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Abstract. We revisit the rate-1 blockcipher based hash functions as first studied by Preneel, Govaerts and
Vandewalle (Crypto’93) and later extensively analysed by Black, Rogaway and Shrimpton (Crypto’02). We
analyse a further generalization where any pre- and postprocessing is considered. This leads to a clearer under-
standing of the current classification of rate-1 blockcipher based schemes as introduced by Preneel et al. and
refined by Black et al. In addition, we also gain insight in chopped, overloaded and supercharged compression
functions. In the latter category we propose two compression functions based on a single call to a blockcipher
whose collision resistance exceeds the birthday bound on the cipher’s blocklength.

1 Introduction

The design and analysis of hash functions has recently come under renewed interest as a consequence
of the NIST competition for a new hash function standard and the events that lead NIST to launch this
competition in the first place. Of the many ideas to create a hash function, one of the oldest is to base it on
a blockcipher, either explicitly such as in the Davies-Meyer construction or implicitly such as in SHA-1.
The most common approach is to use a blockcipher taking n-bit blocks and n-bit keys and construct
a 2n-to-n bit compression function that makes only a single call to the blockcipher. Such schemes are
called rate-1; in general the rate measures the number of message blocks that are hashed per call to the
blockcipher.

Specific examples of rate-1 schemes were given by Davies-Meyer [25], Matyas-Meyer-Oseas [23],
and Miyaguchi-Preneel [27, 31]. Preneel et al. [31] studied the general constructionH(M,V ) = E(K,X)⊕
U where K,X,U ∈ {0,M, V,M ⊕ V } (or affine offsets thereof). They concluded that of the 43 = 64
possibilities all but 12 allow collision attacks on the compression function with a complexity beating the
birthday bound of 2n/2. Later Black et al. [8] showed that in the ideal cipher model these 12 compression
functions are indeed collision resistant up to the birthday bound. More surprisingly, they also showed
that an additional 8 construction are secure when properly iterated, even though collisions can easily be
found in the respective compression functions. Duo and Li [14] later gave an alternative proof resulting
in improved bounds.

Neither of these articles provides a deeper understanding of what makes these 12 respectively 8
schemes special to make them secure as compression function respectively as iterated hash function:
what do they have in common that sets them apart from the other 44 schemes? Indeed, their respective
security proofs still need to be rechecked, with minor modifications, for each of the schemes Despite
these modifications being minor and fairly straightforward, this is not entirely satisfactory.

We isolate the properties that make Duo and Li’s proof go through in the ideal cipher model for the
collision resistance of rate-1 blockcipher based compression functions and their iterated hash functions.
This sheds new light on what it is that provides the provable security for these schemes; indeed the
classification by Black et al. can be derived from it. Central to our result is a more general type of
compression function, consisting of the following three simple steps (see Figure 1):

1. Prepare key and plaintext: (K,X)← Cpre(M,V );
2. Make the call: Y ← E(K,X);
3. Output the digest: W ← Cpost(M,V, Y ).
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HereE is a blockcipher (where key size k = |K| and blocksize n = |X| = |Y |may differ) andCpre and
Cpost can be arbitrary functions given their respective domain and codomain. To avoid complications
we will initially assume that input and output sizes of the compression function match those of the
blockcipher, that is m := |M | = k and s := |V | = |W | = n.

Similar to prior art we consider two types of schemes. Type-I schemes give rise to collision resistant
compression functions whereas Type-II schemes give rise to compression functions that will turn into
collision resistant hash functions when (Merkle-Damgård) iterated. Our taxonomy is slightly different
from Black et al.’s: we allow schemes to be both Type-I and Type-II. Yet not all Type-I schemes are
also of Type-II, even though a collision resistant compression function is well known to give rise to
a collision resistant iterated hash function. This discrepancy stems from our definition of Type-I and
Type-II schemes based on sufficient rather than necessary conditions.

Each type is defined by a set of three conditions on Cpre and Cpost. Both types share the first two
conditions and only differ in the third. The first condition is bijectivity of Cpre, ensuring that each query
to E (or its inverse) can only be used to evaluate the compression function for a single input. The second
condition is that for allM,V the postprocessingCpost(M,V, ·) is bijective. This causes optimal transfer
of unpredictabilibity of encryption answers to the output W . For Type-I schemes, the third condition is
similar in nature to the second, making sure that the unpredictability of decryption answers carries over
to the digest W as well. Formally, for all K,Y the modified postprocessing Cpost(C−pre(K, ·), Y )
should be bijective. For Type-II schemes, the third condition captures that for each decryption answer
the corresponding input chaining variable V is highly unpredictable. Formally, for all K, the function
C−pre(K, ·) restricted to its second output V is bijective.

We provide a proof in the ideal cipher model that the probability of finding a collision in the com-
pression function (for Type-I) respectively in the iterated hash function (for Type-II) is upper bounded
by 1

2q(q − 1)/(2n − q), where q is the number of queries allowed to the adversary and n is the block
size. For Type-I schemes (everywhere) preimage resistance is upper bounded by q/(2n − q). We also
investigate the ramifications of our general classification for the classical PGV schemes. We conclude
that the Type-I schemes are exactly those 12 identified before by Preneel et al. and later Black et al.
Our Type-II schemes include the 8 schemes identified as Type-II by Black et al., plus an additional 8
schemes that were already known to be Type-I. Interestingly enough, Duo and Li have shown that the
8 schemes in the intersection of Type-I and Type-II are weaker than the 4 purely Type-I schemes with
respect to second preimage resistance. (We have no explanation for this phenomenon.)

The benefits of our generalized framework become even clearer when analysing three more complex
scenarios, when the restrictions on the parameters n, k, s, and m are being relaxed. Here we achieve the
following results:

Chopped Compression Functions This corresponds to having an output size s of the compression
function smaller than the blocksize n of the underlying blockcipher. A possible example is chopped
Davies-Meyer; we show that, as one might expect, it is optimally collision resistant and preimage
resistant. Note that chopping the output after each encryption frees up n − s bits extra for message
bits if we want to maintain n + k = s + m. In particular one can achieve compression even for
fixed-key (k = 0) blockciphers. (This leads to a significant improvement of robustness [35] over the
sponge construction [5, 6].)

Overloaded Compression Functions Here one tries to cram the compression function by having more
input to the compression function than the blockcipher can handle, i.e., s +m > n + k. Examples
are the sponge construction [5, 6] or the (related) compression function of Cubehash [4]: in both
instances a fixed permutation is used (k = 0) yet the chaining variable is of blocksize (s = n).
Our bound on collision resistance of the compression function is worse than if we would chop the
chaining variable (to make space for the message). This superiority of a smaller chaining variable is
somewhat similar to one reported by Stam [37], although for overloaded compression functions part
of the problem are overly loose bounds. We also note that having a larger chaining variable gives the
potential for better collision resistance in the iteration. The latter is still a wide open problem; we
point out some of the challenges.

2



Supercharged Compression Functions The exact opposite of the previous two cases, since here one
attempts to boost collision resistance beyond the birthday bound on the blocksize by setting s > n.
Typically for such a scenario one expects more than one call to the blockcipher, however Lucks [22]
recently gave a rate-1 double length compression function (based on a blockcipher with double key
length) with collision resistance in the iteration close to the birthday bound. Stam [37] later gave
a construction with similar collision resistance in the compression function, however he only con-
siders non-adaptive adversaries with no access to any type of inverse oracle. We present a general
framework for the collision resistance of compression functions in the ideal cipher model. In partic-
ular, we give a variant of Stam’s construction collision resistant in the ideal cipher model (against
adaptive adversaries). We also give a rate-1/2 compression function with collision resistance up to
23n/4 queries based on a blockcipher with k = n bit keys.

Although we consider the scenarios above representative, they are by no means exhaustive. For
instance the SHA-3 candidate MD6 [32] employs a fixed permutation (so k = 0) with some input bits
fixed, requiringm+s < n. Were collision resistance the only concern, this choice would be suboptimal:
one should either increase m (and thereby the rate) or s (and thereby collision resistance). The benefit
of their choice lies in the indifferentiability of the compression function that is achieved this way.

2 Background

2.1 General Notation

For a positive integer n, we write {0, 1}n for the set of all bitstrings of length n. When X and Y are
strings we write X ||Y to mean their concatenation and X ⊕Y to mean their bitwise exclusive-or (xor).
Unless specified otherwise, we will consider bitstrings as elements in the group ({0, 1}n,⊕).

For positive integers k and n, we let Block(k, n) denote the set of all blockciphers with k-bit key
and operating on n-bit blocks. That is E ∈ Block(k, n) is a collection of 2k permutations on the set
{0, 1}n. Given that E(K, ·) is a permutation for all K ∈ {0, 1}k, we write D(K, ·) for its inverse.

Unless otherwise specified, all finite sets are equipped with a uniform distribution for random sam-
pling. For example, E $← Block(k, n) denotes random sampling from the set Block(k, n) and assign-
ment to E.

We use the convention to write oracles that are provided to an algorithm as superscripts, for example
AE would be an adversary with black box access to some function E.

We write B[Q; p] for the random variable counting the number of successes in Q independent
Bernoulli trials, each with success probability p. It is binomially distributed, for integer 0 ≤ κ ≤ Q:

Pr [B[Q; p] = κ] =
(
Q

κ

)
pκ(1− p)Q−κ .

A Chernoff bound can be used to bound the tail probability for any κ > Qp, namely

Pr [B[Q; p] > κ] <
(
epQ

κ

)κ
.

2.2 Compression Functions and Hash Functions

A compression function is a mapping H from {0, 1}m × {0, 1}s to {0, 1}s for some m, s > 0. A
blockcipher-based compression function is a mapping H : {0, 1}m × {0, 1}s → {0, 1}s given by a
program that, given (M,V ), computes HE(M,V ) via access to an oracle E : {0, 1}k × {0, 1}n →
{0, 1}n modeling an (ideal) blockcipher with k-bit key and operating on n-bit blocks.1 A single-call
blockcipher-based compression function calls its encryption oracle only once. Compression of a message
block then proceeds as follows: Given an s-bit state V and m-bit message M , compute output W =
HE(M,V ) by

1 One could also allow multiple blockciphers and use of decryption, but this scenario suffices for us.
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1. Compute (K,X)← Cpre(M,V ).
2. Set Y ← E(K,X).
3. Output W ← Cpost(M,V, Y ).

as illustrated by Figure 1. We will refer toCpre : {0, 1}m×{0, 1}s → {0, 1}k×{0, 1}n as preprocessing
and to Cpost : {0, 1}m × {0, 1}s × {0, 1}n → {0, 1}s as postprocessing.

V Cpre E Cpost W

M

m

s n n s

k

Fig. 1. General form of a m + s-to-s bit compression function based on a single call to the underlying blockcipher with k-bit
key operating on n-bit block.

Since a blockcipher is easy to invert (given its key), an adversary trying to find for instance collisions
will also have access to D. Figure 2 shows the effect of inverse queries on possible digests. To deal with
inverse queries in our security analysis, we introduce the modified postprocessing Caux(K,X, Y ) =
Cpost(C−pre(K,X), Y ). In general, this is a function mapping triplets of strings to subsets of strings,
since the result of C−pre can have varying cardinality. For simplicity, when Cpre is bijective, we under-
stand Caux to have {0, 1}n as its codomain.

K

D C−pre

Y Cpost W

k

n

n s

m

n

Fig. 2. The effect of inverse queries

A hash function is a mapping H from {0, 1}∗ (the set of arbitrary length bitstrings) to {0, 1}s for
some s > 0. A compression function can be made into a hash function by iterating it. We briefly recall
the standard Merkle-Damgård iteration [12, 26], where we assume that there is already some injective
padding from {0, 1}∗ → ({0, 1}m)∗\∅ in place (note that we disallow the empty message M = ∅ as
output of the injective padding). Given an initial vector V0 ∈ {0, 1}s defineHH : ({0, 1}m)∗ → {0, 1}s
as follows for M = (M1, . . . ,M`) with ` > 0:

1. Set Vi ← HE(Mi, Vi−1) for i = 1, . . . , `.
2. OutputHH(M) = V`.

(Bearing this iteration in mind, given a compression function H : {0, 1}m × {0, 1}s → {0, 1}s we will
refer to the {0, 1}m part of the input as ‘message’ and the {0, 1}s part as the state or chaining variable.)

Collision Resistance. A collision-finding adversary is an algorithm with access to one or more oracles,
whose goal it is to find collisions in some specified compression or hash function. It is standard prac-
tice to consider information-theoretic adversaries only. Currently this seems to provide the only handle
to get any provable results. Information-theoretic adversaries are computationally unbounded and their
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complexity is measured only by the number of queries made to their oracles. Without loss of gener-
ality, such adversaries are assumed not to repeat queries to oracles nor to query an oracle outside of
its specified domain. We also assume that the adversary, before outputting a message, makes all calls
necessary to evaluate the compressing function on that message. This does not decrease the advantage
of the adversary, though it does increase its query complexity. Indeed, for some of the hash functions
we will prove collision-resistant, it is in fact possible to find very long colliding messages using just a
few queries; only honest evaluation of the hash function for those messages will increase an adversary’s
query complexity (see Appendix A for details). We stress that our proofs are in an idealized setting;
hence as soon as the blockcipher is instantiated in practice weaknesses could surface and faster attacks
might become feasible, even if the blockcipher itself has no weaknesses. Nonetheless, in all known in-
stances of a security loss after instantiation, this either was the goal from the beginning (and the hash
function is contrived) [7] or the blockcipher itself already has obvious shortcomings [30].

Despite the concept of initial vector being somewhat alien to a compression function on its own, it
turns out helpful to consider a preimage to the initial vector a collision. Note that we deviate slightly
from the definition given by Black et al. [8]. Whereas they fix the initial vector (and thus strictly speaking
get a definition parametrized by the initial vector), we take the maximum over all possible initial vectors.
Essentially Black et al.’s definition is finer grained, for instance in the preservation of collision resistance,
their more refined result [8, Lemma 1] states that if the compression function is collision resistant with
respect to a specific initial vector, then so is the iterated hash function with respect to that same initial
vectors In contrast, our (weaker) statement (Theorem 2 gives that if the compression function is collision
resistant with respect to all initial vectors, then so is the iterated hash function with respect to all initial
vectors. The main reason we opted for the maximization approach is that most blockcipher based hash
functions (in particular all those discussed in this paper) are equally secure for all initial vectors. In that
case dropping the parametrization on the initial vector leads to both an easier and stronger statement.

Definition 1. Let n, k,m, s > 0 be integer parameters. Let H : {0, 1}m × {0, 1}s → {0, 1}s be a
compression function taking oracle E ∈ Block(k, n). The collision-finding advantage of adversary A
is defined to be

Advcoll
H (A) = max

V0∈{0,1}s
Pr
[
E

$← Block(k, n), ((M,V ), (M ′, V ′))← AE,D(V0) :

(M,V ) 6= (M ′, V ′) and HE(M,V ) ∈ {V0, H
E(M ′, V ′)}

]
.

Define Advcoll
H (q) as the maximum advantage over all adversaries making at most q queries in total.

The quantity Advcoll
H (q) denoting collision for the iterated hash function HH is defined similarly: in

this case the advantage ofA is the maximum success probability taken over the choice of possible initial
values V0, which is input to A. It is well known that the iterated hash function H is at least as secure as
the compression function H it is based upon, as far as collision resistance is concerned [8, Lemma 1].

Theorem 2. LetH be a blockcipher based compression function and letH be the iterated hash function
based on H . Then

Advcoll
H (q) ≤ Advcoll

H (q) .

Preimage Resistance. A preimage-finding adversary is an algorithm with access to one or more or-
acles, whose goal it is to find preimages in some specified compression function. There exist several
definitions depending on the distribution of the element of which a preimage needs to be found. We opt
for everywhere preimage resistance [33], which intuitively states that all points are hard to invert.2 We
also give the natural dual definition of somewhere preimage resistance [2], meaning that there is some
point in the range that is hard to invert. This definition is typically to weak to use for any applications,
but it often best captures a successful adversary’s capabilities.

2 However, contrary to the claim of Rogaway and Shrimpton [33], everywhere preimage resistance does not imply preimage
resistance defined based on inverting the hash of a (sufficiently) random domain point [2].
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Note that our particular definition of collision resistance for a compression function trivially im-
plies everywhere preimage resistance. However, for everywhere preimage resistance we typically expect
stronger bounds than those implied even by optimal collision resistance.

Definition 3. Let n, k,m, s > 0 be integer parameters. Let H : {0, 1}m × {0, 1}s → {0, 1}s be a
compression function taking oracle E ∈ Block(k, n). The everywhere and somewhere preimage-finding
advantages of adversary A are defined to be

Advspre
H (A) = min

W∈{0,1}s
Pr
[
E

$← Block(k, n), (M ′, V ′)← AE,D(W ) : W = HE(M ′, V ′)
]

Advepre
H (A) = max

W∈{0,1}s
Pr
[
E

$← Block(k, n), (M ′, V ′)← AE,D(W ) : W = HE(M ′, V ′)
]
.

Define Advspre
H (q) and Advepre

H (q) as the maximum advantage over all adversaries making at most q
queries in total.

The quantities Advspre
H (q) and Advepre

H (q) denoting preimage resistance for the iterated hash function
HH are defined similarly (in this case the advantage of A is the maximum success probability taken
over the choice of possible initial values V0, which is input to A). Everywhere preimage resistance is
preserved in the (MD-)iteration [1], so we get:

Theorem 4. LetH be a blockcipher based compression function and letH be the iterated hash function
based on H . Then

Advepre
H (q) ≤ Advepre

H (q) ≤ Advcoll
H (q) .

Adaptive Preimage Resistance and Preimage Awareness. Recently two new notions related to preim-
age resistance were introduced, namely adaptive preimage resistance [20] and preimage awareness [13].
Unlike the notions described above (which can easily be given for the standard model), it is specific to
oracle-based functions (and no standard model equivalent is known). Indeed, both notions were intro-
duced as a technical tool to prove indifferentiability of a hash function from a random oracle [24, 11],
which is inherently outside the standard model. For simplicity, we will discuss only blockcipher based
compression functions below. The generalization to hash functions or functions based on other primitives
is straightforward; we refer to the original articles for the details and formalizations.

Recall that for a blockcipher based compression (or hash) function, one needs to make calls to the
blockcipher to evaluate the function. Consequently, any given list of blockcipher queries (with their
respective answers) determines a set of inputs for which the compression function can be evaluated,
together with a set of corresponding ’reachable’ digests. In a nutshell, an adversary breaks adaptive
preimage resistance if it succeeds in making an as-yet unreachable digest reachable. That is, the adver-
sary gets to make queries to its oracle, as well as the ability to commit to digests that are, at the time
of commitment, unreachable given the current query history. It can make queries and commitments in
arbitrary adaptive fashion. It succeeds if it finds a preimage for a digest it has previously committed to.

Preimage awareness [13] is defined slightly differently. Here the adversary has oracle access to both
the underlying primitive (blockcipher) and an extractor. On input a range point, the extractor is tasked
to return a preimage. The extractor does not have direct access to the underlying primitive, however it
does get a transcript of the queries (including answers) that have been made by adversary so far. The
adversary is successful if it can find an alternative preimage to the one returned by the extractor.

Several useful theorems about preimage awareness and adaptive preimage resistance are known.
Preimage awareness is equivalent to a combination of collision resistance and adaptive preimage re-
sisance. Moreover, preimage awareness is preserved by the Merkle-Damgård transform (equivalently,
adaptive preimage resistance is preserved by the transform for collision resistant functions). Finally, ap-
plying an independent public random function (i.e., a fixed input length random oracle) to the output of a
preimage aware function yields a new pseudorandom oracle (that is, indifferentiable from a true random
oracle). This allows relatively easy construction of pseudorandom oracles with variable length input
from a fixed length pseudorandom oracle applied to an iterated preimage aware compression function.
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3 Classical Rate-1 Blockcipher Based Compression Functions

In this section we will deal with classical rate-1 blockcipher based compression functions, where the
state size s equals the block length n of the blockcipher and the message size m matches the keysize
k of the blockcipher. This includes the famous PGV hash functions [31]. (Note that for the PGV hash
functions key length k and block length n are always equal as well; we do not pose this restriction.)

Following in the footsteps of Black et al. [8], we consider Type-I and Type-II compression functions.
The former give optimal collision and preimage resistance in the compression function. The second type
gives optimal collision resistance in the iteration; its preimage resistance can only be proved up to the
birthday bound. One of the important differences with prior art is that we specify in very broad terms the
requirements on Cpre and Cpost. Essentially our primary concern here is for the proof to go through.
In Section 3.3 we will discuss what our classification of Type-I and Type-II implies for the PGV hash
functions.

The proof for Type-I schemes is fairly standard and straightforward. However, for the Type-II
schemes we deviate from the one by Black et al. [8]. In particular, their proof is based upon colour-
ing a directed graph where the vertices represent queries with all possible answers and arcs are drawn
according to whether the input to one query is consistent with the output of the former, given the com-
pression function under consideration. This leads to unwieldy graphs with a complicated notion of what
consitutes a collision.

This counterintuitive use of graphs was fixed by Duo and Li [14] (as well as by Lucks [22]), who
consider a directed graph where vertices correspond to chaining values and edges are drawn (or coloured)
whenever a query has been made that would allow to move from one chaining value to the next. (Note
that despite the directed nature of his graph, given an arc it is still unclear whether it was the result
of a forward or an inverse query.) Moreover, for the actual bounding of collision resistance Duo and
Li dispense with the direction of the arcs (that thus become edges). Although this seemingly aids the
adversary (certain patterns in the graph will be deemed a success even when the underlying event on
the hash function is not), this simplification leads to a tighter bound for the Type-II schemes, mainly
because there is no longer any need to distinguish between several cases (whose success probability are
subsequently added). Our proof (of Theorem 9) closely follows that of Duo and Li.

Note that even for Type-I schemes our bound appears a bit tighter than the one by Black et al., which
is due to their simplification based on the the inequality 2(2n − q) > 2n, at least for q < 2n−1 (and
for larger q most of the bounds become vacuous anyway). We believe the choice between tightness and
simplicity in this case is one mainly of taste; we have opted for the former.

3.1 Type-I: Collision Resistant Compression Functions

Definition 5. A single call blockcipher based compression function HE is called rate-1 Type-I iff n =
s, k = m and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M,V the postprocessing Cpost(M,V, ·) is bijective.
3. For all K,Y the modified postprocessing Caux(K, ·, Y ) is bijective.

Theorem 6. LetHE be a rate-1 Type-I compression function (based on a blockcipher with block size n).
Then the advantage of an adversary in finding a collision in HE after q queries can be upper bounded
by

Advcoll
H (q) ≤ 1

2
q(q + 1)/(2n − q) .

Proof. Let V0 ∈ {0, 1}n be given. A collision consists of two pairs (M,V ) and (M ′, V ′) satisfying
HE(M,V ) = {V0, H

E(M ′, V ′)} yet (M,V ) 6= (M ′, V ′). We will maintain a list of triples (M,V,W )
such that W = HE(M,V ) and the adversary has made the relevant queries to E and/or D. The list
is initialized with (−,−, V0). Since we require the adversary to have made all relevant queries when
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outputting a collision, we can upper bound the success probability of the adversary by bounding the
probability of a collision occuring in this list. We show that any query, be it forward or inverse, will add
at most one triple (M,V,W ) to this list of computable compression functions, moreover the value W is
almost completely out of the adversary’s control.

Consider a forward query (K,X). By bijectivity of Cpre, there is a unique pair (M,V ) correspond-
ing to this query. Thus, each forward query will add one triple (M,V,W ) to the adversary’s list of
computable values. Since Cpost(M,V, ·) is bijective for all M,V , the distribution of compression func-
tion output W is closely related to that of blockcipher output Y , which is close to being uniform. More
precisely, suppose that so far t queries to E (and D) have been made involving key K, resulting in t
plaintext-ciphertext pairs (Xi, Yi) with Yi = E(K,Xi) for i = 1, . . . , t. The answer to a fresh query
to E(K, ·) will therefore be Y ∗ 6= Yi, i = 1, . . . , t. Moreover, each of the 2n − t answers is equally
likely if E is an ideal cipher. Each possible answer Y ∗ will combine under Cpost with the pair (M,V )
consistent with the (K,X) query being made, leading to a possible compression function outcome W ∗.
Because Cpost is bijective when (M,V ) are fixed, distinct Y ∗ lead to distinct W ∗, so there are 2n − t
possible outcomes W ∗, all equally likely.

Similarly, consider an inverse query (K,Y ). This yields a unique X and hence by bijectivity of
Cpre, there is a unique pair (M,V ) corresponding to this query once answered. Thus, each inverse
query will add one triple (M,V,W ) to the adversary’s list of computable values. This time bijectivity
of Caux(K, ·, Y ) implies that the distribution of W is closely related to the (almost uniform) output
distribution of D. Indeed, suppose that so far t queries to E have been made involving key K, resulting
in t plaintext-ciphertext pairs (Xi, Yi) with Yi = E(K,Xi) for i = 1, . . . , t. The answer to a fresh query
to D(K, ·) will therefore be X∗ 6= Xi, i = 1, . . . , t. Moreover, each of the 2n − t answers is equally
likely ifE is an ideal cipher. Each possible answerX∗ will combine underC−pre andCpost withK and
Y to a triple (M,V,W ). Because for all K and Y the mapping fromX to W is bijective (by assumption
on Caux), distinct X∗ lead to distinct W ∗, so there are 2n − t possible outcomes W ∗, all equally likely.

As a result, after i − 1 queries the list of computable values contains i triples (M,V,W ). The i’th
query will add one triple with W uniform over a set of size at least 2n − i + 1. Thus the probability
that the i’th query causes a collision with any of these triples is at most i/(2n − i + 1). Using a union
bound, the probability of a collision after q queries can then be upper bounded by

∑q
i=1 i/(2

n− i+1) ≤
1
2q(q + 1)/(2n − q). ut

Theorem 7. Let HE be a rate-1 Type-I compression function (based on a a blockcipher with block
size n). Then the advantage of an adversary in finding a preimage in HE after q queries can be upper
bounded by

Advepre
H (q) ≤ q/(2n − q) .

Proof. LetA be an adversary that tries to find a preimage for its input σ. Assume thatA asks its oracles
E and D a total of q queries.

We recall the proof of Theorem 6, where we show that after i − 1 queries (to E or D) the list of
computable values W = HE(M,V ) contains i − 1 triples3 (M,V,W ). The i’th query will add one
triple with W uniform over a set of size at least 2n − i+ 1. Thus the probability that the i’th query hits
σ is at most 1/(2n − i + 1). Using a union bound, the probability of finding a preimage for σ after q
queries can then be upper bounded by

∑q
i=1 1/(2n − i+ 1) ≤ q/(2n − q). ut

3.2 Type-II: Collision Resistance in the Iteration

Definition 8. A single call blockcipher based compression function HE is called rate-1 Type-II iff n =
s, k = m, and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M,V the postprocessing Cpost(M,V, ·) is bijective.

3 For preimage resistance we do not have to take (−,−, V0) into account.
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3. For all K, C−pre(K, ·) restricted to V , its second output, is bijective.

Theorem 9. Let HE be a rate-1 Type-II compression function. If E is an ideal cipher with block size
n, then the advantage of an adversary in finding a collision in the iterated hash function HH after q
queries is upper bounded by

Advcoll
H (q) ≤ 1

2
q(q + 1)/(2n − q) .

Proof. Let V0 ∈ {0, 1}n beH’s initial vector.
We define an undirected graph G = (VG, EG) with vertex set VG = {0, 1}n—corresponding to all

2n possible chaining values—and initially an empty edge set EG = ∅. We will dynamically add edges
based on the queries to E and D. In particular, we add an edge (V,W ), labelled by M , if we know a
message M such that W = HE(M,V ) (or V = HE(M,V )) and the relevant query to either E or
D has been made. We claim that to find a collision would require constructing a ρ-shape containing
the initial vector V0. Suppose that H(M) = H(M′) with M 6= M′. Write M = (M1, . . . ,M`) and
M′ = (M ′1, . . . ,M

′
`′) and correspondingly V0, . . . , V` respectively V ′0 , . . . , V

′
`′ for the chaining values

of the iterated hash. Note that V0 = V ′0 and V` = V ′`′ . Assume ` ≤ `′. Because M 6= M′, there exists
a t such that Mi = M ′i for all 0 ≤ i < t but Mt 6= M ′t (or possibly ` < t ≤ `′). As a result, the paths
(V0, . . . , Vt) and (V ′0 , . . . , V

′
t ) are identical, but the edges (Vt, Vt+1) and (V ′t , V

′
t+1) are distinct, even

when V ′t+1 happens to equal Vt+1 (in particular, the edges are labelled differently). Since V` = V ′`′ at
some point the paths need to come together again, completing the ρ-shape. Note that due to our use of
an undirected graph not every ρ-shape will lead to a collision though.

Since we are dynamically adding edges to the graph, components in the graph will also grow dy-
namically. Let T be the set of all nodes that are in a component containing a cycle or the initial vector
V0. The first claim is that after i queries, the set T has cardinality at most i+ 1. Indeed, the component
containing V0 has at most i′+1 nodes when i′ edges are used. A cyclic component based on i′ edges has
at most i′ nodes. Thus the initial vector component is the only component in T that causes the number
of nodes larger than the number of edges, by at most one. Bijectivity of Cpre implies that a query (either
forward or inverse) will add at most one edge to the graph, so after i queries, there are at most i edges in
the entire graph and at most i+ 1 nodes in T .

The second claim is that to complete a ρ-shape, either a cycle has to be completed within the V0-
component, or the V0-component needs to be connected with a cycle. Either way, an edge has to be found
of which both nodes are already part of T . The probability that on the i’th query a collision is found by a
forward query is at most i/(2n−i): bijectivity ofCpost(M,V, ·) ensures thatW is uniformly distributed
over a set of size at least 2n − i, so hitting a set of size i occurs at most with said probability. Similarly,
for an inverse query the probability of finding a collision on the i’th query using an inverse query is at
most i/(2n − i): this time bijectivity of Caux(K, ·, Y ) ensures that V is uniformly distributed over a set
of size at least 2n − i.

We can now wrap up and conclude that the probability of finding a collision on the i’th query is at
most i/(2n− i) and the probability after q queries is at most

∑q
i=1 i/(2

n− i) ≤ 1
2q(q+1)/(2n−q). ut

3.3 Implications to the PGV Schemes

In this section we investigate how the 64 PGV schemes [31] fit in the general Type-I and Type-II frame-
work. Recall that for the PGV-style schemes the blockcipher has key size equal to the block length; the
compression function will look like HE(M,V ) = E(K,X)⊕U where K,X,U ∈ {C,M, V,M ⊕ V }
and C is some fixed, publicly known bitstring. These restrictions can also be expressed in terms of Cpre

and Cpost. Our results are in line with the classification of Black et al. [8] and the tighter bounds by
Duo and Li [14].

Let us first set up some notation. As is customary [17] for schemes with linear processing Cpre

and Cpost, we will represent the linear PGV schemes using matrices. We will use Z2
2 to express the

way K,X , and U are functions of M and V : a vector X ∈ Z2
2 corresponds to X = X ·

(
M
V

)
, making

a distinction between the linear map X ∈ Z2
2 and the value X ∈ {0, 1}n. We will also write X =
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(XM , XV ). For instance X = (10) has XM = 1 and XV = 0, corresponding to X ← M . We can
safely ignore any affine part, so U = (00) can be thought of to correspond to the aforementioned
U ← C. (This is without loss of generality, since translation by a constant will not affect bijectivity in
either of the criteria used in Definitions 5 and 8.) Since there are 4 elements in Z2

2 and we have to pick
3 (K,X, and U), there are 64 constructions to consider in total, corresponding to the 64 PGV schemes.

Observe that
(
K
X

)
← Cpre(M,V ) =

(
K
X

)(
M
V

)
, W ← Cpost(M,V, Y ) = Y ⊕ U

(
M
V

)
and finally

W ← Caux(K,X, Y ) = Y ⊕U
(
K
X

)−1(K
X

)
. For future reference, for invertible matrices

(
K
X

)
∈ Z2×2

2 it
holds (

KM KV

XM XV

)−1

=
(
XV KV

XM KM

)
.

We are now ready to see what the requirements from Definitions 5 and 8 mean in terms of the
vectors K,X and U and hence for the classification and security of the PGV schemes. The 20 interesting
schemes are listed in Table 1, where we have also included the ı-indices assigned to these schemes by
Black et al. [8]. When we write Hı resp.Hı for ı ∈ {1, . . . , 20} we refer to this enumeration.

Lemma 10. (The Type-I PGV schemes) A PGV scheme is Type-I iff
(
K
X

)
and

(
K
U

)
are both invertible

matrices. In particular, H1..12 are Type-I schemes.

Proof. We will check the three conditions listed in Definition 5. Firstly, Cpre needs to be bijective. This
is equivalent to

(
K
X

)
being invertible. Secondly, for allM,V the postprocessingCpost(M,V, ·) should be

bijective. This is always the case for the schemes at hand, as can be easily verified. Finally, for all K,Y
the modified postprocessing Caux(K, ·, Y ) should be bijective. For this we require Y ⊕U

(
K
X

)−1(K
X

)
to

be bijective as a function of X for all Y and K. This simplifies to (UMKV ⊕UVKM )X being bijective,
or alternatively (UMKV ⊕ UVKM ) = det

(
K
U

)
= 1. This is equivalent to stating that

(
K
U

)
is invertible

or that U is not in the span of K (given that K 6= (00) for bijective Cpre).
Invertibility of

(
K
X

)
reduces the choice of K and X from 16 to 6. For a given invertible

(
K
X

)
exactly

two values are possible for U (since (00) and K are ruled out), yielding 6 · 2 = 12 schemes in total.
These are exactly the 12 schemes that PGV singled out as secure. ut

We note that the requirements on the matrices
(
K
X

)
and

(
K
U

)
are similar to those given by Hirose [16]

for the case of collision resistant double length compression functions based on two calls to a blockcipher
with key size k = 2n+1 (where the +1 is used for domain separation purposes only). Indeed, our work
can be extended [28] to the relevant 2-call scenario and thus derive the very requirements given by
Hirose.

The requirements for the Type-II schemes turn out surprisingly simple: indeed apart from the prepro-
cessing having full rank, the only requirement is that the key depends on the message. Consequently we
end up with 16 Type-II schemes as opposed to only 8 given by Black et al. The ‘additional’ 8 schemes we
identify are also Type-I, which explains why previously they were not classified as Type-II. Our results
therefore suggest a subdivision of the PGV Type-I schemes, namely those that are also Type-II (being
those with a key depending on the message) and those that are just Type-I (those whose key equals
the chaining variable). The same subdivision was made by Duo and Li [14] in the context of second
preimage resistance.

Lemma 11. (The Type-II PGV schemes) A PGV scheme is Type-II iff
(
K
X

)
is an invertible matrix with

KM = 1. In particular,H5..20 are Type-II schemes.

Proof. We will check the three conditions listed in Definition 8. Firstly, Cpre needs to be bijective.
This is equivalent to

(
K
X

)
being invertible. Secondly, for all M,V the postprocessing Cpost(M,V, ·)

should be bijective. This is always the case for the schemes at hand, as can be easily verified. Finally,
for all K, C−pre(K, ·) restricted to V , its second output, should be bijective. We need for all K that(
M
V

)
←
(
K
X

)−1(K
X

)
is bijective as a function from X to V . This is true iff KM equals 1, so K = (11)

or K = (10). Each of these two choices of K comes with two possible choices of X to make
(
K
X

)
10



`
k
x

´
\s (00) (01) (10) (11)„

0 1
1 0

«
insecure insecure EV (M)⊕M1 EV (M)⊕M ⊕ V 3„

0 1
1 1

«
insecure insecure EV (M ⊕ V )⊕M4 EV (M ⊕ V )⊕M ⊕ V 2„

1 0
0 1

«
EM (V )15 EM (V )⊕ V 5 EM (V )⊕M17 EM (V )⊕M ⊕ V 7„

1 0
1 1

«
EM (M ⊕ V )19 EM (M ⊕ V )⊕ V 8 EM (M ⊕ V )⊕M20 EM (M ⊕ V )⊕M ⊕ V 6„

1 1
0 1

«
EM⊕V (V )16 EM⊕V (V )⊕ V 10 EM⊕V (V )⊕M12 EM⊕V (V )⊕M ⊕ V 18„

1 1
1 0

«
EM⊕V (M)13 EM⊕V (M)⊕ V 11 EM⊕V (M)⊕M9 EM⊕V (M)⊕M ⊕ V 14

Table 1. The 20 Secure PGV-style schemes, writing EK(X) for E(K, X). Superscripted are the ı-indices from [8, Fig. 1 and
2]

invertible. There are four choices for U for a given pair (K,X), however, two of the choices for U are
already covered by the Type-I schemes, so we only get two new cases, namely U = (00) and U = K.
All in all 8 schemes are exclusively Type-II. ut

Combining Lemmas 10 and 11 with Theorems 6, 7, and 9 then yields Corollary 12 below. For com-
pleteness [8, 31], it is known that the given upper bounds on the advantages are tight up to a small
constant factor. Moreover, for H13..20 preimage resistance is worse than desired, namely Advepre

H (q) =
Θ(q2/2n) (due to a meet-in-the-middle attack). The remaining 44 PGV schemes do not offer any colli-
sion resistance in the iteration.

Corollary 12. (Security of the PGV schemes) For H1..12 it holds that Advcoll
H (q) ≤ 1

2q(q+ 1)/(2n− q),
and Advepre

H (q) ≤ q/(2n − q); forH13..20 it holds that Advcoll
H (q) ≤ 1

2q(q + 1)/(2n − q).

4 Generalized Single Call Compression Functions

In the previous section we discussed the standard (single call) case where the input and output sizes of
the compression function neatly matched those of the underlying blockcipher, in particular m = k and
s = n. In this section we let go of these restrictions and consider three more general scenarios.

First we will consider what could be called chopping the output of the compression (or really the
scenario where s < n). For instance, the Davies-Meyer construction is optimally collision and preimage
resistant, but what happens if you chop the output: is the security still optimal given the new output length
(it is). A welcome benefit of chopping the output is that it frees up bits for the message. More precisely,
if s < n then we can have a larger m while maintaining m + s = n + k. In particular, compression
becomes feasible even for fixed permutations (corresponding to k = 0). In view of the recent availability
of huge size permutations constructions with s < n gain traction; an example is Grindahl[18]. We will
refer to this scenario as compression in the postprocessing, the corresponding HE’s are called chopped
compression functions.

Similarly, one might also try to improve efficiency by squeezing in more bits of input in the com-
pression function than can be input to the primitive (this corresponds to m + s > n + k). We call this
compression in the preprocessing and speak of overloaded compression functions. Like the previous
scenario, this opens up the possibility of achieving compression based on a single fixed permutation. We
suggest a general Type-I compression function and give a bound on its collision resistance and preimage
resistance. Security in the iteration is more complicated here: we discuss related work and point out
some challenging open problems.

Finally we deal with the problem of getting security beyond the block length of the blockcipher,
that is s > n. Here we say that expansion in the postprocessing gives rise to supercharged compression
functions. Promising results were previously given by Lucks [22] in the iteration and Stam [37] for a
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compression function. We develop a general theory and give two concrete examples based on the latter
work.

4.1 Chopping: Compression in the Postprocessing

Let us consider an m+ s-to-s bit compression function based on a single call to a blockcipher with key
size k and block size n. In this section we will assume that m+ s = n+ k and s < n. What can we say
of the collision and preimage resistance of the compression function resp. iterated hash function, under
which conditions will we achieve optimal security?

If we go through the criteria from the previous section, it is clear we can no longer satisfy them
all. More to the point, whereas the first condition (bijectivity of the preprocessing) still applies, the
postprocessing now becomes a mapping from n to s bits, which cannot be bijective since s < n. The
natural generalization is to replace being a bijection with being balanced: all elements in the codomain
should have the same number of preimages, namely 2n−s. It turns out that this fairly simple modification
works quite well. Again we have two types: the first one giving optimal collision and preimage resistance
for the compression function; the second one giving optimal collision resistance in the iteration only (and
guaranteed preimage resistance only up to the collision resistance).

Definition 13. A single call blockcipher based compression function HE is called chopped single call
Type-I iff s < n,m+ k = n+ s, and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M ,V the postprocessing Cpost(M,V, ·) is balanced.
3. For all K,Y the modified postprocessing Caux(K, ·, Y ) is balanced.

Definition 14. A single call blockcipher based compression function HE is called chopped single call
Type-II iff s < n,m+ k = n+ s and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M ,V the postprocessing Cpost(M,V, ·) is balanced.
3. For all K the inverse preprocessing C−pre(K, ·) when restricted to its V output is balanced.

Theorem 15. Let HE be a chopped single call Type-I compression function. Then the advantage of an
adversary in finding a collision, resp. a preimage in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ q(q + 1)/2s, Advepre

H (q) ≤ q/2s−1 .

Proof. As before, a collision consists of two distinct pairs (M,V ) and (M ′, V ′) satisfying eitherHE(M,V ) =
V0 orHE(M,V ) = HE(M ′, V ′). We will maintain a list of triples (M,V,W ), initialized with (−,−, V0),
such that W = HE(M,V ) and the adversary has made the relevant queries to E and/or D. We need to
bound the probability of a collision occurring in this list.

Bijectivity of Cpre ensures that any query, be it forward or inverse, will add at most one triple
(M,V,W ) to this list of computable compression functions. As a result, after i − 1 queries the list of
computable values contains exactly i triples (M,V,W ). We claim that the probability of the i’th query
causing a collision with any of these triples is at most 2n−si/(2n − (i− 1)).

Consider a forward query (K,X), which also fixes (M,V ). Suppose that so far t < i queries to E
have been made involving key K. The answer to a fresh query to E(K, ·) will therefore be distributed
uniformly over a set of 2n − t possible outcomes. Because Cpost is balanced for fixed (M,V ), the
number of preimages under Cpost of the i values W that are in the list of achieveable outputs so far is
2n−si. Consequently, the probability of hitting one is at most i2n−s/(2n − (i− 1)).

Similarly, consider an inverse query (K,Y ). Then by balancedness of Caux there are i2n−s possibly
outcomes of D(K,Y ) that would cause a collision. Again, assuming so far t < i queries to E have
been made involving key K, the answer to a fresh query to D(K, ·) will be uniform over a set of 2n− t.
Hitting any of the forbidden outcomes has probability at most i2n−s/(2n − i).
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Using a union bound, the probability of a collision after q queries can then be upper bounded by
2n−s

∑q
i=1 i/(2

n−i) ≤ 2n−s−1q(q+1)/(2n−q). If q ≤ 2n−1 this can be upper bounded by q(q+1)/2s

(and the bound is vacuous for larger q).
For preimages, the situation is similar. A straightforward adaptation of the arguments above will

show that the probability of hitting the target image at the i’th query is at most 2n−s/(2n− (i− 1)). The
probability of finding a preimage can then be upper bounded by union bound 2n−sq/(2n − q), which
itself is upper bounded by q/2s−1 for q ≤ 2n−1 (or vacuous otherwise). ut

Theorem 16. Let HE be a chopped single call Type-II compression function. Then the advantage of an
adversary in finding a collision in the iterated hash functionHH after q queries is upper bounded by

Advcoll
H (q) ≤ q(q + 1)/2s .

Proof. The proof is a fairly straightforward combination of that of Theorems 9 and 15.
Let V0 ∈ {0, 1}n be H’s initial vector and consider the undirected graph G = (VG, EG) as defined

before, so to find a collision would require constructing a ρ-shape containing the initial vector V0. Let
T be the set of all nodes that are in a component containing a cycle or the initial vector V0. Since we
require Cpre bijective, there are at most i+ 1 nodes in T after i queries. To complete a ρ-shape an edge
has to be found of which both nodes are already part of T .

The probability that on the i’th query a collision is found by a forward query is at most 2n−si/(2n−
i): Y is uniformly distributed over a set of size at least 2n−i and balancedness of Cpost means that each
element in T has 2n−s preimages Y under Cpost for any given (M,V ). Therefore Cpost(M,V, Y ) hits
T at most with said probability.

Similarly, for an inverse query the probability of finding a collision on the i’th query using an inverse
query is at most 2n−si/(2n− i): this time balancedness of C−pre (when restricted to its V -part), implies
that for any possible V ∈ T there are exactly 2n−s preimagesX underC−pre. SinceX will be uniformly
distributed over a set of size at least 2n − i the claim follows.

We can now wrap up and conclude that the probability of finding a collision after q queries is at
most 2n−s

∑q
i=1 i/(2

n − i) ≤ 2n−s−1q(q + 1)/(2n − q). If q ≤ 2n−1 this can be upper bounded by
q(q + 1)/2s (and the bound is vacuous for larger q). ut

4.2 Overloading: Compression in the Preprocessing

Another way to improve efficiency it to keep s = n, but allow m > k. In this case bijectivity of the
preprocessing can no longer be satisfied, which has ramifications throughout.

Firstly, for a given pair (K,X) it is now the case that C−pre yields a set of 2m−k pairs (M,V ).
Consequently, the modified postprocessing Caux(K, ·, Y ) becomes a function from n-bits to subsets of
size (up to) 2m−k of {0, 1}n. Our requirement on this new type of Caux is a natural generalization of
balancedness.

Secondly, although the condition that Cpost(M,V, ·) is bijective is still well-defined, it is no longer
sufficient. For instance, if Cpre(M,V ) = Cpre(M ′, V ′) for certain values of (M,V ) 6= (M ′, V ′)
and the bijections Cpost(M,V, ·) and Cpost(M ′, V ′, ·) are identical, then collisions can very easily
be found. To avoid this problem we explicitly rule out collisions in the output whenever (M,V ) and
(M ′, V ′) already collide during preprocessing (in Cpre).

Definition 17. A single call blockcipher based compression function HE is called overloaded single
call Type-I iff s = n,m ≥ k, and the following four hold:

1. The preprocessing Cpre is balanced.
2. For all (M,V ) 6= (M ′, V ′) withCpre(M,V ) = Cpre(M ′, V ′) and all Y it holds thatCpost(M,V, Y ) 6=
Cpost(M ′, V ′, Y ).

3. For all M,V the postprocessing Cpost(M,V, ·) is bijective.
4. For all K,Y the modified postprocessing Caux(K, ·, Y ) is balanced in the sense that for all V the

number of X such that V ∈ Caux(K,X, Y ) equals 2m−k.
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Theorem 18. Let HE be an overloaded single call Type-I compression function. Then the advantage of
an adversary in finding a collision, resp. a preimage in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ q(q + 1)/22k+n−2m, Advepre

H (q) ≤ q/2n+k−m−1 .

Proof. As before, a collision consists of two distinct pairs (M,V ) and (M ′, V ′) satisfying eitherHE(M,V ) =
V0 orHE(M,V ) = HE(M ′, V ′) We will maintain a list of triples (M,V,W ), initialized with (−,−, V0),
such that W = HE(M,V ) and the adversary has made the relevant queries to E and/or D. We need to
bound the probability of a collision occurring in this list.

Balancedness of Cpre ensures that any query, be it forward or inverse, will add exactly 2m−k triples
(M,V,W ) to this list of computable compression functions. As a result, after i − 1 queries the list of
computable values contains exactly (i − 1)2m−k + 1 triples (M,V,W ). We claim that the probability
of the i’th query causing a collision with any of these triples is at most i22(m−k)/(2n − i).

Consider a forward query (K,X). There are 2m−k corresponding pairs (M,V ), due to Cpre being
balanced. Because Cpost is bijective for any fixed (M,V ), for each tuple ((M,V ),W ) there is exactly
one possible outcome of the blockcipher that would cause a collision. Here we need to range over all
(M,V ) corresponding to the query (K,X) at hand, and all W in the list of achieveable outputs so far.
Combined that gives 2m−k((i−1)2m−k+1) < i22(m−k) tuples. Now suppose that so far t < i queries to
E have been made involving key K. The answer to a fresh query to E(K, ·) will therefore be distributed
uniformly over a set of 2n−t possible outcomes. Hence the probability of a collision based on this query
is at most i22(m−K)/(2n − i).

Similarly, consider an inverse query (K,Y ). Then by balancedness of Caux, for each of the (i −
1)2m−k + 1 < i2m−k triples (M,V,W ) there are 2m−k possible outcomes of D(K,Y ) that would
cause a collision. Again, assuming so far t ≤ i queries to E have been made involving key K, the
answer to a fresh query to D(K, ·) will be uniform over a set of 2n − t. Hitting any of the forbidden
outcomes has probability at most i22(m−k)/(2n − i).

Using a union bound, the probability of a collision after q queries can then be upper bounded by
22(m−k)∑q

i=1 i/(2
n − i) ≤ 22(m−k)−1q(q + 1)/(2n − q). If q ≤ 2n−1 this can be upper bounded by

q(q + 1)/22k+n−2m (and the bound is vacuous for larger q).
For preimages, the situation is similar. A straightforward adaptation of the arguments above will

show that the probability of hitting the target image at the i’th query is at most 2m−k/(2n − i). The
probability of finding a preimage can then be upper bounded by union bound 2m−kq/(2n − q), which
itself is upper bounded by q/2n+k−m−1 for q ≤ 2n−1 (or vacuous otherwise). ut

Theorem 18 can be reinterpreted by saying that to find collisions roughly 2n/2+k−m queries are
required; to find preimages roughly 2n+k−m queries should suffice. It is interesting to compare the col-
lision resistance thus achieved with recently conjectured optimal bounds [34, 37]. A straightforward
generalization of Rogaway and Steinberger’s result [34] suggests the best we can achieve is collision re-
sistance up to 2n/2+k−m queries, neatly corresponding to our construction. However, Stam [37] conjec-
tures collision resistance is feasible up to 2(n+k−m)/2 queries, based on an ideal state size s of n+k−m
bits. Using this state size actually brings us back exactly to compression in the postprocessing as dis-
cussed in the previous section: by reducing s we can increase m while maintaining n + k = m + s
and Theorem 15 essentially guarantees collision resistance up to 2(n+k−m)/2 queries. So here is another
scenario where reducing the state size mysteriously seems to boost collision resistance.

But all is not as it seems. An example overloaded single call Type-I compression function is Davies-
Meyer with the m− k superfluous message bits xored directly into the output. It is not hard to show that
in this case the collision finding advantage is much smaller than Theorem 18 makes believe:

Advcoll
H (q) ≤ q(q + 1)/2k+n−m .

Iterated Case. For rate-1 and chopped compression functions, looking at the iteration gave rise to a
second class of schemes that had the same collision resistance in the iteration as the main schemes,
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but inferior preimage resistance. For overloaded compression functions, we do not give a classificiation
of Type-II schemes (also in light of our Type-I bounds’ lack of tightness). However, we do point out
that some non-trivial results in this setting were previously achieved for sponge functions [6], whose
collision resistance (in the iteration) holds roughly up to 2(n−m)/2 queries (k = 0). This matches the
collision resistant compression function of the previous paragraph.

However, recent developments indicate that iteration might boost collision resistance even further.
In particular, the sponge construction has rate α = m/(n − m) achieving collision resistance up to
roughly 2n(1−α)/2 queries. Rogaway and Steinberger [34] have shown that for any rate-α construction
after 1.9n2n(1−α) queries collisions are guaranteed. This still leaves a considerable gap.

4.3 Supercharging: Expansion in the Postprocessing

Whereas for chopped and overloaded compression functions we sacrificed security for the sake of effi-
ciency, in this section we will attempt the exact opposite: sacrificing efficiency for the sake of security.
We do this by extending the state size, so s > n. Not to complicate things further, we will assume that
m+ s = n+ k (and let Cpre be bijective). For any fixed pair (M,V ) we have that Cpost maps {0, 1}n
to {0, 1}s. Since n < s this cannot be a bijection, but at best an injection (similar for Caux). If all these
injections have exactly the same range, we are not using our codomain of 2s values to the full; indeed
we might have well been padding the state with a constant. This leads us to the following formalization.

Definition 19. A single call blockcipher based compression function HE is called supercharged single
call Type-I with overlap γ iff s ≥ n,m+ s = n+ k and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M,V the postprocessing Cpost(M,V, ·) is injective, with effective range Rpost,(M,V ).
3. For allK,Y the modified postprocessingCaux(K, ·, Y ) is injective, with effective rangeRaux,(K,Y ).

Where the overlap γ is defined as:

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {post,aux} × {0, 1}k+n, Z 6= Z ′

}
.

Theorem 20. Let HE be a supercharged single call Type-I compression function with overlap γ. Then
the advantage of an adversary in finding a collision after q ≤ 2n−1 queries can be upper bounded by

Advcoll
H (q) ≤ qκ/2n−1 + 2m+s+1

(
eγq

(κ− 1)2n−1

)κ−1

for arbitrary positive integer κ > qγ/2n−1.

Proof. As usual, we want to upper bound the probability of finding a collision on the i’th query (i ≤ q),
so we can sum over all i up to q for a union bound of the total success probability. Because Cpre is
bijective, we know that each query adds exactly one triple (M,V,W ) to the set of computable digests.
Thus after i − 1 queries, and assuming no collisions have been found so far, we will have a set of i
computable digests (including the initial vector V0). Let’s call this set T (i− 1).

For the i’th query to give us a collision it should result in a digestW in the set T (i− 1). But we know
that the digest will certainly be in RZ with Z = (post,K,X) or Z = (aux,K, Y ) corresponding to
the query made. Moreover, the digest will be uniformly distributed over RZ , up to the usual correction
taking care of previous queries to E or D using the same key. Hence the probability of a collision on
the i’th query can be upper bounded by |RZ ∩ T (i− 1)|/(2n − i). For any given positive integer κ, let
pκ be the probability that maxZ |RZ ∩ T (q)| > κ. Then the total probability of finding a collision can
be upper bounded by pκ +

∑q
i=1 κ/(2

n − q), where as usual we can upper bound the second term by
qκ/2n−1 (or get a vacuous bound).

What remains is bounding pκ. Fix Z, then the probability that the i’th query Z ′ 6= Z gives an answer
in RZ is upper bounded by γ/(2n − i) < γ/2n−1. We will assume that V0 ∈ RZ and upper bound
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the probability that |RZ ∩ T (q)| exceeds κ by a binomial distribution with q repetitions and probability
γ/2n−1. For κ > qγ/2n−1 this is allowed. A Chernoff bound followed by a union bound then allows us
to bound by:

Pr

[
max
Z
|RZ ∩ T (q)| ≥ κ

]
≤
∑
Z

Pr [|RZ ∩ T (q)| ≥ κ]

≤ 2m+s+1Pr
[
B[q; γ/2n−1] ≥ κ− 1

]
≤ 2m+s+1

(
eγq

(κ− 1)2n

)κ−1

.

Collecting the two terms gives the stated upper bound. ut

Corollary 21. Let HE be a supercharged single call Type-I compression function with overlap γ. Then
for q < 2n−1/γ

1
2 the probability of finding a collision can be upper bounded by

Advcoll
H (q) ≤ 2 max(2eγ

1
2 ,m+ n+ s+ 2)q/2n .

Proof. First we will voluntarily strengthen the restriction on κ in Theorem 20 to κ > qγe/2n−2. Since
we only allow q < 2n−1/γ

1
2 this is satisfied for all κ > 2eγ1/2. This has the effect that we can upper

bound the second term of the bound on the advantage by 2m+s+2−κ. By additionally requiring that
κ > n + m + s + 2 we ensure that the whole second term is upper bounded by 2−n, making the first
term dominant. For simplicity, we simply doubled it in the bound stated in the corollary. ut

In practice this means that we get good security up to q of order 2n/γ
1
2 . Stam [37] suggests that

finding collisions can be expected after 2(n+k−m)/2 queries. Since n+k = m+s this neatly corresponds
to 2s/2, in other words optimal collision resistant compression functions of this type might actually exist.
Note that the rate is lower than before, arguably m/n. As we show in Lemma 22, the best we can hope
for is γ of order 22n−s, giving collision resistance up to 2s/2 queries. Whether for all relevant settings
of n, s, k, and m there exists a postprocessing Cpost with overlap γ close to 22n−s is an open problem.
Below we give two examples where it does though, based on an earlier construction [37].

Lemma 22. Let HE be a supercharged single call Type-I compression function then overlap

γ ≥ 2(22n+m − 2n)
2s+m − 1

(≈ 22n−s+1) .

Proof. If for some Z 6= Z ′ ∈ {post,aux} × {0, 1}n+k it holds that RZ = RZ′ we have that γ =
|RZ | = 2n+k by injectivity of Cpost (and n+ k > n > 2n− s). Henceforth assume that all the RZ are
distinct. In that case

{
RZ |Z ∈ {post,aux} × {0, 1}n+k

}
can be regarded as a constant weight code of

length 2s, weight 2n and cardinality 2s+m+1. The minimum distance d of the code can be related to the
overlap γ of the compression function by d = 2 · 2n − γ. Standard bounds on the maximum cardinality
of a constant weight code of given length, weight and minimum distance gives us the stated bound on γ.

In particular, substituting the various parameters in a relaxed Johnson bound [10, VII.1.12, 1.80.2]
yields

2s+m ≤ 2s(2n − γ/2)
22n − 2n+s+m + 2s+m(2n − γ/2)

which simplifies to

2m ≤ 2n − γ/2
22n − 2m+sγ/2

which solves for γ as

γ ≥ 2(22n+m − 2n)
2s+m − 1

(≈ 22n−s+1) .

ut
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We have shown that supercharged single call Type-I compression functions potentially provide a
boost of collision resistance beyond the birthday bound on the output length of the underlying block-
cipher. A natural question is whether the increased state size also provides us with better preimage
resistance. The answer to this question unfortunately is no. Essentially preimage resistance for super-
charged single call Type-I compression functions depends only on the block length n and not on the
state size s (nor on the overlap γ of the construction).

Theorem 23. Let HE be a supercharged single call Type-I compression function. Then the advantage
of an adversary in finding a preimage after q queries can be upper bounded by

Advepre
H (q) ≤ q/2n−1 .

Proof. Let target digest W be given. We want to upper bound the probability of finding a preimage on
the i’th query (i ≤ q), so we can sum over all i up to q for a union bound of the total success probability.
Because Cpre is bijective, we know that after each query the adversary is (at best) able to compute
the compression function for a single new input. Since there are at least 2n − (i − 1) equally likely
possible responses to the query, and each response (by injectivity of Cpost and Caux) corresponds
to a distinct possible digest, the probability of hitting the target digest W on the i’th query is upper
bounded by 1/(2n − i+ 1). Hence the total probability of finding a preimage can be upper bounded by∑q

i=1 1/(2n− i+ 1) ≤ q/(2n−q), which as usual we can upper bound by q/2n−1 (or become vacuous).

At the same time, an adversary exists that comes close to achieving this bound, where we make the
assumption that the target image does have a preimage (under an instantiation of E consistent with the
oracle for E as queried by the adversary). In fact, the attack we demonstrate works for any supercharged
single call compression function. We use the notation spre’ to signal that determining a target digest is
not in the range also counts as a success (cf. [2]).

Proposition 24. Let HE be a supercharged single call compression function. Then there exists an ad-
versary whose advantage in finding a preimage (or determining no preimage exists) after q queries can
be lower bounded by

Advspre′

H (q) ≥ 1− (1− 2−n)q .

Proof. Let W ∈ {0, 1}s be the target digest. Consider the following adversary. It starts by determining
the set of (M,V ) for which W ∈ Rpost,(M,V ). For any given (M,V ) in this set, it computes the corre-
sponding (K,X)← Cpre(M,V ). If no queries have been asked yet, queryingE(K,X) on one of these
(K,X)-pairs has a probability of at least 2−n of hitting the right value in the correspondingRpost,(M,V );
hence yielding a preimage of W . After a query is answered (without yielding a preimage), the adversary
updates its list (K,X) that could hit the digest (in particular, if the current query is (K,X ′), its answer
could rule out that a later query (K,X) hits the digest). As long as prior queries have not yet yielded a
preimage, we can maintain a success probability of at least 2−n per query. (Since we have successfully
determined no preimage exists if we run out of useful queries (K,X) to ask.) The lower bound on the
advantage follows from upper bounding the failure probability.

It follows that the expected number of queries needed to find a preimage is upper bounded by 2n.
This upper bound on the preimage resistance is significantly tighter than the general bounds by Stam [37,
Theorem 8] (cf. Rogaway and Steinberger [34, Theorem 2]) for the parameters in question (indeed, those
bounds are essentially vacuous here, stating that preimages can be found after 22n queries).

The attack we described finds preimages in the compression function. One can wonder to what
extent preimages in the related iterated hash function can be found. Using a well-known meet-in-the-
middle attack [19] this would imply preimage for the iterated hash functions can be found using (a small
constant multiple of) 2(n+s)/2 queries. The only catch with this attack is that we need to find 2(s−n)/2

preimages (building a tree rooted at the target digest). It is not necessarily true that all chaining variables
involved always have a preimage (moreover, determining for a specific chaining variable that has no
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preimage does not yield a success, it simply connotes a dead end). In other words, we might get stuck
unless we make a suitable (and seemingly reasonable) uniformity assumption. In that case the attack is
better than the ideal preimage resistance of 2s queries of course, provided n < s. Note that if we are in
fact promised that for all V,W ∈ {0, 1}s there exists anM ∈ {0, 1}n withW ∈ Rpost,(M,V ) the generic
attack does work directly on the iterated hash function (with a preimage found after an expected 2n+1

queries). We will see an example of this later. (We also note that using a generalized Merkle-Damgård
transform with a sufficiently preimage resistant postprocessing could thwart this attack, however for
second-preimage resistance postprocessing seems inherently ineffective in boosting security.)

Example I: A Double-Length Construction. We recall the construction [37] for a double length com-
pression function based on a single ideal 3n-to-n compression function F . Split the 2n-bit state V in two
equally sized parts V1 and V2. Then given an n-bit message block M , compression proceeds as follows:

1. Compute Y ← F (M,V1, V2).
2. Output (W1,W2)← (Y, V2Y

2 + V1Y +M).

where the polynomial evaluation is over F2n . Originally only a proof of collision resistance against
non-adaptive adversaries was given, based on random functions instead of random permutations (so in
particular an adversary would not have access to an inversion oracle). We would like to port the scheme
to the ideal cipher model, based on a blockcipher with k = 2n.

1. Set K ← (V1, V2) and X ←M .
2. Compute Y ← E(K,X).
3. Compute W1 ← Y +M and W2 ←MW 2

1 + V1W1 + V2; output (W1,W2).

Lemma 25. For the compression function above, γ = 3.

Proof. To determine the overlap γ it helps to first write down the effective ranges Rpost,(M,V ) and
Raux,(K,Y ) explicitly. It is easy to see that

Rpost,(M,V1,V2) =
{
(W,MW 2 + V1W + V2)|W ∈ {0, 1}n

}
and with a little bit more effort, using that M = Y +W and (K1,K2) = (V1, V2),

Raux,(K1,K2,Y ) =
{
(W,W 3 + YW 2 +K1W +K2)|W ∈ {0, 1}n

}
.

As a result, for (W1,W2) to be in the intersection of RZ and RZ′ , we require W1 to be a root of the
difference of the two polynomials that define W2 for Z resp. Z ′. It can be readily verified that Z 6= Z ′

implies the relevant two polynomials are distinct as well, and the resulting difference is a non-zero
polynomial of degree at most three. It will therefore have at most three roots over F2n . ut

Corollary 26. For the compression function above, for q ≤ 2n−
3
2 :

Advcoll
H (q) ≤ (n+

1
2
)q/2n−3 .

Curiously, if we would change the computation of W2 even slightly, for instance W2 ← V2W
2
1 +

V1W1 +M , the impact on the overlap γ is dramatic. Suddenly Raux,(K1,K2,Y ) = {W,K2W
2 + (K1 +

1)W + Y |W ∈ {0, 1}n} and consequently Raux,(V1+1,V2,M) = Rpost,(V1,V2,M), so that γ = 2n. As a
result, Theorem 20 can only be used to guarantee collision resistance up to roughly 2n/2 queries.

Nonetheless, with a more refined analysis we can still prove collision resistance close to the birthday
bound. The main point here is that for each Z ∈ {post,aux} × {0, 1}k+n there exists only one
(a unique) distinct Z∗ achieving the high overlap. For all other Z ′ the intersection is small, indeed
|RZ ∩RZ′ | ≤ 2. As a result, if we look at the proof of Theorem 20 we can still bound |RZ ∩ T (i− 1)|,
almost exactly the same as before: we assume that Z∗ was one of the previous queries (which will add
exactly one to the intersection at hand), for all remaining queries we can use the modified overlap γ′ ≤ 2.
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Example II: An Intermediate Construction. We conclude with a construction based on a 3n/2 bit
state (split into three parts of n/2 bits each), that compresses n/2 message bits.

1. X ← (M,V1),K ← (V2, V3);
2. Y ← E(K,X);
3. W1 ← Y1 +M,W2 ← Y2 + V1, and W3 ←MW 3

1 + V1W
2
1 + V2W1 + V3.

Lemma 27. For the compression function above, γ = 22+n/2.

Proof. The proof is similar to that of Lemma 25, but this time W1 needs to be a root of a fourth degree
polynomial and W2 is completely free. The key equation is

Raux,(K1,K2,Y1,Y2) =
{
(W1,W2,W

4
1 + Y1W

3
1 + (Y2 +W2)W 2

1 +K1W1 +K2)|W ∈ {0, 1}n
}
.

ut

Corollary 28. For the compression function above and all q < 23n/4−2

Advcoll
H (q) ≤ eq/23n/4−3 .

Preimage Resistance and Other Properties Stam [37] presented his double length construction mainly
as a proof-of-concept, claiming obvious shortcomings without being specific. Similarly, the two super-
charged compression functions (and the corresponding MD-iterated hashes) have issues. We will elabo-
rate for the double length construction.

Because of the way V2 is constructed, it is easy to distinguish the compression function from a true
random oracle after just one call (to the compression function). If the compression function is MD-
iterated and only a single message block is being hashed, the resulting output allows easy recovery of
this message (since the incoming state is the known initial vector). As also noted by Bagheri et al. [3]
(as well as by an FSE’09 referee) the double length construction allows a preimage attack with expected
query-complexity of around q ≈ 2n+1. We have given the general attack discussing Proposition 24, here
it is specific to our double length construction.

Given any target chaining variable (W1,W2), generate a fresh input chaining variable (V1, V2) (by
picking a random first message block in the iterated hash) and set M = (W2 + V1W1 + V2)/W 2

1 . This
choice of M ensures that if a partial preimage for W1 is found, it immediately yields a full preimage.
That is, if E((V1, V2),M) = W1 +M then a preimage is found. Since E is random, the probability of
success after a single try is 2−n; so an expected number of 2n tries (each costing two blockcipher calls:
creating a fresh input chaining variable and checking for a preimage) suffices.

For completeness, Bagheri et al. [3] also mention a near-collision attack on the original construction
from Stam [37], that straightforwardly applies to the current blockcipher based version as well. More
precisely, they show how to find near-collisions in the compression function in 3n/2 out of the 2n bits
in time about 2n/2 (the attack however does not seem to generalize to the iterated hash function).

Although the shortcomings described above limit the attractivity of our double length proposal for
the purpose of construction a hash function with larger output length, it might still be useful in construc-
tion a single-length proposal with a wide-pipe [21]. In particular, if we have two independent blockci-
phers E1 and E2, we can create a hash function by first computing (W1,W2) using our MD-iterated
double length hash function based on E1 and outputting E2(W1,W2, 0n). We claim that this hash func-
tion is indifferentiable up to almost 2n/n queries by using the preimage awareness framework. Since
E2(W1,W2, 0n) can easily be seen to be a random oracle from 2n-bits to n-bits (and independent from
E1 by assumption), all we need to show is the adaptive preimage resistance of the compression function
up to (at least) 2n/n queries. However, this can be shown using essentially the same proof as used for
standard Davies-Meyer.

We note that known rate-1/2 double length constructions with optimal collision resistance, such as
Hirose’s, tandem-DM or Lucks’ slight variation thereof, are likely to be adaptively preimage resistance
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as well. Moreover, these schemes are less brittle, in the sense that no O(2n) preimage attacks are known
against them. From a practical point of view, the rate-1/2 schemes might even be more efficient than our
rate-1 scheme for the simple reason that the two finite field multiplications we need (per compression
function call) are likely to be more expensive than the extra blockcipher call for the rate-1/2 schemes.
Nonetheless, we have shown that the second blockcipher call is not strictly necessary: designing a rate-1
double length secure scheme with less computational overhead remains an open problem.

5 Conclusion

We have presented a general framework to capture blockcipher based hash functions, in particular those
that iterate a compression function based on a single call only. This has allowed us to develop a deeper
understanding of existing result concerning the security of PGV schemes. We also extended the frame-
work to several scenarios where input and output of the compression function do not match those of the
underlying blockcipher.

For chopped compression functions our framework allows for a straightforward extension. For over-
loaded compression functions we do not get tight security bounds; constructions are known that best
them. Security in the iteration is pointed out as an open problem. Finally, for collision resistance beyond
the cipher’s blocksize we develop a general theory and construct two schemes accordingly.
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A Unreal Collisions

According to our and Black et al.’s results [8], the (Type-II) rate-1 blockcipher based compression func-
tion HE(M,V ) = E(M,V ) is collision-resistant in the iteration, indeed it was proven that (cf. Corol-
lary 12) Advcoll

H (q) ≤ 1
2q(q + 1)/(2n − q). In this appendix we show that in fact it is possible to find

collisions in the hash function (with probability 1) without making any queries to the underlying block-
cipher. Although in this case the adversary does not know to which value his messages collide, a single
query suffices to amend this problem. This paradox can be explained by the assumption we used to
prove the bound from Corollary 12 (and all the other bounds in the main body of this paper), namely
that the adversary honestly evaluates the hash function on the messages it outputs. Since the colliding
messages are very long, honest evaluation would consume a large number of queries and hence require
a sufficiently large q to make our collision bounds vacuous. (Another way out of the paradox would be
to use time complexity instead of query complexity and remark that time complexity is at least query
complexity plus output size.)
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Proposition 29. Let n, k > 0 be integer parameters. Let H : {0, 1}k × {0, 1}n → {0, 1}n be a com-
pression function taking oracle E ∈ Block(k, n) defined by HE(M,V ) = E(M,V ) and let H be its
iterated hash function. Define L = k(2n!). Then M = 1k0L and M′ = 0L1k collide underH.

Proof. Define HV (M) for V ∈ {0, 1}n and M ∈ ({0, 1}k)∗ as (vanilla) MD-iterated hash with initial
vector V (based on compression function H as defined above). Our claim is that for all V ∈ {0, 1}n it
holds thatHV (0L) = V and consequently thatH(1k0L) = H(1k) = H(0L1k) proving the proposition.

For the claim, first observe that the string 0L will be parsed by H as 2n! blocks of k bits each.
Moreover, all blocks are equal, namely 0k. Writing π for the permutation E(0, ·), we get that processing
one block leads to HV (0k) = E(0k, V ) = π(V ) and multiple blocks to HV ((0k)`) = π`(V ). In
particular, HV (0L) = π(2n!)(V ). Regarding π as an element in the group of all permutations on 2n

elements, we can conclude that π(2n)! equals the identity permutation, since (2n)! is a multiple of the
exponent of the group of permutations (indeed, one could also use the smaller lcm(1, . . . , 2n) instead).
HenceHV (0L) = π(2n!)(V ) = V as claimed.

A.1 Variants and Variations

A first observation is that in the above attack, all that matters is that we can consistently force the
compression function to be the same permutation, block after block. Indeed, there was no need to pick
0k as the block to repeat (and use as key to the blockcipher). Any other 2n!-fold repetition of an arbitrary
k-bit string would have worked equally well.

A second observation is that the attack is not particular to H(M,V ) = E(M,V ). Many other vari-
ants, such as H(M,V ) = M ⊕ E(M,V ) or H(M,V ) = M ⊕ π(V + M) (related to the sponge
construction [5, 6] and the JH construction [39]) work equally well. (Somewhat bizarly, in one looks
at for instance Cubehash [4], which in each round XOR’s in m bits of message followed by r repeti-
tions of the same permutation, the message length of our collision reduces slightly for increasing r and
decreasing m, contrary to the normal security tradeoff.)

Similar collisions can be found for any iterated compression function, despite the behaviour of iterat-
ing a random function F being slightly different than that of iterating a (random) permutation π. Indeed,
consider the graph consisting of all chaining variables (X ∈ {0, 1}n) as nodes and an arc between X
and Y iff Y = π(X) (resp. Y = F (X)). In the case of a permutation, this graph consists of only cycles,
in particular all nodes are on a cycle so taking the permutation to the least common multiple of all occur-
ring cycle lengths (in the cycle decomposition of the permutation) results in the identity. For a random
function however, a lot of nodes are actually not on cycles themselves, but rather lead up to them (cf.
Pollard-ρ [29, 15]). To let the attack go through, we first need to walk to a cycle and, once we are on a
cycle (with high probability), the attack works as before. Walking to a cycle can be done by prepending
a sufficiently long string to both colliding messages, e.g., M = 1k(B+1)0L and M′ = 1kB0L1k, for
integer B (even for B = 0 this gives a constant success probability over the choice of either the random
function or the initial vector of the iteration).

A.2 Interpretation

It is doubtful whether the above “attack” has any relevance in practice: the message lengths involved
are completely beyond anything remotely reasonable for practical applications (hence the name unreal
collision). It does indicate that some care should be taken that the underlying permutation π does not
have an exploitable cycle decomposition, but finding an otherwise reasonable looking permutation with
bad cycle decomposition might actually be a fairly hard problem in itself. However, we did find the
collisions useful in theory though, mainly to iron out certain subtleties in the formalization of security
statements (models, definitions and theorems).
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