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Abstra
t. We prove that in most 
ases relevant to 
ryptography, the Fro-

benius endomorphism on the Ja
obian of a genus two 
urve is represented

by a diagonal matrix with respe
t to an appropriate basis of the subgroup of

ℓ-torsion points. From this fa
t we get an expli
it des
ription of the Weil-

pairing on the subgroup of ℓ-torsion points. Finally, the expli
it des
ription of

the Weil-pairing provides us with an e�
ient, probabilisti
 algorithm to �nd

generators of the subgroup of ℓ-torsion points on the Ja
obian of a genus two


urve.

1. Introdu
tion

In [9℄, Koblitz des
ribed how to use ellipti
 
urves to 
onstru
t a publi
 key 
ryp-

tosystem. To get a more general 
lass of 
urves, and possibly larger group orders,

Koblitz [10℄ then proposed using Ja
obians of hyperellipti
 
urves. After Boneh and

Franklin [1℄ proposed an identity based 
ryptosystem by using the Weil-pairing on

an ellipti
 
urve, pairings have been of great interest to 
ryptography [5℄. The next

natural step was to 
onsider pairings on Ja
obians of hyperellipti
 
urves. Gal-

braith et al [6℄ survey the re
ent resear
h on pairings on Ja
obians of hyperellipti



urves.

Miller [12℄ uses the Weil-pairing to determine generators of E(Fq), where E
is an ellipti
 
urve de�ned over a �nite �eld Fq. Let JC be the Ja
obian of

a genus two 
urve de�ned over Fq. In [14℄, the author des
ribes an algorithm

based on the Tate-pairing to determine generators of the subgroup JC(Fq)[m] of
points of order m on the Ja
obian, where m is a number dividing q − 1. The

key ingredient of the algorithm is a �diagonalization� of a set of randomly 
hosen

points {P1, . . . , P4, Q1, . . . , Q4} on the Ja
obian with respe
t to the (redu
ed) Tate-

pairing ε; i.e. a modi�
ation of the set su
h that ε(Pi, Qj) 6= 1 if and only if i = j.
This pro
edure is based on solving the dis
rete logarithm problem in JC(Fq)[m].
Contrary to the spe
ial 
ase when m divides q − 1, this is infeasible in general.

Hen
e, in general the algorithm in [14℄ does not apply.

In the present paper, we generalize the algorithm in [14℄ to subgroups of points

of prime order ℓ, where ℓ does not divide q−1. In order to do so, we must somehow

alter the diagonalization step. We show and exploit the fa
t that the q-power
Frobenius endomorphism on JC has a diagonal representation on JC [ℓ]. Hereby,


omputations of dis
rete logarithms are avoided, yielding the desired altering of

the diagonalization step.
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Setup. Consider a genus two 
urve C de�ned over a �nite �eld Fq. Let ℓ be an odd

prime number dividing the number of Fq-rational points on the Ja
obian JC , and

with ℓ dividing neither q nor q−1. Assume that the Fq-rational subgroup JC(Fq)[ℓ]
of points on the Ja
obian of order ℓ is 
y
li
. Let k be the multipli
ative order

of q modulo ℓ. Write the 
hara
teristi
 polynomial of the qk
-power Frobenius

endomorphism on JC as

Pk(X) = X4 + 2σkX
3 + (2qk + σ2

k − τk)X2 + 2σkq
kX + q2k,

where 2σk, 4τk ∈ Z. Let ωk ∈ C be a root of Pk(X). Finally, if ℓ divides 4τk, we
assume that ℓ is unrami�ed in Q(ωk).

Remark. Noti
e that in most 
ases relevant to 
ryptography, the 
onsidered genus

two 
urve C ful�lls these assumptions. Cf. Remark 7 and 14.

The algorithm. First of all, we noti
e that in the above setup, the q-power Frobe-
nius endomorphism ϕ on JC 
an be represented on JC [ℓ] by a diagonal matrix with

respe
t to an appropriate basis B of JC [ℓ]; 
f. Theorem 11. (In fa
t, to show this we

do not need the Fq-rational subgroup JC(Fq)[ℓ] of points on the Ja
obian of order ℓ
to be 
y
li
.) From this observation it follows that all non-degenerate, bilinear,

anti-symmetri
 and Galois-invariant pairings on JC [ℓ] are given by the matri
es

Ea,b =









0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0









, a, b ∈ (Z/ℓZ)×

with respe
t to B; 
f. Theorem 12. By using this des
ription of the pairing, the

desired algorithm is given as follows.

Algorithm 17. On input the 
onsidered 
urve C, the numbers ℓ, q, k and τk and a

number n ∈ N, the following algorithm outputs a generating set of JC [ℓ] or �failure�.

(1) If ℓ does not divide 4τk, then do the following.

(a) Choose points O 6= x1 ∈ JC(Fq)[ℓ], x2 ∈ JC(Fqk)[ℓ]\JC(Fq)[ℓ] and x
′

3 ∈
U := JC [ℓ]\JC(Fqk)[ℓ]; 
ompute x3 = x′3−ϕk(x′3). If ε(x3, ϕ(x3)) 6= 1,
then output {x1, x2, x3, ϕ(x3)} and stop.

(b) Let i = j = 0. While i < n do the following

(i) Choose a random point x4 ∈ U .
(ii) i := i+ 1.
(iii) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

(
) If j = 0 then output �failure�. Else output {x1, x2, x3, x4}.
(2) If ℓ divides 4τk, then do the following.

(a) Choose a random point O 6= x1 ∈ JC(Fq)[ℓ]
(b) Let i = j = 0. While i < n do the following

(i) Choose random points y3, y4 ∈ JC [ℓ]; 
ompute xν := q(yν −
ϕ(yν)) − ϕ(yν − ϕ(yν)) for ν = 3, 4.

(ii) If ε(x3, x4) = 1 then i := i+ 1. Else i := n and j := 1.
(
) If j = 0 then output �failure� and stop.

(d) Let i = j = 0. While i < n do the following

(i) Choose a random point x2 ∈ JC [ℓ].
(ii) If ε(x1, x2) = 1 then i := i+ 1. Else i := n and j := 1.

(e) If j = 0 then output �failure�. Else output {x1, x2, x3, x4} and stop.
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Algorithm 17 �nds generators of JC [ℓ] with probability at least (1 − 1/ℓn)2 and

in expe
ted running time O(log ℓ); 
f. Theorem 18.

Remark. To implement Algorithm 17, we need to �nd a qk
-Weil number (
f. De�-

nition 2). On Ja
obians generated by the 
omplex multipli
ation method [17, 7, 3℄,

we know the Weil numbers in advan
e. Hen
e, Algorithm 17 is parti
ularly well

suited for su
h Ja
obians.

Assumption. In this paper, a 
urve is an irredu
ible nonsingular proje
tive variety

of dimension one.

2. Genus two 
urves

A hyperellipti
 
urve is a proje
tive 
urve C ⊆ Pn
of genus at least two with a

separable, degree two morphism φ : C → P1
. It is well known, that any genus two


urve is hyperellipti
. Throughout this paper, let C be a 
urve of genus two de�ned

over a �nite �eld Fq of 
hara
teristi
 p. By the Riemann-Ro
h Theorem there exists

a birational map ψ : C → P2
, mapping C to a 
urve given by an equation of the

form

y2 + g(x)y = h(x),

where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; 
f. [2, 
hapter 1℄.
The set of prin
ipal divisors P(C) on C 
onstitutes a subgroup of the degree zero

divisors Div0(C). The Ja
obian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).

The Ja
obian is an abelian group. We write the group law additively, and denote

the zero element of the Ja
obian by O.

Let ℓ 6= p be a prime number. The ℓn-torsion subgroup JC [ℓn] ⊆ JC of points of

order dividing ℓn is a Z/ℓnZ-module of rank four, i.e.

JC [ℓn] ≃ Z/ℓnZ × Z/ℓnZ × Z/ℓnZ × Z/ℓnZ;


f. [11, Theorem 6, p. 109℄.

The multipli
ative order k of q modulo ℓ plays an important role in 
ryptography,

sin
e the (redu
ed) Tate-pairing is non-degenerate over Fqk ; 
f. [8℄.

De�nition 1 (Embedding degree). Consider a prime number ℓ 6= p dividing the

number of Fq-rational points on the Ja
obian JC . The embedding degree of JC(Fq)
with respe
t to ℓ is the least number k, su
h that qk ≡ 1 (mod ℓ).

3. The Frobenius endomorphism

Sin
e C is de�ned over Fq, the mapping (x, y) 7→ (xq , yq) is a morphism on C.
This morphism indu
es the q-power Frobenius endomorphism ϕ on the Ja
obian JC .

Let P (X) be the 
hara
teristi
 polynomial of ϕ; 
f. [11, pp. 109�110℄. P (X) is 
alled
the Weil polynomial of JC , and

|JC(Fq)| = P (1)

by the de�nition of P (X) (see [11, pp. 109�110℄); i.e. the number of Fq-rational

points on the Ja
obian is P (1).

De�nition 2 (Weil number). Let notation be as above. Let Pk(X) be the 
hara
-
teristi
 polynomial of the qm

-power Frobenius endomorphism ϕm on JC . A 
omplex

number ωm ∈ C with Pm(ωm) = 0 is 
alled a qm
-Weil number of JC .
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Remark 3. Note that JC has four qm
-Weil numbers. If P1(X) =

∏

i(X − ωi), then
Pm(X) =

∏

i(X−ωm
i ). Hen
e, if ω is a q-Weil number of JC , then ω

m
is a qm

-Weil

number of JC .

4. Non-
y
li
 subgroups

Consider a genus two 
urve C de�ned over a �nite �eld Fq. Let Pm(X) be

the 
hara
teristi
 polynomial of the qm
-power Frobenius endomorphism ϕm on the

Ja
obian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m
,

where s, t ∈ Z. Let σ = s
2
and τ = 2qm + σ2 − t. Then

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

and 2σ, 4τ ∈ Z. In [15℄, the author proves the following Theorem 4 and 5.

Theorem 4. Consider a genus two 
urve C de�ned over a �nite �eld Fq. Write

the 
hara
teristi
 polynomial of the qm
-power Frobenius endomorphism on the Ja
o-

bian JC as Pm(X) = X4+2σX3+(2qm+σ2−τ)X2+2σqmX+q2m, where 2σ, 4τ ∈ Z.
Let ℓ be an odd prime number dividing the number of Fq-rational points on JC , and

with ℓ ∤ q and ℓ ∤ q − 1. If ℓ ∤ 4τ , then

(1) JC(Fqm)[ℓ] is of rank at most two as a Z/ℓZ-module, and

(2) JC(Fqm)[ℓ] is bi
y
li
 if and only if ℓ divides qm − 1.

Theorem 5. Let notation be as in Theorem 4. Furthermore, let ωm be a qm
-Weil

number of JC , and assume that ℓ is unrami�ed in Q(ωm). Now assume that ℓ | 4τ .
Then the following holds.

(1) If ωm ∈ Z, then ℓ | qm − 1 and JC [ℓ] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ℓ ∤ qm − 1, JC(Fqm)[ℓ] ≃ (Z/ℓZ)2 and JC [ℓ] ⊆ JC(Fqmk) if

and only if ℓ | qmk − 1.

Inspired by Theorem 4 and 5 we introdu
e the following notation.

De�nition 6. Consider a 
urve C with Ja
obian JC . We 
all C a C(ℓ, q, k, τk)-

urve, and write C ∈ C(ℓ, q, k, τk), if the following holds.

(1) C is of genus two and de�ned over the �nite �eld Fq.

(2) ℓ is an odd prime number dividing the number of Fq-rational points on JC ,

ℓ divides neither q nor q − 1, and JC(Fq) is of embedding degree k with

respe
t to ℓ.
(3) The 
hara
teristi
 polynomial of the qk

-power Frobenius endomorphism

on JC is given by Pk(X) = X4+2σkX
3+(2qk +σ2

k−τk)X2+2σkq
kX+q2k,

where 2σk, 4τk ∈ Z.
(4) Let ωk be a qk

-Weil number of JC . If ℓ divides 4τk, then ℓ is unrami�ed

in Q(ωk).

Remark 7. Sin
e ℓ is rami�ed in Q(ωk) if and only if ℓ divides the dis
riminant

of Q(ωk), ℓ is unrami�ed in Q(ωk) with probability approximately 1 − 1/ℓ. Hen
e,
in most 
ases relevant to 
ryptography a genus two 
urve C is a C(ℓ, q, k, τk)-
urve.

5. Matrix representation of the Frobenius endomorphism

An endomorphism ψ : JC → JC indu
es a linear map ψ̄ : JC [ℓ] → JC [ℓ] by
restri
tion. Hen
e, ψ is represented by a matrix M ∈ Mat4(Z/ℓZ) on JC [ℓ]. If ψ

an be represented on JC [ℓ] by a diagonal matrix with respe
t to an appropriate
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basis of JC [ℓ], then we say that ψ is diagonalizable or has a diagonal representation

on JC [ℓ].
Let f ∈ Z[X ] be the 
hara
teristi
 polynomial of ψ (see [11, pp. 109�110℄),

and let f̄ ∈ (Z/ℓZ)[X ] be the 
hara
teristi
 polynomial of ψ̄. Then f is a moni


polynomial of degree four, and by [11, Theorem 3, p. 186℄,

f(X) ≡ f̄(X) (mod ℓ).

We wish to show that in most 
ases, the q-power Frobenius endomorphism ϕ is

diagonalizable on JC [ℓ]. To do this, we need to des
ribe the matrix representation

in the 
ase when ϕ is not diagonalizable on JC [ℓ].

Lemma 8. Consider a 
urve C ∈ C(ℓ, q, k, τk). Let ϕ be the q-power Frobenius

endomorphism on the Ja
obian JC. If ϕ is not diagonalizable on JC [ℓ], then ϕ is

represented on JC [ℓ] by a matrix of the form

(1) M =









1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c









with respe
t to an appropriate basis of JC [ℓ].

Proof. Let P̄k ∈ (Z/ℓZ)[X ] be the 
hara
teristi
 polynomial of the restri
tion of

the qk
-power Frobenius endomorphism ϕk to JC [ℓ]. Sin
e ℓ divides the number of

Fq-rational points on JC , 1 is a root of P̄k. Assume that 1 is an root of P̄k with

multipli
ity ν. Then

P̄k(X) = (X − 1)νQ̄k(X),

where Q̄k ∈ (Z/ℓZ)[X ] is a polynomial of degree 4 − ν, and Q̄k(1) 6= 0. Sin
e the
roots of P̄k o

ur in pairs (α, 1/α), ν is an even number. Let Uk = ker(ϕk − 1)ν

and Wk = ker(Q̄k(ϕk)). Then Uk and Wk are ϕk-invariant submodules of the

Z/ℓZ-module JC [ℓ], rankZ/ℓZ(Uk) = ν, and JC [ℓ] ≃ Uk ⊕Wk.

Assume at �rst that ℓ does not divide 4τk. Then JC(Fq)[ℓ] is 
y
li
 and JC(Fqk)[ℓ]
bi
y
li
; 
f. Theorem 4. By [16, Theorem 3.1℄, ν = 2. Choose points x1, x2 ∈ JC [ℓ],
su
h that ϕ(x1) = x1 and ϕ(x2) = qx2. Then {x1, x2} is a basis of JC(Fqk)[ℓ]. Now,
let {x3, x4} be a basis of Wk, and 
onsider the basis B = {x1, x2, x3, x4} of JC [ℓ].
If x3 and x4 are eigenve
tors of ϕk, then ϕk is represented by a diagonal matrix

on JC [ℓ] with respe
t to B. Assume x3 is not an eigenve
tor of ϕk. Then B′ =
{x1, x2, x3, ϕk(x3)} is a basis of JC [ℓ], and ϕk is represented by a matrix of the

form (1).

Now, assume ℓ divides 4τk. Sin
e ℓ divides q
k−1, it follows that JC [ℓ] ⊆ JC(Fqk);


f. Theorem 5. Let P̄ ∈ (Z/ℓZ)[X ] be the 
hara
teristi
 polynomial of the restri
tion

of ϕ to JC [ℓ]. Sin
e ℓ divides the number of Fq-rational points on JC , 1 is a root

of P̄ . Assume that 1 is an root of P̄ with multipli
ity ν. Sin
e the roots of P̄ o

ur

in pairs (α, q/α), it follows that

P̄ (X) = (X − 1)ν(X − q)νQ̄(X),

where Q̄ ∈ (Z/ℓZ)[X ] is a polynomial of degree 4−2ν, Q̄(1) 6= 0 and Q̄(q) 6= 0. Let
U = ker(ϕ− 1)ν

, V = ker(ϕ− q)ν
and W = ker(Q̄(ϕ)). Then U , V and W are ϕ-

invariant submodules of the Z/ℓZ-module JC [ℓ], rankZ/ℓZ(U) = rankZ/ℓZ(V ) = ν,
and JC [ℓ] ≃ U ⊕ V ⊕ W . If ν = 1, then it follows as above that ϕ is either

diagonalizable on JC [ℓ] or represented by a matrix of the form (1) with respe
t to
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some basis of JC [ℓ]. Hen
e, we may assume that ν = 2. Now 
hoose x1 ∈ U , su
h
that ϕ(x1) = x1, and expand this to a basis (x1, x2) of U . Similarly, 
hoose a basis

(x3, x4) of V with ϕ(x3) = qx3. With respe
t to the basis B = {x1, x2, x3, x4}, ϕ is

represented by a matrix of the form

M =









1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q









.

Noti
e that

Mk =









1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1









.

Sin
e JC [ℓ] ⊆ JC(Fqk), we know that ϕk = ϕk is the identity on JC [ℓ]. Hen
e,

Mk = I. So α ≡ β ≡ 0 (mod ℓ), i.e. ϕ is represented by a diagonal matrix with

respe
t to B. �

The next step is to determine when the Weil polynomial splits modulo ℓ.

Lemma 9. Consider a 
urve C ∈ C(ℓ, q, k, τk). Let ϕ be the q-power Frobenius

endomorphism on the Ja
obian JC . Assume that ϕ is not diagonalizable on JC [ℓ],
and let ϕ be represented on JC [ℓ] by the matrix

M =









1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c









with respe
t to an appropriate basis of JC [ℓ]. Let Pn(X) be the 
hara
teristi
 polyno-
mial of the qn

-power Frobenius endomorphism on JC . Then Pn(X) splits modulo ℓ
if and only if c2 − 4q is a quadrati
 residue modulo ℓ. In parti
ular, if Pn(X) splits
modulo ℓ for some n ∈ N, then Pn(X) splits modulo ℓ for any n ∈ N.

Proof. Let M1 =
[

0 −q
1 c

]

, and write

Mn
1 =

[

m11 m12

m21 m22

]

.

Sin
e Mn
1
M1 = M1M

n
1
, it follows that m12 = −qm21 and m22 = m11 + cm21. But

then Pn(X) ≡ (X − 1)(X − qn)Fn(X) (mod ℓ), where

Fn(X) ≡ X2 − (2m11 + cm21)X +m2

11 + qm2

21 + cm11m21 (mod ℓ).

The dis
riminant of Fn(X) is given by ∆ ≡ (c2−4q)m2
21 (mod ℓ); hen
e the lemma.

�

Theorem 10. The Weil polynomial of the Ja
obian JC of a 
urve C ∈ C(ℓ, q, k, τk)
splits modulo ℓ.

Proof. For some n ∈ N, JC [ℓ] ⊆ JC(Fqn). But then ϕn
a
ts as the identity on JC [ℓ],

i.e. Pn(X) ≡ (X − 1)4 (mod ℓ). In parti
ular, Pn(X) splits modulo ℓ. But then

P (X) splits modulo ℓ by Lemma 9. �

We are now ready to prove the desired result.
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Theorem 11. The q-power Frobenius endomorphism on the Ja
obian JC of a


urve C ∈ C(ℓ, q, k, τk) is diagonalizable on JC [ℓ].

Proof. Cf. Theorem 10, we may write the Weil polynomial of JC as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod ℓ).

If α 6≡ 1, q, q/α (mod ℓ), then the theorem follows. If α ≡ 1, q (mod ℓ), then

P (X) ≡ (X − 1)2(X − q)2 (mod ℓ);

in this 
ase, the theorem follows by the last part of the proof of Lemma 8.

Assume that α ≡ q/α (mod ℓ), i.e. that α2 ≡ q (mod ℓ). Then the q-power
Frobenius endomorphism is represented on JC [ℓ] by a matrix of the form

M =









1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α









with respe
t to an appropriate basis of JC [ℓ]. Noti
e that

M2k =









1 0 0 0
0 1 0 0
0 0 1 2kα2k−1β
0 0 0 1









.

Thus, P2k(X) ≡ (X−1)4 (mod ℓ). By Theorem 5, it follows that JC [ℓ] ⊆ JC(Fq2k).

But then M2k = I, i.e. β ≡ 0 (mod ℓ). Hen
e, the q-power Frobenius endomor-

phism on JC is diagonalizable on JC [ℓ] also in this 
ase. The theorem is proved. �

6. Anti-symmetri
 pairings on the Ja
obian

On JC [ℓ], a non-degenerate, bilinear, anti-symmetri
 and Galois-invariant pairing

ε : JC [ℓ] × JC [ℓ] → µℓ = 〈ζ〉 ⊆ F×

qk .

exists, e.g. the Weil-pairing. Here, µℓ is the group of ℓth roots of unity. Sin
e ε is
bilinear, it is given by

ε(x, y) = ζxT
Ey,

for some matrix E ∈ Mat4(Z/ℓZ) with respe
t to a basis B = {x1, x2, x3, x4}
of JC [ℓ]. Let ϕ denote the q-power Frobenius endomorphism on JC . Sin
e ε is

Galois-invariant,

∀x, y ∈ JC [ℓ] : ε(x, y)q = ε(ϕ(x), ϕ(y)).

This is equivalent to

∀x, y ∈ JC [ℓ] : q(xT Ey) = (Mx)T E(My),

where M is the matrix representation of ϕ on JC [ℓ] with respe
t to B. Sin
e

(Mx)T E(My) = xTMT EMy, it follows that

∀x, y ∈ JC [ℓ] : xT qEy = xTMT EMy,

or equivalently, that qE = MT EM .
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Now, let ε(xi, xj) = ζaij
. By anti-symmetry,

E =









0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0









.

Assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α) with respe
t

to B. Then it follows from MT EM = qE, that

a13(α− q) ≡ a14(α− 1) ≡ a23(α − 1) ≡ a24(α− q) ≡ 0 (mod ℓ).

If α ≡ 1, q (mod ℓ), then JC(Fq)[ℓ] is bi-
y
li
. Hen
e the following theorem holds.

Theorem 12. Consider a 
urve C ∈ C(ℓ, q, k, τk). Let ϕ be the q-power Frobenius

endomorphism on the Ja
obian JC. Now 
hoose a basis B of JC [ℓ], su
h that ϕ
is represented by a diagonal matrix diag(1, q, α, q/α) with respe
t to B. If the Fq-

rational subgroup JC(Fq)[ℓ] of points on the Ja
obian of order ℓ is 
y
li
, then all

non-degenerate, bilinear, anti-symmetri
 and Galois-invariant pairings on JC [ℓ] are
given by the matri
es

Ea,b =









0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0









, a, b ∈ (Z/ℓZ)×

with respe
t to B.

Remark 13. Let notation and assumptions be as in Theorem 12. Let ε be a non-

degenerate, bilinear, anti-symmetri
 and Galois-invariant pairing on JC [ℓ], and let ε
be given by Ea,b with respe
t to a basis {x1, x2, x3, x4} of JC [ℓ]. Then ε is given

by E1,1 with respe
t to {a−1x1, x2, b
−1x3, x4}.

Remark 14. In most 
ases relevant to 
ryptography, we 
onsider a prime divisor ℓ
of size q2. Assume ℓ is of size q2. Then ℓ divides neither q nor q − 1. The number
of Fq-rational points on the Ja
obian is approximately q2. Thus, JC(Fq)[ℓ] is 
y
li

in most 
ases relevant to 
ryptography.

7. Generators of JC [ℓ]

Consider a 
urve C ∈ C(ℓ, q, k, τk) with Ja
obian JC . Assume the Fq-rational

subgroup JC(Fq)[ℓ] of points on the Ja
obian of order ℓ is 
y
li
. Let ϕ be the

q-power Frobenius endomorphism on JC . Let ε be a non-degenerate, bilinear, anti-
symmetri
 and Galois-invariant pairing

ε : JC [ℓ] × JC [ℓ] → µℓ = 〈ζ〉 ⊆ F×

qk .

We 
onsider the 
ases ℓ ∤ 4τk and ℓ | 4τk separately.

7.1. The 
ase ℓ ∤ 4τk. If ℓ does not divide 4τk, then JC(Fqk)[ℓ] is bi
y
li
; 
f. Theo-
rem 4. Choose a random point O 6= x1 ∈ JC(Fq)[ℓ], and expand {x1} to a basis

{x1, y2} of JC(Fqk)[ℓ], where ϕ(y2) = qy2. Let x′
2
∈ JC(Fqk)[ℓ] \ JC(Fq)[ℓ] be a

random point. Write x′2 = α1x1 + α2y2. Then

x2 = x′
2
− ϕ(x′

2
) = α2(1 − q)y2 ∈ 〈y2〉,



GENERATORS OF JACOBIANS OF GENUS TWO CURVES 9

i.e. ϕ(x2) = qx2. Now, let JC [ℓ] ≃ JC(Fqk)[ℓ] ⊕ W , where W is a ϕ-invariant
submodule of rank two. Choose a random point x′3 ∈ JC [ℓ] \ JC(Fqk)[ℓ]. Then

x3 = x′3 − ϕk(x′3) ∈ W

as above. Noti
e that

JC [ℓ] = 〈x1, x2, x3, ϕ(x3)〉 if and only if ε(x3, ϕ(x3)) 6= 1;


f. Theorem 12.

Assume ε(x3, ϕ(x3)) = 1. Then x3 is an eigenve
tor of ϕ. Expand {x1, x2, x3}
to a basis B = {x1, x2, x3, x4} of JC [ℓ], su
h that ϕ is represented by a diagonal

matrix on JC [ℓ] with respe
t to B. We may assume that ε is given by E1,1 with

respe
t to B; 
f. Remark 13.

Now, 
hoose a random point x ∈ JC [ℓ] \ JC(Fqk)[ℓ]. Write x = α1x1 + α2x2 +
α3x3 + α4x4. Then ε(x3, x) = ζα4

. So ε(x3, x) 6= 1 if and only if ℓ does not

divide α4. On the other hand, {x1, x2, x3, x} is a basis of JC [ℓ] if and only ℓ does
not divide α4. Hen
e, {x1, x2, x3, x} is a basis of JC [ℓ] if and only if ℓ does not

divide α4. Thus, if ℓ does not divide 4τk, then the following Algorithm 15 outputs

generators of JC [ℓ] with probability 1 − 1/ℓn
.

Algorithm 15. The following algorithm takes as input a C(ℓ, q, k, τk)-
urve C, the
numbers ℓ, q, k and τk and a number n ∈ N.

(1) Choose points O 6= x1 ∈ JC(Fq)[ℓ], x2 ∈ JC(Fqk)[ℓ] \ JC(Fq)[ℓ] and x′3 ∈
U := JC [ℓ] \ JC(Fqk)[ℓ]; 
ompute x3 = x′3 − ϕk(x′3). If ε(x3, ϕ(x3)) 6= 1,
then output {x1, x2, x3, ϕ(x3)} and stop.

(2) Let i = j = 0. While i < n do the following

(a) Choose a random point x4 ∈ U .
(b) i := i+ 1.
(
) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

(3) If j = 0 then output �failure�. Else output {x1, x2, x3, x4}.

7.2. The 
ase ℓ | 4τk. Assume ℓ divides 4τk. Then JC [ℓ] ⊆ JC(Fqk); 
f. Theo-
rem 5. Choose a random point O 6= x1 ∈ JC(Fq)[ℓ], and let y2 ∈ JC [ℓ] be a point

with ϕ(y2) = qy2. Write JC [ℓ] = 〈x1, y2〉⊕W , where W is a ϕ-invariant submodule

of rank two; 
f. the proof of Lemma 8. Let {y3, y4} be a basis of W , su
h that ϕ
is represented on JC [ℓ] by a diagonal matrix M = diag(1, q, α, q/α) on JC [ℓ] with
respe
t to the basis

B = {x1, y2, y3, y4}.
Now, 
hoose a random point z ∈ JC [ℓ] \ JC(Fq)[ℓ]. Sin
e z − ϕ(z) ∈ 〈y2, y3, y4〉,

we may assume that z ∈ 〈y2, y3, y4〉. Write z = α2y2 + α3y3 + α4y4. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3αy3 + α4(q/α)y4)

= α3(q − α)y3 + α4(q − q/α)y4;

so qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that q ≡ 1 (mod ℓ). This

ontradi
ts the 
hoi
e of the 
urve C ∈ C(ℓ, q, k, τk). Hen
e, we have a pro
edure

to 
hoose a point O 6= w ∈ W .

Choose two random points w1, w2 ∈ W . Write wi = αi3y3 + αi4y4 for i = 1, 2.
We may assume that ε is given by E1,1 with respe
t to B; 
f. Remark 13. But then

ε(w1, w2) = ζα13α24−α14α23 .
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Hen
e, ε(w1, w2) = 1 if and only if α13α24 ≡ α14α23 (mod ℓ). If α13 6≡ 0 (mod ℓ),
then ε(w1, w2) = 1 if and only if α24 ≡ α14α23

α13
(mod ℓ). So ε(w1, w2) 6= 1 with

probability 1 − 1/ℓ. Hen
e, we have a pro
edure to �nd a basis of W .

Until now, we have found points x1 ∈ JC(Fq)[ℓ] and w3, w4 ∈ W , su
h that

W = 〈w3, w4〉. Now, 
hoose a random point x2 ∈ JC [ℓ]. Write x2 = α1x1 + α2y2 +
α3y3 +α4y4. Then ε(x1, x2) = ζα2

, i.e. ε(x1, x2) = 1 if and only if α2 ≡ 0 (mod ℓ).
Thus, with probability 1− ℓ3/ℓ4 = 1− 1/ℓ, the set {x1, x2, w3, w4} is a basis of JC [ℓ].

Summing up, if ℓ divides 4τk, then the following Algorithm 15 outputs generators

of JC [ℓ] with probability (1 − 1/ℓn)2.

Algorithm 16. The following algorithm takes as input a C(ℓ, q, k, τk)-
urve C, the
numbers ℓ, q, k and τk and a number n ∈ N.

(1) Choose a random point O 6= x1 ∈ JC(Fq)[ℓ]
(2) Let i = j = 0. While i < n do the following

(a) Choose random points y3, y4 ∈ JC [ℓ]; 
ompute xν := q(yν − ϕ(yν)) −
ϕ(yν − ϕ(yν)) for ν = 3, 4.

(b) If ε(x3, x4) = 1 then i := i+ 1. Else i := n and j := 1.
(3) If j = 0 then output �failure� and stop.

(4) Let i = j = 0. While i < n do the following

(a) Choose a random point x2 ∈ JC [ℓ].
(b) If ε(x1, x2) = 1 then i := i+ 1. Else i := n and j := 1.

(5) If j = 0 then output �failure�. Else output {x1, x2, x3, x4}.

7.3. The 
omplete algorithm. Combining Algorithm 15 and 16 yields the de-

sired algorithm to �nd generators of JC [ℓ].

Algorithm 17. The following algorithm takes as input a C(ℓ, q, k, τk)-
urve C, the
numbers ℓ, q, k and τk and a number n ∈ N.

(1) If ℓ ∤ τk, run Algorithm 15 on input (C, ℓ, q, k, τk, n).
(2) If ℓ | τk, run Algorithm 16 on input (C, ℓ, q, k, τk, n).

Theorem 18. Let C be a C(ℓ, q, k, τk)-
urve. On input (C, ℓ, τk, n), Algorithm 17

outputs generators of JC [ℓ] with probability at least (1− 1/ℓn)2 and in expe
ted run-

ning time O(log ℓ).

Proof. We may assume that the time ne
essary to perform an addition of two

points on the Ja
obian, to multiply a point with a number or to evaluate the q-
power Frobenius endomorphism on the Ja
obian is small 
ompared to the time

ne
essary to 
ompute the (Weil-) pairing of two points on the Ja
obian. By [4℄,

the pairing 
an be evaluated in time O(log ℓ). Hen
e, the expe
ted running time of

Algorithm 17 is of size O(log ℓ). �

8. Implementation issues

A priori, to implement Algorithm 17, we need to �nd a qk
-Weil number ωk of the

Ja
obian JC , in order to 
he
k if ℓ rami�es in Q(ωk) in the 
ase when ℓ divides 4τk.
On Ja
obians generated by the 
omplex multipli
ation method [17, 7, 3℄, we know

the Weil numbers in advan
e. Hen
e, Algorithm 17 is parti
ularly well suited for

su
h Ja
obians.

Fortunately, in most 
ases ℓ does not divide 4τk, and then we do not have to �nd

a qk
-Weil number. And in fa
t, we do not even have to 
ompute 4τk. To see this,
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noti
e that by Theorem 10, the Weil polynomial of JC is of the form

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod ℓ).

Let ϕ be the q-power Frobenius endomorphism on JC , and let Pk(X) be the 
ha-

ra
teristi
 polynomial of ϕk
. Sin
e ϕ is diagonalizable on JC [ℓ], it follows that

Pk(X) ≡ (X − 1)2(X − αk)(X − 1/αk) (mod ℓ).

If ℓ divides 4τk, then JC [ℓ] ⊆ JC(Fqk); 
f. Theorem 5. But then Pk(X) ≡ (X − 1)4

(mod ℓ). Hen
e,

(2) ℓ divides 4τk if and only if αk ≡ 1 (mod ℓ).

Assume αk ≡ 1 (mod ℓ). Then Pk(X) ≡ (X − 1)4 (mod ℓ). Hen
e,

(3) ℓ rami�es in Q(ωk) if and only if ωk /∈ Z;


f. [13, Proposition 8.3, p. 47℄. Here, ω is a q-Weil number of JC .

Consider the 
ase when αk ≡ 1 (mod ℓ) and ωk ∈ Z. Then ω =
√
qe

inπ
k

for

some n ∈ Z with 0 < n < k. Assume k divides mn for some m < k. Then

ω2m = qm ∈ Z. Sin
e the q-power Frobenius endomorphism is the identity on

the Fq-rational points on the Ja
obian, it follows that ω2m ≡ 1 (mod ℓ). Hen
e,

qm ≡ 1 (mod ℓ), i.e. k divides m. This is a 
ontradi
tion. So n and k has no


ommon divisors. Let ξ = ω2/q = e
in2π

k
. Then ξ is a primitive kth root of unity,

and Q(ξ) ⊆ K. Sin
e [K : Q] ≤ 4 and [Q(ξ) : Q] = φ(k), where φ is the Euler phi

fun
tion, it follows that k ≤ 12. Hen
e,

(4) if αk ≡ 1 (mod ℓ), then ωk ∈ Z if and only if k ≤ 12.

The 
riteria (2), (3) and (4) provides the following e�
ient Algorithm 19 to 
he
k

whether a given 
urve is of type C(ℓ, q, k, τk), and whether ℓ divides 4τk.

Algorithm 19. Let JC be the Ja
obian of a genus two 
urve C. Assume the odd

prime number ℓ divides the number of Fq-rational points on JC , and that ℓ divides
neither q nor q − 1. Let k be the multipli
ative order of q modulo ℓ.

(1) Compute the Weil polynomial P (X) of JC . Let P (X) ≡ ∏4

i=1
(X − αi)

(mod ℓ).
(2) If αk

i 6≡ 1 (mod ℓ) for an i ∈ {1, 2, 3, 4}, then output �C ∈ C(ℓ, q, k, τk)
and ℓ does not divide 4τk� and stop.

(3) If k > 12 then output �C /∈ C(ℓ, q, k, τk)� and stop.

(4) Output �C ∈ C(ℓ, q, k, τk) and ℓ divides 4τk� and stop.
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