaller primes, real performance is affected by
a faster growth of the norms of the sieved algebraic numbers.

NFS implementation for DLP in Fp6 gains optimal asymptotical performance
only for p’s that are too large to consider actual logarithms computable. In practical
ranges, NFS parameters must be chosen in a suboptimal (in terms of asymptotic
complexity) manner. The main problem during the computation is to find enough
smooth equations1. We literally strive for every single smooth equation we can get.
In this article we present some heuristics that can be used to increase the number
of smooth equations gained from the sieve stage (NFS yield) without considerable
effect on the size of the factor base used during the sieve stage.

In the section 2 we summarize the basic steps of the NFS method. We also show
where possible changes can be made that affect the NFS output, i.e. the number of
equations produced during the sieve. In section 3 we analyze how we can influence
the NFS output by the polynomial selection. More equations can also be gained
by using multiple sieves as it is described in section 4. In section 5 idea of [4] to
sieve the space of higher dimension is elaborated. We present a possible change of
the line sieving algorithm and consider the actual sieving results. In section 6 we
present some results considering the use of the large factors. Section 7 summarizes
the results and recommendations.

2. The Number Field Sieve

The description of the Number Field Sieve and its use to find discrete logarithms
in finite fields can be found in [4]. The complexity of this method is described there
as well. Another good complexity analysis of the NFS is in [1]. For the purpose of
this article, we present a short overview of the NFS without going into any details of
its mathematical aspects. Some specific algorithmic details are further elaborated
in the appropriate sections of the article.

Let ZK be a ring of integers of the number field K. Let ξ ∈ ZK has B-smooth
norm N(ξ) =

∏
pei

i , i.e. N(ξ) has only prime divisors pi < B. We will call ξ a
B-smooth algebraic number. The principal ideal (ξ) = ξZK can be factored as a
product of prime ideals lying over primes pi.

Basic NFS principle is as follows: Let α, β ∈ C be the roots of two distinct monic
polynomials f, g ∈ Z[x] irreducible over Z. Then K1 = Q(α), K2 = Q(β) are two
algebraic number fields. Let t be a common root of f, g in Fpd . Then there exist
two homomorphisms φ : K1 → Fpd , and ψ : K2 → Fpd , defined by sending α, resp.
β, to t.

Let g be a generator of G = F∗pd and q is a (large) prime dividing order of G.
Let algebraic number ξ ∈ K1 be B-smooth with the corresponding prime ideal
decomposition

(ξ) =
∏

pj
vj .

1Smooth equation is an equation in the form (3), but in the context of the NFS algorithm
the notion ”smooth equation” can also denote a pair of smooth algebraic numbers, as well as the
corresponding point of the sieve region.

REMARKS ON THE NFS COMPLEXITY 3

Further let πj ∈ pj, and let h be a class number of K. Using Schirokauer logarithmic
maps λ, we can transform this equation to

(2) logg(φ(ξ)) ≡
r∑

j=0

λj(ξ)Λj +
∑

j

vjxj (mod q),

where Λj = logg φ(υj) is an unknown ”virtual logarithm” of the unit υj , and
xj = h−1 logg φ(πj) is an unknown ”virtual logarithm” of prime ideal pj.

Let ξ1 ∈ ZK1 and ξ2 ∈ ZK2 be two B-smooth algebraic numbers, and let φ(ξ1) =
φ(ξ2). We call (ξ1, ξ2) a smooth pair. Using homomorphisms φ, ψ and equations
(2), we can write

(3)
r1∑

j=0

λ
(1)
j (ξ1)Λ

(1)
j +

∑

j

vix
(1)
j ≡

r2∑

j=0

λ
(2)
j (ξ2)Λ

(2)
j +

∑

j

vix
(2)
j (mod q),

with unknown ”virtual logarithms” Λ(1)
j ,Λ(2)

j , x
(1)
j , and x

(2)
j . We call any equation

in the form (3) a smooth equation.
A set of all prime ideals in ZK1 , and ZK2 respectively, lying over primes pj < B,

is called an (algebraic) factor base. If the cardinality of the factor base is c1 + c2,
we can have at most C = c1 + c2 + r1 + r2 unknown ”virtual logarithms” in any
smooth equation. If we are able to find R > C linearly independent smooth equa-
tions, we can try to find a non-trivial solution of the corresponding linear system.
By substituting to equations (2) we can compute logarithms of the corresponding
elements of F∗pd . Logarithms of other F∗pd elements can be further computed by the
means of descent computation [1, 4], which is beyond the scope of this article.

The goal of the NFS based algorithm is to find enough smooth equations in an
efficient manner. Equations are sought by the means of a sieve. A linear subspace
(a sieving region) representing elements of both K1, and K2 corresponding to a
same image in F∗pd , is mapped to a memory of the computer. A sieving region is
usually a space (a, b) ∈ Z2, 0 < |a|, b < M , corresponding to a pair of algebraic
numbers (a − bα, a − bβ). We mark points corresponding to algebraic numbers
belonging to prime ideals from factor base. After marking points from every ideal
we are able to identify the smooth ones. More details of the sieve can be found in
articles mentioned in [5].

Any NFS implementation thus consists of the 4 basic steps:
(1) Parameter selection. We select polynomials f, g, estimate B and size of the

sieving region, construct a factor base and do any required preprocessing
that can speed up sieving.

(2) Sieving. This is the most time consuming part where smooth equations are
identified (usually in parallel on many computers).

(3) Linear algebra. Solve the linear systems constructed from smooth equa-
tions.

(4) Individual logarithms. Compute logarithms of elements of F∗pd .
The NFS is a complex method that allows many further parameterizations, and

different variants of algorithm implementation. Some of the optional heuristics that
can influence the actual algorithm performance are:

(1) Choice of the polynomials.
(2) Choice of the smoothness bound.
(3) Choice of the sieving region.

4 PAVOL ZAJAC

(4) Use of more than two algebraic fields.
(5) Use large primes and partially smooth equations.
(6) Use of special-q sieve.
(7) Use of a sieve region with higher dimension.
(8) Use of a different smoothness detection and factorization techniques.

In the following sections we present our findings from experiments involving
computations of discrete logarithms in Fp6 .

3. A choice of the polynomials

In the first step of the NFS, we must choose (at least) two (monic) polynomials
f, g ∈ Z[x] irreducible over Z, with a common root in Fpd . In our case, when p is
not too large, the recommended choice is [4]:

• f is a monic polynomial of degree d irreducible over Fp with small coeffi-
cients (in absolute value);

• g(x) = f(x)± p.

3.1. A choice of f . There are no strict limits on the choice of the polynomial f ,
although according to [4] it is possible to exploit automorphism group of certain
number fields if the class number of the field is known. Thus we consider only2 the
absolute value of coefficients in the selection of the polynomial f .

One of the most important parameters that influence the NFS performance is the
smoothness probability (in the sieve region). This is a probability that an algebraic
number from the sieve region has B-smooth norm (for a fixed B). The smoothness
probability in the NFS thus depends on the smoothness bound B and the sieving
region. Larger sieving region means higher NFS output, but requires more work
in sieving. Furthermore, the norms of elements further from origin are higher, and
thus less likely B-smooth (with B fixed).

Another way to increase smoothness probability is to increase smoothness bound
B. However, this leads to an increased number of elements in the factor base,
increased sieving time, and increased size of the linear system respectively. We
also need to find even more equation, thus increasing B can lead even to sieve
deterioration.

A choice of the polynomial is the third possibility to influence the smoothness
probability. The number of irreducible polynomials we can choose from is large
enough to consider statistical effects of the polynomial choice on the smoothness
probability in a fixed sieve region with fixed smoothness bound B. Our experimen-
tal results are described in [10]. The distribution of smoothness probability w.r.t.
polynomial choice is almost normal. The polynomials with a higher smoothness
probability for some size of the sieving region and B tend to give us higher smooth-
ness probability for other choices of the region size and B. If computing discrete
logarithms for different p’s and fixed d, it is possible to prepare a list of suitable
polynomials sorted in descending order by smoothness probability.

The standard deviation of smoothness probability distribution w.r.t. polynomial
selection is high in comparison to the sensitivity of smoothness probability to the

2Additional condition is that the group order q does not divide discriminant of f or g, but this
happens very rarely, so we can ignore this case.

REMARKS ON THE NFS COMPLEXITY 5

Figure 1. The fraction of B-smooth algebraic numbers a+ bαi +
cα2

i , with 0 < a, b, c ≤ M, for M = 8, 9, . . . 24. The αi’s are
roots of 100 distinct degree 6 irreducible polynomials (over Z),
with coefficients |ai| ≤ 2.

changed B. Experimentally, we can gain the same increase in smoothness proba-
bility by changing the polynomial, as by increasing B four times (thus increasing
factor base correspondingly), as shown in Figure 1.

The smoothness probability w.r.t. polynomial selection seems to be positively
correlated with the number of first degree ideals in the factor base (with constant
B), as depicted in Figure 2. This could also mean that an increase in smooth-
ness probability is compensated by requiring a larger factor base. However, the
correlation is small, and for any size of the factor base (with fixed B) we have
detected both better and worse polynomials (in terms of smoothness probability)
than average.

When choosing polynomial we can consider both maximizing the smoothness
probability and minimizing the number of ideals in the factor base to gain the best
results of the sieve.

3.2. A choice of g. Since we have only two polynomials g(x) = f(x) ± p in the
standard polynomial selection, it is difficult to compare the effect of their selection
statistically (it mostly depends on p itself). Thus we should test the smoothness
probability in both possible fields, or just choose randomly one of them. It is also
possible to restrict selection according to other criteria, e.g. the discriminant of the
finite field.

Since the absolute coefficient of g(x) is significantly larger than other coefficients,
norms of the principal ideals of

∑
aiβ

i are growing faster with increasing ai with
higher i (dimension). Thus it is usually a good idea to use a skewed sieving region,
longer along a0 axis.

6 PAVOL ZAJAC

Figure 2. The fraction of B-smooth algebraic numbers a + bαi,
with 0 < |a|, b ≤ 32 as a function of factor base size. The αi’s are
roots of 1000 distinct degree 6 irreducible polynomials (over Z),
with coefficients |ai| ≤ 2.

4. Multiple polynomials

The two polynomials g(x) = f(x) ± p are not the only possible choice with
comparative size of the coefficients. We can consider the choice of any g(x) =
f(x) + ph(x), with deg h < deg f, where coefficients of h(x) are small in absolute
value (typically equal to ±1). On the other hand, the norms of algebraic numbers
in fields defined by h(x) with higher degree are larger (in absolute value).

However, these polynomials are useful to implement a multiple polynomial vari-
ant of NFS. Classical multipolynomial NFS to solve discrete logarithms in Fp is
described in [1]. It is possible to adapt the method also for Fpd . General outline of
the new method is as follows:

(1) Let f(x) ∈ Z[x] be a monic polynomial of degree d irreducible over Fp. Let
K0 = Q(α), with α ∈ C, f(α) = 0.

(2) Let gi(x) = f(x) + phi(x), i = 1, 2, . . . with deg hi < deg f ; all hi’s are
distinct with small coefficients in absolute value. Let gi(βi) = 0, βi ∈ C,
and let Ki = Q(βi).

(3) For each i = 1, 2, . . . find points in the sieve region that correspond to
smooth algebraic numbers in field K0 as well as in the field Ki.

(4) If the number of smooth points accumulated using Ki is smaller than the
size of the factor base in this field (plus small constant for logarithmic
maps), the results of sieving Ki should be discarded.

(5) Create the system of equations similar to equation (3) with left-hand side
corresponding to factorization of elements from K0, and right-hand side to
factorization of corresponding elements from Ki’s which were not discarded
in step 4.

REMARKS ON THE NFS COMPLEXITY 7

(6) After computing the solution of the system of equations, individual loga-
rithms of Fpd can be computed using descent method.

In the linear system of equations, unknowns correspond to prime ideals in K0

and in every Ki used plus O(1) logarithmic maps or virtual unit logarithms (we
need at most d of them). Let the size of factor base for Ki be ci and let ri points
(a0, . . . , at) correspond to elements

∑
ajα

j ,
∑

ajβ
j
i smooth in both K0 and Ki.

Then we can create ri new equations at the cost of ci + d unknowns. If ri < ci + d,
the NFS with the given Ki is unsuccessful. If for some k we get rk > ck + c0 + 2d,
we do not need more Ki’s, just Kk. Thus using multiple polynomials is suitable
only if the expected NFS output is above maximal ci but below minimal ci + c0.

As it is difficult to precisely estimate the NFS output, we should start with siev-
ing K1 given by one of the g(x) = f(x)± p. Using the number of smooth equations
found, we can estimate the number of Ki’s required. It should be taken into ac-
count that for hi(x) with higher degree, the norms of algebraic numbers are larger.
Thus the expected number of equations found is lower. This can be compensated
by setting different smoothness bound B for each Ki, or K0 respectively.

5. Sieving higher dimensions

A classical NFS sieves only a planar region, i.e. points (a0, a1) corresponding to
a pair of algebraic numbers (a0 + a1α, a0 + a1β). When p is small in comparison
with pd, norms of elements in sieving region get too high without enough of smooth
equations collected.

As described in [4], we can gain more equations by sieving (t+1)-tuples (a0, . . . , at)
corresponding to pairs of algebraic numbers (

∑t
i=0 aiα

i,
∑t

i=0 aiβ
i). The norms can

be bounded by (d + t)(d+t)Md
a M t

f , where Ma is the upper bound of absolute val-
ues of ai, and Mf is the upper bound of absolute values of coefficients of f , or g
respectively. As the polynomial g is skewed with large absolute coefficient, norms
of elements with higher dimension are larger (for comparable sizes of ai’s).

Besides problems with larger norms in higher dimensions, we encounter also some
new implementation problems. The prime ideals in corresponding factorizations can
be of a degree as high as t. On the other hand, the higher degree factors are very
rare. A prime ideal over some pi of degree t has norm pt

i. The chance of the factor
with norm n to appear in factorization is ∼ 1/n. Thus an ideal over pi of degree
t has 1/pt−1

i smaller chance to appear than a degree one ideal over pi. Usually
only higher degree ideals over small primes appear in smooth equations. As it is
useful to exclude small primes from the sieve (for efficiency), we can also exclude
all higher degree prime ideals as well. Thus we sieve only with degree one prime
ideals.

In a multidimensional sieve we must check that a sieved element, when taken
as a polynomial

∑t
i=0 aix

i ∈ Z[x], is irreducible over Z. Otherwise we can take
the corresponding factors and write equations directly for them (if their product is
smooth, then they are certainly smooth as well). If we fix t, we can leave out the
irreducibility check at the expense of more equations required to be able to solve
the linear system.

There are two main types of the sieve used in the NFS, namely the line sieve
and the lattice sieve. The lattice sieve requires additional computation of the base
of prime ideals (from within some part of the factor base) within special-q lattice.

8 PAVOL ZAJAC

The complexity of this computation is growing with higher dimensions. Within the
lattice sieve, line sieve is used with recomputed ideal bases.

Algorithm described in [9] is a general outline of the line sieve algorithm for
any dimension and for any degree of prime ideals used. However, this algorithm is
ineffective for fixed t, when using degree one ideals only.

In this case we can use the Hermite Normal Form of the ideal base (either in
Z[α] or in special-q lattice). Excluding small finite number of cases, the bases of
(t + 1)-dimensional subspace have form (base vectors in rows):

pi 0 0 . . . 0
r1 1 0 . . . 0
r2 0 1 . . . 0
...

...
...

. . .
...

rt 0 0 . . . 1

.

Let some (a0, a1, . . . , at) lie in the ideal pi with the basis above. All points
(a0 +kpi, a1, . . . , at) lie also in pi. Thus we can mark positions on the single line for
fixed a1, . . . , at for various pi by finding the ”starting point” and making ”jumps”
of size pi. Consider the change of some aj to aj + 1. Then we must certainly mark
points (a0+rj +kpi, a1, . . . , aj +1, . . . , at). If the starting point on the line given by
a1, . . . , aj , . . . , at was m0 + s, then the new starting point on a1, . . . , aj + 1, . . . , at

is m0 + (s + rj) mod pi, where m0 is the smallest possible a0-coordinate in the
sieving region. Another speedup in the case of cuboid region that can be used is to
precompute the change of ”starting point” from the line M1, . . . ,Mj , aj+1, . . . , at to
m1, . . . , mj , aj+1 + 1, . . . , at, where mj ,Mj is the smallest, and highest coordinate
in dimension j, respectively.

The algorithm can be summarized as follows:

(1) For every ideal pi compute starting point m0 +si on line a1 = m1, . . . , at =
mt.

(2) Sieve line a1, . . . , at by marking m0 + si + kpi within sieve region.
(3) If a1 < M1 update si = (si + r1) mod p1.
(4) If a1 = M1 find first ak < Mk, increment ak = ak + 1, update si and reset

a1 = m1, . . . , ak−1 = mk−1.
(5) If at = Mt, stop sieve, otherwise goto step 2.

The algorithm can be distributed by partitioning the sieve region into smaller
subregions. The size of each region along the a0 should be always the same and
equal to B (so that every prime appears at least once on each iteration).

We have used the sieve with t = 2 (using coordinate system x, y, z) in the NFS
computations in Fp6 with region [−M, M]× [−M, M]× [1, zmax]. The z coordinate
should not be negative, as multiplying the elements by −1 leads to the same equa-
tion. Results of one of the experiments are summarized in Table 1. As expected,
the NFS output is highest for z = 1. It decreases with the factor of (1/2) log z. The
NFS output is lower, when z has small prime factors, because we have removed
points with gcd(x, y, z) > 1. Interesting fact is that we get significantly more equa-
tions for plane with z = 1 than for plane with z = 0, i.e. the classical 2D sieve.
This could lead to some optimizations even in existing sieves.

REMARKS ON THE NFS COMPLEXITY 9

Table 1. NFS output by z. NFS parameters were: B = 80000,
f(x) = x6 − 2x + 2, g(x) = x6 − 2x − 529041. Sieving region was
[−216, 216]×[−212, 212]×[1, 256], and for comparison corresponding
(x, y)-halfplane with z = 0, y > 0. Total NFS output was 29477
equations in 15642 unknowns.

z NFS output
0 303
1 1103
2 584
3 724
4 463
5 654
6 323

z NFS output
250 31
251 46
252 22
253 50
254 35
255 40
256 23

6. Using large primes

In the classical NFS we collect smooth equations using elements with B-smooth
norms with some precomputed fixed B. Smooth elements are identified by the
sieve, i.e. we mark points in every prime ideal (of degree one) with norm pi < B.
Marking the point means that we add the logarithm of pi (or its approximation) to
some counter associated with the point. After marking points in every prime ideal,
we compare the counters with the estimated logarithm of the norm. Thus we can
easily see whether the associated algebraic number is smooth.

In some cases, we have ”almost” reached the norm, up to some large factor n.
If all primes below B were used in the sieve, then certainly n > B. If also n < B2,
then it is clearly a prime. Let B < B1 ≤ B2. If B1 ≤ n < B2

1/B, then either
n is prime or n has two (not necessarily distinct) prime factors B < p1, p2 < B1.
We can thus identify some additional factors almost for free. Single large prime
requires one additional comparison. Composite factors require primality testing,
and factoring of relatively small number, which are both fast.

These large factors are obtained as a side effect almost for free, but their effective
use requires some further post-processing. Every large factor represents one new
unknown in the linear system. Thus only large factors that occur more than once
are usable. Large primes have been used in many known factoring records using
NFS. On the other hand, discrete logarithm records were computed without large
primes using larger factor bases than usual [3].

The method that combines both large primes variant and large factor base is to
use two-stage sieving. We use two smoothness bounds B, B1 < B2. First, a classical
sieve is applied for every (degree one) prime ideal over pi < B. Large primes below
B1 are identified (both single and double). If we do not have enough B-smooth
equations, large primes that occur at least twice are added to the factor base, along
with corresponding equations. If we still do not have enough equations, we use
special-q lattice sieve for every large prime. This means, we construct a lattice
corresponding to a prime ideal over large qi, and sieve elements on this lattice.
Norm of every algebraic number associated with points on this lattice certainly has
qi as its factor. We can even skip the medium step and directly use special-q sieve
for every prime B < qi < B1.

10 PAVOL ZAJAC

For an easy detection of large primes we should use B1 < B2 for single large
prime, or B2

1 < B3 for double large prime variant. Practical experiments show, that
the upper bound is too large, if we want to avoid special-q sieve. With larger B1 we
gain more partial equations, but most of them are useless, since the corresponding
prime ideals appear only in a single equation. Recommended practical choice is
B1.2 < B1 < B1.4 [6].

7. Conclusions

We presented several techniques that can influence the running time of the NFS
implementation and the size of the linear system we need to solve.

Choice of the polynomial have significant impact on the smoothness probability
in the sieve region, thus influencing the NFS output and running time. An effect
of the best polynomial choice in comparison to the worst one is comparable to
increasing the factor base by a factor of four.

If the NFS output is comparable with factor base size on one side, but smaller
than required, we can create a solvable linear system by employing multiple alge-
braic number fields. This leads to a larger linear system.

Use of large primes and partially smooth equations can lead to a significantly
higher NFS output, at the price of a larger linear system. An effective filtering
and a careful selection of parameters should be employed when using large primes,
otherwise the performance deteriorates.

A significant increase in the number of smooth equations can be obtained by in-
creasing the dimension of the sieve region. This however leads to an increased sieve
complexity, as we must sieve more points. However, using distributed computing,
the cost of sieving can be significantly smaller than the cost of solving the linear
system.

An interesting side result of higher dimensional sieve, is its possible application
to increase the effectiveness of classical NFS with two dimensional sieve. Instead
of of mapping (a, b) ∈ Z2 to a pair of algebraic numbers (a + bα, a + bβ), we can
map them to a pair (a + bα + α2, a + bβ + β2). Norms of algebraic numbers in this
sieving region are comparable to norms in the original sieving region (depends on
the region size and polynomial coefficients). We can however use also points with
gcd(a, b) 6= 1, and b ≤ 0 respectively. Thus we can increase the number of equations
that can be found by sieve without increasing the sieve region. If we want to avoid
(trivially) linearly dependent equations, we should check whether b2−4a is a square
in Z (in this case the equation can be split according to the factorization of the
polynomial a + bx + x2).

References

[1] Commeine, A., Semaev, I. An Algorithm to Solve the Discrete Logarithm Problem with the
Number Field Sieve. Public Key Cryptography 2006, 174–190.

[2] Dodson, B., Lenstra, A.K. NFS with Four Large Primes: An Explosive Experiment.
CRYPTO 1995, 372–385.

[3] Joux, A., Lercier, R. Improvements to the general number field sieve for discrete logarithms
in prime fields: a comparison with the Gaussian integer method Mathematics of Computation.
72 (2003), 953–967.

[4] Joux, A., Lercier, R., Smart, N. and Vercauteren, F. The number field sieve in the
medium prime case. Advances in Cryptology - CRYPTO 2006, Springer-Verlag LNCS 4117,
(2006), 323–341.

REMARKS ON THE NFS COMPLEXITY 11

[5] Lenstra, A.K. and Lenstra, H.W. Jr., editors. The development of the number field
sieve, Vol. 1554 of Lecture Notes in Mathematics. Springer–Verlag, (1993).

[6] Lenstra, A.K., Lenstra, H.W. Jr., Manasse, M.S. and Pollard, J.M. The number field
sieve. In: [5].

[7] Lenstra, A.K. and Verheul, E.R. An overview of the XTR public key system, Publickey
cryptography and computational number theory (Warsaw, 2000), de Gruyter, Berlin, (2001),
151-180.

[8] Schirokauer, O. Virtual logarithms, Journal of Algorithms 57 (2005), 140–147.
[9] Zajac, P. Generalized Line Sieve Algorithm, Proceedings of ELITECH ’07, ISBN 978-80-

227-2655-9 (2007).
[10] Zajac, P. Smoothness probability in degree six number fields, Journal of Electrical Engineer-

ing, Vol.58 (2007), No. 7/s, pp. 14–16.

KAIVT FEI STU, Ilkovičova 3, 812 19 Bratislava, Slovak Republic.
E-mail address: pavol.zajac@stuba.sk

