
On the Strength of the Con
atenated Hash

Combiner when All the Hash Fun
tions are Weak

Jonathan J. Ho
h and Adi Shamir

Department of Computer S
ien
e and Applied Mathemati
s,

The Weizmann Institute of S
ien
e, Israel

{yaakov.ho
h,adi.shamir}�weizmann.a
.il

Abstra
t. At Crypto 2004 Joux showed a novel atta
k against the
on
atenated hash

ombiner instantiated with Merkle-Damgård iterated hash fun
tions. His method of pro-

du
ing multi
ollisions in the Merkle-Damgård design was the �rst in a re
ent line of generi

atta
ks against the Merkle-Damgård
onstru
tion. In the same paper, Joux raised an open

question
on
erning the strength of the
on
atenated hash
ombiner and asked whether

his atta
k
an be improved when the atta
ker
an e�
iently �nd
ollisions in both un-

derlying
ompression fun
tions. We solve this open problem by showing that even in the

powerful adversarial s
enario �rst introdu
ed by Liskov (SAC 2006) in whi
h the underly-

ing
ompression fun
tions
an be fully inverted (whi
h implies that
ollisions
an be easily

generated),
ollisions in the
on
atenated hash
annot be
reated using fewer than 2n/2

queries. We then expand this result to in
lude the double pipe hash
onstru
tion of Lu
ks

from Asia
rypt 2005. One of the intermediate results is of interest on its own and provides

the �rst streamable
onstru
tion provably indi�erentiable from a random ora
le in this

model.

Key words: hash fun
tions,
ryptographi

ombiners, indi�erentiability.

1 Introdu
tion

Cryptanalysis of hash fun
tions has been a very a
tive area of resear
h in the past few years.

A �urry of atta
ks have been found against various hash fun
tions in
luding SHA-1 and the

MD variants (see [10, 16�19℄). Besides these atta
ks on spe
i�
 hash fun
tions, a number of

novel generi
 atta
ks against the Merkle-Damgård [5, 14℄ iterated
onstru
tion have been

published as well. These in
lude among others Joux's multi
ollision atta
k [7℄, Kelsey

and S
hneier's expandable message atta
k [9℄ and Kelsey and Kohno's herding atta
k [8℄.

Joux's multi
ollision atta
k demonstrates how to �nd
ollisions in a
on
atenated hash

onstru
tion H(M) = F (M)‖G(M) when at least one of the underlying hash fun
tions is

iterated.

In the
lassi

ombiner s
enario we have two instantiations, I1 and I2, of some
rypto-

graphi
 primitive, e.g., two en
ryption s
hemes or two hash fun
tions. The goal is to build

a new
ombined instantiation I of the primitive, whi
h remains se
ure even when one of

the underlying primitives is broken, as long as the other remains se
ure. In
ontrast to

this
lassi
al approa
h, we will show that
ertain hash
ombiners retain a provable level of

se
urity even if all of the underlying hash fun
tions are
ompromised, provided that the

two primitives are su�
iently random and su�
iently di�erent in a sense whi
h will be

made pre
ise later.

1.1 Related Work

Joux's innovative atta
k fo
used attention on the se
urity properties of hash
ombiners

as his atta
k shows that the trivial
ombiner does not improve over the se
urity of the

underlying hash fun
tions. A line of resear
h
on
erning hash
ombiners has followed,

demonstrating that se
urity amplifying
ombiners exist [6℄ and on the other hand proving

that any provably se
ure bla
k-box
ombiner must preserve the total length of the under-

lying hash fun
tions [1, 15℄. Other responses to Joux's paper in
lude Lu
ks' [12℄ proposal of

the wide/double piped
onstru
tions whose aim was to over
ome the multi
ollision atta
k

by using a larger internal state. Lu
ks' proposal is provably se
ure in the random ora
le

model against multi
ollisions. Maurer et al. [13℄ introdu
ed the notion of indi�erentiability.

Similar to the
on
ept of indistinguishability, this notion des
ribes a situation in whi
h

two systems are indistinguishable despite having extra a

ess to the internal stru
ture of

the systems. Inspired by the generi
 atta
ks against the Merkle-Damgård iterated
on-

stru
tion, Coron et al. [3℄ operated within the indi�erentiability framework to show how

iterated hash fun
tions
an be proved indi�erentiable from random ora
les in the ideal

ipher model.

1

Liskov further pursued this approa
h in [11℄ by introdu
ing weak
ompres-

sion fun
tions. A weak
ompression fun
tion behaves like a random ora
le ex
ept that the

adversary is given a

ess to
orresponding inversion ora
les. Liskov presented a new hash

onstru
tion, the zipper hash,
omposed of a pair of weak
ompression fun
tions and using

the framework of Coron et al. proved it indi�erentiable from a random ora
le. In Joux's at-

ta
k he did not assume that the atta
ker
an �nd
ollisions in the underlying
ompression

fun
tions faster than the birthday paradox bound. Joux then posed the question whether

the ability to �nd
ollisions e�
iently in both the underlying
ompressions fun
tions
an

help the atta
ker improve the
omplexity of his atta
k.

1.2 Our Results

In this paper we prove that even in a very strong atta
k s
enario in whi
h the atta
ker

an �nd not only
ollisions but even invert in unit time all the
ompression fun
tions

on inputs of his
hoi
e, the best atta
k against the
on
atenated
onstru
tion is Joux's

multi
ollision atta
k with
omplexity O
(

2n/2

)

. Furthermore, as an intermediate result we

show a streamable

2

hash
onstru
tion, provably indi�erentiable from a random ora
le in

the model of weak
ompression fun
tions, whi
h has the same rate as the non-streamable

zipper hash of Liskov [11℄. This result is then extended to prove that the double pipe

hash
onstru
tion of Lu
ks [12℄ is also indi�erentiable from a random ora
le in the same

model. We stress that the model of weak
ompression fun
tions
aptures all bla
k-box

generi
 atta
ks arising from
ollision or preimage �nding atta
ks against the underlying

ompression fun
tions.

1.3 Paper Organization

Se
tion 2 des
ribes the model of weak
ompression fun
tions and gives our notation for

the rest of the paper. Se
tion 3 proves the main result of the paper, namely that in the

model of weak
ompression fun
tions, �nding
ollisions in the
on
atenated hash
ombiner

requires O
(

2n/2

)

operations. Finally, Se
tion 4 proves the indi�erentiability of Lu
ks'

double pipe hash
onstru
tion.

1

The underlying
ompression fun
tion is modelled as an ideal
ipher.

2

A hash
onstru
tion in whi
h ea
h blo
k of the message
an be pro
essed on
e and then be forgotten.

This is an essential requirement in appli
ations where the hash is
omputed on the �y from a data

stream.

2

2 The Model

We �rst give a short des
ription of the iterated hash
onstru
tion. An iterated hash fun
tion

F f : {0, 1}∗ → {0, 1}n
is built by iterating a basi

ompression fun
tion f : {0, 1}m ×

{0, 1}n → {0, 1}n
as follows:

• Split a message M into k, m-bit blo
ks x1, . . . , xk.

• Set h0 = IV where IV is the initialization ve
tor.

• For ea
h message blo
k xi
ompute hi = f (hi−1, xi).
• Output F f (M) = hk.

The
lassi
al Merkle-Damgård
onstru
tion also
ontains padding and length en
oding

whi
h we will ignore for the sake of simpli
ity sin
e they do not a�e
t our results.

Following Joux's open question, we will try to model a situation in whi
h the atta
ker

an e�
iently �nd
ollisions in either
ompression fun
tion, but do not assume any other

spe
ial properties of these
olliding pairs. In fa
t we will give our adversary even stronger

ora
le a

ess and allow him to �nd in unit time random preimages of two di�erent types

as well. Formally, let f and g be
ompression fun
tions from m + n bits to n bits, and let

F and G be the
orresponding hash fun
tions built by instantiating the Merkle-Damgård

paradigm with f and g respe
tively. We will model f and g as random fun
tions provided

as bla
k box ora
les with additional respe
tive inversion ora
les.

We de�ne the following ora
les:

• f∗(x, ?, z) → (x, y, z) where y is
hosen uniformly su
h that f(x, y) = z, or ⊥ if no

su
h y exists.

• f−1(?, y, z) → (x, y, z) where x is
hosen uniformly su
h that f(x, y) = z, or ⊥ if no

su
h x exists.

• g∗(x, ?, z) → (x, y, z) where y is
hosen uniformly su
h that g(x, y) = z, or ⊥ if no

su
h y exists.

• g−1(?, y, z) → (x, y, z) where x is
hosen uniformly su
h that g(x, y) = z, or ⊥ if no

su
h x exists.

f and g queries will be
alled forward queries, g−1
and f−1

queries will be
alled ba
kward

queries and f∗
and g∗

queries will be
alled bridging queries.

3

The slightly more
ompli-

ated
ase in whi
h these inverses are not uniformly distributes will be dis
ussed at the

end of this se
tion. One should noti
e that while weak
ompression fun
tions are indeed

weak in the sense that they allow trivial
ollision and preimage atta
ks, there are some

operations in whi
h they do not assist at all. For example, given two
haining values x1

and x2 �nding a message blo
k y su
h that f(x1, y, ?) = f(x2, y, ?) still requires O
(

2n/2

)

queries.

We now introdu
e a slight modi�
ation due to Liskov [11℄ of the framework of Coron et

al. [3℄ and Maurer et al. [13℄. This framework will enable us to prove that
ertain hash

fun
tions based on weak
ompression fun
tions are indi�erentiable from random ora
les.

Let Γ be an ora
le en
apsulating f, f−1, f∗
,g, g−1

and g∗
.

De�nition 1 (indi�erentiability). A
onstru
tion C is (q, ǫ) indi�erentiable in the

presen
e of Γ from a random ora
le RO if there exists a polynomial time simulator S,
su
h that for every distinguisher D whi
h uses at most q ora
le queries (to either of the

ora
les),

∣

∣Pr[DC,Γ = 1] − Pr[DRO,SRO

= 1]
∣

∣ < ǫ

Noti
e that this de�nition is slightly di�erent from the usual notion of indistinguishability

in that the simulator, besides simulating the behavior of Γ , must also remain
onsistent

with the random ora
le RO. The following example illustrates the problem. Let C be

an iterated hash fun
tion built from a
ompression fun
tion f and assume that f is a

random ora
le. The pair (C, f) is di�erentiable from (RO, SRO) for any simulator S. The

3

Liskov in [11℄ used the term squeezing queries.

3

distinguisher D, when presented with a pair (A, B), performs the following queries h1 =
A(m1), h2 = B(h1, m2), h = A(m1m2). If h = h2 the distinguisher returns 1 and otherwise

0. When D is presented with the pair (C, f), the equality will always hold and Pr[DC,f =
1] = 1. On the other hand, for any simulator S, the probability over the random
oins of

S and the random ora
le that SRO(m2) = RO(m1m2) is negligible. In this example, the

distinguisher worked sin
e the simulator
ould not maintain the required
onsisten
y with

RO. So we see that S does not only need to simulate Γ per se but also needs to maintain

the relation of S relative to the RO, simulating the relationship between Γ and C as well.

Maurer et al. [13℄ proved that this de�nition of indi�erentiability will allow us to use the

onstru
tion C in pla
e of a random ora
le in any
ryptography proto
ol and retain the

same level of provable se
urity.

Another subtle issue is the fa
t that in our
ase Γ in
ludes inversion ora
les. Noti
e that

when f is a random fun
tion, a �xed fra
tion of the queries f−1(?, y, z) do not have answers,
while other queries might have multiple possible answers. We have de�ned f−1

and f∗
to

return an answer uniformly distributed the possible answers, and thus the simulator S
must reprodu
e the same distribution of the number of inverses whi
h is known to be

Poisson.

4

If we would like to model inversion ora
les with a non-uniform distribution, the

simulator will need to model this distribution as well.

3 A Lower Bound

Using te
hniques similar to those introdu
ed by Coron et al. we will show that the
on-

stru
tion C(M) = F (M) ⊕ G(M) is indi�erentiable from a random ora
le RO when less

than O
(

2n/2

)

queries are performed. Sin
e �nding
ollisions in H(M) = F (M)‖G(M)

implies �nding
ollisions in C(M) as well, the indi�erentiability of C(M) will give us a

lower bound on the number of queries required to �nd a
ollision in H(M) with non-

negligible probability. Noti
e that the same proof
an be used for any
onstru
tion of the

form H(M) = α(F (M), G(M)) for any n-bit fun
tion α whi
h is uniquely invertible when

its output and any one of its input parameters in known.

Let Γ be an ora
le implementing f, g, f−1, f∗, g−1
and g∗

. Let RO be a random ora
le

and let SRO
be an ora
le Turing ma
hine with the same bla
k-box interfa
e as Γ . In order

to prove the indi�erentiability result, we will give a hybrid argument and show that any

distinguisher D
annot di�erentiate between intera
ting with the pair (C, Γ) and the pair

(RO, SRO).

3.1 The Simulator S

We want the simulator SRO
to simulate Γ su
h that for any distinguisher D, whi
h per-

forms q ≪ 2
n

2
queries

5

, |Pr[DC,Γ = 1]−Pr[DRO,S = 1]| is negligible. Obviously we would
like the simulator S to produ
e random responses to the simulated queries while maintain-

ing
onsisten
y. The naive approa
h would be to keep a list of all answers given so far and

ea
h time S re
eives a new query, it will return a random value
onsistent with the values

returned so far. Noti
e that there are two types of
onsisten
y involved: self
onsisten
y

4

Note that Liskov in [11℄ negle
ted to handle this problem, and therefore his simulator su�ers from the

fa
t that a distinguisher
an query f−1
on a large number of random inputs and the simulator will

always return an inverse whereas a true random fun
tion will only have inverses for 1 − 1/e fra
tion

of the inputs.

5

We will
harge queries to C or RO di�erently than queries to Γ or S. An l blo
k message query to C
or RO will
ost l queries. The reason for this di�erent
ost will be
ome
lear in the remainder of the

proof.

4

and
onsisten
y with the random ora
le RO. Handling the self
onsisten
y
an be done

e�
iently with the list of answers, however
onsisten
y with the random ora
le is a bit

more tri
ky. The following de�nition will
apture the essen
e of maintaining
onsisten
y

with the random ora
le.

De�nition 2 (Chains). A
hain is a triplet (M, hf , hg), where M is a k blo
k message

and hf , hg are hash values. In addition we require that

f(f(...f(IV, m1), m2), ..), mk) = hf

g(g(...g(IV,m1), m2), ...), mk) = hg

and all the intermediate links are de�ned in the list of known values (i.e., have been queried

previously).

1
m

fIV
2

m km

fh

gIV
gh

1
m

2
m km

Fig. 1. Chains in the
on
atenated hash
ombiner

The
hains
reate a tree stru
ture, with the triplet (⊥, IVf , IVg) at the root. An edge

between (M, hf , hg) and (M‖mk+1, h
′

f , h′

g)
orresponds to a pair of queries, linking hf to h′

f

and hg to h′

g with the same message blo
k mk+1. Ea
h node/
hain in the tree
orresponds

to a
onstraint hf ⊕ hg = RO(M). The fa
t that with overwhelming probability the

hains form a tree rather than a general graph stru
ture will be proven later. To maintain

onsisten
y with the random ora
le RO, our naive S will examine ea
h new query and

he
k if answering it will
reate a
hain. If the response
reates a
hain, S will return

a value
onsistent with RO. As stated, however, this task may require exponential time.

Let us assume that the adversary uses a small number of
alls to f and f∗
in order to

reate a exponential size multi
ollision in F . When re
eiving a new g query, S must
he
k

exponentially many possible messages for G as there are that many messages with known

haining values for F . To over
ome this problem the simulator will maintain three data

stru
tures in order to perform its operation. The �rst two stru
tures Tf and Tg will
ontain

expli
it lists of the triplet answers given by S so far. The third stru
ture will hold the tree

of
hains
reated so far. Noti
e that while the
hain tree is implied from the �rst two lists,

keeping it expli
itly allows the simulator to run in polynomial time.

We will show how S updates these stru
tures after ea
h query and uses them in order

to give
onsistent answers. For ea
h forward query to f or g, S
he
ks whether the value

is already de�ned in the
orresponding data stru
ture of triplets, and if so returns the

same value; if not, it returns a random value. To
he
k if the value is de�ned, S
he
ks if

the query appears in its list of responses and additionally
he
ks if the query
ompletes

a
hain, i.e., extends the
hain tree. If the query
ompletes a
hain with message M , S
queries RO(M) and uses the answer to give a
onsistent answer to the query. Noti
e that

although
hains might be
reated by bridging or ba
kward queries, we will show that this

will only happen with negligible probability and thus we
an ignore these possibilities. In

fa
t, we will show that with very high probability the
hain tree does not
ontain any

hash value more than on
e. I.e., the
ombined list of all x's and z's in the
hain tree does

5

not
ontain dupli
ates. Our main lemma will show that with high probability, the above

holds and
hains are only
reated though forward queries. This in turn will imply that the

answers S gives are
onsistent with the random ora
le RO.

For ba
kward and bridging queries, S also needs to reprodu
e the preimage distribution of

Γ . In normal pra
ti
e, m is signi�
antly larger than n and therefore, returning a random

value for bridging queries will reprodu
e the expe
ted preimage distribution with respe
t

to bridging queries. However, for ba
kward queries

6

, we need to reprodu
e a Poisson distri-

bution on the number of preimages. To this e�e
t, S will keep together with ea
h triplet, an

integer j that represents the number of answers to the query (?, y, z). Whenever a triplet

ontaining the pair (y, z) is
reated for the �rst time, S generates j a

ording to a Poisson
distribution. If on a ba
kward query j = 0, S returns the triplet (⊥, y, z). For forward

and bridging queries, j is generated a

ording to a Poisson distribution
onditioned on the

output being non-zero. In future ba
kward queries, S will return a uniform answer from

the j possible answers. If one of the j possible answers is not de�ned yet, S will simply

return a random value.

The simulator S formally a
ts as follows:

Forward queries

On input (x, y, ?):

1. Che
k if there exists a triplet (x′, y′, z′) in the same

7

list and return that triplet if it

exists.

2. If no su
h triplet exists, generate an integer j with Poisson distribution
onditioned

on being non-zero.

3. Che
k whether the query extends the
hain tree.

4. If it does, query RO(M) where M is the message
orresponding to the new
hain, and

return the answer
ompatible with RO(M).
5. Update the
hain tree.

6. If no su
h
hain is found, return a uniformly distributed answer.

7. In any
ase update the list of triplets with the answer and memorize the generated j.

Ba
kward queries

On input (?, y, z):

1. Che
k if there exists a triplet (x′, y′, z′) in the same list with (y, z) = (y′, z′).
2. If no su
h triplet exists, generate an integer j with Poisson distribution.

3. Choose uniformly from the j possible answers (some may not be de�ned yet).

4. If the
hosen answer is not de�ned, generate a uniform answer x.
5. If j = 0, set x =⊥.
6. In any
ase (even if j = 0) update the list of triplets with the answer and memorize

the generated j.

Bridging queries

On input (x, ?, z):

1. Generate a random y.
2. Generate an integer j with Poisson distribution
onditioned on being non-zero.

3. Update the list of triplets with the answer and memorize the generated j.

3.2 The Indi�erentiability Proof

Our hybrid argument will have �ve settings. In the �rst setting, we simply have the pair

(RO, SRO). In the se
ond setting, we have the pair (RRO, SRO) where R simply relays the

6

The same spe
ial treatment given to ba
kward queries
an be given to bridging queries as well when

m is not signi�
antly larger than n.
7

I.e., Tf for f queries and TG for g queries.

6

queries it re
eives to RO and answers with the responses it gets from RO. Sin
e the view

of any distinguisher D is identi
al with both pairs, we
learly have that

Pr[DRO,SRO

= 1] = Pr[DRRO

, SRO = 1]

In the third setting, we have the pair (RRO, S1
RO) in whi
h we slightly
hange the simulator

S to S1 su
h that when
ertain unexpe
ted events o

ur, S1 expli
itly fails. Whenever an

unexpe
ted event o

urs, S1 fails expli
itly, otherwise S1 behaves exa
tly as S does.

De�nition 3 (Unexpe
ted events). Let an unexpe
ted event be the event that during

an S query one of the following o

urs:

U1 During a forward query the answer triplet (x, y, z) is su
h that there exists a triplet

(x′, y′, z′)8 in one of the lists, (x, y) 6= (x′, y′) and either z = z′
, z = x′

or z = IV .

U2 During a ba
kward query the answer triplet (x, y, z) is su
h that there exists a triplet

(x′, y′, z′) in one of the lists, (y, z) 6= (y′, z′) and either x = x′
, or x = IV .

U3 During a bridging query the answer triplet (x, y, z) is su
h that there exists a triplet

(x′, y′, z′) in one of the lists and y = y′
.

Lemma 1. For any distinguisher D, the probability over the random
oins of S and the

random ora
le RO that one of the unexpe
ted events o

urs is O
(

q2

2n

)

.

Proof. We will prove that the probability of an unexpe
ted event o

urring at query num-

ber i,
onditioned on the event that so far no unexpe
ted events have o

urred is O
(

q
2n

)

.

Using the union bound over all q queries we then get that the probability of the unexpe
ted

event is O
(

q2

2n

)

.

We will examine ea
h of the three possible unexpe
ted events and bound their probability.

We �rst analyze what happens if during the query, no
hain is
ompleted. In this
ase,

for forward queries the answer triplet has a uniformly distributed z and therefore the

probability of z = z′
or z = x′

for any of the existing x′, z′
in the respe
tive list is bounded

by

2q
2n . For bridging queries, the answer triplet has a uniformly distributed y and therefore

the probability of y = y′
for any of the existing y′

in the
o-respe
ting list is bounded by

2q
2m . For ba
kward queries the answer triplet has a uniformly distributed x and therefore

the probability of x = x′
or x = z′

for any of the existing x′, z′
in the respe
tive list is

bounded by

q
2n .

We now examine the
ase in whi
h the query
ompletes a
hain. For a ba
kward and

bridging queries the simulator's answer does not depend on the fa
t that a
hain has been

ompleted and therefore the probability of an unexpe
ted event is the same as before. For

forward queries, the response of the simulator is fully determined by RO(M). However, the
value of RO(M) is uniformly distributed and hen
e so is the simulator's answer. Therefore,

also in this
ase the probability of U1 o

urring is at most

2q
2n . Con
luding, we have that

the probability of an unexpe
ted event o

urring
onditioned that no su
h events have

happened so far is O
(

q
2n

)

. A union bound over all the queries gives us the bound O
(

q2

2n

)

as required.

9 ⊓⊔

Lemma 2.

1. If we
ondition on the event that no unexpe
ted events o

ur, then for every distin-

guisher the view when intera
ting with the pair (RRO, SRO) is identi
al to view when

intera
ting with the pair (RRO, S1
RO)

8

Throughout this de�nition, answer triplets of the form (⊥, y′, z′) are also
onsidered.

9

Note that even though using the union bound is usually not tight, in this
ase we get the birthday

bound whi
h is indeed tight.

7

2.

∣

∣Pr[DRRO,SRO

= 1] − Pr[DRRO ,S1
RO

= 1]
∣

∣ = O
(

q2

2n

)

Proof. Unless an unexpe
ted event o

urs, S1 behaves exa
tly the same as S. This proves
the �rst part of the lemma. Putting this result together with the fa
t that the probability

of an unexpe
ted event is bounded by O
(

q2

2n

)

, proves the se
ond part as well. ⊓⊔

Now we turn our attention to the fourth setting, in whi
h we examine the pair (R1
S1 , SRO

1),
where R1 answers its RO queries on input M by using S1 to
al
ulate C(M). I.e., R1 queries

S on all the required f and g queries. Noti
e that a single query to R1 with an l-blo
k
message will result in l queries to S1, for this reason R1 queries
ost l times more than a

S1 query.

Lemma 3. If no unexpe
ted events o

ur, then
hains are only
reated by forward queries.

Proof. Noti
e that when a
hain is
reated, the message M is already determined. With

out loss of generality, let the query whi
h
ompletes the
hain be a f, f−1
or f∗

query. In

this
ase, all the g triplets in the
hain have already been made and in parti
ular, M is

de�ned. Now, if a
hain were
reated using a bridging query f∗
, then the answer triplet

(x, y, z) is su
h that y ∈ M (as it
ompletes a
hain) and in parti
ular y appears in a triplet

in Tg, implying that the unexpe
ted event U2 o

urred. If the
hain were
reated using a

ba
kward query f−1
, then as the answer query (x, y, z)
ompleted a
hain, we know that

x appears in a triplet in the Tf list or x = IV . Sin
e (x, y, z) did not appear in Tf prior

to the query (otherwise the
hain would have been
ompleted before) this implies that the

unexpe
ted event U3 has o

urred. Therefore, if no unexpe
ted events o

ur all
hains are

reated by forward queries. ⊓⊔

Corollary 1. If no unexpe
ted events o

ur, the
hain data stru
ture is a tree
ontaining

all
hains.

Proof. If a forward
all
reates a
y
le in the
hain data stru
ture, then unexpe
ted event

U1 o

urs. Hen
e, the
hain data stru
ture is a tree. Noti
e that if more that one
hain is

reated during a forward
all, then unexpe
ted event U1 has o

urred previously (as there

are two identi
al nodes in the
hain tree). Therefore, at most a single
hain is
reated

during ea
h forward
all and the simulator tra
ks them
orre
tly. ⊓⊔

Lemma 4. Unless an unexpe
ted event o

urs, then for every distinguisher the view when

intera
ting with the pair (RRO, S1
RO) is indi�erentiable from the view when intera
ting

with the pair (R1
S1 , S1

RO).

Proof. The proof will demonstrate the following three points:

1. Unless an unexpe
ted event o

urs when intera
ting with the pair (RRO, S1
RO), the

answers given by S1 are
onsistent with those given by RRO
.

2. Unless an unexpe
ted event o

urs when intera
ting with the pair (R1
S1 , S1

RO), the
answers given by S1 are
onsistent with those given by R1

S
.

3. Unless an unexpe
ted event o

urs when intera
ting either with the pair (RRO, S1
RO)

or with the pair (R1
S1 , S1

RO), the answers given by RRO
are exa
tly the same as those

given by R1
S
.

Proof of point 1 Noti
e that from Lemma 3 we know that
hains are only
ompleted

by forward queries. This implies that the simulator's answers are
onsistent with the value

RO(M) for any message M . Sin
e RRO(M) simply replies with RO(M), the answers given
by both ora
les are
onsistent.

8

Proof of point 2 The proof is similar to the proof of the previous point. The simulator's

answers are always
onsistent with the value RO(M) for any message M and R1
S1(M) =

RO(M) sin
e the behavior of S1 ensures this result.

Proof of point 3 This point is obvious sin
e RRO(M) = RO(M) and also R1
S1(M) =

RO(M).
It now follows that unless an unexpe
ted event o

urs, the views generated by any distin-

guisher's intera
tion with the pairs (RRO, S1
RO) and (R1

S1 , S1
RO) are indi�erentiable. ⊓⊔

We are now ready for the proof of our main theorem:

Theorem 1. The
onstru
tion C(M) = F (M) ⊕ G(M), where F, G are iterated hash

fun
tions based on the
ompression fun
tion f and g respe
tively, is indi�erentiable in

q ≪ 2n/2
queries from a random ora
le even in the presen
e of f−1, f∗, g−1

and g∗
ora
les.

Proof. Let S be the simulator de�ned above and let Γ be an ora
le en
apsulating f , g,
f−1

, f∗
, g−1

and g∗
. We will prove that for any distinguisher D

|Pr[DC,Γ = 1] − Pr[DRO,SRO

= 1]| = O

(

q2

2n

)

The lemmas so far have shown that |Pr[DR
S1

1
,S1 = 1]−Pr[DRO,SRO

= 1]| = O
(

q2

2n

)

and

that S
an be implemented in time polynomial in the number of queries q. It remains to

show that for any possible distinguisher the pairs (RS1

1 , S1
RO) and (C, Γ) are indi�eren-

tiable. Noti
e however that unless an unexpe
ted event o

urs, S exa
tly simulates Γ and

R1
S
exa
tly
omputes C. This
ompletes the proof. ⊓⊔

We have shown that the
onstru
tion C(M) = F (M)⊕G(M) (or any n-bit fun
tion of F
and G whi
h is uniquely invertible when its output and any one of its input parameters is

known) is indi�erentiable in q ≪ 2n/2
queries from a random ora
le even in the presen
e of

f−1
, f∗

, g−1
and g∗

ora
les and hen
e �nding
ollisions in H(M) = F (M)‖G(M) requires

O
(

2n/2

)

queries, mat
hing the known upper bound of Joux. Noti
e that the
onstru
tion

C(M) = F (M) ⊕ G(M) requires the same amount of underlying fun
tion
alls as the

zipper hash of Liskov, albeit having a larger internal state, while having the advantage of

being streamable.

3.3 Comments

Note that even though we have proved a lower bound on the number of
alls to the

ompression fun
tions and hen
e on the running time of a
ollision �nding atta
k, this

does not give a
orresponding lower bound on the amount of memory required for the

atta
k. In fa
t we
an use Pollard's rho algorithm to �nd su
h a
ollision using only a

linear amount of memory. Let M0,1
1 M0,1

2 ...M0,1
n andN0,1

1 N0,1
2 ...N0,1

n be Joux multi
ollisions

for F and G respe
tively. We de�ne two fun
tions r1, r2 s.t. r1(x) = F (Nx1

1 Nx2

2 ...Nxn
n)

and r2(x) = G(Mx1

1 Mx2

2 ...Mxn
n). We now use the rho algorithm to �nd a
y
le in the

path generated by iteratively alternating between appli
ations of r1 and r2. The memory

omplexity is O(n) while the time
omplexity is O(n2
n

2).

4 Appli
ation to Lu
ks' Double Pipe Proposal

The same proof framework
an be used to prove other indi�erentiability results. For ex-

ample, the double pipe hash from [12℄
an also be proved indi�erentiable from a random

ora
le in the model of weak
ompression fun
tions. Given a
ompression fun
tion f , the
double pipe hash has a 2n bit internal state (r, s) and is de�ned as follows:

9

• Split a message M into k blo
ks ea
h of size (m − n) bits, x1, . . . , xk.

• Set r0 = IV1, s0 = IV2 where IV1 and IV2 are the initialization ve
tors.

• For ea
h message blo
k xi
ompute ri = f (ri−1, si−1‖xi) and si = f (si−1, ri−1‖xi).
• Output DP f (M) = f(IV3, rk‖sk‖o

m−2n).
The double pipe hash is s
hemati
ally des
ribed in Figure 2.

Fig. 2. Lu
ks' double pipe hash (taken from [12℄)

Note that Lu
ks proved that the double pipe hash is not vulnerable to multi
ollision or

multi-(se
ond)-preimage atta
ks when the underlying
ompression fun
tion is modeled as

a random ora
le (or ideal
ipher) whi
h has no weaknesses, while Liskov [11℄
laimed

(without proof) that the
onstru
tion is indi�erentiable from a random ora
le if the two

pipes use two unrelated weak
ompression fun
tions f and g. We will prove that the original

onstru
tion is indi�erentiable from a random ora
le even when the same fun
tion is used

in both pipes, and it is weak in the sense that the atta
ker is given both inversion and

bridging ora
les. Our proof will also hold if the �nal hash is repla
ed by a xor operation,

or any fun
tion whi
h is uniquely invertible when its output and any one of its input

parameters are known.

The proof outline is identi
al to the one presented in Se
tion 3; we will therefore only

give the main lemmas required. We start by giving an adequate de�nition of
hains in

the double pipe hash, that following the example in se
tion 3
aptures the essen
e of

onsisten
y between the simulator S and the random ora
le RO.

De�nition 4 (Double pipe hash
hains). A (double pipe hash)
hain is a triplet

M, h1, h2, where M is a k blo
k message and h1 and h2 are hash values. In addition

we require that

f(f(...f(IV1, s1‖m1), s2‖m2), ..), sk‖mk) = h1

f(f(...f(IV2, r1‖m1), r2‖m2), ...), rk‖mk) = h2

where ri is the
haining value of the upper pipe after the �rst i blo
ks and si is the
haining

value of the lower pipe after the same i blo
ks. We additionally require that all the inter-

mediate links are de�ned in the list of known values (i.e., have been queried previously).

The simulator will be identi
al to the one introdu
ed in Se
tion 3 with the following

hanges: We will
hange the simulator's behavior when a
hain is
ompleted with message

M . Without loss of generality, assume that the query whi
h
ompleted the
hain is in the

lower pipe. The simulator
omputes the value z = RO(M), generates a random value d,
sets the triplet (IV3, rk‖d‖0

m−2n, z) and returns d as the response to the query.

The unexpe
ted events will now be
ome:

De�nition 5 (Double pipe unexpe
ted events). Let an unexpe
ted event be the

event that during a S query one of the following o

urs:

10

V1 During a forward query the answer triplet (x, y, z) is su
h that there exists a triplet

(x′, y′, z′), (x, y) 6= (x′, y′) and either z = z′
, z = x′

or z = IV .

V ∗

1 During a forward query a
hain is
ompleted and the random value d generated is su
h

that there exists a triplet (x′, y′, z′), and y = rk‖d‖0
m−2n, z).

V2 During a ba
kward query the answer triplet (x, y, z) is su
h that there exists a triplet

(x′, y′, z′), (y, z) 6= (y′, z′) and either x = x′
, or z = IV .

V3 During a bridging query the answer triplet (x, y, z) is su
h that there exists a triplet

(x′, y′, z′) and y = y′
.

Lemma 5. The probability over the random
oins of S and the random ora
le RO, that

an unexpe
ted event o

urs is O
(

q2

2n

)

.

Proof. As before, we will prove that the probability of an unexpe
ted event o

urring,

onditioned on the event that so far no unexpe
ted events have o

urred is O
(

q
2n

)

. The

proof for events V1, V2 and V3 is identi
al to the proof for the
orresponding events U1, U2

and U3. It remains to bound the probability of V ∗

1 . However, sin
e d is
ompletely uniform,

we have that the probability is at most

q
2n . Using a union bound over all queries gives us

the required bound of O
(

q2

2n

)

. ⊓⊔

As in the proof in Se
tion 3, the main lemma will show that unless an unexpe
ted event

o

urs,
hains are only
reated during forward queries.

Lemma 6. If no unexpe
ted events o

ur, then
hains are only
reated by forward queries.

Proof. As before, noti
e that when a
hain is
reated, the message M is already deter-

mined. Now, if a
hain were
reated using a bridging query f∗
, then the answer triplet

(x, y, z) is su
h that y ∈ M (as it
ompletes a
hain) and in parti
ular y appears in an

existing triplet, implying that the unexpe
ted event V2 o

urred. If the
hain were
reated

using a ba
kward query f−1
, then as the answer query (x, y, z)
ompleted a
hain, we

know that x appears in an existing triplet or x = IV . Sin
e (x, y, z) did not appear in the

list of triplets prior to the query (otherwise the
hain would have been
ompleted before)

this implies that the unexpe
ted event V3 has o

urred. Therefore, if no unexpe
ted events

o

ur all
hains are
reated by forward queries. ⊓⊔

Theorem 2. The double pipe hash
onstru
tion is indi�erentiable from a random ora
le

in the model of weak
ompression fun
tions.

Proof. The sequen
e of hybrids is the same as in the proof in Se
tion 3 and
ulminates

with the required result. ⊓⊔

5 Con
lusion

While the results of Joux [7℄, Kelsey and S
hneier [9℄ and Kelsey and Kohno [8℄ have shown

that there are a number of surprising atta
ks when the atta
ker is allowed more than 2n/2

time, we have shown that there is a surprising amount of `life' below the 2n/2
barrier: Even

an adversary with the power to invert
ompression fun
tions on inputs of his
hoi
e in unit

time is still unable to di�erentiate between a variety of hash
onstru
tions and a random

ora
le. It seems that there are two main issues at the heart of our results. The �rst is the

assumed randomness of the
ompression fun
tion, whi
h implies that with less than 2n/2

queries it is not feasible to use in an e�e
tive way the given inversion ora
les. The se
ond

issue is the fa
t that during the simulation the simulator needs to maintain
onsisten
y

with the random ora
le. In order to do this, the simulator must somehow `know' when the

queries given so far de�ne some �nal hash value. In all the examples we gave as well as in

the zipper hash[11℄ of Liskov, the
onstru
tion of the
ombined hash fun
tion is su
h that

with overwhelming probability the simulator
an always tell when a query determines the

output of the hash.

11

Referen
es

1. D. Boneh and X. Boyen. On the impossibility of e�
iently
ombining
ollision resistant

hash fun
tions. In Advan
es in Cryptology�CRYPTO 2006, volume 4117 of Le
ture

Notes in Computer S
ien
e, pages 570�583. Berlin: Springer-Verlag, 2006. Available

at http://www.
s.stanford.edu/~xb/
rypto06b/.

2. G. Brassard, editor. CRYPTO '89, Santa Barbara, California, USA, August0-24,

1989, Pro
eedings, volume 435 of Le
ture Notes in Computer S
ien
e. Springer, 1990.

3. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damgård revisited: How

to
onstru
t a hash fun
tion. In CRYPTO'05, pages 430�448, 2005.

4. R. Cramer, editor. Advan
es in Cryptology - EUROCRYPT 2005, 24th Annual In-

ternational Conferen
e on the Theory and Appli
ations of Cryptographi
 Te
hniques,

Aarhus, Denmark, May 22-26, 2005, Pro
eedings, volume 3494 of Le
ture Notes in

Computer S
ien
e. Springer, 2005.

5. I. Damgård. A Design Prin
iple for Hash Fun
tions. In Brassard [2℄, pages 416�427.

6. M. Fis
hlin and A. Lehmann. Se
urity-amplifying
ombiners for
ollision-resistant

hash fun
tions. In A. Menezes, editor, CRYPTO, volume 4622 of Le
ture Notes in

Computer S
ien
e, pages 224�243. Springer, 2007.

7. A. Joux. Multi
ollisions in Iterated Hash Fun
tions. Appli
ation to Cas
aded Con-

stru
tions. In M. K. Franklin, editor, CRYPTO'04, volume 3152 of Le
ture Notes in

Computer S
ien
e, pages 306�316. Springer, 2004.

8. J. Kelsey and T. Kohno. Herding Hash Fun
tions and the Nostradamus Atta
k. In

S. Vaudenay, editor, EUROCRYPT'06, volume 4004 of Le
ture Notes in Computer

S
ien
e, pages 183�200. Springer, 2006.

9. J. Kelsey and B. S
hneier. Se
ond Preimages on n-Bit Hash Fun
tions for Mu
h Less

than 2

n

Work. In Cramer [4℄, pages 474�490.

10. V. Klima. Tunnels in Hash Fun
tions: MD5 Collisions Within a Minute. Cryptology

ePrint Ar
hive, Report 2006/105, 2006. http://eprint.ia
r.org/.

11. M. Liskov. Constru
ting an ideal hash fun
tion from weak ideal
ompression fun
tions.

In Sele
ted Areas in Cryptography, pages 358�375, 2006.

12. S. Lu
ks. A Failure-Friendly Design Prin
iple for Hash Fun
tions. In B. K. Roy, editor,

ASIACRYPT'05, volume 3788 of Le
ture Notes in Computer S
ien
e, pages 474�494.

Springer, 2005.

13. U. M. Maurer, R. Renner, and C. Holenstein. Indi�erentiability, impossibility results

on redu
tions, and appli
ations to the random ora
le methodology. In M. Naor, editor,

TCC, volume 2951 of Le
ture Notes in Computer S
ien
e, pages 21�39. Springer, 2004.

14. R. C. Merkle. One Way Hash Fun
tions and DES. In Brassard [2℄, pages 428�446.

15. K. Pietrzak. Non-trivial bla
k-box
ombiners for
ollision-resistant hash-fun
tions

don't exist. In EUROCRYPT, pages 23�33, 2007.

16. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Fun
tions

MD4 and RIPEMD. In Cramer [4℄, pages 1�18.

17. X. Wang and H. Yu. How to Break MD5 and Other Hash Fun
tions. In Cramer [4℄,

pages 19�35.

18. X. Wang, H. Yu, and Y. L. Yin. E�
ient Collision Sear
h Atta
ks on SHA-0. In

V. Shoup, editor, CRYPTO, volume 3621 of Le
ture Notes in Computer S
ien
e, pages

1�16. Springer, 2005.

19. H. Yu, G. Wang, G. Zhang, and X. Wang. The Se
ond-Preimage Atta
k on MD4.

In Y. Desmedt, H. Wang, Y. Mu, and Y. Li, editors, CANS, volume 3810 of Le
ture

Notes in Computer S
ien
e, pages 1�12. Springer, 2005.

12

