
On the Strength of the Conatenated Hash

Combiner when All the Hash Funtions are Weak

Jonathan J. Hoh and Adi Shamir

Department of Computer Siene and Applied Mathematis,

The Weizmann Institute of Siene, Israel

{yaakov.hoh,adi.shamir}�weizmann.a.il

Abstrat. At Crypto 2004 Joux showed a novel attak against the onatenated hash

ombiner instantiated with Merkle-Damgård iterated hash funtions. His method of pro-

duing multiollisions in the Merkle-Damgård design was the �rst in a reent line of generi

attaks against the Merkle-Damgård onstrution. In the same paper, Joux raised an open

question onerning the strength of the onatenated hash ombiner and asked whether

his attak an be improved when the attaker an e�iently �nd ollisions in both un-

derlying ompression funtions. We solve this open problem by showing that even in the

powerful adversarial senario �rst introdued by Liskov (SAC 2006) in whih the underly-

ing ompression funtions an be fully inverted (whih implies that ollisions an be easily

generated), ollisions in the onatenated hash annot be reated using fewer than 2n/2

queries. We then expand this result to inlude the double pipe hash onstrution of Luks

from Asiarypt 2005. One of the intermediate results is of interest on its own and provides

the �rst streamable onstrution provably indi�erentiable from a random orale in this

model.

Key words: hash funtions, ryptographi ombiners, indi�erentiability.

1 Introdution

Cryptanalysis of hash funtions has been a very ative area of researh in the past few years.

A �urry of attaks have been found against various hash funtions inluding SHA-1 and the

MD variants (see [10, 16�19℄). Besides these attaks on spei� hash funtions, a number of

novel generi attaks against the Merkle-Damgård [5, 14℄ iterated onstrution have been

published as well. These inlude among others Joux's multiollision attak [7℄, Kelsey

and Shneier's expandable message attak [9℄ and Kelsey and Kohno's herding attak [8℄.

Joux's multiollision attak demonstrates how to �nd ollisions in a onatenated hash

onstrution H(M) = F (M)‖G(M) when at least one of the underlying hash funtions is

iterated.

In the lassi ombiner senario we have two instantiations, I1 and I2, of some rypto-

graphi primitive, e.g., two enryption shemes or two hash funtions. The goal is to build

a new ombined instantiation I of the primitive, whih remains seure even when one of

the underlying primitives is broken, as long as the other remains seure. In ontrast to

this lassial approah, we will show that ertain hash ombiners retain a provable level of

seurity even if all of the underlying hash funtions are ompromised, provided that the

two primitives are su�iently random and su�iently di�erent in a sense whih will be

made preise later.

1.1 Related Work

Joux's innovative attak foused attention on the seurity properties of hash ombiners

as his attak shows that the trivial ombiner does not improve over the seurity of the

underlying hash funtions. A line of researh onerning hash ombiners has followed,

demonstrating that seurity amplifying ombiners exist [6℄ and on the other hand proving

that any provably seure blak-box ombiner must preserve the total length of the under-

lying hash funtions [1, 15℄. Other responses to Joux's paper inlude Luks' [12℄ proposal of

the wide/double piped onstrutions whose aim was to overome the multiollision attak

by using a larger internal state. Luks' proposal is provably seure in the random orale

model against multiollisions. Maurer et al. [13℄ introdued the notion of indi�erentiability.

Similar to the onept of indistinguishability, this notion desribes a situation in whih

two systems are indistinguishable despite having extra aess to the internal struture of

the systems. Inspired by the generi attaks against the Merkle-Damgård iterated on-

strution, Coron et al. [3℄ operated within the indi�erentiability framework to show how

iterated hash funtions an be proved indi�erentiable from random orales in the ideal

ipher model.

1

Liskov further pursued this approah in [11℄ by introduing weak ompres-

sion funtions. A weak ompression funtion behaves like a random orale exept that the

adversary is given aess to orresponding inversion orales. Liskov presented a new hash

onstrution, the zipper hash, omposed of a pair of weak ompression funtions and using

the framework of Coron et al. proved it indi�erentiable from a random orale. In Joux's at-

tak he did not assume that the attaker an �nd ollisions in the underlying ompression

funtions faster than the birthday paradox bound. Joux then posed the question whether

the ability to �nd ollisions e�iently in both the underlying ompressions funtions an

help the attaker improve the omplexity of his attak.

1.2 Our Results

In this paper we prove that even in a very strong attak senario in whih the attaker

an �nd not only ollisions but even invert in unit time all the ompression funtions

on inputs of his hoie, the best attak against the onatenated onstrution is Joux's

multiollision attak with omplexity O
(

2n/2

)

. Furthermore, as an intermediate result we

show a streamable

2

hash onstrution, provably indi�erentiable from a random orale in

the model of weak ompression funtions, whih has the same rate as the non-streamable

zipper hash of Liskov [11℄. This result is then extended to prove that the double pipe

hash onstrution of Luks [12℄ is also indi�erentiable from a random orale in the same

model. We stress that the model of weak ompression funtions aptures all blak-box

generi attaks arising from ollision or preimage �nding attaks against the underlying

ompression funtions.

1.3 Paper Organization

Setion 2 desribes the model of weak ompression funtions and gives our notation for

the rest of the paper. Setion 3 proves the main result of the paper, namely that in the

model of weak ompression funtions, �nding ollisions in the onatenated hash ombiner

requires O
(

2n/2

)

operations. Finally, Setion 4 proves the indi�erentiability of Luks'

double pipe hash onstrution.

1

The underlying ompression funtion is modelled as an ideal ipher.

2

A hash onstrution in whih eah blok of the message an be proessed one and then be forgotten.

This is an essential requirement in appliations where the hash is omputed on the �y from a data

stream.

2

2 The Model

We �rst give a short desription of the iterated hash onstrution. An iterated hash funtion

F f : {0, 1}∗ → {0, 1}n
is built by iterating a basi ompression funtion f : {0, 1}m ×

{0, 1}n → {0, 1}n
as follows:

• Split a message M into k, m-bit bloks x1, . . . , xk.

• Set h0 = IV where IV is the initialization vetor.

• For eah message blok xi ompute hi = f (hi−1, xi).
• Output F f (M) = hk.

The lassial Merkle-Damgård onstrution also ontains padding and length enoding

whih we will ignore for the sake of simpliity sine they do not a�et our results.

Following Joux's open question, we will try to model a situation in whih the attaker

an e�iently �nd ollisions in either ompression funtion, but do not assume any other

speial properties of these olliding pairs. In fat we will give our adversary even stronger

orale aess and allow him to �nd in unit time random preimages of two di�erent types

as well. Formally, let f and g be ompression funtions from m + n bits to n bits, and let

F and G be the orresponding hash funtions built by instantiating the Merkle-Damgård

paradigm with f and g respetively. We will model f and g as random funtions provided

as blak box orales with additional respetive inversion orales.

We de�ne the following orales:

• f∗(x, ?, z) → (x, y, z) where y is hosen uniformly suh that f(x, y) = z, or ⊥ if no

suh y exists.

• f−1(?, y, z) → (x, y, z) where x is hosen uniformly suh that f(x, y) = z, or ⊥ if no

suh x exists.

• g∗(x, ?, z) → (x, y, z) where y is hosen uniformly suh that g(x, y) = z, or ⊥ if no

suh y exists.

• g−1(?, y, z) → (x, y, z) where x is hosen uniformly suh that g(x, y) = z, or ⊥ if no

suh x exists.

f and g queries will be alled forward queries, g−1
and f−1

queries will be alled bakward

queries and f∗
and g∗

queries will be alled bridging queries.

3

The slightly more ompli-

ated ase in whih these inverses are not uniformly distributes will be disussed at the

end of this setion. One should notie that while weak ompression funtions are indeed

weak in the sense that they allow trivial ollision and preimage attaks, there are some

operations in whih they do not assist at all. For example, given two haining values x1

and x2 �nding a message blok y suh that f(x1, y, ?) = f(x2, y, ?) still requires O
(

2n/2

)

queries.

We now introdue a slight modi�ation due to Liskov [11℄ of the framework of Coron et

al. [3℄ and Maurer et al. [13℄. This framework will enable us to prove that ertain hash

funtions based on weak ompression funtions are indi�erentiable from random orales.

Let Γ be an orale enapsulating f, f−1, f∗
,g, g−1

and g∗
.

De�nition 1 (indi�erentiability). A onstrution C is (q, ǫ) indi�erentiable in the

presene of Γ from a random orale RO if there exists a polynomial time simulator S,
suh that for every distinguisher D whih uses at most q orale queries (to either of the

orales),

∣

∣Pr[DC,Γ = 1] − Pr[DRO,SRO

= 1]
∣

∣ < ǫ

Notie that this de�nition is slightly di�erent from the usual notion of indistinguishability

in that the simulator, besides simulating the behavior of Γ , must also remain onsistent

with the random orale RO. The following example illustrates the problem. Let C be

an iterated hash funtion built from a ompression funtion f and assume that f is a

random orale. The pair (C, f) is di�erentiable from (RO, SRO) for any simulator S. The

3

Liskov in [11℄ used the term squeezing queries.

3

distinguisher D, when presented with a pair (A, B), performs the following queries h1 =
A(m1), h2 = B(h1, m2), h = A(m1m2). If h = h2 the distinguisher returns 1 and otherwise

0. When D is presented with the pair (C, f), the equality will always hold and Pr[DC,f =
1] = 1. On the other hand, for any simulator S, the probability over the random oins of

S and the random orale that SRO(m2) = RO(m1m2) is negligible. In this example, the

distinguisher worked sine the simulator ould not maintain the required onsisteny with

RO. So we see that S does not only need to simulate Γ per se but also needs to maintain

the relation of S relative to the RO, simulating the relationship between Γ and C as well.

Maurer et al. [13℄ proved that this de�nition of indi�erentiability will allow us to use the

onstrution C in plae of a random orale in any ryptography protool and retain the

same level of provable seurity.

Another subtle issue is the fat that in our ase Γ inludes inversion orales. Notie that

when f is a random funtion, a �xed fration of the queries f−1(?, y, z) do not have answers,
while other queries might have multiple possible answers. We have de�ned f−1

and f∗
to

return an answer uniformly distributed the possible answers, and thus the simulator S
must reprodue the same distribution of the number of inverses whih is known to be

Poisson.

4

If we would like to model inversion orales with a non-uniform distribution, the

simulator will need to model this distribution as well.

3 A Lower Bound

Using tehniques similar to those introdued by Coron et al. we will show that the on-

strution C(M) = F (M) ⊕ G(M) is indi�erentiable from a random orale RO when less

than O
(

2n/2

)

queries are performed. Sine �nding ollisions in H(M) = F (M)‖G(M)

implies �nding ollisions in C(M) as well, the indi�erentiability of C(M) will give us a

lower bound on the number of queries required to �nd a ollision in H(M) with non-

negligible probability. Notie that the same proof an be used for any onstrution of the

form H(M) = α(F (M), G(M)) for any n-bit funtion α whih is uniquely invertible when

its output and any one of its input parameters in known.

Let Γ be an orale implementing f, g, f−1, f∗, g−1
and g∗

. Let RO be a random orale

and let SRO
be an orale Turing mahine with the same blak-box interfae as Γ . In order

to prove the indi�erentiability result, we will give a hybrid argument and show that any

distinguisher D annot di�erentiate between interating with the pair (C, Γ) and the pair

(RO, SRO).

3.1 The Simulator S

We want the simulator SRO
to simulate Γ suh that for any distinguisher D, whih per-

forms q ≪ 2
n

2
queries

5

, |Pr[DC,Γ = 1]−Pr[DRO,S = 1]| is negligible. Obviously we would
like the simulator S to produe random responses to the simulated queries while maintain-

ing onsisteny. The naive approah would be to keep a list of all answers given so far and

eah time S reeives a new query, it will return a random value onsistent with the values

returned so far. Notie that there are two types of onsisteny involved: self onsisteny

4

Note that Liskov in [11℄ negleted to handle this problem, and therefore his simulator su�ers from the

fat that a distinguisher an query f−1
on a large number of random inputs and the simulator will

always return an inverse whereas a true random funtion will only have inverses for 1 − 1/e fration

of the inputs.

5

We will harge queries to C or RO di�erently than queries to Γ or S. An l blok message query to C
or RO will ost l queries. The reason for this di�erent ost will beome lear in the remainder of the

proof.

4

and onsisteny with the random orale RO. Handling the self onsisteny an be done

e�iently with the list of answers, however onsisteny with the random orale is a bit

more triky. The following de�nition will apture the essene of maintaining onsisteny

with the random orale.

De�nition 2 (Chains). A hain is a triplet (M, hf , hg), where M is a k blok message

and hf , hg are hash values. In addition we require that

f(f(...f(IV, m1), m2), ..), mk) = hf

g(g(...g(IV,m1), m2), ...), mk) = hg

and all the intermediate links are de�ned in the list of known values (i.e., have been queried

previously).

1
m

fIV
2

m km

fh

gIV
gh

1
m

2
m km

Fig. 1. Chains in the onatenated hash ombiner

The hains reate a tree struture, with the triplet (⊥, IVf , IVg) at the root. An edge

between (M, hf , hg) and (M‖mk+1, h
′

f , h′

g) orresponds to a pair of queries, linking hf to h′

f

and hg to h′

g with the same message blok mk+1. Eah node/hain in the tree orresponds

to a onstraint hf ⊕ hg = RO(M). The fat that with overwhelming probability the

hains form a tree rather than a general graph struture will be proven later. To maintain

onsisteny with the random orale RO, our naive S will examine eah new query and

hek if answering it will reate a hain. If the response reates a hain, S will return

a value onsistent with RO. As stated, however, this task may require exponential time.

Let us assume that the adversary uses a small number of alls to f and f∗
in order to

reate a exponential size multiollision in F . When reeiving a new g query, S must hek

exponentially many possible messages for G as there are that many messages with known

haining values for F . To overome this problem the simulator will maintain three data

strutures in order to perform its operation. The �rst two strutures Tf and Tg will ontain

expliit lists of the triplet answers given by S so far. The third struture will hold the tree

of hains reated so far. Notie that while the hain tree is implied from the �rst two lists,

keeping it expliitly allows the simulator to run in polynomial time.

We will show how S updates these strutures after eah query and uses them in order

to give onsistent answers. For eah forward query to f or g, S heks whether the value

is already de�ned in the orresponding data struture of triplets, and if so returns the

same value; if not, it returns a random value. To hek if the value is de�ned, S heks if

the query appears in its list of responses and additionally heks if the query ompletes

a hain, i.e., extends the hain tree. If the query ompletes a hain with message M , S
queries RO(M) and uses the answer to give a onsistent answer to the query. Notie that

although hains might be reated by bridging or bakward queries, we will show that this

will only happen with negligible probability and thus we an ignore these possibilities. In

fat, we will show that with very high probability the hain tree does not ontain any

hash value more than one. I.e., the ombined list of all x's and z's in the hain tree does

5

not ontain dupliates. Our main lemma will show that with high probability, the above

holds and hains are only reated though forward queries. This in turn will imply that the

answers S gives are onsistent with the random orale RO.

For bakward and bridging queries, S also needs to reprodue the preimage distribution of

Γ . In normal pratie, m is signi�antly larger than n and therefore, returning a random

value for bridging queries will reprodue the expeted preimage distribution with respet

to bridging queries. However, for bakward queries

6

, we need to reprodue a Poisson distri-

bution on the number of preimages. To this e�et, S will keep together with eah triplet, an

integer j that represents the number of answers to the query (?, y, z). Whenever a triplet

ontaining the pair (y, z) is reated for the �rst time, S generates j aording to a Poisson
distribution. If on a bakward query j = 0, S returns the triplet (⊥, y, z). For forward

and bridging queries, j is generated aording to a Poisson distribution onditioned on the

output being non-zero. In future bakward queries, S will return a uniform answer from

the j possible answers. If one of the j possible answers is not de�ned yet, S will simply

return a random value.

The simulator S formally ats as follows:

Forward queries

On input (x, y, ?):

1. Chek if there exists a triplet (x′, y′, z′) in the same

7

list and return that triplet if it

exists.

2. If no suh triplet exists, generate an integer j with Poisson distribution onditioned

on being non-zero.

3. Chek whether the query extends the hain tree.

4. If it does, query RO(M) where M is the message orresponding to the new hain, and

return the answer ompatible with RO(M).
5. Update the hain tree.

6. If no suh hain is found, return a uniformly distributed answer.

7. In any ase update the list of triplets with the answer and memorize the generated j.

Bakward queries

On input (?, y, z):

1. Chek if there exists a triplet (x′, y′, z′) in the same list with (y, z) = (y′, z′).
2. If no suh triplet exists, generate an integer j with Poisson distribution.

3. Choose uniformly from the j possible answers (some may not be de�ned yet).

4. If the hosen answer is not de�ned, generate a uniform answer x.
5. If j = 0, set x =⊥.
6. In any ase (even if j = 0) update the list of triplets with the answer and memorize

the generated j.

Bridging queries

On input (x, ?, z):

1. Generate a random y.
2. Generate an integer j with Poisson distribution onditioned on being non-zero.

3. Update the list of triplets with the answer and memorize the generated j.

3.2 The Indi�erentiability Proof

Our hybrid argument will have �ve settings. In the �rst setting, we simply have the pair

(RO, SRO). In the seond setting, we have the pair (RRO, SRO) where R simply relays the

6

The same speial treatment given to bakward queries an be given to bridging queries as well when

m is not signi�antly larger than n.
7

I.e., Tf for f queries and TG for g queries.

6

queries it reeives to RO and answers with the responses it gets from RO. Sine the view

of any distinguisher D is idential with both pairs, we learly have that

Pr[DRO,SRO

= 1] = Pr[DRRO

, SRO = 1]

In the third setting, we have the pair (RRO, S1
RO) in whih we slightly hange the simulator

S to S1 suh that when ertain unexpeted events our, S1 expliitly fails. Whenever an

unexpeted event ours, S1 fails expliitly, otherwise S1 behaves exatly as S does.

De�nition 3 (Unexpeted events). Let an unexpeted event be the event that during

an S query one of the following ours:

U1 During a forward query the answer triplet (x, y, z) is suh that there exists a triplet

(x′, y′, z′)8 in one of the lists, (x, y) 6= (x′, y′) and either z = z′
, z = x′

or z = IV .

U2 During a bakward query the answer triplet (x, y, z) is suh that there exists a triplet

(x′, y′, z′) in one of the lists, (y, z) 6= (y′, z′) and either x = x′
, or x = IV .

U3 During a bridging query the answer triplet (x, y, z) is suh that there exists a triplet

(x′, y′, z′) in one of the lists and y = y′
.

Lemma 1. For any distinguisher D, the probability over the random oins of S and the

random orale RO that one of the unexpeted events ours is O
(

q2

2n

)

.

Proof. We will prove that the probability of an unexpeted event ourring at query num-

ber i, onditioned on the event that so far no unexpeted events have ourred is O
(

q
2n

)

.

Using the union bound over all q queries we then get that the probability of the unexpeted

event is O
(

q2

2n

)

.

We will examine eah of the three possible unexpeted events and bound their probability.

We �rst analyze what happens if during the query, no hain is ompleted. In this ase,

for forward queries the answer triplet has a uniformly distributed z and therefore the

probability of z = z′
or z = x′

for any of the existing x′, z′
in the respetive list is bounded

by

2q
2n . For bridging queries, the answer triplet has a uniformly distributed y and therefore

the probability of y = y′
for any of the existing y′

in the o-respeting list is bounded by

2q
2m . For bakward queries the answer triplet has a uniformly distributed x and therefore

the probability of x = x′
or x = z′

for any of the existing x′, z′
in the respetive list is

bounded by

q
2n .

We now examine the ase in whih the query ompletes a hain. For a bakward and

bridging queries the simulator's answer does not depend on the fat that a hain has been

ompleted and therefore the probability of an unexpeted event is the same as before. For

forward queries, the response of the simulator is fully determined by RO(M). However, the
value of RO(M) is uniformly distributed and hene so is the simulator's answer. Therefore,

also in this ase the probability of U1 ourring is at most

2q
2n . Conluding, we have that

the probability of an unexpeted event ourring onditioned that no suh events have

happened so far is O
(

q
2n

)

. A union bound over all the queries gives us the bound O
(

q2

2n

)

as required.

9 ⊓⊔

Lemma 2.

1. If we ondition on the event that no unexpeted events our, then for every distin-

guisher the view when interating with the pair (RRO, SRO) is idential to view when

interating with the pair (RRO, S1
RO)

8

Throughout this de�nition, answer triplets of the form (⊥, y′, z′) are also onsidered.

9

Note that even though using the union bound is usually not tight, in this ase we get the birthday

bound whih is indeed tight.

7

2.

∣

∣Pr[DRRO,SRO

= 1] − Pr[DRRO ,S1
RO

= 1]
∣

∣ = O
(

q2

2n

)

Proof. Unless an unexpeted event ours, S1 behaves exatly the same as S. This proves
the �rst part of the lemma. Putting this result together with the fat that the probability

of an unexpeted event is bounded by O
(

q2

2n

)

, proves the seond part as well. ⊓⊔

Now we turn our attention to the fourth setting, in whih we examine the pair (R1
S1 , SRO

1),
where R1 answers its RO queries on input M by using S1 to alulate C(M). I.e., R1 queries

S on all the required f and g queries. Notie that a single query to R1 with an l-blok
message will result in l queries to S1, for this reason R1 queries ost l times more than a

S1 query.

Lemma 3. If no unexpeted events our, then hains are only reated by forward queries.

Proof. Notie that when a hain is reated, the message M is already determined. With

out loss of generality, let the query whih ompletes the hain be a f, f−1
or f∗

query. In

this ase, all the g triplets in the hain have already been made and in partiular, M is

de�ned. Now, if a hain were reated using a bridging query f∗
, then the answer triplet

(x, y, z) is suh that y ∈ M (as it ompletes a hain) and in partiular y appears in a triplet

in Tg, implying that the unexpeted event U2 ourred. If the hain were reated using a

bakward query f−1
, then as the answer query (x, y, z) ompleted a hain, we know that

x appears in a triplet in the Tf list or x = IV . Sine (x, y, z) did not appear in Tf prior

to the query (otherwise the hain would have been ompleted before) this implies that the

unexpeted event U3 has ourred. Therefore, if no unexpeted events our all hains are

reated by forward queries. ⊓⊔

Corollary 1. If no unexpeted events our, the hain data struture is a tree ontaining

all hains.

Proof. If a forward all reates a yle in the hain data struture, then unexpeted event

U1 ours. Hene, the hain data struture is a tree. Notie that if more that one hain is

reated during a forward all, then unexpeted event U1 has ourred previously (as there

are two idential nodes in the hain tree). Therefore, at most a single hain is reated

during eah forward all and the simulator traks them orretly. ⊓⊔

Lemma 4. Unless an unexpeted event ours, then for every distinguisher the view when

interating with the pair (RRO, S1
RO) is indi�erentiable from the view when interating

with the pair (R1
S1 , S1

RO).

Proof. The proof will demonstrate the following three points:

1. Unless an unexpeted event ours when interating with the pair (RRO, S1
RO), the

answers given by S1 are onsistent with those given by RRO
.

2. Unless an unexpeted event ours when interating with the pair (R1
S1 , S1

RO), the
answers given by S1 are onsistent with those given by R1

S
.

3. Unless an unexpeted event ours when interating either with the pair (RRO, S1
RO)

or with the pair (R1
S1 , S1

RO), the answers given by RRO
are exatly the same as those

given by R1
S
.

Proof of point 1 Notie that from Lemma 3 we know that hains are only ompleted

by forward queries. This implies that the simulator's answers are onsistent with the value

RO(M) for any message M . Sine RRO(M) simply replies with RO(M), the answers given
by both orales are onsistent.

8

Proof of point 2 The proof is similar to the proof of the previous point. The simulator's

answers are always onsistent with the value RO(M) for any message M and R1
S1(M) =

RO(M) sine the behavior of S1 ensures this result.

Proof of point 3 This point is obvious sine RRO(M) = RO(M) and also R1
S1(M) =

RO(M).
It now follows that unless an unexpeted event ours, the views generated by any distin-

guisher's interation with the pairs (RRO, S1
RO) and (R1

S1 , S1
RO) are indi�erentiable. ⊓⊔

We are now ready for the proof of our main theorem:

Theorem 1. The onstrution C(M) = F (M) ⊕ G(M), where F, G are iterated hash

funtions based on the ompression funtion f and g respetively, is indi�erentiable in

q ≪ 2n/2
queries from a random orale even in the presene of f−1, f∗, g−1

and g∗
orales.

Proof. Let S be the simulator de�ned above and let Γ be an orale enapsulating f , g,
f−1

, f∗
, g−1

and g∗
. We will prove that for any distinguisher D

|Pr[DC,Γ = 1] − Pr[DRO,SRO

= 1]| = O

(

q2

2n

)

The lemmas so far have shown that |Pr[DR
S1

1
,S1 = 1]−Pr[DRO,SRO

= 1]| = O
(

q2

2n

)

and

that S an be implemented in time polynomial in the number of queries q. It remains to

show that for any possible distinguisher the pairs (RS1

1 , S1
RO) and (C, Γ) are indi�eren-

tiable. Notie however that unless an unexpeted event ours, S exatly simulates Γ and

R1
S
exatly omputes C. This ompletes the proof. ⊓⊔

We have shown that the onstrution C(M) = F (M)⊕G(M) (or any n-bit funtion of F
and G whih is uniquely invertible when its output and any one of its input parameters is

known) is indi�erentiable in q ≪ 2n/2
queries from a random orale even in the presene of

f−1
, f∗

, g−1
and g∗

orales and hene �nding ollisions in H(M) = F (M)‖G(M) requires

O
(

2n/2

)

queries, mathing the known upper bound of Joux. Notie that the onstrution

C(M) = F (M) ⊕ G(M) requires the same amount of underlying funtion alls as the

zipper hash of Liskov, albeit having a larger internal state, while having the advantage of

being streamable.

3.3 Comments

Note that even though we have proved a lower bound on the number of alls to the

ompression funtions and hene on the running time of a ollision �nding attak, this

does not give a orresponding lower bound on the amount of memory required for the

attak. In fat we an use Pollard's rho algorithm to �nd suh a ollision using only a

linear amount of memory. Let M0,1
1 M0,1

2 ...M0,1
n andN0,1

1 N0,1
2 ...N0,1

n be Joux multiollisions

for F and G respetively. We de�ne two funtions r1, r2 s.t. r1(x) = F (Nx1

1 Nx2

2 ...Nxn
n)

and r2(x) = G(Mx1

1 Mx2

2 ...Mxn
n). We now use the rho algorithm to �nd a yle in the

path generated by iteratively alternating between appliations of r1 and r2. The memory

omplexity is O(n) while the time omplexity is O(n2
n

2).

4 Appliation to Luks' Double Pipe Proposal

The same proof framework an be used to prove other indi�erentiability results. For ex-

ample, the double pipe hash from [12℄ an also be proved indi�erentiable from a random

orale in the model of weak ompression funtions. Given a ompression funtion f , the
double pipe hash has a 2n bit internal state (r, s) and is de�ned as follows:

9

• Split a message M into k bloks eah of size (m − n) bits, x1, . . . , xk.

• Set r0 = IV1, s0 = IV2 where IV1 and IV2 are the initialization vetors.

• For eah message blok xi ompute ri = f (ri−1, si−1‖xi) and si = f (si−1, ri−1‖xi).
• Output DP f (M) = f(IV3, rk‖sk‖o

m−2n).
The double pipe hash is shematially desribed in Figure 2.

Fig. 2. Luks' double pipe hash (taken from [12℄)

Note that Luks proved that the double pipe hash is not vulnerable to multiollision or

multi-(seond)-preimage attaks when the underlying ompression funtion is modeled as

a random orale (or ideal ipher) whih has no weaknesses, while Liskov [11℄ laimed

(without proof) that the onstrution is indi�erentiable from a random orale if the two

pipes use two unrelated weak ompression funtions f and g. We will prove that the original

onstrution is indi�erentiable from a random orale even when the same funtion is used

in both pipes, and it is weak in the sense that the attaker is given both inversion and

bridging orales. Our proof will also hold if the �nal hash is replaed by a xor operation,

or any funtion whih is uniquely invertible when its output and any one of its input

parameters are known.

The proof outline is idential to the one presented in Setion 3; we will therefore only

give the main lemmas required. We start by giving an adequate de�nition of hains in

the double pipe hash, that following the example in setion 3 aptures the essene of

onsisteny between the simulator S and the random orale RO.

De�nition 4 (Double pipe hash hains). A (double pipe hash) hain is a triplet

M, h1, h2, where M is a k blok message and h1 and h2 are hash values. In addition

we require that

f(f(...f(IV1, s1‖m1), s2‖m2), ..), sk‖mk) = h1

f(f(...f(IV2, r1‖m1), r2‖m2), ...), rk‖mk) = h2

where ri is the haining value of the upper pipe after the �rst i bloks and si is the haining

value of the lower pipe after the same i bloks. We additionally require that all the inter-

mediate links are de�ned in the list of known values (i.e., have been queried previously).

The simulator will be idential to the one introdued in Setion 3 with the following

hanges: We will hange the simulator's behavior when a hain is ompleted with message

M . Without loss of generality, assume that the query whih ompleted the hain is in the

lower pipe. The simulator omputes the value z = RO(M), generates a random value d,
sets the triplet (IV3, rk‖d‖0

m−2n, z) and returns d as the response to the query.

The unexpeted events will now beome:

De�nition 5 (Double pipe unexpeted events). Let an unexpeted event be the

event that during a S query one of the following ours:

10

V1 During a forward query the answer triplet (x, y, z) is suh that there exists a triplet

(x′, y′, z′), (x, y) 6= (x′, y′) and either z = z′
, z = x′

or z = IV .

V ∗

1 During a forward query a hain is ompleted and the random value d generated is suh

that there exists a triplet (x′, y′, z′), and y = rk‖d‖0
m−2n, z).

V2 During a bakward query the answer triplet (x, y, z) is suh that there exists a triplet

(x′, y′, z′), (y, z) 6= (y′, z′) and either x = x′
, or z = IV .

V3 During a bridging query the answer triplet (x, y, z) is suh that there exists a triplet

(x′, y′, z′) and y = y′
.

Lemma 5. The probability over the random oins of S and the random orale RO, that

an unexpeted event ours is O
(

q2

2n

)

.

Proof. As before, we will prove that the probability of an unexpeted event ourring,

onditioned on the event that so far no unexpeted events have ourred is O
(

q
2n

)

. The

proof for events V1, V2 and V3 is idential to the proof for the orresponding events U1, U2

and U3. It remains to bound the probability of V ∗

1 . However, sine d is ompletely uniform,

we have that the probability is at most

q
2n . Using a union bound over all queries gives us

the required bound of O
(

q2

2n

)

. ⊓⊔

As in the proof in Setion 3, the main lemma will show that unless an unexpeted event

ours, hains are only reated during forward queries.

Lemma 6. If no unexpeted events our, then hains are only reated by forward queries.

Proof. As before, notie that when a hain is reated, the message M is already deter-

mined. Now, if a hain were reated using a bridging query f∗
, then the answer triplet

(x, y, z) is suh that y ∈ M (as it ompletes a hain) and in partiular y appears in an

existing triplet, implying that the unexpeted event V2 ourred. If the hain were reated

using a bakward query f−1
, then as the answer query (x, y, z) ompleted a hain, we

know that x appears in an existing triplet or x = IV . Sine (x, y, z) did not appear in the

list of triplets prior to the query (otherwise the hain would have been ompleted before)

this implies that the unexpeted event V3 has ourred. Therefore, if no unexpeted events

our all hains are reated by forward queries. ⊓⊔

Theorem 2. The double pipe hash onstrution is indi�erentiable from a random orale

in the model of weak ompression funtions.

Proof. The sequene of hybrids is the same as in the proof in Setion 3 and ulminates

with the required result. ⊓⊔

5 Conlusion

While the results of Joux [7℄, Kelsey and Shneier [9℄ and Kelsey and Kohno [8℄ have shown

that there are a number of surprising attaks when the attaker is allowed more than 2n/2

time, we have shown that there is a surprising amount of `life' below the 2n/2
barrier: Even

an adversary with the power to invert ompression funtions on inputs of his hoie in unit

time is still unable to di�erentiate between a variety of hash onstrutions and a random

orale. It seems that there are two main issues at the heart of our results. The �rst is the

assumed randomness of the ompression funtion, whih implies that with less than 2n/2

queries it is not feasible to use in an e�etive way the given inversion orales. The seond

issue is the fat that during the simulation the simulator needs to maintain onsisteny

with the random orale. In order to do this, the simulator must somehow `know' when the

queries given so far de�ne some �nal hash value. In all the examples we gave as well as in

the zipper hash[11℄ of Liskov, the onstrution of the ombined hash funtion is suh that

with overwhelming probability the simulator an always tell when a query determines the

output of the hash.

11

Referenes

1. D. Boneh and X. Boyen. On the impossibility of e�iently ombining ollision resistant

hash funtions. In Advanes in Cryptology�CRYPTO 2006, volume 4117 of Leture

Notes in Computer Siene, pages 570�583. Berlin: Springer-Verlag, 2006. Available

at http://www.s.stanford.edu/~xb/rypto06b/.

2. G. Brassard, editor. CRYPTO '89, Santa Barbara, California, USA, August0-24,

1989, Proeedings, volume 435 of Leture Notes in Computer Siene. Springer, 1990.

3. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damgård revisited: How

to onstrut a hash funtion. In CRYPTO'05, pages 430�448, 2005.

4. R. Cramer, editor. Advanes in Cryptology - EUROCRYPT 2005, 24th Annual In-

ternational Conferene on the Theory and Appliations of Cryptographi Tehniques,

Aarhus, Denmark, May 22-26, 2005, Proeedings, volume 3494 of Leture Notes in

Computer Siene. Springer, 2005.

5. I. Damgård. A Design Priniple for Hash Funtions. In Brassard [2℄, pages 416�427.

6. M. Fishlin and A. Lehmann. Seurity-amplifying ombiners for ollision-resistant

hash funtions. In A. Menezes, editor, CRYPTO, volume 4622 of Leture Notes in

Computer Siene, pages 224�243. Springer, 2007.

7. A. Joux. Multiollisions in Iterated Hash Funtions. Appliation to Casaded Con-

strutions. In M. K. Franklin, editor, CRYPTO'04, volume 3152 of Leture Notes in

Computer Siene, pages 306�316. Springer, 2004.

8. J. Kelsey and T. Kohno. Herding Hash Funtions and the Nostradamus Attak. In

S. Vaudenay, editor, EUROCRYPT'06, volume 4004 of Leture Notes in Computer

Siene, pages 183�200. Springer, 2006.

9. J. Kelsey and B. Shneier. Seond Preimages on n-Bit Hash Funtions for Muh Less

than 2

n

Work. In Cramer [4℄, pages 474�490.

10. V. Klima. Tunnels in Hash Funtions: MD5 Collisions Within a Minute. Cryptology

ePrint Arhive, Report 2006/105, 2006. http://eprint.iar.org/.

11. M. Liskov. Construting an ideal hash funtion from weak ideal ompression funtions.

In Seleted Areas in Cryptography, pages 358�375, 2006.

12. S. Luks. A Failure-Friendly Design Priniple for Hash Funtions. In B. K. Roy, editor,

ASIACRYPT'05, volume 3788 of Leture Notes in Computer Siene, pages 474�494.

Springer, 2005.

13. U. M. Maurer, R. Renner, and C. Holenstein. Indi�erentiability, impossibility results

on redutions, and appliations to the random orale methodology. In M. Naor, editor,

TCC, volume 2951 of Leture Notes in Computer Siene, pages 21�39. Springer, 2004.

14. R. C. Merkle. One Way Hash Funtions and DES. In Brassard [2℄, pages 428�446.

15. K. Pietrzak. Non-trivial blak-box ombiners for ollision-resistant hash-funtions

don't exist. In EUROCRYPT, pages 23�33, 2007.

16. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Funtions

MD4 and RIPEMD. In Cramer [4℄, pages 1�18.

17. X. Wang and H. Yu. How to Break MD5 and Other Hash Funtions. In Cramer [4℄,

pages 19�35.

18. X. Wang, H. Yu, and Y. L. Yin. E�ient Collision Searh Attaks on SHA-0. In

V. Shoup, editor, CRYPTO, volume 3621 of Leture Notes in Computer Siene, pages

1�16. Springer, 2005.

19. H. Yu, G. Wang, G. Zhang, and X. Wang. The Seond-Preimage Attak on MD4.

In Y. Desmedt, H. Wang, Y. Mu, and Y. Li, editors, CANS, volume 3810 of Leture

Notes in Computer Siene, pages 1�12. Springer, 2005.

12

