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Abstract

We propose a new architecture for performing Elliptic CurveScalar Multiplication (ECSM) on elliptic curves over

GF (2m). This architecture maximizes the parallelism that the projective version of the Montgomery ECSM algorithm

can achieve. It completes one ECSM operation in about2(m−1)(dm/De+4)+m cycles, and is at least three times the

speed of the best known result currently available. When implemented on a Virtex-4 FPGA, it completes one ECSM

operation overGF (2163) in 12.5µs with the maximum achievable frequency of 222MHz. Two other implementation

variants for less resource consumption are also proposed. Our first variant reduces the resource consumption by almost

50% while still maintaining the utilization efficiency, which is measured by a performance to resource consumption

ratio. Our second variant achieves the best utilization efficiency and in our actual implementation on an elliptic curve

group overGF (2163), it gives more than 30% reduction on resource consumption while maintaining almost the same

speed of computation as that of our original design. For achieving this high performance, we also propose a modified

finite field inversion algorithm which takes onlym cycles to invert an element overGF (2m), rather than2m cycles

as the traditional Extended Euclid algorithm does, and thisnew design yields much better utilization of the cycle

time.

Index Terms

Elliptic Curve Cryptography, Elliptic Curve Scalar Multiplication, FPGA, Finite Field Inversion

I. I NTRODUCTION

Elliptic Curve Cryptography (ECC), independently introduced by Miller [1] and Koblitz [2] in 1980’s, is a

promising technology for new cryptographic applications.It can achieve high security levels as that of RSA [3],

but with much smaller key sizes and faster computation, which result in lower power consumption as well as better

memory and bandwidth savings. A 163-bit elliptic curve cryptosystem is known to provide a comparable security

level to that of a 1024-bit RSA-based cryptosystem; and a 224-bit elliptic curve cryptosystem is comparable to

a 2048-bit RSA-based cryptosystem [4], [5]. We refer readers to [6], [4], [7], [8] for its general background and

recent applications.
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In ECC, Elliptic Curve Scalar Multiplication (ECSM) is the core and also the most expensive operation, just as

the modular exponentiation does in RSA. The study of its implementation performance has attracted great interest

due to the rapid development and deployment of ECC lately [8]. On software implementation, there are several

open-source libraries such as Crypto++ and MIRACL1 available. They have been widely used and deployed, and

also been used as the up-to-date benchmarks for the softwareimplementation performance of ECSM. According to

MIRACL, one ECSM operation on an elliptic curve overGF (2163) takes1.05ms on a 3GHz Pentium IV system.

On the hardware implementation of ECSM, many different architectures have been proposed [9], [10], [11], [12].

One of the most efficient FPGA implementation of ECSM on elliptic curves overGF (2m) is due to Ansari and

Hasan [12]. Their implementation form = 163 takes41µs with 100MHz the maximum achievable frequency on a

Virtex2-2000 FPGA to compute one ECSM operation in the projective coordinate, and that is more than 25 times

faster than software implementation. In this paper, we propose a new architecture for ECSM on elliptic curves over

GF (2m). Our design maximizes the execution parallelism of individual modules and also improves the utilization

of cycle time for some of the modules. When implemented on a Virtex-4 FPGA, it completes one ECSM operation

on an elliptic curve overGF (2163) in just 12.5µs, which is at least three times the speed of [12].

A. Our Results

We propose a new architecture for doing ECSM on elliptic curves overGF (2m). Our architecture maximizes the

parallelism of the execution of independent functional modules and results in taking only2(m−1)(dm/De+4)+m

cycles to complete one ECSM operation, whereD is the digit size of the underlying digit-serial finite field multiplier.

This is about one third of the number of cycles required by a design due to Ansari and Hasan [12], which has been

known as one of the most efficient designs previously available. When implemented, our design also achieves at least

three times the speed of the one in [12] and reaches a much higher maximum achievable frequency. Implemented

on a Virtex4-LX200 FPGA, our implementation completes one ECSM operation on an elliptic curve overGF (2163)

in 12.5µs with a maximum frequency of 222MHz achieved.

In our design, we also maximize the parallelism that the Montgomery ECSM algorithm in projective coordinate

can achieve. Based on our analysis, we find that the optimal implementation of Montgomery ECSM algorithm

in terms of speed requires two serial finite field multiplications. In our proposed ECSM architecture, we employ

this optimized design. We hope that our design will also serve as a useful reference for estimating how fast the

Montgomery algorithm can achieve on FPGA in the future.

Higher resource consumption implies higher cost of production (i.e. larger chip area). For reducing the resource

consumption, we investigate two other architecture variants. Our first variant reduces the number of finite field

multiplication modules from three to one, the number of division modules from two to one and eliminates the

inversion module. It turns out that the resource consumption is reduced by almost 50% while still maintaining the

utilization efficiency (i.e. the ratio of performance to resource consumption, or, the performance-to-chip-area ratio).

1Crypto++: http://www.cryptopp.com

MIRACL: http://www.shamus.ie
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Our second variant is similar to the first variant but having two multiplication modules instead of one. This

modification is significant because it allows much higher parallelism to be achieved than the first variant does. It

actually yields the best utilization efficiency, by achieving 3.16:1 performance-area ratio, while which is 2.37:1

for our original architecture. This variant also gives us more than 30% reduction on resource consumption while

maintaining almost the same speed of computation as that of our original architecture when implemented on an

elliptic curve group overGF (2163).

Besides proposing a highly optimized architecture throughparallelism, we also propose a new implementation

method for carrying out an Extended Euclid algorithm based finite field inversion operation overGF (2m). By

unrolling two iterations into one, our method takes onlym cycles to invert an element rather than2m cycles in the

traditional implementation of the Extended Euclid algorithm. More importantly, each iteration in our method has

much better utilization of the time of one clock cycle than the traditional one. This gives a significant improvement

on the number of cycles required for completing one finite field inversion while without increasing the cycle time.

This improved implementation contributes significantly tothe high performance and high performance-area ratio

of our proposed ECSM architecture.

B. Related Work

In 2000, Orlando and Paar [9] proposed an FPGA-based processor for ECSM on elliptic curves overGF (2m).

Their implementation requires(6d167/De + 24) ∗ 166 + 20d167/De + 764 clock cycles to complete one ECSM

operation overGF (2167), whereD is the word size of the underlying finite field multiplier. Thereported performance

on a Virtex-E-400 FPGA is210µs. In their design, the finite field multiplication operationsin each iteration of the

main loop of ECSM are carried out serially.

In 2003, Eberle et al. [10] proposed an FPGA-based processor for ECSM on elliptic curves overGF (2m) where

m is configurable up to the value of 255. Several standardized curves have also been preloaded for optimized

implementation. They reported the speed of their implementation is 302µs for ECSM on generic elliptic curves

overGF (2163) on a Virtex-E 2000 FPGA, and144µs for preloaded curves. However, as their design has to include

additional logics for handling generic curves, its resource consumption (i.e. chip area) is noticeably high when

compared with the corresponding speed it can achieve. As we will see later, in order to get a better performance-

area ratio, in our design, we provide developers a slightly less freedom on choosing parameters without any

reconfiguration, but in return, we improve the performance by more than10 times. On the parameters that we still

allow developers to choose without any reconfiguration, they include the choice of elliptic curves, base points and

certain finite field parameters. Reconfiguration is needed only if the underlying finite field is fundamentally changed,

for example, fromGF (2163) to GF (2255). As there are usually many suitable elliptic curves for eachparticular

finite field, developers do not need to do reconfiguration thatoften in practice, while the gain on performance of

our design is much significant.

Another FPGA-based processor for ECSM proposed recently isdue to Mentens et al. [11]. The algorithms they

used are not the optimized ones, and hence it takes longer time to compute. The reported result is3.801ms for
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completing one ECSM operation on elliptic curves overGF (2160).

In [12], Ansari and Hasan proposed a hardwired logic for performing ECSM on elliptic curves overGF (2m).

In their design, a pseudo-pipelined finite field multiplier over GF (2m) was constructed in such a way that the

multiplier can complete one finite field multiplication in exactly dm/De cycles rather thandm/De+c cycles, where

D is the word size of the multiplier andc is some non-zero positive constant, which is needed for a traditional

implementation of the finite field multiplier. This optimization and several others make their design efficient. To

complete one ECSM operation on an elliptic curve overGF (2m) in the projective coordinate, their design takes

approximately6(m − 1)dm/De clock cycles, or41µs with a maximum achievable frequency of 100MHz on a

Virtex2-2000 FPGA whenm = 163. In their design, six finite field multiplications are carried out serially. As we

will see in subsequent sections, our design allows some of these finite field multiplication operations to be carried

out in parallel and hence reduces the effective sequential operations to two.

Paper Organization. The rest of the paper is organized as follows. In Sec.II , we introduce the individual

algorithms that constitute our ECSM system. Optimizationsthat we have done on some of the algorithms are also

described. In particular, we propose an improved finite fieldinversion implementation method overGF (2m) in

Sec.II-C and show that it doubles the performance of the traditional one and yields better utilization of the cycle

time. The design of our ECSM architecture is described in Sec. III . This is followed by performance analysis,

complexity analysis, and comparison with previous resultsin Sec.IV. Two variants of our architecture for reducing

resource consumption are proposed and analyzed in Sec.V, and the second variant is shown to achieve the best

performance-area ratio. The paper is concluded in Sec.VI .

II. A LGORITHMS AND OPTIMIZATIONS

The most commonly used elliptic curves are defined over primefieldsGF (p) and binary fieldsGF (2m). In this

paper, we focus on the latter one, where an element inGF (2m) can be represented asa = Σm−1

i=0
aix

i, ai ∈ {0, 1}.

An elliptic curveC overGF (2m) is a Weierstrass equation and is defined byy2 +xy = x3 + ax2 + b, wherea and

b 6= 0 are elements ofGF (2m) [7]. Each curve also includes an imaginary pointO called point at infinity, which

acts as the identity element in the corresponding elliptic curve additive group.

A point P on an elliptic curveC overGF (2m) can be represented inAffine Coordinateor Projective Coordinate

[7]. In the affine coordinate,P is denoted by two elements(x, y) of GF (2m); in the projective coordinate,P needs

three elements to represent, namely(X, Y, Z), whereX, Y, Z ∈ GF (2m) andZ 6= 0. Therefore, affine coordinate

representation can help reduce network bandwidth and memory space for transmission and storage, respectively. On

the other hand, performing ECSM in affine coordinate involves a large number of finite field inversion operations2,

whose performance is much poorer than that of finite field multiplication operations [7], [9].

In projective coordinate, it is known [7], [13], [14] that much more efficient ECSM algorithms which do

not involve any finite field inversion operation can be constructed. Therefore, almost all of the recent hardware

2One of the most commonly used finite field multiplication algorithms in affine coordinate is double-and-add [7].
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implementations (such as those reviewed in Sec.I-B) [9], [10], [11], [12] of ECSM are in the projective coordinate.

In our design, we also have the core ECSM operation carried out in the projective coordinate, but we use the

affine coordinate for the input and output of the whole systemso that the network bandwidth and storage space

of elliptic curve points can be reduced. This implies that our design also has two conversion modules included for

transforming elliptic curve points from affine coordinate to projective coordinate and vice versa.

In the following, we introduce the individual algorithms that we have chosen in our ECSM implementation. We

start our presentation with the highest level ECSM algorithm first, which is followed by the algorithms for the

lower level finite field element operations such as addition,multiplication, square and inversion overGF (2m).

A. Elliptic Curve Scalar Multiplication (ECSM)

ECSM is an operation which on input an integerk and a pointP on an elliptic curveC, computes another point

Q such thatQ = kP . In our ECSM architecture, we use a variant of the algorithm due to López and Dahab [13],

which is an improvement of the traditional Montgomery ECSM algorithm [15]. The algorithm consists of three

stages: (1) convertP from affine coordinate to projective coordinate; (2) compute Q = kP in projective coordinate;

and (3) convertQ from projective coordinate back to affine coordinate. The algorithm is shown in Algorithm 1.

Input: Point P = (x, y) andk, wherex, y, k ∈ GF (2m)

Output: Point Q = (xq, yq) = kP , wherexq, yq ∈ GF (2m)

/*Affine to Projective*/

X1 = x, Z1 = 1, X2 = x4 + b, Z2 = x2

/*Projective Scalar Multiplication*/

for i from l − 2 downto0 do

/*Point Addition*/

A = X1Z2X2Z1 + x(X1Z2 + X2Z1)
2

B = (X1Z2 + X2Z1)
2

/*Point Doubling*/

if (ki = 1) thenC = X4
2 + bZ4

2 , D = X2
2Z2

2

elseC = X4
1 + bZ4

1 , D = X2
1Z2

1

endif

if (ki = 1) thenX1 = A, Z1 = B, X2 = C, Z2 = D

elseX2 = A, Z2 = B, X1 = C, Z1 = D

endif

endfor

/*Projective to Affine*/

xq = X1/Z1,

yq = ((X1/Z1 + x)(X2/Z2 + x) + (x2 + y))(X1/Z1 + x)/x + y

Return(xq, yq)

Algorithm 1. Our ECSM Algorithm - A Variant of [ 13]
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In the algorithm,ki represents thei-th bit of k, for i = 0, · · · , l−1 andkl−1 is the most significant bit ofk. The

symbolb represents the constant of the underlying elliptic curve, that is,y2 + xy = x3 + ax2 + b overGF (2m). In

practice, it is possible thatl < m, but for analyzing the worst-case performance of an ECSM architecture, in the

rest of the paper, we assume thatl = m.

In each iteration of the main loop of Algorithm 1,Point AdditionandPoint Doublingcan be run in parallel. We

modify the algorithm of [13] slightly to Algorithm 1 solely for making the parallelism of Point AdditionandPoint

Doubling explicit. Readers may refer to Appendix (page20) for the original one.

B. Finite Field Algorithms

In Algorithm 1, finite field element operations such as addition, multiplication, square, inversion and/or division

overGF (2m) are used. Addition overGF (2m) is merely the bitwise exclusive-or operation, and therefore is very

efficient.

The finite field multiplication algorithm used in our design is the LSD-first digit-serial multiplication algorithm

proposed by Song and Parhi [16]. Let f(x) = xm +Σm−1

i=0
fix

i, fi ∈ {0, 1}, be an irreducible polynomial. The finite

field multiplication operation overGF (2m) is defined byc(x) = a(x)b(x) mod f(x), or in short,c = ab mod f .

The algorithm is shown in Algorithm 2.

Input: a, b ∈ GF (2m)

Output: c ∈ GF (2m), c = ab over GF (2m)

Set:A(0) = a,C(0) = 0, d = dm/De

for i from 1 to d do

A(i) = A(i−1)xD mod f(x), (1)

C(i) = A(i−1)Bi−1 + C(i−1), (2)

where

A(i) = Σm−1
j=0 A

(i)
j xj ,

C(i) = Σm+D−2
j=0 C

(i)
j xj , and

Bi =

{

ΣD−1
j=0 bDi+jx

j , 0 ≤ i ≤ d − 2

Σ
m−1−D(d−1)
j=0 bDi+jx

j , i = d − 1

endfor

returnC(d) mod f(x)

Algorithm 2. LSD-first Digit-Serial Multiplication over GF (2m)

The algorithm divides the two operandsa and b into digit blocks, with word/block sizeD. Operations in each

block are performed in parallel, while the blocks are processed serially. Therefore, it takesdm/De cycles to compute

one multiplication overGF (2m).

The multiplication algorithm can be used for performing finite field square and it takesdm/De cycles to compute.

For efficiency, cryptosystems usually choose to use irreducible polynomials which have low Hamming weight, for

example, 3, 5 or 7. In this case, the square operation can greatly be simplified, for example, by using the algorithm

proposed by Wu [17] with low Hamming weight irreducible polynomials, we can complete one finite field square
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operation overGF (2m) in just one cycle. We refer readers to [17] for details. In our design, we use this algorithm

to do finite field square.

C. Finite Field Inversion Algorithm

Inverting an element overGF (2m) is much more expensive than multiplying two elements together, and this

is also the reason why almost all recent ECSM hardware architectures have chosen to implement it in projective

coordinate. This can help avoid hundreds of finite field inversion operations by introducing only a few additional

finite field multiplication operations, and only a few inversions or divisions are needed at the end of the computation,

for converting the result back to affine coordinate. One of the commonly used inversion algorithms is the Extended

Euclid Algorithm. In Algorithm 3, it shows the implementation of the algorithm in [18].

Input: a ∈ GF (2m), irreduciblef

Output: a−1 mod f

S = f , R = a, U = 1, V = 0, δ = 0, q = 0, t = 0

for i from 0 to 2m − 1 do

if (rm = 0) then

R = xR, U = (xU) mod f , δ = δ + 1

else /*rm = 1*/

q = sm, S = S − qR, V = V − qU , S = xS

if (δ = 0) then

t = R, R = S, S = t, t = U , U = V , V = t, U = (xU) mod f , δ = δ + 1

else

U = (U/x) mod f , δ = δ − 1

endif

endif

endfor

returnU

Algorithm 3. Extended Euclid Algorithm over GF (2m)

We notice that the maximum path delay in Algorithm 3 is very short, that is, consisting of only one LUT (lookup

table) and one FF (flip-flop). As a result, when implemented, the module corresponding to Algorithm 3 is idle for

most of the time in a cycle as some other simultaneous operations are still running in the same clock cycle. This

implies that the corresponding clock cycle for performing one iteration of the main loop of Algorithm 3 is not fully

utilized. In consideration of this, we propose to unroll themain loop so that every two iterations are now combined

into one. As a result, the main loop of our modified algorithm takes onlym iterations rather than2m iterations.

More importantly, the maximum path delay of each iteration in our revised algorithm is now corresponding to

five LUTs and one FF. They are comparable to the time elapsed ofone clock cycle. As a result, the clock cycle

for performing one iteration in the main loop of our algorithm can be fully utilized. Algorithm 4 summarizes the

modified algorithm.
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Input: a ∈ GF (2m), irreduciblef

Output: a−1 mod f

Set:S = f , R = a, U = 1, V = 0, δ = 0, t = 0, q = 0, e = 0

for i from 0 to m − 1 do

if (rmrm−1 = 00) then

R = x2R, U = (x2U) mod f , δ = δ + 2

else if (rmrm−1 = 01) then

q = sm, R = xR, S = x(S − qR), V = V − q(xU mod f)

else /*rm = 1*/

if (δ ≥ 2) then

δ = δ − 2, q = sm, e = sm−1 − smrm−1, S = x2(S − qR) − x(eR),

V = V − qU − e(U/x mod f), U = U/x2 mod f

else if (δ = 1) then

q = sm, e = sm−1 − smrm−1, t = R, R = x(x(S − qR) − eR), S = t,

t = U/x mod f , U = x(V − qU − et) mod f , V = t

else /*δ = 0*/

q = sm, e = sm−1 − smrm−1

if (e = 0) then

δ = δ + 2, t = R, R = x2(S − qR), S = t, t = U , U = x2(V − qU) mod f , V = t

else /*e = 1*/

t = xR − x2e(S − qR), R = x(S − qR), S = t, t = U − e(x(V − qU) mod f), U = V − qU , V = t

endif

endif

endif

endfor

returnU

Algorithm 4. Our Modified Inversion Algorithm Over GF (2m)

To divide one element by another, the finite field division algorithm overGF (2m) proceeds almost identically

the same as that of the inversion algorithm, with the exception that the variableU should be initialized by the

dividend, rather than by1.

III. O UR ECSM ARCHITECTURE

In this section, we describe our ECSM architecture and estimate the execution time as well as the computational

complexity of each individual module.

A. Implementation of Our ECSM Algorithm (Algorithm 1)

As explained in Sec.II and also shown in Algorithm 1 (page5), our ECSM architecture consists of three

stages: (1)Affine-to-Projectiveconversion of input pointP ; (2) Projective-Scalar-Multiplicationto get output point

Q = kP ; and (3)Projective-to-Affineconversion of the output pointQ. Let A, M , S and D be the number of
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clock cycles required for finite field addition, multiplication, square and division overGF (2m), respectively. They

are used for analyzing the execution time of individual modules, such asAffine-to-Projectivemodule, etc.

1) Affine-to-Projective:According to Algorithm 1, this stage has the following operations involved.

X1 = x, Z1 = 1, X2 = x4 + b, Z2 = x2

Most of them can be carried out in parallel, except the computation of X2. In the following, the time steps of our

implementation are given.

Affine-to-Projective: 2S + 1A

1 : Z2 = x2, X1 = x, Z1 = 1; (1S)

2 : T1 = Z2

2
; (1S)

3 : X2 = T1 + b. (1A)

In time step 1, three operations are carried out in parallel.This is followed by time step 2 and 3 for computing

X2. The execution time ofAffine-to-Projectiveis 2S + 1A.

2) Projective-Scalar-Multiplication:In the main loop of this module, the two sub-modules carried out in each

iteration arePoint-AdditionandPoint-Doubling. The time steps of our implementations of these two sub-modules

are given as below.

Point Addition: 2M + 1S + 2A

1 : T1 = X1Z2, T2 = X2Z1; (1M )

2 : T3 = T1 + T2; (1A)

3 : B = T 2
3 ; (1S)

4 : T4 = T1T2, T5 = xB; (1M )

5 : A = T4 + T5. (1A)

Point Doubling: 2M + 1S + 1A + 1MUX

1 : X = (ki = 1)?X2 : X1,

Z = (ki = 1)?Z2 : Z1; (1MUX)

2 : T6 = X2, T7 = Z2; (1S)

3 : T8 = T 2
6 , T9 = T 2

7 , D = T6T7; (1M )

4 : T10 = bT9; (1M )

5 : C = T8 + T10. (1A)

In time step 1 ofPoint-Doubling, the operation(b?a1 : a2) corresponds to a multiplexerMUX . Its delay is one

LUT (lookup table), which is equivalent to that of one finite field addition. Therefore, the execution time ofPoint-

Doubling and Point-Additionare the same, that is2M + 1S + 2A. As shown in Algorithm 1 (page5), there is a

set of conditional assignments at the end of each iteration.This set of assignments incurs an additionalMUX for

each iteration. Since the execution time of oneMUX is equivalent to oneA, the total execution time for each

iteration is2M + 1S + 3A.
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3) Projective-to-Affine:Below are the time steps of the third stage of our ECSM implementation.

Projective-to-Affine: 1D + 3A + 2M

1 : T1 = X1/Z1, T2 = X2/Z2, T3 = x−1, T4 = x2; (1D)

2 : T5 = T1 + x, T6 = T2 + x, T7 = T4 + y; (1A)

3 : T8 = T5T6, T9 = T5T3; (1M )

4 : T10 = T7 + T8; (1A)

5 : T11 = T9T10; (1M )

6 : T12 = T11 + y. (1A)

The execution time is1D + 3A + 2M . Note that we computeT9 by one inversion and one multiplication rather

than one division. The reason of making this implementationrather than using division is that the execution time

will becomes2D + 3A+ 1M if we use division, which results in larger execution time. Therefore, we ‘divide’ the

division into inversion and multiplication so that the inversion part can be computed in time step 1.

Computational Complexity. A summary of the resources that are used in the three stages of our ECSM

implementation is shown in TableI.

Complexity Affine to Proj. Proj. Scalar Mul. Proj. to Affine

Square 2 5(m − 1) 1

Addition 1 3(m − 1) 5

Multiplication 0 6(m − 1) 3

Division/ Inversion 0 0 3

TABLE I

RESOURCECONSUMPTION OF THEECSM ARCHITECTURE(UNOPTIMIZED)

In each iteration of the main loop, we need 5 finite field squaremodules, 3 addition modules and 6 multiplication

modules, while most of them can be reused for reducing the resource consumption (i.e. chip area). More details

on resource reuse are given in Sec.III-C.

Next, we describe our implementation of the finite field element operations and estimate their performance and

complexity.

B. Finite Field Multiplication overGF (2m)

Our implementation of finite field multiplication is based onthe LSD-first digit-serial algorithm described in

Sec.II-A . In Fig. 1, one iteration of our implementation is shown. In the figure,the value next to each signal line

represents the width of the corresponding signal.

In this implementation, there are two loops corresponding to the two steps in the LSD-first digit-serial algorithm:

the loop on the right performs step (1), and the loop on the left computes step (2) where finite field addition is

implemented by XOR gates.
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>>(reg)

B B>>D

B[D-1:0]

×

A(reg)

A[m-1:0]

m+D-1

^

C(reg)

C[m+D-2:0]

MUX

<<

A=A·xD

mod f

m+D

Output

m

Fig. 1. Our Implementation of LSD-First Digit-Serial Multiplication Algorithm OverGF (2m)

By considering the two extra clock cycles for initializing inputs and uploading outputs, our implementation takes

dm/De + 2 clock cycles to complete one finite field multiplication overGF (2m). Note that the pseudo-pipelined

design of [12] cannot be applied in our architecture as the output of one finite field multiplication is used immediately

as the input to the next one.

C. Resource Utilization and Performance of Finite Field Element Operation Modules

In our implementation, besides focusing on optimizing the overall performance, we also emphasize on the reuse

of modules. In hardware architecture design, resource utilization is one of the most important issues that need to

be considered. The reuse of some large modules will help reduce resource consumption or chip area tremendously.

In this section, we discuss the resource utilization of the five basic finite field element operation modules in our

implementation and also the reuse of them. They are finite field addition (ADD), square (SQU), multiplication

(MUL), division (DIV) and inversion (INV). In TableII , the complexity and performance of these five modules are

shown.

LUTs FFs Clock Cycles

ADD 163 0 1

SQU 165 0 1

MUL 6200 1937 dm/De + 2

DIV 4909 1506 m

INV 4456 1456 m

TABLE II

COMPLEXITY AND PERFORMANCE OFFIVE FINITE FIELD ELEMENT OPERATIONMODULES OVERGF (2163)
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ADD and SQU modules use much less resource than the other three modules. Also, only a few SQUs and ADDs

are required, so we choose not to optimize the reusability ofthese two modules. In fact, to reuse a module, one

additional multiplexer (MUX) is required, and too many MUXsmay counteract the advantage of reusing modules

when these modules are small and already efficient enough.

We put much effort on reusing the other three modules. In Table III , it shows the utilization of the SQU, ADD,

DIV and INV modules in our implementation.

Stage 1 Stage 2 Stage 3

S1 S2 S3 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S6

SQU1 Z2 T1 T7

SQU2 B

SQU3 T9

SQU4 T6

SQU5 T8

SQU6 T4

ADD1 X2

ADD2 C

ADD3 T3 A

ADD4 T5

ADD5 T6

ADD6 T7

ADD7 T10

ADD8 T12

DIV1 T1

DIV2 T2

INV1 T3

TABLE III

UTILIZATION OF SQU, ADD, DIV AND INV MODULES IN OUR ECSM IMPLEMENTATION

In the table, Stage 1, Stage 2 and Stage 3 correspond toAffine-to-Projective, Projective-Scalar-Multiplication

andProjectibe-to-Affine, respectively, where Stage 2 includesm−1 iterations.Ti corresponds to the variable in the

analysis of execution time in Sec.III-A . We use 6 SQU modules and 8 ADD modules in our implementation,only

one SQU module and one ADD module are reused.

Since two division modules are required to perform in parallel for shortening the execution time, in our imple-

mentation, we choose not to reuse the DIV module in preference of fast computation.

On the MUL modules, we make extra effort in allocating this type of modules. The reason is that MUL modules

not only occupy large resources, but are also used very frequently. As we can see in Sec.III-A , 6 MUL modules

(unoptimized) are needed for carrying out one iteration of the main loop of theProjective-Scalar-Multiplication.

For reducing the number of MUL modules in this stage, we divide the 6 finite field multiplication operations over
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GF (2m) in the time steps ofPoint AdditionandPoint Doublinginto two groups:

1) In Step 4 of bothPoint AdditionandPoint Doubling, altogether three finite field multiplications can be carried

out in parallel;

2) In Step 1 ofPoint Additionand Step 3 ofPoint Doubling, altogether three finite field multiplications can be

carried out in parallel.

Therefore, we only require three MUL modules to run in parallel in each group and they can be reused in the other

group. In addition, in the last stage, that is,Projective-to-Affineconversion, three MUL modules are needed and

only two are required to be run in parallel. Therefore, the same set of MUL modules can also be reused in this

stage. As a result, there are only three MUL modules in our implementation and TabelIV shows the details of the

utilization of these MUL modules.

Stage 1 Stage 2 Stage 3

S1 S2 S3 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S6

MUL1 T1 T4 T8

MUL2 T2 T5 T9

MUL3 D T10 T11

TABLE IV

UTILIZATION OF MUL MODULES IN OUR ECSM IMPLEMENTATION

D. The Complete Architecture and Total Execution Time of OurECSM Implementation

M
U
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1

M
U

L
3

M
U

L
2

DIVs

&INV

ADDs

X1

X2

Z1

Z2

ADD4

ADD5
x

INV1

SQUs

SQU2

SQU4

b
ADD7

SQU1

SQU3

M
U

X
s

x

1

Output of SQUs

Output of ADDs

Output of MUL3
xkDIV1

ADD8 yk

Control

Logicinit

clk

sclr

Fig. 2. Our ECSM Architecture
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The architecture of our ECSM implementation is shown in Fig.2. In the diagram,clk, sclr and init represent

global clock signal, synchronous reset signal and global initial signal, respectively. Inputs for each MUL module

are shown in the figure, and there are only three MUL modules inour design.

We now estimate the total execution time in terms of the number of clock cycles. In one iteration of the main loop

of Projective-Scalar-Multiplication(Sec.III-A2 ), the execution time is2M +1S+3A. Therefore, the execution time

of Projective-Scalar-Multiplicationis (m−1)(2(dm/De+2)+4). For the two conversions, i.e.Affine-to-Projective

(Sec.III-A1 ) and Projective-to-Affine(Sec.III-A3 ), the total execution time ism + 2(dm/De + 2) + 6 which is

aboutm for largeD. Hence, the total number of clock cycles taken to compute oneECSM operation overGF (2m)

is about2(m−1)(dm/De+ 4) + m.

IV. PERFORMANCE OF ANACTUAL IMPLEMENTATION

We use Xilinx Integrated Software Environment (ISE) 9.1i todevelop our ECSM hardwired logic. Simulation is

done using Modelsim XE. The implementation is tested on a Xilinx Virtex-4 LX200 FPGA.

The finite field chosen in our actual implementation isGF (2163) with the irreducible polynomial being set to

f(x) = x163 +x7 +x6 +x3 +1. The elliptic curve issect163r13. When choosing the digit sizeD of the finite field

multiplication (i.e. LSD-first Digit-Serial Multiplication) as 42, the whole system takes 39,584 lookup tables (LUTs)

and 6,948 flip flops (FFs). The corresponding number of ASIC gates estimated by the ISE is 303,822. One ECSM

operation can be completed in12.5µs with the maximum achievable frequency of 222MHz. This result corresponds

to the case when integerk is taken as2163−1, that is, a163-bit integer with all bits set to1. This implies that in

practice, our implementation will take less than12.5µs to perform on ECSM operation overGF (2163).

ECSM Max Achievable Resources

FPGA over GF (2163) Frequency Occupied

(µs) (MHz)

Our Virtex-4 12.5 222 39,584 LUTs

Implementation LX 200 (≈303,822 gates)

[12] Virtex-II 41 100 8,300 LUTs,

2000 7 RAM blocks

[9] Virtex-E 210 76.7 3,002 LUTs

400-8BG432 10 RAM blocks

[10] Virtex-E 2000-7 144 66.4 20,068 LUTs

[11] Virtex 3,801 47 150,678 gates

800-4HQ240

TABLE V

ABSOLUTEPERFORMANCECOMPARISON

3Standards for Efficient Cryptography Group, ”Recommended Elliptic Curve Domain Parameters”, September 2000. Available at

http://www.secg.org/index.php?action=secg,docs_secg
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In TableV, several recent results in hardware implementation of ECSMare given along with our result. We can

see that our result (12.5µs) is at least three times the speed of the best result previously known (i.e.41µs) [12]4.

On the resource consumption (or chip area requirement), it seems that our implementation requires much more

resources, for example, when compared with that of [12]. Actually, this is not the case. In fact, our implementation

gives better performance-area ratio. This implies that ourimplementation yields faster computation than that of [12]

if the same amount of chip area is given. In TableVI, the performance-area ratios of our implementation when

compared with the best known results are given.

Computation Resources Performance-Area

Time Occupied Ratio

Ours : [12] 3.28 : 1† 2.42 : 1†[ 1.36 : 1†

Ours : [9] 16.8:1 7.1 : 1‡ 2.37:1

Ours : [10] 11.5:1 1.94:1 5.93:1

Ours : [11] 304:1 2.02:1 150.5:1
† Incomparable as [12] does not consider coordinate conversion.

[ One 18k-bit RAM block in Virtex-II corresponds to 1,152 LUTs.
‡ One 4k-bit RAM block is approximately equivalent to 256 LUTs.

TABLE VI

RELATIVE PERFORMANCECOMPARISON

We can see in TableVI , our implementation also outperforms that of [12] even when considering the performance-

area ratio. We should emphasize that in [12], Affine-to-Projectiveand Projective-to-Affineconversions are not

implemented. Input and output of the ECSM in [12] are all in projective coordinate. Therefore, our implementation

is actually much better in both absolute performance as wellas performance-area ratio when compared with [12].

Comparing with [9], [10] and [11], the utilization efficiency of our implementation, i.e., performance-area ratio, is

also much better.

V. OPTIMIZATION FOR RESOURCECONSUMPTION

The estimated number of ASIC gates of our implementation is about 303,822 (Sec.IV). Higher the number of

gates is, more expensive the ASIC chips are. For low-cost products, the resource consumption of our design may

need to be reduced. In this section, we discuss how it can be reduced without introducing too much tradeoff on

the performance.

4Note that in [12], only the ECSM in projective coordinate was implemented while the two conversions between affine coordinate and

projective coordinate are not considered, while in our implementation, both conversions have been taken into account.
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A. Variant 1

Our original ECSM implementation has three MUL modules. As mentioned, the MUL module is expensive and

it gives significant reduction on resource consumption if fewer MUL modules are needed. As a result, our first

variant from the original implementation is to reduce the number of MUL modules to only one. In other words,

there is only one MUL module available forProjective-Scalar-Multiplication. Below are the time steps of the

Projective-Scalar-Multiplicationstage of this variant.

Variant 1: Projective-Scalar-Multiplication: 6M + 1A

1 : T1 = (ki = 1)?X2Z1 : X1Z2, X = (ki = 1)?X2 : X1, Z = (ki = 1)?Z2 : Z1; (1M )

2 : T2 = (ki = 1)?X1Z2 : X2Z1, T6 = X2, T7 = Z2; (1M )

3 : D = T6T7, T3 = T1 + T2, T8 = T 2
6 , T9 = T 2

7 ; (1M )

4 : T4 = T1T2, B = T 2

3
; (1M )

5 : T10 = bT9; (1M )

6 : T5 = xB, C = T8 + T10; (1M )

7 : A = T4 + T5. (1A)

We can see that the execution time of one iteration in the mainloop becomes6M +1A. Different from our original

design in Sec.III and IV, the pseudo-pipelined technique [12] can now be employed, that is, the clock cycle for

preparing the output of the previous execution of the MUL module can be done simultaneously with the loading

of the input for the current execution of the MUL module. Hence, the effective number of clock cycles required

for completing one finite field multiplication can be reducedto dm/De + 1. Also note that registers storing the

values ofB, C andD are ready before the last time step of one iteration. Hence, the addition (1A) in step 7 can

be carried out simultaneously with the first time step (1M ) of the next iteration. As a result, the effective execution

time of one iteration is only6M rather than6M + 1A for the Projective-Scalar-Multiplicationstage.

In addition to the above, inProjective-to-Affineconversion, we also reduce the number of DIV modules from two

in our original design to one, and eliminate the INV module. Below are the time steps of theProjective-to-Affine

conversion of this variant.

Variant 1: Projective-to-Affine: 3D + 2M + 2A

1 : T1 = X1/Z1, T4 = x2; (1D)

2 : T2 = X2/Z2, T5 = T1 + x, T7 = T4 + y; (1D)

3 : T6 = T2 + x, T9 = T5/x; (1D)

4 : T8 = T5T6; (1M )

5 : T10 = T7 + T8; (1A)

6 : T11 = T9T10; (1M )

7 : T12 = T11 + y; (1A)

The execution time of this stage is increased to3D + 2M + 2A (in our original design, the time of this stage is

1D + 2M + 3A). The first stage, that is, theAffine-to-Projectiveconversion, remains unchanged. Therefore, the

total execution time of this ECSM variant is about6(m − 1)(dm/De+ 1) + 3m.
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B. Variant 2

Another variant is to use two MUL modules rather than one as inVariant 1. The pseudo-pipelined technique [12]

can also be applied in this variant. In theProjective-to-Affineconversion, similar to Variant 1, we only keep one

DIV module, while having the INV module removed. The following is the time steps of the parts corresponding

to Point Additionand Point Doubling in the Projective-Scalar-Multiplicationstage (also refer to Algorithm 1 on

page5).

Variant 2: Point Addition and Point Doubling: 1MUX + 3M + 1A

1 : X = (ki = 1)?X2 : X1, Z = (ki = 1)?Z2 : Z1; (1MUX)

2 : T1 = X1Z2, T2 = X2Z1, T6 = X2, T7 = Z2; (1M )

3 : D = T6T7, T10 = bT9, T3 = T1 + T2, T8 = T 2
6 , T9 = T 2

7 ; (1M )

4 : B = T 2

3
, T4 = T1T2, T5 = xB; (1M )

6 : A = T4 + T5, C = T8 + T10; (1A)

In our implementation, step 1 in the time steps above is performed in parallel with the two multiplications of step

2. Before time step 2 ends, the remaining two finite field square operations can also be completed. Therefore, the

execution time ofPoint Additionand Point Doubling in one iteration of the main loop in theProjective-Scalar-

Multiplication stage is3M +1A. As described in Algorithm 1, this is followed by a set of conditional assignments.

Therefore,1MUX has to be added for completing one iteration inProjective-Scalar-Multiplication. As a result,

the total execution time of theProjective-Scalar-Multiplicationstage in Variant 2 is(m − 1)(3(dm/De+ 1) + 2).

On the two coordinate conversions, they remain unchanged when compared with Variant 1. As a result, the total

execution time of Variant 2 is about(m − 1)(3dm/De + 5) + 3m.

C. Comparison

TableVII shows the resource consumption and performance of these twovariants for different values ofD, where

D is the digit size of the underlying LSD-first digit-serial multiplication operation. The resource consumption of

LUTs and FFs varies withD and the MUL module is corresponding to this variability.

In TableVII , we can see that the variants, when having appropriate values of D chosen, can provide very good

performance with tremendously reduced resource consumption. For example, Variant 2 withD chosen to be 42 or

32 can complete one ECSM operation overGF (2163) within 20µs, which is still more than twice the speed of

the best result previously known [12], while having over30% reduction on the estimated number of ASIC gates.

In particular, for Variant 2 whenD = 42, the speed is only slightly lower than our result in Sec.IV, in which we

use three MUL modules, two DIV modules and one INV module. Theadvantage on utilization efficiency becomes

more explicit when we compare the performance-area ratio ofthese variants with previous results. TableVIII shows

the performance-area ratio of these two variants to the result of [9].

In TableVIII , significant improvement on the utilization efficiency can be found whenD is set to 42 or 32 for

Variant 2. The performance-area ratio of Variant 2 outperforms our original result in Sec.IV. The table shows that

Variant 2 actual provides the best combination of utilization efficiency and speed. Similar results can also be found
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LUTs FFs Estimated Max. Achievable Freq. Time

ASIC Gates (MHz) (µs)

Variant 1 18,782 4,664 158,482 202.1 26.6

(D = 42)

Variant 1 16,747 4,640 145,948 200.7 36.5

(D = 32)

Variant 1 15,210 4,512 139,850 205.3 59.4

(D = 16)

Variant 2 24,972 5,695 201,536 220.2 14.8

(D = 42)

Variant 2 22,774 5,781 191,385 216.7 19.6

(D = 32)

Variant 2 18,416 5,597 163,735 217.0 30.8

(D = 16)

TABLE VII

PERFORMANCE ANDCOMPLEXITY OF TWO VARIANTS OF OUR ECSM ARCHITECTURE

Execution Resources Performance-Area

Time Occupied Ratio

Variant 1 (D = 42) : [9] 7.90: 1 3.38:1 2.34:1

Variant 1 (D = 32) : [9] 5.75: 1 3.01:1 1.91:1

Variant 1 (D = 16) : [9] 3.54: 1 2.73:1 1.30:1

Variant 2 (D = 42) : [9] 14.19 : 1 4.49:1 3.16:1

Variant 2 (D = 32) : [9] 10.71: 1 4.09:1 2.62:1

Variant 2 (D = 16) : [9] 6.82: 1 3.31:1 2.06:1

TABLE VIII

COMPARISONWITH [9]

when compared with other related results such as those in [12], [10], [11]. We choose not to show the comparison

with [12] in Table VIII , as explained earlier, the result shown in [12] does not include theAffine-to-Projectiveand

Projective-to-Affineconversions.

VI. CONCLUSION

We proposed a highly efficient new architecture for performing ECSM on elliptic curves overGF (2m). Main

efforts have been put on maximizing the parallelism of the execution of independent functional modules. Our

implementation takes about2(m−1)(dm/De+4)+m cycles to complete one ECSM operation. This is about

one third of the number of cycles required by another best known result due to Anasari and Hansan [12]. When

implemented on a Virtex4-LX200 FPGA, our implementation completes one ECSM operation on an elliptic curve
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over GF (2163) in 12.5µs with a maximum frequency of 222MHz achieved. This is at leastthree times the speed

of [12]. Note that our implementation also includes coordinate conversions that are not considered in [12].

We also maximized the parallelism that the Montgomery ECSM algorithm in projective coordinate can achieve.

By adjusting the maximum delay paths of Point Addition and Point Doubling, we eliminated any idle time of Point

Doubling when these two modules are running in parallel. Ouroptimized design consists of only two finite field

multiplications in the maximum delay path. This is much shorter than previously proposed designs.

For reducing the resource consumption, we implemented two variants. Our first variant reduced the number

of MUL modules from three to one, DIV modules from two to one and eliminated the INV module. Our results

showed that the resource consumption can be reduced by almost 50% while still maintaining the utilization efficiency

(i.e. the performance-area ratio). Our second variant is similar to the first variant but having two MUL modules.

This modification is significant because it allows high parallelism to be achieved by our core ECSM computation.

Through this optimization, we achieved the best resource utilization efficiency. It yielded 3.16:1 performance-area

ratio when compared with 2.37:1 in our original implementation. It also gave us more than 30% reduction on resource

consumption while maintaining almost the same speed of computation as that of our original implementation.

On the development of underlying finite field element operations, we proposed a highly efficient finite field

inversion algorithm and deploy it in our ECSM implementation. Our algorithm is a variant of the Extended Euclid

algorithm but it takes onlym cycles to invert an element inGF (2m) rather than2m cycles for a traditional

implementation of the Extended Euclid algorithm. More importantly, it makes one iteration of the main loop of our

algorithm matches to the time elapsed for one clock cycle much better than the traditional one. This modification

helps improve the overall performance of our implementation significantly without reducing much on the maximum

achievable frequency.
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APPENDIX

ECSM ALGORITHMS OF [13]

Montgomery-Scalar-Multiplication( x, y, k)

Input: Point P = (x, y) andk wherex, y, k ∈ GF (2m)

Output: Point Q = (xq, yq) = kP , xq, yq ∈ GF (2m)

(X1, Z1, X2, Y2) = Affine-to-Projective(x, y);

for i from l − 2 downto0 do

if (ki = 1) then

(X1, Z1) = Point-Addition (X1, Z1, X2, Z2, x);

(X2, Z2) = Point-Doubling(X2, Z2);

else

(X2, Z2) = Point-Addition (X2, Z2, X1, Z1, x);

(X1, Z1) = Point-Doubling(X1, Z1);

endif

endfor

Return (Projective-to-Affine(X1, Z1, X2, Z2, x, y))

Affine-to-Projective(x, y)

SetX1 = x; Z1 = 1; X2 = x4 + b; Z2 = x2;

Return(X1, Z1, X2, Z2)

Point-Addition (X1, Z1, X2, Z2, x)

SetX = X1Z2X2Z1 + x(X1Z2 + X2Z1)
2,

Z = (X1Z2 + X2Z1)
2,

Return (X, Z)

Point-Doubling(X,Z)

SetX = X4 + bZ4,

Z = X2Z2

Return(X, Z)

Projective to Affine(X1, Z1, X2, Z2, x, y)

Setxq = X1/Z1,

yq = ((X1/Z1 + x)(X2/Z2 + x) + (x2 + y))

∗(X1/Z1 + x)/x + y

Return:(xq, yq)
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