
Homomorphic Encryption with CCA Security∗

Manoj Prabhakaran† Mike Rosulek†

May 24, 2008

Abstract

We address the problem of constructing public-key encryption schemes that meaningfully
combine useful computability features with non-malleability. In particular, we investigate schemes
in which anyone can change an encryption of an unknown message m into an encryption of T (m)
(as a feature), for a specific set of allowed functions T , but the scheme is “non-malleable” with
respect to all other operations. We formulate precise definitions that capture these intuitive re-
quirements and also show relationships among our new definitions and other more standard ones
(IND-CCA, gCCA, and RCCA). We further justify our definitions by showing their equivalence
to a natural formulation of security in the Universally Composable framework. We also consider
extending the definitions to features which combine multiple ciphertexts, and show that a nat-
ural definition is unattainable for a useful class of features. Finally, we describe a new family of
encryption schemes that satisfy our definitions for a wide variety of allowed transformations T ,
and which are secure under the standard Decisional Diffie-Hellman (DDH) assumption.

∗An extended abstract of this work appears in Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Springer-Verlag, 2008. This full version is available from http://eprint.iacr.org/2008/079.
†Department of Computer Science, University of Illinois, Urbana-Champaign. {mmp,rosulek}@uiuc.edu. Partially

supported by NSF grant CNS 07-47027.

Contents

1 Introduction 1

2 Homomorphic Encryption Preliminaries 2
2.1 Decisional Diffie-Hellman (DDH) Assumption . 3

3 Defining Security 3
3.1 Homomorphic-CCA (HCCA) Security . 3
3.2 Unlinkability . 5
3.3 UC Definition: Homomorphic Message Posting . 5

4 Relationships Among Security Definitions 7
4.1 HCCA Generalizes CCA, gCCA, RCCA . 7
4.2 HCCA and Unlinkability Imply UC Security . 8
4.3 Obtaining RCCA from HCCA . 10

5 Achieving Security 11
5.1 The Construction . 12
5.2 High-level Overview . 14

6 Beyond Unary Transformations 15
6.1 Extending Definitions . 15
6.2 A Simple Positive Result . 15
6.3 Negative Results . 16

7 Extensions 18
7.1 Anonymity . 18
7.2 Alternate UC Security Definition . 19
7.3 Relaxing the Definition of Unlinkability . 19
7.4 Repost-test . 20
7.5 Triviality of HCCA without Unlinkability . 21

A Security Proof 24
A.1 Rigged Encryption and Extraction . 25
A.2 Encryption and Decryption as Linear Algebra . 25
A.3 Decisional Diffie-Hellman Assumption . 28
A.4 The Alternate Encryption Procedure . 28
A.5 Decryption Queries . 31

A.5.1 DSME Decryption . 32
A.5.2 DSCS Decryption . 33

1 Introduction

A recurring theme in cryptography is the tension between achieving powerful functionality and
making strong security guarantees. In the case of encryption, IND-CCA security is well-accepted
as a sufficiently strong security guarantee. On the other hand, for encryption to be useful in
sophisticated applications (such as voting or mix-nets), the scheme should have features which
allow computation on encrypted messages (e.g., features like rerandomizability [20, 21], proxy re-
encryption [6, 9], searchability [35, 11] and different kinds of homomorphism properties [18, 26]).
However, IND-CCA security rules out any such feature which operates on encrypted messages,
while the other extreme of IND-CPA security does not exclude the possibility that a scheme may
have additional “unforeseen features” that an adversary can exploit when the scheme is used in a
larger application. Is it possible to express (and achieve via a construction) a security requirement
capturing the best of both worlds: to be malleable enough to allow rich features, but non-malleable
enough to rule out “everything else?”

In this work we address this question in the context of homomorphic public-key encryption
schemes — those which allow anyone to change encryptions of unknown messages m1, . . . ,mk into
an encryption of T (m1, . . . ,mk), for some allowed set of functions T . Such schemes have been
extensively studied for a long time and have a wide variety of applications (cf. [5, 32, 12, 33, 22,
24, 15, 20, 23, 14]). Homomorphic encryption schemes have additional utility in that ciphertexts
hide not only the underlying plaintext, but also the way in which the ciphertext was derived (i.e.,
as a regular encryption, or via some homomorphic operation applied to some other ciphertexts).
We explicitly formalize this requirement, which we call unlinkability.

Challenges and Related Work. The first challenge is formally defining (in a convincing way)
the intuitive requirement that a scheme “allow particular features but forbid all others.” Security
notions for regular encryption developed and matured over many years [19, 25, 31, 4, 17, 7], while
arguably security definitions for homomorphic encryptions have lagged behind — to date, homo-
morphic encryptions are almost exclusively held to the weak standard of IND-CPA security. In
some applications (e.g., [14]) CPA security is indeed sufficient, but for others (e.g. [16]) it is not.
Very little work has addressed the possibility of homomorphic encryption schemes having “unfore-
seen features” beyond the prescribed operations; one exception is Wikström [36], who addresses
this question in a simpler setting for El Gamal.

Benignly-malleable (gCCA) security [34, 1] was proposed as a relaxation of CCA security, and
was further relaxed in the definition of Replayable-CCA (RCCA) security [10]. RCCA security
allows a scheme to have homomorphic operations which preserve the underlying plaintext, but
enforces non-malleability “everywhere else.” However, relaxing CCA security in the same way does
not yield an acceptable level of security when applied to more expressive homomorphic operations
(see Section 3.1); a new approach to defining security is needed.

The second challenge is achieving the desired security with a construction based on standard
assumptions — i.e., an encryption scheme that has a particular set of (unlinkable) homomorphic
operations, but is non-malleable with respect to all other operations. Note that even if the set
of allowed operations is very simple, supporting it can be very involved. Indeed, the problem of
unlinkable (rerandomizable) RCCA encryption considered in a recent series of works [10, 21, 29]
corresponds to arguably the simplest special case of our definitions.

1

Our Results. We give several new security definitions to precisely capture the desired require-
ments in the case of unary homomorphic operations (those which transform a single encryp-
tion of m to an encryption of T (m), for a particular set of functions T). We provide two new
indistinguishability-based security definitions: one formalizing the unlinkability requirement and
one formalizing the intuition of “non-malleability except for certain prescribed operations.” To
justify this last security definition, we show that it subsumes the standard IND-CCA, gCCA, and
RCCA security definitions (Theorem 1). We further show that our two new security requirements
imply a natural definition of security in the Universal Composition framework (Theorem 2). Using
the UC framework to define security of encryption schemes was already considered in [7, 10, 27, 8].

We also consider extending our definitions to the case of binary homomorphic operations (those
which combine pairs of ciphertexts). We show that the natural generalization of our UC secu-
rity definition to this scenario is unachievable for a large class of useful homomorphic operations
(Theorem 5).

Finally, we describe a family of encryption schemes which achieves our definitions for a wide
range of allowed (unary) homomorphism operations. The construction, which is a careful gener-
alization of the rerandomizable RCCA-secure scheme of [29], is secure under the standard DDH
assumption, and supports the group operation as a homomorphic feature (as well as several related
operations).

2 Homomorphic Encryption Preliminaries

m ζ

m′ ζ ′

Enc

Dec

T CTrans(·, T)

Dec

Figure 1: Illustration of the syn-
tax and correctness of a homomor-
phic encryption scheme.

We call a function ν negligible in k if it asymptotically
approaches zero faster than any inverse polynomial in k — i.e.,
ν(k) = k−ω(1). A probability is overwhelming if it is 1 − ν(k)
for a negligible ν (k being the security parameter). In all
the encryption schemes we consider, the security parameter is
the number of bits needed to represent an element from the
underlying cyclic group.

LetM be a space of plaintext messages, let ⊥ be a special
error indicator symbol not in M, and let T be a “transfor-
mation space” — i.e., a set of polynomial-time computable
functions from (M∪{⊥})k toM∪{⊥}. We call the elements
of T the allowable transformations.

An encryption scheme consists of three polynomial-time (polynomial in the implicit security
parameter) algorithms: KeyGen, Enc and Dec.

A T -homomorphic encryption scheme comes with an additional algorithm CTrans, the homo-
morphic operation feature: a randomized algorithm which takes k ciphertexts and (the description
of) a transformation from T , and outputs another ciphertext.1

We mostly restrict attention to the case where k = 1; i.e., when the homomorphic operation is
unary.

Correctness Properties. Below we give the correctness properties for unary homomorphic en-
cryption. These requirements can be slightly relaxed (e.g., to hold only with overwhelming proba-

1Allowing CTrans to take the public key as additional input would also be a meaningful relaxation, but may not
be suitable in some applications. See Section 7.1.

2

bility over key generation), but our construction achieves these simpler requirements.
For all key pairs (PK,SK) in the support of KeyGen, we require the following:

1. For every plaintext msg ∈M, we require DecSK(EncPK(msg)) = msg, with probability 1 over
the randomness of Enc.

2. For every purported ciphertext ζ and every T ∈ T , we require DecSK(CTrans(ζ, T)) =
T (DecSK(ζ)), with probability 1 over the randomness of CTrans.

The following property is desirable and achieved by our construction, though our security defi-
nitions (Definition 3) require only a weaker condition:

Definition 1. A scheme is perfectly rerandomizable if for all messages msg ∈ M, all ciphertexts
ζ in the support of EncPK(msg), and all T ∈ T , the distribution of CTrans(ζ, T) is identical to that
of EncPK(T (msg)).

2.1 Decisional Diffie-Hellman (DDH) Assumption

Let G be a (multiplicative) cyclic group of prime order p. The Decisional Diffie-Hellman (DDH)
assumption in G is that the following two distributions are computationally indistinguishable:

{(g, ga, gb, gab)}g←G;a,b←Zp and {(g, ga, gb, gc)}g←G;a,b,c←Zp .

Here, x← X denotes that x is drawn uniformly at random from a set X.

3 Defining Security

In this section we present our formal security definitions. The first two are traditional indistinguishability-
based definitions, while the third is a definition in the Universal Composition framework.

3.1 Homomorphic-CCA (HCCA) Security

Our first indistinguishability-based security definition formalizes the intuitive notions of message
privacy and “non-malleability other than certain operations.”

Existing non-malleability definitions such as IND-CCA, benignly-malleable (a.k.a. gCCA) se-
curity [34, 1] and Replayable CCA (RCCA) security [10] share a similar structure, in which an
experimenter encrypts one of two adversarially chosen plaintexts and provides a decryption oracle
to the adversary, whose task it is to guess which plaintext was encrypted. Since the adversary
could simply ask to decrypt the challenge ciphertext itself, the decryption oracles are guarded to
not decrypt ciphertexts which may be “derivatives” of the challenge ciphertext. In CCA security,
the only derivative is the challenge ciphertext itself; in gCCA, derivatives are those which satisfy
a particular binary relation with the challenge ciphertext; in RCCA, derivatives are those which
decrypt to either of the two adversarially-chosen plaintexts.

However, in the case of more general homomorphic encryption, it may be legal (i.e., possible via
a feature of the scheme) to change the underlying plaintext of a ciphertext to any other possible
plaintext. Indeed, in some instantiations of our construction, every ciphertext in the support of
the Enc operation is a possible derivative of every other such ciphertext. Following the IND-CCA
paradigm here would weaken it essentially to IND-CCA1 (i.e., “lunchtime attack”) security.

3

Our approach to identifying “derivative” ciphertexts is completely different, and as a result our
definition initially appears incomparable to these other standard definitions. However, Theorem 1
demonstrates that our new definition gives a generic notion of non-malleability which subsumes
these existing definitions.

The formal definition, which we call Homomorphic-CCA (HCCA) security, appears below. In-
formally, in the security experiment we identify derivative ciphertexts not for regular encryptions,
but for special “rigged” ciphertexts that carry no message. In other words, there should be a pro-
cedure RigEncPK which outputs a rigged ciphertext ζ and some auxiliary information S, such that
ζ is indistinguishable from a normal ciphertext. There should also be a corresponding procedure
RigExtractSK which, when given another ciphertext ζ ′ and auxiliary information S, determines
whether ζ ′ was obtained by applying a transformation to ζ, and if so, outputs that transformation.

Intuitively, the transformations output by RigExtract constitute all the ways a ciphertext’s
message can depend on another ciphertext in the scheme, so restricting the range of RigExtract
restricts the malleability of the scheme.

Definition 2. A homomorphic encryption scheme is Homomorphic-CCA (HCCA) secure with
respect to T if there are PPT algorithms RigEnc and RigExtract, where the range of RigExtract is
T ∪{⊥}, and such that for all PPT adversaries A, the advantage of A in the following IND-HCCA
experiment is negligible:

1. Setup: Pick (PK,SK)← KeyGen and give PK to A.

2. Phase I: A gets access to the DecSK(·) oracle and the following two “guarded” RigEnc and
RigExtract oracles:

GRigEncPK() = ζi, where (ζi, Si)← RigEncPK , when called for the ith time
GRigExtractSK(ζ, i) = RigExtractSK(ζ, Si)

3. Challenge: A outputs a plaintext msg∗. We privately flip a coin b ← {0, 1}. If b = 0, we
compute ζ∗ ← EncPK(msg∗). If b = 1, we compute (ζ∗, S∗) ← RigEncPK . In both cases, we
give ζ∗ to A.

4. Phase II: A gets access to the same GRigEnc and GRigExtract oracles as in Phase I, as well
as a “rigged” version of the decryption oracle RigDec. When b = 0, RigDec is simply the
normal decryption oracle DecSK(·). When b = 1, RigDec is implemented as follows:

RigDecSK(ζ) =

{
T (msg∗) if ⊥ 6= T ← RigExtractSK(ζ, S∗)
DecSK(ζ) otherwise

.

5. Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

We immediately observe that in order to achieve HCCA security, T must be closed under
composition (or at least approximately so). T must also contain the identity function, since the
adversary can simply submit the challenge ciphertext ζ∗ to the RigDec oracle.

4

3.2 Unlinkability

There indeed is some tension between the HCCA definition given above and the intuitive notion
of unlinkability that we desire. HCCA security implies that it is possible to track transformations
applied to rigged ciphertexts, while unlinkability demands that ciphertexts not leak whether they
were generated via a transformation. To reconcile this, we require unlinkability only on ciphertexts
that succesfully decrypt under a private key chosen by the challenger. This excludes linkability
via the RigEnc and RigExtract procedures, since tracking ciphertexts using RigExtract in general
requires the tracking party to know the private key.

Our formal definition of unlinkability is given below. We highlight that the adversary has access
to a decryption oracle in the experiment, making it meaningful for modeling chosen-ciphertext
attacks.

Definition 3. A homomorphic encryption scheme is unlinkably homomorphic with respect to T if
for all PPT adversaries A, the advantage of A in the following experiment is negligible:

1. Setup: Pick (PK,SK)← KeyGen and give PK to A.

2. Phase I: A is given access to the decryption oracle DecSK(·).
3. Challenge: Flip a coin b ← {0, 1}. Receive from A a ciphertext ζ and a transformation

T ∈ T . If DecSK(ζ) = ⊥, do nothing. Else give ζ∗ to A where

ζ∗ ←
{

EncPK(T (DecSK(ζ))) if b = 0
CTrans(ζ, T) if b = 1

4. Phase II: A is given access to the decryption oracle DecSK(·).
5. Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1

2 .

Note that unlinkability is a security guarantee (involving maliciously crafted ciphertexts) and
is not implied by the perfect rerandomization property (Definition 1), which only involves honestly
generated ciphertexts.

We have defined unlinkability with the goal that a scheme can be both T -unlinkably homo-
morphic, and T -HCCA-secure (for the same T). Indeed, it is easy to see that if a scheme is
T -unlinkably homomorphic and T ′-HCCA-secure, then T ⊆ T ′. For simplicity, and to highlight
the compatibility and sharp tradeoff between these two definitions, we only focus on schemes which
satisfy them both with respect to the same transformation space T .

3.3 UC Definition: Homomorphic Message Posting

We also define the “Homomorphic Message Posting” functionality FThmp in the framework of Univer-
sally Composable security [7, 28] as a natural security definition encompassing both unlinkability
and our desired notion of non-malleability. The complete definition appears in Figure 2.
FThmp allows parties to post private messages for other parties, as on a bulletin board, represented

by abstract handles which reveal no information about the message (they are generated by the
adversary without knowledge of the message). Only the designated receiver is allowed to obtain
the corresponding message for a handle. To model the homomorphic features, the functionality

5

Setup: On receiving a command setup from a party P : If a previous setup command has
been processed, abort. Else, send (id-req, P) to the adversary, and expect in response a string
id. Broadcast (id-announce, P, id) to all other parties.

Message posting: On receiving a command (post,msg) from a party sender: If msg 6∈ M,
ignore the request. If P is corrupt, send (handle-req, sender,msg) to the adversary; otherwise
send (handle-req, sender) to the adversary. In both cases expect a string handle in return.
If handle has been previously used, abort; else internally record (handle,msg) and broadcast
(handle-announce, handle) to all parties.

Dummy handles: On receiving a command (dummy, handle) from a corrupt party, inter-
nally record (handle,⊥) and broadcast (handle-announce, handle) to all parties.

Homomorphic reposting: On receiving a command (repost, handle, T) from a party
sender: If handle is not recorded internally or T 6∈ T , ignore the request. Otherwise, sup-
pose (handle,msg) is recorded internally. If msg 6= ⊥, then do the same as if (post, T (msg))
were received. Otherwise, send (handle-req, sender, handle, T) to the adversary and expect a
string handle′ in return. If handle′ has been previously used, abort; else record (handle′, T (msg))
internally and send (handle-announce, handle′) to all parties.

Message reading: On receiving a command (get, handle) from party P (and only party P):
If a record (handle,msg) is recorded internally, give msg to P ; otherwise ignore this request.

Figure 2: UC ideal functionality FThmp.

allows parties to post messages derived from other handles. The functionality is parameterized by
the set of allowed transformations T . When a party provides a previously posted handle and a
transformation T ∈ T , the functionality retrieves the message m corresponding to the handle and
then acts as if the party had actually requested T (m) to be posted. The sender does not need to
know, nor is it told, the underlying message m of the existing handle.
FThmp models the non-malleability we require, since the only way a posted message can influence

a subsequent message is via an allowed transformation.
The functionality also models unlinkability by internally behaving identically (in particular, in

its interaction with the adversary) for the two different kinds of posts. The only exception is that
corrupt parties may generate “dummy” handles which look like normal handles but do not contain
any message. When a party derives a new handle from such a dummy handle, the adversary learns
the transformation. This apparent slight weakness is natural2 and it mirrors the tradeoff between
our indistinguishability definitions. In our security proofs, this additional dummy handle feature
is crucial.

Homomorphic Encryption Schemes and Protocols for FThmp. The UC framework defines
when a protocol is said to securely realize the functionality FThmp: for every PPT adversary in the real
world interaction (using the protocol), there exists a PPT simulator in the ideal world interaction

2For example, an adversary may broadcast a single encryption under a public key that he keeps hidden. The
ciphertext will be meaningless to the recipient, but if the adversary later encounters another ciphertext that decrypts
under this same key, he can deduce that the it was derived from his previous ciphertext.

6

with FThmp, such that no PPT environment can distinguish between the two interactions.
We associate homomorphic encryption schemes with candidate protocols for FThmp in the fol-

lowing natural way (for simplicity assume all communication is on an authenticated broadcast
channel). To setup an instance of FThmp, a party generates a key pair and broadcasts the public key.
To post a message, a party encrypts it under the public key and broadcasts the resulting ciphertext.
The “derived post” feature is implemented via the CTrans procedure. To retrieve a message from
a handle, the receiver decrypts it using the private key.

4 Relationships Among Security Definitions

To justify our new security definitions, we prove some relationships among them and among the
more established definitions of IND-CCA, gCCA [1, 34], and RCCA [10] security.

4.1 HCCA Generalizes CCA, gCCA, RCCA

Theorem 1. CCA, gCCA, and RCCA security can be obtained as special cases of the HCCA
definition, by appropriately restricting RigEnc and RigExtract.

Proof. The restrictions on RigExtract are progressively relaxed as we go from CCA to gCCA to
RCCA, making it explicit that the non-malleability requirements get weaker in that order.

First, consider a variant of the traditional IND-CCA definition, in which the adversary provides
only one of the two challenge plaintexts m1, while the other challenge plaintext m0 is fixed and
publicly known. This variant realizes the same level of security as the original IND-CCA definition
(in which the adversary chooses both plaintexts).3 We can further modify the experiment cosmet-
ically so that when the adversary submits the challenge ciphertext to the decryption oracle, the
response is m1 (regardless of whether m0 or m1 was chosen), instead of an error.

This modified IND-CCA experiment can be directly obtained as a special case of IND-HCCA
as follows: RigEnc generates an encryption of m0, and uses the ciphertext itself as the auxiliary
information. RigExtract simply checks if an input ciphertext is identical to the auxiliary information;
if so, it outputs the identity transformation (indicating that the given ciphertext encodes the same
plaintext as the output of RigEnc); otherwise, it outputs ⊥. The auxiliary information shared
between RigEnc and RigExtract is public, and RigExtract does not use the private key, thus separate
oracle access to GRigEnc and GRigExtract is redundant. Removing these redundant oracles, what
remains is the modified IND-CCA experiment, with RigDec acting as the decryption oracle.

Similarly, benignly non-malleable (or gCCA) security [34, 1] is obtained if RigExtract is allowed to
compute an arbitrary equivalence relation among the two ciphertexts (but still without being given
the private key). Replayable CCA (RCCA) security [10] is obtained if RigEnc encrypts a random
plaintext (using the plaintext as the auxiliary information), and RigExtract simply decrypts the
given ciphertext and checks whether the result equals the auxiliary information. In this case,
RigExtract only uses the private key to use Dec as a black box, so separate oracle access to GRigEnc
and GRigExtract is again redundant.

Note that in all these cases RigExtract is allowed to output only ⊥ or the identity transformation.
This highlights the fact that schemes satisfying these security definitions are not malleable in ways
which alter the message.

3If an adversary can successfully distinguish between encryptions of m versus m′ in the IND-CCA experiment,
then a related adversary can successfully distinguish between either (m, m0) or (m′, m0).

7

We note that all of these special cases of HCCA involve a RigEnc procedure which simply encrypt
a plaintext as normal. In our construction (Section 5), we exploit the flexibility of the full HCCA
definition to achieve larger classes of transformations, by letting RigEnc generate a “ciphertext”
that is not in the range of Enc(·).

4.2 HCCA and Unlinkability Imply UC Security

Theorem 2. Every T -homomorphic encryption scheme which is HCCA-secure, unlinkably ho-
momorphic (with respect to T) and satisfies the correctness properties, is a secure realization of
FThmp in the standard UC model, where the adversary is allowed to make only static (non-adaptive)
corruptions.

Let Π = (KeyGen,Enc,Dec,CTrans) be an unlinkably homomorphic, HCCA-secure encryption
scheme (with allowable homomorphisms T). To prove Theorem 2, for any real-world adversary A,
we must demonstrate an ideal-world adversary (simulator) S, so that for all PPT environments Z,
realΠ

A,Z ≈ ideal
FThmp
S,Z .

In the case where the recipient P is corrupt, the simulation is trivial. Each time it is asked
to generate a handle, it is given the underlying message. Each time the adversary itself outputs
a ciphertext, the simulator can register it as a dummy handle, after which it is notified each time
that handle is repost’ed. We now focus on the case where P is not corrupt.

We construct S in a sequence of hybrids, starting from the real-world interactions and altering
it step by step to get an ideal-world adversary, at every stage ensuring that each change remains
indistinguishable to all environments. All the simulators below exist in the ideal world, but are
also given (progressively less) information about the inputs to the honest parties. We conveniently
model this access to extra information using modified functionalities.

S0 and F0 (Correctness): F0 behaves exactly like FThmp except that in its handle-req inter-
actions with the adversary, it reveals the message and whether the handle is being requested for a
repost. Thus S0 effectively learns all the honest parties’ inputs to F0. S0 internally simulates the
encryption scheme algorithms for all honest parties, and lets the adversary A interact with these
simulated parties and directly with the environment, as follows:

1. When an honest party P sends a setup command to F0, the functionality sends (id-req, P)
to S0 and expects an ID in return. S0 generates a key pair (PK,SK) ← KeyGen and uses
PK as the ID string. It also internally simulates to A that P broadcast the public key.

2. When an honest party sender sends a command (post,msg) to F0, the functionality sends
(handle-req, sender,msg) to S0 and expects a handle in return. S0 computes handle ←
EncPK(msg) and uses it as the handle. It also internally simulates to A that sender broadcast
handle.

3. When an honest party sender sends a command (repost, handle, T) to F0, and handle is
internally recorded, the functionality sends (handle-req, sender, handle, T) to S0 and expects
a handle in return. S0 computes handle′ ← CTrans(handle, T) and uses it as the handle. It
also internally simulates to A that sender broadcast handle′.

4. When the adversary broadcasts a ciphertext ζ, S0 does the following:

8

• If DecSK(ζ) = msg 6= ⊥, then S0 sends (post,msg) to the functionality on behalf of A.
It uses ζ as the corresponding handle.

• Otherwise, S0 sends (dummy, ζ) to F0.

We denote the output of an environment Z when interacting with S0 and honest parties who
interact with F0 by idealF0

S0,Z .

Claim 1. For any given PPT adversary, let F0 and S0 be as described above. Then for all PPT
environments Z, realΠ

A,Z ≈ idealF0
S0,Z .

Proof. This follows from the correctness properties of encryption scheme Π, and the fact that S0

exactly emulates the real world actions of all parties.

S1 and F1 (Unlinkable Homomorphism): F1 is identical to F0 except that it does not tell
the adversary whether a handle-req was the result of a post or repost command, except for
dummy handles. The exact differences are as follows:

1. When an honest party sender sends a command (repost, handle, T) to F1, and (handle,msg)
is internally recorded, and msg 6= ⊥, the functionality now does the same thing as if sender
had given the command (post, id, T (msg)) command. If msg = ⊥, the functionality sends
(handle-req, sender, handle, T) to the simulator just as in F0.

2. S1 and S0 are identical, although they receive different types of handle-req requests when
interacting with F1 instead of F0.

Claim 2. For any given PPT adversary A, let S0, F0, S1 and F1 be as described above. Then for
all PPT environments Z, idealF0

S0,Z ≈ idealF1
S1,Z .

Proof. This follows from the unlinkable homomorphism property of the encryption scheme. The
only manner in which the adversary’s view differs in the two executions is in whether certain cipher-
texts are generated via a transformation (as S0 does on receiving a (handle-req, sender, handle, T)
request) or as a fresh encryptions of the appropriate message (as S1 does on receiving a (handle-req, sender, T (msg))
request). We note that F1 only behaves differently when msg 6= ⊥. Thus the difference between
executions only involves ciphertexts which were either honestly generated by the simulator, or
adversarially generated ciphertexts that successfully decrypted under PK. The unlinkable homo-
morphism property of the scheme implies that the difference in these interactions’ outcomes is
negligible.

More formally, we can only apply the unlinkable homomorphism property to one ciphertext
at a time. It is straightforward to construct a sequence of hybrid simulators where the difference
between successive hybrids is in whether a single handle was freshly re-encrypted or had a transfor-
mation applied, and such that the rest of the interaction can be carried out within the unlinkability
experiment. Thus idealF0

S0,Z ≈ idealF1
S1,Z .

S2 and F2 (HCCA security): F2 is identical to F1 except that it does not tell the adversary the
contents of the posted messages when the receiver is not corrupted. S2 differs from S1 accordingly,
and uses the RigEnc and RigExtract features guaranteed by HCCA security. The exact differences
are as follows:

9

1. When P is not corrupt and F1 would send (handle-req, sender,msg) to the simulator (i.e,
when a party posts or reposts a non-dummy handle), F2 instead sends (handle-req, sender).

2. When S2 receives a request of the form (handle-req, sender) from F2, it computes (handle, S)←
RigEncPK and uses handle as the message’s handle. It internally keeps track of (handle, S) for
later use.

3. When the adversary broadcasts a ciphertext ζ, S2 does the following: For each (handle, S)
recorded above, S2 checks if RigExtractSK(ζ, S) = T 6= ⊥. If so, S2 sends (repost, handle, T)
to F2 and uses ζ as the handle. If none of these RigExtract calls succeed, then S2 proceeds
just as S1 (i.e, attempts to decrypt ζ under SK and so on).

Claim 3. For any given PPT adversary A, let S1, F1, S2 and F2 be as described above. Then for
all PPT environments Z, idealF1

S1,Z ≈ idealF2
S2,Z .

Proof. This follows from the HCCA security of the scheme. Intuitively, the only way the two
executions differ is in whether the simulator provides honest ciphertexts (as S1 does) or “rigged”
ciphertexts (as S2 does).

More formally, we can only apply the HCCA guarantee to one ciphertext at a time. It is
straightforward to construct a sequence of hybrid simulators where the difference between successive
hybrids is in whether a single handle was encrypted with the correct message or else via RigEnc,
and such that the rest of the interaction can be carried out within the HCCA experiment. We note
that in most hybrids, there must be calls to RigEnc and RigExtract for other ciphertexts, so the
GRigEnc and GRigExtract oracles are crucial in the HCCA definition.

Concluding the proof. Combining the above claims we get that for all adversaries A, there
exists a simulator S2 such that realΠ

A,Z ≈ idealF2
S2,Z for all environments Z. Note that F2 is in

fact identical to FThmp. So letting S = S2 completes the proof.

4.3 Obtaining RCCA from HCCA

In general, one cannot easily modify a T1-unlinkable-HCCA-secure scheme into a T2-unlinkable-
HCCA-secure scheme, even if T2 ⊆ T1. The problem of “disabling” the transformations in T1 \ T2

while at the same time maintaining those in T2 appears just as challenging as constructing a T2-
unlinkable-HCCA scheme from scratch. However, such a generic reduction is possible for the special
case of unlinkable (a.k.a. rerandomizable) RCCA security, where the only allowed transformation
is the identity function:

Theorem 3. Given a T -unlinkable-HCCA-secure scheme and a (not necessarily unlinkable) RCCA-
secure scheme, it is possible to construct an unlinkable RCCA-secure scheme.

Note that RCCA security without unlinkability is a weaker requirement than CCA security [10].
Thus, for example, an unlinkable HCCA-secure scheme along with a plain CCA-secure encryption
scheme will yield an unlinkable RCCA-secure encryption scheme.

Proof. Let (KeyGenH ,EncH ,DecH ,CTransH) be the unlinkable, T -HCCA-secure scheme, and let
(KeyGenR,EncR,DecR) be the RCCA-secure scheme. The new scheme simply encapsulates the
RCCA-secure scheme inside the HCCA-secure one. Formally:

10

• KeyGen: Run (hpk, hsk)← KeyGenH ; (rpk, rsk)← KeyGenR. Output (PK = (hpk, rpk), SK =
(hsk, rsk)).

• Enchpk,rpk(msg) = EncHhpk(EncRrpk(msg)).

• Dechsk,rsk(ζ) = DecRrsk(DecHhsk(ζ)), where we let DecR(⊥) = ⊥ for simplicity.

• CTrans = CTransH .

Note that in CTrans, the only allowed transformation is the identity function, while for CTransH ,
there may be other allowed transformations. We note that to achieve HCCA security with respect
to T , T must indeed contain the identity function (see Section 3.1). It is easy to see that the
unlinkability of the outer scheme (with respect to the identity transformation) is preserved by the
construction.

To show RCCA security (HCCA security with the identity function as the only allowed transfor-
mation), we must demonstrate appropriate RigEnc and RigExtract procedures for the new scheme.
Let (RigEncH ,RigExtractH) and (RigEncR,RigExtractR) be the procedures guaranteed by the two
schemes, respectively. Then the new scheme satisfies HCCA security with the following procedures:

• RigEnchpk,rpk does the following: Run (ζ, SH) ← RigEncHhpk and (ζR, SR) ← RigEncRrpk. Set
S = (SH , ζR, SR) and output (ζ, S).

• RigExtracthsk,rsk(ζ, S) does the following: Parse S as (SH , ζR, SR). Run T ← RigExtractHhsk(ζ, SH).
If T = ⊥, output ⊥; otherwise output RigExtractRrsk(T (ζR), SR), which must be either the
identity function or ⊥, by the RCCA security of the inner scheme.

Consider a hybrid HCCA experiment where the challenge ciphertext is generated from msg∗ as:

• Run (ζ∗, S∗)← RigEncHhpk and ζ∗R ← EncRrpk(msg∗). Remember ζ∗R and output ζ∗.

and RigDec in step 4 is implemented as:

RigDechsk,rsk(ζ) =

{
DecRrsk(T (ζ∗R)) if ⊥ 6= T ← RigExtractHhsk(ζ, S

∗)
DecRrsk(DecHhsk(ζ)) otherwise.

It is straight-forward to verify that this hybrid experiment is indistinguishable from both the
b = 0 and b = 1 branches of the HCCA experiment instantiated with the new scheme and its RigEnc
and RigExtract procedures described above.

5 Achieving Security

Our main result is a family of construtions which achieves both HCCA security and unlinkable
homomorphism, with respect to a wide range of message transformations, under the standard
DDH assumption in two related groups.

Our construction is based on the rerandomizable RCCA scheme of Prabhakaran and Ro-
sulek [29]. Recall that rerandomizable RCCA security is a special case of unlinkable HCCA security
where the only allowed transformation is the identity function. Indeed, for the appropriate choice
of parameters, our construction coincides with the one presented in [29].

11

Requirements. As in [29], our construction requires two (multiplicative) cyclic groups with a
specific relationship: G of prime order p, and Ĝ of prime order q, where Ĝ is a subgroup of Z∗p. We
require the DDH assumption to hold in both groups (with respect to the same security parameter).
Given a sequence of primes q, 2q + 1, 4q + 3 (a Cunningham chain of the first kind of length 3 [2]),
the two quadratic-residue groups Ĝ = QR∗2q+1 and G = QR∗4q+3, in which the DDH assumption is
believed to hold, represent a suitable choice.

Notation and Supported Transformations. Let “∗” denote the group operation in the prod-
uct group Gn defined by (α1, . . . , αn) ∗ (β1, . . . , βn) = (α1β, . . . αnβn).

For τ ∈ Gn, define Tτ to be the “multiplication by τ” transformation in Gn; i.e., Tτ (m) = τ ∗m.
We also let Tτ (⊥) = ⊥ for simplicity. Now let H be a subgroup of Gn. Our construction provides a
scheme whose message space is Gn, and whose set of allowable transformations is TH = {Tτ | τ ∈ H}.
By chosing H appropriately, we can obtain the following notable classes TH:

• The identity function alone (i.e., rerandomizable RCCA security), by setting H = {1}.
• All transformations Tτ (that is, all component-wise multiplications in Gn), by setting H = Gn.

• “Scalar multiplication” of tuples in Gn by coefficients in G, by setting H = {(s, . . . , s)|s ∈ G}.

5.1 The Construction

Double-strand Malleable Encryption Scheme. We now define a homomorphic encryption
scheme which, following [29], we call the “Double-strand malleable encryption” (DSME), and which
we use as a component in our main construction.

System parameters. A cyclic multiplicative group Ĝ of prime order q. Ĝ also acts as the
message space for this scheme. Similar to above, we denote Tσ as the multiplication-by-σ
transformation in Ĝ, with Tσ(⊥) = ⊥.

Key generation. Pick random generators ĝ1, ĝ2 from Ĝ, and random ~a = (a1, a2),~b = (b1, b2)
from (Zq)2. The private key is (~a,~b). The public key consists of ĝ1, ĝ2, and the following
values:

A =
∏2
j=1 ĝ

aj

j ; B =
∏2
j=1 ĝ

bj
j

Encryption (MEnc): To encrypt u ∈ Ĝ under public key (ĝ1, ĝ2, A,B), first pick random v ∈ Zq,
w ∈ Z∗q . Output

(ĝv1 , ĝ
v
2 , uA

v, Bv; ĝw1 , ĝ
w
2 , A

w, Bw).

Decryption (MDec): To decrypt U = (V1, V2, AV , BV ;W1,W2, AW , BW) under private key (~a,~b):
First, if W1 = W2 = 1, then output ⊥. Then check the following constraints:

AW
?=
∏2
j=1W

aj

j ; BV
?=
∏2
j=1 V

bj
j ; BW

?=
∏2
j=1W

bj
j ;

If any fail, output ⊥. Otherwise, output u = AV /
∏2
j=1 V

aj

j .

Ciphertext transformation (MCTrans): To apply transformation Tσ to the ciphertext U =
(~V ,AV , BV ; ~W,AW , BW) choose random s ∈ Zq, t ∈ Z∗q and output

(V1W
s
1 , V2W

s
2 , σAVA

s
W , BVB

s
W ;W t

1,W
t
2, A

t
W , B

t
W)

12

It is not hard to see that if U is in the support of MEncdPK(u) (with random choices v and
w), then the MCTrans(U, Tσ) is in the support of MEncdPK(σu), corresponding to random choices
v′ = v + sw and w′ = tw.

We emphasize that this DSME scheme does not achieve our desired definitions of a multiplica-
tive homomorphic scheme, because given an encryption of u and a value r ∈ Zq, one can easily
construct an encryption of ur, and exponentiation by r is not an allowed transformation. Our
main construction uses only the multiplicative transformation of DSME as a feature, although the
security analysis accounts for the fact that other types of transformation are possible.

Main Construction. We now present our main construction, which uses the previous DSME
scheme as a component.

System parameters. A cyclic multiplicative group G of prime order p. A space of messages.
We also require a secure DSME scheme over a group Ĝ of prime order q, where Ĝ is also a
subgroup of Z∗p. This relationship is crucial, as the ciphertext transformation MCTrans of the
DSME scheme must coincide with multiplication in the exponent in G.

As described above, we let Gn be the message space, for any parameter n. The scheme is
also parametrized by the subgroup H of allowed transformations. For m ∈ Gn, let f(m) be
an injective encoding (say, an arbitrary representative) of the coset m ∗ H to {0, 1}∗. Let H
be a family of collision-resistant hash functions from {0, 1}∗ to Zp.4 Finally, we require any
fixed vector ~z ∈ (Zp)4, which is not a scalar multiple of the all-ones vector.

Key generation (KeyGen). Generate a keypair (P̂K, ŜK) for the DSME scheme in Ĝ. Pick
random generators g1, . . . , g4 from G. For i ∈ [n], choose random ~ci = (ci,1, . . . , ci,4) from
(Zp)4 and compute Ci =

∏4
j=1 g

ci,j
j . Choose random ~d = (d1, . . . , d4), ~e = (e1, . . . , e4) from

(Zp)4 and compute D =
∏4
j=1 g

dj

j and E =
∏4
j=1 g

ej

j . Choose a random hash H← H.

The private key for the scheme is (ŜK,~c1, . . . ,~cn, ~d,~e). The public key is (P̂K, g1, . . . , g4, C1, . . . , Cn, D,E,H).

Encryption (Enc): To encrypt (m1, . . . ,mn) ∈ Gn under a public key of the preceding form, first
compute µ = H(f(m1, . . . ,mn)). Then pick random x ∈ Zp, y ∈ Z∗p and random u ∈ Ĝ, and
output

g
(x+z1)u
1 , . . . , g

(x+z4)u
4 , m1C

x
1 , . . . , mnC

x
n, (DEµ)x;

gyu1 , . . . , gyu4 , Cy1 , . . . , Cyn, (DEµ)y; MEncdPK(u)

Decryption (Dec): Let ζ be a ciphertext of the preceding form, say, ζ = (~X, ~CX , PX ; ~Y , ~CY , PY ;U),
where

~X = (X1, . . . , X4) ~CX = (CX,1, . . . , CX,n)
~Y = (Y1, . . . , Y4) ~CY = (CY,1, . . . , CY,n)

4Using the same technique as in the Cramer-Shoup scheme [13], our use of a hash can be removed, but at the
expense of longer public keys.

13

First compute u = MDecdSK(U). If u = ⊥, output ⊥. Otherwise, strip off u and ~z from the

exponents as follows: For j = 1, . . . , 4: set Xj = X
1/u
j g

−zj

j and Y j = Y
1/u
j .

Compute the purported plaintext (m1, . . . ,mn) via mi = CX,i/
∏4
j=1X

ci,j
j , and then compute

µ = H(f(m1, . . . ,mn)). Finally, check the integrity of the ciphertext in the following way. If
Y1 = · · · = Y4 = 1 (the identity element in G), output ⊥. Check the following conditions:

CY,i
?=
∏4
j=1 Y

ci,j
j (for each i ∈ [n]); PX

?=
∏4
j=1X

dj+µej

j ; PY
?=
∏4
j=1 Y

dj+µej

j

If any checks fail, output ⊥, otherwise output (m1, . . . ,mn).

Ciphertext transformation (CTrans): Let ζ be a ciphertext of the preceding form. To apply
transformation T(τ1,...,τn) to ζ, choose random σ ∈ Ĝ and random s ∈ Zp, t ∈ Z∗p. Output:

(X1Y
s

1)σ, . . . , (X4Y
s

4)σ, τ1CX,1C
s
Y,1, . . . , τnCX,nC

s
Y,n, PXP

s
Y ;

Y tσ
1 , . . . , Y tσ

4 , CtY,1, . . . , CtY,n, P tY ; MCTrans(U, Tσ)

It is not hard to see that if ζ is in the support of EncPK(m1, . . . ,mn), say, with random choices
x, y, and u, then the above ciphertext is in the support of EncPK(τ1m1, . . . , τnmn), corresponding
to random choices x′ = x+ sy, y′ = ty, and u′ = σu.

5.2 High-level Overview

Disregarding ~z and u, ciphertexts in our scheme resemble those in the original Cramer-Shoup
scheme [13]. Two similar-looking “strands” are given, with only the first one directly carrying
the message. This allows us to refresh the randomness x and y and achieve unlinkability when
applying a transformation to the ciphertext. A similar “double-strand” paradigm was used by
Golle, et al. [20], applied to the ElGamal encryption scheme to achieve a rerandomizable and
anonymous CPA-secure scheme.

Without the additional random value u appearing in the exponents of some of the ciphertext
components, the second strand’s components would be completely independent of the first strand’s.
Thus, the scheme would be malleable via an attack which combined the first strand of one ciphertext
and the second strand of another – the combination would result in a valid ciphertext if and only
if the two ciphertexts shared the same µ value. The addition of u and its encryption under MEnc
correlates the two strands, leaves u hidden from eavesdroppers, yet still allows for the random
choice of u to be refreshed.

In our “double-strand” paradigm of achieving unlinkability, x’s randomness is refreshed addi-
tively (as x + sy) and y’s multiplicatively (as ty). However, without the ~z vector perturbing the
randomness in x, there is a possible attack whereby x can be rerandomized multiplicatively and
still result in a valid ciphertext (say, by squaring each component of the first strand). By adding
~z, (intuitively) any attack that would multiply x would also multiply ~z as well. The decryption
procedure only strips away one copy of ~z, so x would remain perturbed for the Cramer-Shoup-like
integrity checks on the ciphertext. In our analysis, it is important that ~z is linearly independent of
the all-ones vector, so that an adversary would not be able to successfully compensate for additional
perturbances in the Cramer-Shoup integrity checks.

We achieve our desired level of non-malleabiliy by a technique similar to the Cramer-Shoup
CCA-secure scheme [13]. It uses a ciphertext component of the form (DEµ)x, where D,E are parts

14

of the public key, x is a random value used in encryption, and µ is a hash of the ciphertext’s prefix.
The rerandomizable RCCA scheme of [29] uses the same paradigm, except that the value µ is a
direct encoding of the plaintext (in rerandomizable RCCA, ciphertexts are malleable but only in
ways which preserve the plaintext). In our HCCA-secure scheme, µ is a hash of an encoding of the
coset m ∗ H. Intuitively, our scheme can therefore only be malleable in ways which preserve the
H-coset of the plaintext.

Theorem 4. The construction satisfies the correctness requirements, HCCA security, and un-
linkable homomorphism properties with respect to TH, for any subgroup H of Gn, under the DDH
assumption in the two cyclic groups.

The lengthy proof follows in Appendix A, and is a careful generalization of that of [29].

6 Beyond Unary Transformations

Many interesting applications of homomorphic encryptions involve (at least) binary operations
— those which accept encryptions of plaintexts m0 and m1 and output a ciphertext encoding
T (m0,m1). A common example is ElGamal encryption, where T is the group operation of the un-
derlying cyclic group. In this section, we examine the possibility of extending our results to schemes
with binary transformations. We show some simple positive results, and also an impossibility for
the specific case of group operations.

6.1 Extending Definitions

It is straight-forward to extend the UC definition of FThmp to handle binary transformations. We
define FT2-hmp to act like FThmp, except that T is a set of allowed binary transformations. Honest
parties may then generate a derived post by giving two handles an an allowed transformation T .
Naturally, the functionality internally acts as if the party had requested a post of T (m1,m2), where
m1,m2 are the messages corresponding to the given handles.

It is not clear what is the most appropriate behavior for FT2-hmp when one or both of the given
handles is a dummy handle. Our impossibility results in this section do not depend on any particular
behavior of FT2-hmp in such a case, so we opt to make the definition as weak as possible. When such
a request is made, we let the adversary learn the transformation and the two handles.

Defining an analog of our indistinguishability definition, however, appears to be much more
difficult task. Indeed, it is not clear how to appropriately handle the case where the adversary
applies a transformation to a pair of ciphertexts where one or both were generated via (independent
calls to) RigEnc.

Below we show that it is impossible to securely realize FT2-hmp (i.e., achieve unlinkability and an
HCCA-like definition for binary transformations) for a large class of useful transformations T . Still,
one may be willing to relax the unlinkability requirement (e.g., as in [33]) and still demand some
non-malleability. Thus we leave it as an important open problem to give a meaningful generalization
of HCCA security, for transformations that combine multiple ciphertexts.

6.2 A Simple Positive Result

FT2-hmp can be achieved for some simple transformation spaces, by appropriately composing an
HCCA-secure, unlinkably homomorphic (unary) scheme Π. To see this, construct a new scheme

15

whose ciphertexts are k-tuples of completely independent ciphertexts from Π. The (binary) trans-
formation operations in the new scheme have the following form: Given two tuples of k ciphertexts
each, choose k components from among these 2k ciphertexts, apply an allowed transformation to
each separately, and output those k ciphertexts in a tuple.

The resulting scheme’s transformations simply “mix and match” the independent components
of the two tuples of ciphertexts to form a new tuple. The unlinkability of the transformations
applied to each individual component implies the unlinkability of the new scheme. It is easy to
see that such a scheme securely realizes of FT2-hmp with respect to the appropriate transformation
space.

6.3 Negative Results

The positive result presented above appears to be much less sophisticated than, say, a scheme that
is homomorphic with respect to a group operation. Indeed, this limitation turns out to be inherent
in securely realizing FT2-hmp.

Theorem 5. There is no secure realization of FT2-hmp via a homomorphic encryption scheme, when
T contains a quasigroup operation5 on the message space.

The main observation is that each handle (ciphertext) must have a bounded length independent
of its “history” (i.e., whether it was generated via the homomorphic operation and if so, which
operations applied to which existing handles), and thus can only encode a bounded amount of
information about its history. We show that any simulator for FT2-hmp must be able to extract a
reasonble history from any handle output by the adversary.

However, when a quasigroup operation is an allowed transformation, there can be far more pos-
sible histories than can be encoded in a single handle. We use this fact to construct an environment
and adversary which can distinguish between the real world and the ideal world with any simulator,
contradicting the security definition.

To show Theorem 5, we establish a technical lemma which demonstrates the desired contra-
diction whenever the space of “possible histories” for a transition space grows large enough. We
note that the proof does not rely on complete unlinkability as specified in FT2-hmp. Instead, it only
uses the fact that ciphertexts in the scheme are bounded in length, independent of the number
of transformations that were used to generate them. Thus Theorem 5 applies even when slight
relaxations of unlinkability are considered.

Definition 4. Let T be a set of binary message transformations over a message space M, and let
x1, . . . be variables over M. Define CT inductively as follows:

• For all xi, the selection function (x1, . . .) 7→ xi is in CT .

• For all m ∈M, the constant function (x1, . . .) 7→ m is in CT .

• For all T ∈ T , if f, g ∈ CT , then the function (x1, . . .) 7→ T (f(x1, . . .), g(x1, . . .)) is also in
CT .

5A quasigroup operation ? on a set X is an operation such that fixing any two values in the equation x ? y = z
uniquely determines the third value.

16

Furthermore, define CdT as the subset of CT of functions that can be equivalently written as a
function of only the variables x1, . . . , xd.

CdT represents all the functions of d (unknown) ciphertexts that can be obtained “legally” via
the operations of the encryption scheme.

We write f ≈ g to denote that the functions f and g agree for an overwhelming fraction of their
inputs. When I = {i1, . . . , ik} ⊆ [d] and f ∈ CkT , for k < d, then we denote f I as the following
function in CdT :

f I(x1, . . . , xd) = f(xi1 , . . . , xik).

In other words, f I is simply f evaluated on the variables indexed by I ⊆ [d].
Theorem 5 is then a special case of the following lemma:

Lemma 1. If for some T , FT2-hmp is securely realizable by an encryption scheme (i.e., a non-
interactive protocol), then there is a constant d > 0 such that for all f ∈ CdT , there is an g ∈ Cd−1

T
and I ⊆ [d], with |I| = d− 1 such that f ≈ gI .

In other words, for some d, every legal operation on d ciphertexts is actually approximately
equivalent to an operation that only depends on d − 1 ciphertexts. We obtain Theorem 5 by
observing that for a quasigroup operation ?, the product x1 ? · · · ? xd (parenthesized in any way —
? need not be associative) is not approximately equal to any function on fewer than d variables.
After fixing any d − 1 variables in the product, there is a unique setting of the free variable that
causes the product to evaluate to any element of the quasigroup.

Proof. Suppose FT2-hmp is securely realizable by an encryption scheme, and for the sake of contra-
diction that the above condition is false. We will construct a family of sets {Sd}d, where Sd ⊆ CdT ,
with the following properties: |Sd| = 2Ω(d); every the functions in Sd are pairwise non-equivalent
under the ≈ relation; and Sd can be efficiently sampled (polynomial time in d).

Using such Sd, we obtain a contradiction in the following way. Consider an environment which
instantiates FT2-hmp with two honest parties Alice and Bob, and a dummy adversary Carol. The
environment chooses d random messages m1, . . . ,md ← M, where d is a parameter to be fixed
later, and instructs Alice to post them for Bob. Then, the environment chooses a random f ←
Sd and internally applies it to the d resulting handles (ciphertexts). The environment can do
this on behalf of the adversary without any interaction, because this protocol implements the
repost operation via a non-interactive procedure CTrans. Finally, the environment instructs the
adversary to broadcast the resulting handle/ciphertext, and the environment checks that Bob
received f(m1, . . . ,md) correctly.

The contradiction is obtained as follows: First, due to the security of the encryption scheme,
there must exist a simulator for this adversary. Because of how FT2-hmp models non-malleability, the
simulator must request the new handle according to one of the “legal” functions CdT . In the real
world, Bob always receives the correct output, so the simulator must specify a function f ′ ∈ CdT
such that f(m1, . . . ,md) = f ′(m1, . . . ,md) with overwhelming probability. From the definition of
FT2-hmp, the simulator’s view is statistically independent of the choice of m1, . . . ,md, so that the
simulator must in fact specify an f ′ ∈ CdT such that f ′ ≈ f , with overwhelming probability.

Finally, observe that in any realization of FT2-hmp, all handles must be bounded in length by
some fixed polynomial `(k), where k is the security parameter (else the unlinkability requirement
will be broken). Since |Sd| = 2Ω(d), we can choose d = poly(k) such that |Sd| > 2`(k)+2. The handle
output by the adversary (to the simulator) is at most `(k) bits long, so the simulator’s view has at

17

least 1 bit of uncertainty about the f chosen by the environment. Furthermore, Sd is constructed
so that for any f ′, there is at most one f ∈ Sd such that f ≈ f ′. Thus with probability at least
1/2, the f ′ chosen by the simulator will disagree with f on a non-negligible fraction of inputs; a
contradiction.

It suffices then to construct {Sd} with the desired properties. For each d, there is some function
fd ∈ CdT such that fd 6≈ gI for all g ∈ Cd−1

T and indices I ⊆ [d], |I| = d− 1. We define Sd = {(f|I|)I :
I ⊆ [d]}, i.e., all ways to evaluate one of the fi’s on a subset of variables of the appropriate size.
Clearly |Sd| = 2Ω(d).

Next, we claim that the elements in Sd are pairwise non-equivalent under the ≈ relation. To see
this, take g 6= g′ ∈ Sd. By the definition of Sd, each of these is simply an evaluation of some fi on
i of its variables. Say, g has fi as its underlying function and g′ has fj . If i 6= j, then without loss
of generality let i < j. By its construction, fj is not approximately equal to fi ∈ CiT evaluated on
any subset of variables. Thus i = j, and since they are different functions, g and g′ must evaluate
fi = fj on different sets of variables. We may fix all variables randomly except one so that g is fixed
and g′ has one remaining free variable. With overwhelming probability, the residual g′ must not
be approximately equal to a constant function, otherwise fj is approximately equal to a function
on j − 1 variables, a contradiction.

Finally, we observe that Sd can be fully specified (and uniformly sampled from) given just
descriptions of the d functions {fi}.

7 Extensions

7.1 Anonymity

In some applications, it is useful for an encryption scheme to have the additional property of receiver-
anonymity (also known as key-privacy), as introduced by Bellare et al. [3]. Receiver-anonymity
means, essentially, that in addition to hiding the underlying plaintext message, a ciphertext does
not reveal the public key under which it was encrypted. Encryption schemes with this property are
important tools in the design of many systems [30]. The special case of rerandomizable, anonymous,
RCCA-secure encryption has interesting applications in mix-nets [20] and anonymous P2P routing
[29].

The way we have defined the syntax of the CTrans feature of a homomorphic encryption scheme
(i.e, so that it does not require the “correct” public key in addition to the ciphertext), it remains
a meaningful feature even in an environment where receiever-anonymity is utilized.

To model the property of receiver-anonymity for HCCA schemes, we consider an anonymous,
multi-user variant of the FThmp UC functionality. This variant allows multiple users to register
IDs, and senders to post messages destined for a particular ID. The functionality does not reveal
the handle’s recipient in its handle-announce broadcasts (or in its handle-req requests to the
adversary).

Our indistinguishability-based security definitions can also be extended in a simple way to
account for receiver-anonymity. We call a homomorphic encryption scheme HCCA-anonymous if it
is HCCA secure and if the RigEnc and RigExtract procedures from the HCCA security definition can
be implemented without the public or private keys (i.e, RigEnc takes no arguments and RigExtract
takes only a ciphertext and a saved state).

We also consider an additional correctness requirement on schemes, which is natural in the con-

18

text of multiple users: With overwhelming probability over (PK,SK)← KeyGen and (PK ′, SK ′)←
KeyGen, we require that DecSK′(EncPK(msg)) = ⊥ for every msg ∈M, with probability 1 over the
randomness of Enc. In other words, ciphertexts honestly encrypted for one user do not successfully
decrypt for another user.

Via a similar argument to the proof of Theorem 2, it can be seen that any HCCA-anonymous,
unlinkable scheme which satisfies the additional correctness property is a secure realization of the
anonymous variant of FThmp.

Note that this notion of anonymity is a chosen-ciphertext and not a chosen-plaintext (simple
ciphertext indistinguishability) one. Our construction does not achieve HCCA-anonymity, since
it is possible to combine a ciphertext with a public key and obtain a valid ciphertext if and only
if the original ciphertext was encrypted under that public key. We consider it an interesting and
important open problem to construct an anonymous, unlinkably homomorphic HCCA encryption
scheme, for any T .

7.2 Alternate UC Security Definition

For simplicity, we have defined our ideal UC functionality FThmp in such a way that the adversary
is notified on-line every time a handle is generated. As pointed out in [27], this paradigm does
not allow the most flexibility. A more general-purpose functionality would be one in which parties
privately generate new handles (without the adversary being notified), and can have arbitrary
control over how the handles are sent to other parties. If a handle never reaches the adversary,
the adversary should not know that it was ever generated. To model this, the functionality can
be modified so that the adversary is not notified each time a new handle is generated; instead,
following [27], the adversary supplies a handle-generating algorithm during the set-up phase so
that handles can be generated without the adversary’s intervention/notification.

To securely realize such a functionality via a homomorphic encryption scheme, we must ensure
that the scheme satisfies an additional security property; namely, that ciphertexts reveal (even to
the receiver) at most the cumulative effect of all the transformations that have been applied — in
particular, the ciphertext does not reveal which particular sequence of transformations has been
applied. This property can be specified more formally as a security experiment, where an adversary
supplies a ciphertext ζ and two transformations T1 and T2. The challenger flips a fair coin and
returns either either CTrans(ζ, T2 ◦T1) or CTrans(CTrans(ζ, T1), T2), correspondingly. We insist that
the adversary cannot correctly guess the coin with nonnegligible advantage.

With this additional security requirement, an analog of Theorem 2 holds for this non-broadcasting
definition of FThmp. Our construction does indeed satisfy this additional property, since the two dis-
tributions CTrans(ζ, T2 ◦ T1) and CTrans(CTrans(ζ, T1), T2) are identical.

7.3 Relaxing the Definition of Unlinkability

The definition of unlinkable homomorphism given in Section 3 is very strong, in that it expresses
a requirement even for adversarially-generated ciphertexts. There is a relaxation of this definition
that only expresses a requirement for honestly generated ciphertexts, and is still meaningful:

Definition 5. We say that a homomorphic encryption scheme is weakly unlinkably homormophic
if for every PPT adversary A, the advantage of A in the following experiment is negligible:

1. Setup: Pick (PK,SK)← KeyGen and give PK to A.

19

2. Phase I: A gets access to the decryption oracle DecSK(·).
3. Challenge: A outputs a plaintext msg and a transformation T ∈ T . We privately flip a coin

b← {0, 1}.
• If b = 0, we give the adversary ζ∗0 ← EncPK(msg) and ζ∗1 ← EncPK(h(msg)).

• If b = 1, we give the adversary ζ∗0 ← EncPK(msg) and ζ∗1 ← CTrans(ζ∗0 , T).

4. Phase II: A gets access to the decryption oracle DecSK(·).
5. Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1

2 .

Unlike the stronger variant, weak unlinkability is implied by the perfect rerandomizing property
(Definition 1). Relaxing the unlinkability property in this way corresponds to a slight relaxation of
the UC functionality the scheme can realize. In the FThmp UC functionality, call a handle adversar-
ially influenced if:

• it is the result of a post or repost command issued by a corrupted party,

• or it is the result of a (repost, handle) command, where handle is adversarially influenced.

An encryption scheme which is HCCA secure and only weakly unlinkably homomorphic is a secure
realization of a variant of FThmp, in which the adversary is notified every time an adversarially
influenced handle is reposted (in the same way it is notified when its dummy handles are reposted).
The proof is very similar to that of Theorem 2, except that unlinkability is only applied to handles
which are not adversarially influenced.

7.4 Repost-test

In FThmp, when an honest party Alice receives a post from Bob and then another from Carl, Alice
has no way of knowing if Carl’s message was derived from Bob’s (via FThmp’s repost feature), or
via an independent post command. In fact, the only time FThmp informs a recipient that a repost
occurred is for the adversary’s dummy handles.

We can easily modify our schemes and FThmp to provide such a feature for honest parties. We
call this feature repost-test. In this variant of FThmp, the recipient may issue an additional command
(test, handle1, handle2). The functionality returns a boolean indicating whether the two handles
were the result of reposting a common handle (it keeps extra book-keeping to track the ancestor of
each repost-generated handle).

To realize this modified functionality, we start with a realization of FThmp on message space
Mn+1, where M has superpolynomial size. Suppose every T ∈ T always preserves the (n + 1)th
component of the message. Then let T ′ be the restrictions of T ∈ T to the first n components.

We may then use FThmp to obtain a secure realization of FT ′hmp with repost-test feature in the
following way: To post a message (m1, . . . ,mn) ∈ Mn, choose a random mn+1 ← M and post
(m1, . . . ,mn+1) to FThmp. When reading a message, ignore the last component. To perform the
repost-test on two handles, simply check whether the last components of their corresponding mes-
sages are equal.

20

7.5 Triviality of HCCA without Unlinkability

Without an unlinkability requirement, it is relatively trivial to construct a scheme that is HCCA-
secure with respect to any space of message transformations T . Consider modifying any CCA-secure
encryption scheme by considering an additional kind of ciphertext of the form (ζ, T), where ζ is a
ciphertext in the original scheme and T is a description of a transformation in T . To decrypt a
ciphertext of this new form, first decrypt ζ and then if T ∈ T , apply T to the result. The scheme
has a homomorphic transformation procedure: CTrans(ζ, T) = (ζ, T), and CTrans((ζ, T), T ′) =
(ζ, T ′ ◦ T).

It is not hard to see that such a scheme achieves HCCA security with respect to T . RigEnc
should encrypt some fixed message and use the ciphertext itself as the auxiliary information S.
Then on input (ζ, T), S, the RigExtract procedure should return T if T ∈ T and ζ = S, and return
⊥ otherwise.

Acknowledgments

We thank Rui Xue for helpful discussions regarding Theorem 3, as well as the feedback from the
anonymous referees.

References

[1] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In L. R.
Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
83–107. Springer, 2002.

[2] J. K. Andersen and E. W. Weisstein. Cunningham chain. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/CunninghamChain.html, 2005.

[3] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption.
In C. Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages
566–582. Springer, 2001.

[4] M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two notions, and an
indistinguishability-based characterization. In M. J. Wiener, editor, CRYPTO, volume 1666
of Lecture Notes in Computer Science, pages 519–536. Springer, 1999.

[5] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Department of Computer Science,
Yale University, 1987.

[6] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In
K. Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes in Computer Science, pages
127–144. Springer, 1998.

[7] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005.

21

[8] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication
and key-exchange protocols. In S. Halevi and T. Rabin, editors, TCC, volume 3876 of Lecture
Notes in Computer Science, pages 380–403. Springer, 2006.

[9] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. In ACM
Computer and Communication Security (CCS), 2007.

[10] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 565–582. Springer,
2003.

[11] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. TR CS0917,
Department of Computer Science, Technion, 1997.

[12] R. Cramer, M. K. Franklin, B. Schoenmakers, and M. Yung. Multi-autority secret-ballot
elections with linear work. In EUROCRYPT, pages 72–83, 1996.

[13] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in
Computer Science. Springer, 1998.

[14] I. Damg̊ard, N. Fazio, and A. Nicolosi. Non-interactive zero-knowledge from homomorphic
encryption. In S. Halevi and T. Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer
Science, pages 41–59. Springer, 2006.

[15] I. Damg̊ard and J. B. Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In D. Boneh, editor, CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 247–264. Springer, 2003.

[16] G. Danezis. Breaking four mix-related schemes based on universal re-encryption. In Proc.
Information Security Conference. Springer-Verlag, September 2006.

[17] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–
437 (electronic), 2000. Preliminary version in STOC 1991.

[18] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In CRYPTO, pages 10–18, 1984.

[19] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
Apr. 1984. Preliminary version appeared in STOC’ 82.

[20] P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal re-encryption for mixnets. In
Proceedings of the 2004 RSA Conference, Cryptographer’s track, San Francisco, USA, February
2004.

[21] J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosys-
tems. In M. Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages
152–170. Springer, 2004.

[22] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryption. In
EUROCRYPT, pages 539–556, 2000.

22

[23] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Sufficient conditions for collision-resistant hashing.
In J. Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 445–456.
Springer, 2005.

[24] M. J. Jurik. Extensions to the Paillier Cryptosystem with Applications to Cryptological Pro-
tocols. PhD thesis, BRICS, 2003.

[25] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437. ACM, 1990.

[26] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EU-
ROCRYPT, pages 223–238, 1999.

[27] A. Patil. On symbolic analysis of cryptographic protocols. Master’s thesis, Massachusetts
Institute of Technology, 2005.

[28] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In ACM Conference on Computer and Communications Security, pages 245–254,
2000.

[29] M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In A. Menezes, editor,
CRYPTO, volume 4622 of Lecture Notes in Computer Science. Springer, 2007. To appear.

[30] F. H. Project. Anonymity bibliography. http://freehaven.net/anonbib/, 2006.

[31] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In J. Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in
Computer Science, pages 433–444. Springer, 1991.

[32] K. Sako and J. Kilian. Secure voting using partially compatible homomorphisms. In
Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 411–
424. Springer, 1994.

[33] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In FOCS,
pages 554–567, 1999.

[34] V. Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint
Archive, Report 2001/112, 2001. http://eprint.iacr.org/.

[35] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data.
In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

[36] D. Wikström. A note on the malleability of the El Gamal cryptosystem. In A. Menezes and
P. Sarkar, editors, INDOCRYPT, volume 2551 of Lecture Notes in Computer Science, pages
176–184. Springer, 2002.

23

A Security Proof

Theorem 4. Our construction (Section 5) satisfies the correctness properties for a homomorphic
encryption scheme, is unlinkably homomorphic and is HCCA-secure, under the DDH assumption
in G and Ĝ.

An overview of the (somewhat lengthy) proof is provided below. Then the full details of the
proof are carried out in the following sections.

Proof Sketch. To show HCCA security, we must demonstrate appropriate RigEnc and RigExtract
procedures. Our RigEnc encrypts a fixed dummy plaintext and uses a randomly chosen µ value
instead of one derived from the plaintext. Our RigExtract similarly checks the integrity of the
ciphertext using the same random µ value, and checks that the dummy plaintext was altered by
an allowed transformation.

To show the suitability of these procedures in the HCCA experiment, we first describe an
alternate encryption procedure which is implemented using the private key instead of the public
key. When this procedure is used in place of Enc or RigEnc to generate the challenge ciphertext
ζ∗ in the HCCA security experiment, it follows from the DDH assumption that the difference
is indistinguishable to any adversary. The ciphertexts produced by this alternate procedure are
information-theoretically independent of the secret coin flip in the HCCA experiment, as well as
some internal randomness used to generate the ciphertext.

Next, we show that given a fixed view of an adversary in the HCCA experiment, any ciphertext
which is not in the support of EncPK(·) or CTrans(ζ∗, ·) is rejected by the decryption oracles Dec
and RigDec (i.e, they output ⊥ for such ciphertexts) with overwhelming probability over the re-
maining randomness in the experiment (which is independent of the adversary’s view). This is the
most delicate part of our proof, and it roughly follows that of [29]. It uses a linear-algebraic char-
acterization of our scheme, and relies on the fact that certain quantities in the challenge ciphertext
are distributed independently of the adversary’s view. We also show an analagous statement for
the GRigExtract oracles.

From the previous observation, we may replace the Dec, RigDec, and GRigExtract oracles (which
use the secret key) with oracles that can be implemented using only information that is public to
the adversary (e.g, the public key and challenge ciphertext). These oracles are computationally
unbounded, as they exhaustively search the supports of EncPK(·) and CTrans(ζ∗, ·). Only with
negligible probability do these alternate oracles give an answer which disagrees with the original
oracles.

Finally, we conclude that with these two modifications — alternate encryption and decryption
procedures — the adversary’s entire view (the public key, challenge ciphertext and responses from
the oracles) in the HCCA security experiment is independent of the secret bit b, and so the adver-
sary’s advantage is zero. Furthermore, this modified experiment is indistinguishable to the original
experiment for any PPT adversary, so the HCCA security claim follows.

The correctness and unlinkable homomorphism properties are a direct consequence of the lem-
mas needed to prove the HCCA security.

24

A.1 Rigged Encryption and Extraction

To show HCCA security, we must demonstrate RigEnc and RigExtract procedures. First, we factor
out some subroutines that are common to the “rigged” and non-rigged encryption procedures:

Ciphertext generation. GenCiphPK((m1, . . . ,mn), µ): Pick random x ∈ Zp, y ∈ Z∗p and random
u ∈ Ĝ, and output

g
(x+z1)u
1 , . . . , g

(x+z4)u
4 , m1C

x
1 , . . . , mnC

x
n, (DEµ)x;

gyu1 , . . . , gyu4 , Cy1 , . . . , Cyn, (DEµ)y; MEncdPK(u)

Deriving purported plaintext. PurpMsgSK(ζ, u): Strip off u and ~z from the exponents as fol-
lows: For j = 1, . . . , 4: set Xj = X

1/u
j g

−zj

j and Y j = Y
1/u
j . Output (m1, . . . ,mn), where

mi = CX,i/
∏4
j=1X

ci,j
j .

Checking ciphertext integrity. IntegritySK(ζ, u, µ): Strip off u and ~z from the exponents as
follows: For j = 1, . . . , 4: set Xj = X

1/u
j g

−zj

j and Y j = Y
1/u
j . If Y 1 = · · · = Y 4 = 1 (the

identity element in G), output 0. Otherwise, check the following constraints:

CY,i
?=
∏4
j=1 Y

ci,j
j (for each i ∈ [n]); PX

?=
∏4
j=1X

dj+µej

j ; PY
?=
∏4
j=1 Y

dj+µej

j

If any fail, output 0, otherwise output 1.

We can view the scheme’s Enc and Dec routines as using these subroutines:

EncPK(m1, . . . ,mn): Output GenCiphPK((m1, . . . ,mn),H(f(m1, . . . ,mn))).

DecSK(ζ): Compute u ← MDecdSK(U). If u = ⊥, output ⊥. Otherwise, set (m1, . . . ,mn) =
PurpMsgSK(ζ, u). If IntegritySK(ζ, u,H(f(m1, . . . ,mn))) = 1, output (m1, . . . ,mn); otherwise
output ⊥.

Now, we define our RigEnc and RigExtract features:

RigEncPK(): Pick random µ← Zp. Generate ζ ← GenCiphPK((1, . . . , 1), µ), and output (ζ, S = µ).

RigExtractSK(ζ, S): Compute u← MDecdSK(U). If u = ⊥, output⊥. Otherwise, set (m1, . . . ,mn) =
PurpMsgSK(ζ, u). If IntegritySK(ζ, u, S) = 1 and T(m1,...,mn) is an allowed transformation, then
output T(m1,...,mn); otherwise output ⊥.

A.2 Encryption and Decryption as Linear Algebra

In this section we characterize our construction using linear algebra, which will be useful in the
security proof.

25

Public key constraints. First we examine what information is revealed to the adversary about
the private key by the public key.

The following constaints relate the private keys to public keys (the first equation is in the field
of order q, and the second is in the field of order p):[

~1 0
0 ~1

] [
Ĝ 0
0 Ĝ

] [
~a>
~b>

]
=
[

logA
logB

]
, where Ĝ =

[
log ĝ1 0

0 log ĝ2

]
~1 . . .

~1

G . . .

G

~c>1
...
~c>n
~d>

~e>

 =

logC1

...
logCn
logD
logE

 , where G =

log g1 · · · 0
...

. . .
...

0 · · · log g4

 (1)

We call these constraints the public-key constraints.

Definition 6. Let U = (~V ,AV , BV , ~W,AW , BW) be a DSME ciphertext. The two DSME strands
of U with respect to a public key (ĝ1, ĝ2, A,B) are:

~v = (v1, v2), where vj = logbgj
Vj

~w = (w1, w2), where wj = logbgj
Wj

Observe that applying MCTrans(U, Tσ) gives a ciphertext whose two strands are ~v+ r ~w and s~w,
for random r ∈ Zq, s ∈ Z∗q . In ciphertexts generated by MEnc, both strands are scalar multiples of
the all-ones vector.

For DSCS ciphertexts, we define a similar notion of strands. However, in a DSCS ciphertext,
the first strand is “masked” by u and zi’s, and the second strand is masked by u.

Definition 7. Let ζ = (~X, ~CX , PX ; ~Y , ~CY , PY ;U) be a DSCS ciphertext. The DSCS strands of ζ
with respect to a public key (g1, . . . , g4, . . .) and a value u ∈ Ĝ are:

~x = (x1, . . . , x4), where xi = (loggi
Xi)/u− zi

~y = (y1, . . . , y4), where yi = (loggi
Yi)/u

As above, applying CTrans(ζ, T~τ) gives a ciphertext whose two strands are ~x + r~y and s~y, for
random r ∈ Zp, s ∈ Z∗p. In ciphertexts generated by Enc, both strands are scalar multiples of the
all-ones vector.

Decryption constraints. Let ŜK = (~a,~b) be a DSME private key, let U = (~V ,AV , BV , ~W,AW , BW)
be a DSME ciphertext, and let ~v, ~w be its two strands with respect to the corresponding public
key. Then MDecdSK(U) = u 6= ⊥ if and only if ~w is a nonzero vector and the following constraints
hold in the field of order q:

~v 0
~w 0
0 ~v
0 ~w

[Ĝ 0
0 Ĝ

] [
~a>
~b>

]
=

log(AV /u)

logAW
logBV
logBW

 (2)

26

The logarithms are with respect to any fixed generator of Ĝ.
Similarly, let SK = (ŜK,~c1, . . . ,~cn, ~d,~e) be a DSCS private key and let ζ = (~X, ~CX , PX ; ~Y , ~CY , PY ;U)

be a DSCS ciphertext, such that MDecdSK(U) = u 6= ⊥. Let ~x and ~y denote the strands of ζ∗ with
respect to the public key and u.

Then PurpMsgSK(ζ, u) = (m1, . . . ,mn) and IntegritySK(ζ, u, µ) = 1 if and only if ~y is a nonzero
vector and the following constraints hold in the field of order p:

~x
. . . 0 0

~x
~y

. . . 0 0
~y

0 ~x µ~x
0 ~y µ~y

G . . .
G

~c>1
...
~c>n
~d>

~e>

 =

log(CX,1/m1)
...

log(CX,n/mn)
logCY,1

...
logCY,n
logPX
logPY

(3)

The logarithms are with respect to any fixed generator of G.
We call each constraint in these systems of equations the decryption constraints, and refer to

them by the name of the ciphertext component that is involved (AV , AW , PX , etc.).

The adversary receives ciphertexts throughout the HCCA experiment from GRigEnc oracles and as
the challenge ζ∗. These ciphertexts gives the adversary’s view additional constraints on the private
key.

Observation: Ciphertexts that are generated by GenCiph induce constraints that are linearly
dependent on the constraints given by the public key, because their strands are scalar multiples of
the appropriate all-ones vectors.

Lemma 2. For all key pairs (P̂K, ŜK), all (purported) ciphertexts U , and all U ′ in the support of
MCTrans(U, Tσ), we have MDecdSK(U ′) = Tσ(MDecdSK(U)).

Proof. If ~v and ~w are the two strands of U , then the two strands of U ′ are ~v+ r ~w and s~w for some
r ∈ Zq, s ∈ Z∗q . The two strands of U ′ are linear combinations of the strands of U , and the three
values checked by a decryption constraint (BV ,AW ,BW) are the corresponding combinations of the
values from U . Thus, a particular decryption constraint fails on U ′ if and only if it fails for U .
Furthermore, as s 6= 0, so ~w is a nonzero vector if and only if s~w is a nonzero vector. Finally, it is
straight-forward to check that the purported plaintext of U ′ is σ times the purported plaintext of
U .

Lemma 3. For all key pairs (PK,SK), all (purported) ciphertexts ζ, and all ζ ′ in the support of
CTrans(ζ, T~τ), we have DecSK(ζ ′) = T~τ (DecSK(ζ)).

Proof. First, by the above lemma, the DSME component of ζ will fail to decrypt if and only if the
DSME component of ζ ′ fails to decrypt.

Otherwise, the two strands of ζ ′ (with respect to the decryption of its DSME component) are
linear combinations of the strands of ζ (with respect to the decryption of its DSME component).
A similar argument to above shows that a decryption check fails on ζ ′ if and only if the same check
fails on ζ; and the ratios of the purported plaintexts are ~τ .

27

A.3 Decisional Diffie-Hellman Assumption

We now describe a more intricate indistinguishability assumption, which is implied by the standard
DDH assumption in G and Ĝ.

First, consider the following two distributions:

• DDH(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick a random v ← Zp,
where |G| = p. Output (g1, . . . , gj , g

v
1 , . . . , g

v
j).

• Rand(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick random v1, . . . , vj ←
Zp, where |G| = p. Output (g1, . . . , gj , g

v1
1 , . . . , g

vj

j).

We will require distributions of this form with j = 2 and j = 4, in different groups. Note that for
fixed n, the standard DDH assumption in G (which is the special case of j = 2) implies that the
above distributions are indistinguishable. To see this, consider a hybrid distribution in which the
first k exponents are randomly chosen, and the remaining exponents are all equal. The standard
DDH assumption is easily seen to imply that the kth hybrid distribution is indistinguishable from
the (k + 1)st.

Now consider the following two “double-strand” distributions:

• DS-DDH(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick random v, w ←
Zp, where |G| = p. Output (g1, . . . , gj , g

v
1 , . . . , g

v
j , g

w
1 , . . . , g

w
j).

• DS-Rand(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick random
v1, . . . , vj , w1, . . . , wj ← Zp, where |G| = p. Output (g1, . . . , gj , g

v1
1 , . . . , g

vj

j , g
w1
1 , . . . , g

wj

j).

Again, a simple hybrid argument shows that if the DDH(G, j) and Rand(G, j) distributions are
indistinguishable, then so are DS-DDH(G, j) and DS-Rand(G, j). We call elements in the support
of these distributions double-strand tuples of length j.

Finally, our security proofs rely on the indistinguishability of the following two distributions:

• Pick K0 ← DS-DDH(G, 4), and pick K1 ← DDH(Ĝ, 2). Output (K0,K1).

• Pick K0 ← DS-Rand(G, 4), and pick K1 ← Rand(Ĝ, 2). Output (K0,K1).

A final hybrid argument shows that if DS-DDH(G, 4) and DS-Rand(G, 4) are indistinguishable,
and DDH(Ĝ, 2) and Rand(Ĝ, 2) are also indistinguishable, then the above two distributions are
indistinguishable.

A.4 The Alternate Encryption Procedure

We now describe the alternate method of generating ciphertexts AltGenCiph. As a component, it
uses AltMEnc, an alternate encryption procedure for the DSME scheme. Both of these procedures
use the secret keys instead of the public keys to generate ciphertexts.

DSME alternate encryption: AltMEncdSK(u).

• Pick random v1, v2 ∈ Zq and w ∈ Z∗q . For j = 1, 2 let Vj = ĝ
vj

j and Wj = ĝwj (alterna-
tively, in the analysis below we also consider V1, V2 as inputs instead).

28

• Output (~V ,AV , BV , ~W,AW , BW), where

~V = (V1, V2) AV = u ·∏2
j=1 V

aj

j BV =
∏2
j=1 V

bj
j

~W = (W1,W2) AW =
∏2
j=1W

aj

j BW =
∏2
j=1W

bj
j

DSCS alternate ciphertexts: AltGenCiphSK((m1, . . . ,mn), µ).

• Pick random x1, . . . , x4, y1, . . . , y4 ∈ Zp. For j = 1, . . . , 4, set Xj = g
xj

j and Y j = g
yj

j ,
(alternatively, in the analysis below we also consider Xj , Y j as inputs instead).

• Pick random u ∈ Ĝ, set U ← AltMEncdSK(u), Compute:

Xj = (Xjg
zj

j)u; CX,i = mi
∏4
j=1X

ci,j
j ; PX =

∏4
j=1X

dj+µej

j ;

Yj = Y
u
j ; CY,i =

∏4
j=1 Y

ci,j
j ; PY =

∏4
j=1 Y

dj+µej

j ;

• Finally, output ζ = (~X, ~CX , PX ; ~Y , ~CY , PY ;U)

These alternate encryption procedures differ from the normal encryption procedures in that
they generate ciphertexts whose decryption constraints are not linearly dependent on the public
key constraints. The DSME alternate encryption generates a ciphertext whose first strand is
random, and the DSCS alternate encryption generates a ciphertext whose two strands are both
random. The remainder of the ciphertexts are constructed using the private keys to ensure that
the decryption constraints are satisfied.

A hybrid HCCA experiment. Consider a variant of the HCCA experiment, where the chal-
lenge ciphertext is generated using AltGenCiph. That is, in the challenge phase of the experiment,
the implicit call to GenCiphPK is replaced with an identical call to AltGenCiphSK .

Lemma 4. In the hybrid HCCA experiment (where ζ∗ is generated using AltGenCiph), conditioned
on a negligible-probability event not occuring, ζ∗ is distributed independently of the randomness u,
and the bit b in the experiment, even given the public key. When b = 1, ζ∗ is also distributed
independently of the random choice of µ used in RigEnc.

Proof. Given a DSME ciphertext from AltMEnc with first strand ~v∗, the set {~v∗,~1} forms a basis for
the space of all DSME strands, with overwhelming probability. The adversary’s view of the DSME
private key (~a,~b) is constrained by the public key constraints in equation (1) and the decryption
constraints given by ζ∗ in equation (3). The constraints involving the second strand are linearly
dependent on the public key constraints, as ~w is a scalar multiple of the all-ones vector. Combining
these constraints and removing the redundant ones, we have:

~1 0
0 ~1
~v 0
0 ~v

[Ĝ 0
0 Ĝ

] [
~a>
~b>

]
=

logA
logB

log(AV /u)
logBV

 ,
The matrix on the left-hand side of this equation is nonsingular.

29

Similarly, in a DSCS ciphertext from AltGenCiph, with overwhelming probability we have that
for every u ∈ Ĝ, {~x, ~y,~1, ~z} form a basis for the space of all DSCS strands, where ~x and ~y are the
strands of the challenge ciphertext with respect to u. Then the adversary’s view of the private key
is constrained as follows:

~1
. . .

~1
~x

. . .
~x

~y
. . .

~y
~x µ~x
~y µ~y

G . . .
G

~c>1
...
~c>n
~d>

~e>

 =

logC1
...

logCn
logD
logE

log(CX,1/m1)
...

log(CX,n/mn)
logCY,1

...
logCY,n
logPX
logPY

Here (m1, . . . ,mn) and µ denote the inputs to AltGenCiph.

Note that when {~1, ~x, ~y} are linearly independent, the matrix on the left-hand side of this
equation is nonsingular, for every µ ∈ Zp.

Now fix a public key and challenge ciphertext (one that avoids the event that {~1, ~x, ~y} is not
linearly independent). When b = 0 in the experiment, substitute the appropriate mi and µ values
in the previous system of equations. Then for every choice of u ∈ Ĝ, there are an equal number of
solutions for the private keys in this system of equations, as the matrix is nonsingular.

When b = 1 in the experiment, substitute (m1, . . . ,mn) = (1, . . . , 1). Then for every choice of
u ∈ Ĝ and µ ∈ Zp, there are an equal number of solutions for the private keys, as the matrix is
nonsingular.

Since the underlying randomness in the HCCA experiment is the choice of these private keys, the
choices of u, µ, and b are independent of each other and of the adversary’s view in the experiment.

Lemma 5. For every PPT adversary, its advantage in the HCCA experiment is negligibly close
to its advantage in the hybrid HCCA experiment (when the challenge ciphertext is generated using
AltGenCiph), if the DDH assumption holds in G and Ĝ.

Proof. If the DDH assumption holds for Ĝ and G, then two the distributions described in Sec-
tion A.3 are computationally indistinguishable.

Now consider a simulation of the HCCA experiment, where the input is from one of the above
distributions. Let (ĝ1, ĝ2, V1, V2) be the sample from either DDH(Ĝ, 2) or Rand(Ĝ, 2). Set (ĝ1, ĝ2)
as the corresponding part of the DSME public key, and generate the remainder of the keypair (~a,~b)
honestly. To simulate the encryption of u∗ from the challenge ciphertext with this keypair, use
AltMEnc with the input values V1, V2.

Similarly, let (g1, . . . , g4, X1, . . . , X4, Y 1, . . . , Y 4) be the sample from either DS-DDH(G, 4) or
DS-Rand(G, 4). Set (g1, . . . , g4) as the corresponding part of the DSCS public key and gen-
erate the remainder of the DSCS keypairs (~ci, ~d, ~e) honestly. To simulate the encryption of

30

the challenge ciphertext, use AltGenCiph and AltMEnc with the private keys and input values
X1, . . . , X4, Y 1, . . . , Y 4.

It is straight-forward to check that when the input is sampled from the first distribution (i.e, the
2 tuples come from the appropriate DDH distributions), the ciphertext is distributed statistically
close to a “normal” encryption from GenCiph and MEnc (the distribution is identical when condi-
tioned to avoid the negligible-probability event that Y 1 = · · · = Y 4 = 1). If the input is sampled
from the second distribution (i.e, the 2 tuples comes from the appropriate random distributions),
then the ciphertext is distributed identically as an encryption from AltGenCiph.

The rest of this simulation of the HCCA experiment can be implemented in polynomial time.
Thus, the outcomes of the two simulations must not differ by more than a negligible amount.

A.5 Decryption Queries

In this section, we argue that with overwhelming probability, the only ciphertexts accepted by
the decryption oracles in the HCCA experiment are ciphertexts of the “expected” form (from the
supports of Enc or CTrans).

In this section, we let ζ∗ denote the challenge ciphertext in the hybrid HCCA experiment, which
was generated via AltGenCiph.

Our arguments in this section generally follow the same structure. Fix a set of constraints
induced by a public key and challenge ciphertext ζ∗ in the hybrid HCCA experiment. Call a query
to the Dec, GRigExtract, or RigDec oracle bad if that oracle rejects (outputs ⊥) for an overwhelming
fraction of private keys which are consistent with those constraints.

We show that any ciphertext ζ not of the “expected” form is such a bad ciphertext, while on
the other hand, ciphertexts which are of the expected form are actually rejected by none of the
consistent private keys (and all private keys yield the same response from the oracle).

The following lemma establishes the significance of classifying ciphertexts in this way.

Lemma 6. With overwhelming probability, all bad queries are rejected in the HCCA experiment.

Proof. By definition, the response from the oracle for a non-bad query does not introduce any new
constraints on the private keys, as they all yield the same oracle response.

Consider the first bad ciphertext submitted to an oracle. At that time, from the adversary’s
view, the private key is distributed uniformly among all keys consistent with the constraints induced
by ζ∗ and the public key. Thus it is only with negligible probability that the oracle will return
something other than ⊥. Conditioned on it returning ⊥, the adversary learns that a negligible
fraction of private keys are ruled out. Let ν be a negligible upper bound for this fraction. The
correct private key remains distributed among the (1 − ν) fraction of remaining keys, from the
adversary’s view.

By a union bound, if the adversary makes N bad queries to this decryption oracle, at least one
of them is accepted with probability at most Nν. Since the adversary makes a polynomial (in the
security parameter) number of queries, this probability is negligible.

The simplest way a ciphertext can be bad is if it one of its decryption integrity constraints
(equation (2) and equation (3)) is linearly independent of the constraints given by the public key
and challenge ciphertext.

31

A.5.1 DSME Decryption

Lemma 7. Fix a DSME public key and challenge ciphertext U∗ in the hybrid HCCA experiment.
Let U be an additional DSME ciphtertext. Suppose u∗ and u are the purported plaintexts of U∗ and
U , respectively, as computed by MDecdSK . Then there exist fixed (with respect to the adversary’s
view) values π = π(U) and σ = σ(U) such that u = σ(u∗)π.

Note that even though in the hybrid HCCA experiment, the value of u∗ is independent of the
adversary’s view, the values π and σ are fixed.

Proof. Let ~v∗ be the first strand of U∗, and let ~v be the first strand of U . We may unambiguously
express ~v = π~v∗ + ε~1 for some π, ε. Then π and σ = AV /(A∗V)πAε are the values desired in the
statement of the lemma.

The purported ciphertext of U is:

u =
AV∏2
j=1 V

aj

j

=
AV[∏2

j=1(V ∗j)aj

]π [∏2
j=1(ĝ∗j)aj

]ε =
AV[

A∗V /u∗
]π
Aε

= σ(u∗)π

Lemma 8. If the second strand of U is not a (nonzero) scalar multiple of (1, 1), then MDecSK(U) =
⊥ for all but a negligible fraction of private keys consistent with the adversary’s view.

Proof. Let ~w be the second strand of U , and ~v∗ the first strand of U∗. If ~w is not in the span of ~1,
then ~w = α~v∗ + β~1 for some α 6= 0. The following constraint is checked while decrypting U :

1 ?=
AW∏2
j=1W

aj

j

=
AW[∏2

j=1(V ∗j)aj

]α [∏2
j=1 ĝ

aj

j

]β =
AW[

A∗V /u∗
]α
Aβ

The value of u∗ is independent of the adversary’s view and distributed uniformly in Ĝ, and thus so
is (u∗)α. Thus equality holds only with negligible probability. Also, if ~w is the zero vector, then U
is explicitly rejected by MDec.

Lemma 9. Let U be a DSME ciphertext, with π, σ as above, and suppose MDec(U) 6= ⊥ for a
nonnegligible fraction of private keys consistent with the adversary’s view. Then

π = 0 =⇒ U is in the support of MEncdPK(σ)

π = 1 =⇒ U is in the support of MCTrans(U∗, Tσ)

Proof. By the previous lemma, the second strand of U must be a nonzero multiple of ~1.
If π = 0, then the first strand of U is also a multiple of ~1. Say, ~v = v~1 and ~w = w~1,

where w 6= 0. It is trivial to check that U decrypts to σ with nonnegligible probability only if
U = MEncdPK(σ; v, w).

If π = 1, then say ~v = ~v∗ + β~1 = ~v∗ + s(~w∗) and ~w = γ~1 = t(~w∗), for some s ∈ Zq, t ∈ Z∗q , since
~w∗ (the second strand of U∗) is a nonzero scalar multiple of ~1. Then it is trivial to check that U
decrypts to σu∗ only if U = MCTrans(U∗, Tσ; s, t).

32

A.5.2 DSCS Decryption

Lemma 10. Let (ζ, µ) be an input to IntegritySK . Then it is a bad query unless there exists σ ∈ Ĝ
such that one of the following cases holds:

• U is in the support of MEncdPK(σ); and there exists x ∈ Zp, y ∈ Z∗p such that Xj = g
(x+zj)σ
j

and Yj = gyσj , for j = 1, . . . , 4.

• U is in the support of MCTrans(U∗, Tσ); and there exists s ∈ Zp, t ∈ Z∗p such that Xj =
(X∗j (Y ∗j)s)σ and Yj = (Y ∗j)tσ, for j = 1, . . . , 4; and µ = µ∗.

We emphasize the similarity between these forms of ciphertexts and those produced by Enc and
CTrans.

Proof. As parts of the challenge ciphertext ζ∗, the adversary is given the values: X∗j = g
(x∗j +zj)u∗

j

and Y ∗j = g
y∗j u
∗

j , for some u∗ corresponding to the decryption of U∗ under ŜK. These values ~X

and ~Y are fixed, even though the value of u∗ is distributed independently of the adversary’s view.
Similarly, when submitting a ciphertext ζ to an oracle, the adversary supplies the values: Xj =

g
(xj+zj)u
j and Yj = g

yju
j for some u, where ~x and ~y are the strands of the ciphertext with respect to

u, and u is related to u∗ via u = σ(u∗)π.
With overwhelming probability in the HCCA experiment, these fixed vectors {(~x∗+~z)u∗, ~y∗u∗, ~z,~1}

span the space of all strands. Thus we can write the following unique linear combination:

(~x+ ~z)u = α
(

(~x∗ + ~z)u∗
)

+ β(~y∗u∗) + γ~1 + δ~z (4)

~yu = α′
(

(~x∗ + ~z)u∗
)

+ β′(~y∗u∗) + γ′~1 + δ′~z (5)

Note that the coefficients of this linear combination are fixed, independent of the randomness in
u∗. Our analysis proceeds by showing that if these coefficients are not fixed in a particular way,
then the ciphertext would be rejected by Dec with overwhelming probability over the remaining
randomness in u∗ and the private key.

Let ~X be as above, and consider the decryption constraint involving the PX component of the
ciphertext. Suppose the constraint holds for a nonnegligible fraction of consistent private keys.
The constraint that is checked by Integrity is of the following form:

[
~x µ~x

] [G
G

] [
~d>

~e>

]
?=
[
logPX

]
The public key and challenge ciphertext constrain ~d and ~e as follows:

~1
~1

~x∗ µ∗~x∗

~y∗ µ∗~y∗

[G G

] [
~d>

~e>

]
=

logD
logE

logP ∗X
logP ∗Y

We must have that [~x µ~x] is a linear combination of the above set of constraints with non-

negligible probability (over u∗). Furthermore, the coefficients of that linear combination must be

33

fixed with nonnegligible probability over u∗, otherwise the “correct” value of the constraint will be
distributed randomly in a superpolynomial-size domain as u∗ varies.

Solving for ~x in the first equation and substituting, we have:

[~x µ~x] =
γ

u
[~1 µ~1] +

u∗

u

(
α[~x∗ µ~x∗] + β[~y∗ µ~y∗]

)
+
(
α
u∗

u
+
δ

u
− 1
)

[~z µ~z]

Let π = π(U) and σ = σ(U). We consider the following cases:

• If π = 0: Then u = σ (independent of u∗) while u∗/u is distributed uniformly over Ĝ. We must
have α = β = 0, otherwise the coefficients of [~x∗ µ~x∗] and [~y∗ µ~y∗] are distributed randomly
with u∗/u. Furthermore, observe that [~z µ~z] is linearly independent of the constraints on the
adversary’s view for any µ, since ~z is linearly independent of {~1, ~x∗, ~y∗}. Thus, its coefficient
must be zero with nonnegligible probability. This happens only when δ = σ.

Combining everything, we must have Xj = g
(x+zi)σ
j for some x ∈ Zp.

• If π = 1: Then u∗/u = 1/σ while u (when appearing alone) is distributed uniformly over
Ĝ. We must have γ = 0, otherwise the coefficient of [~1 µ~1] is distributed randomly with u∗.
Again, we must have the coefficient of [~z µ~z] equal to zero with nonnegligible probability.
Substituting, we get that δ = 0 and α = σ. Finally, we must have µ = µ∗, or else [~x∗ µ~x∗] is
linearly independent of [~x∗ µ∗~x∗].

Combining everything, we must have Xj = (X∗j (Y ∗j)s)σ for some s ∈ Zp, and that µ = µ∗.

• If π 6∈ {0, 1}. Below (when discussing the second strand), we show that the ciphertext would
fail its integrity checks with overwhelming probability.

Similarly, we consider the second strand’s ~Y as a linear combination (equation (4)). We then
consider the integrity check on the PY 1 component:

[
~y µ~y

]
G

[
~d>

~e>

]
?= [logPY]

The public key and challenge ciphertext constrain ~d and ~e in the following way:
~1

~1
~x∗ µ∗~x∗

~y∗ µ∗~y∗

[G G

] [
~d>

~e>

]
=

logD
logE

logP ∗X
logP ∗Y

We rewrite [~y µ~y], substituting according to equation (4) to obtain:

[~y µ~y] =
γ′

u
[~1 µ~1] +

u∗

u

(
α′[~x∗ µ~x∗] + β′[~y∗ µ~y∗]

)
+
(
α′
u∗

u
+
δ′

u

)
[~z µ~z]

Similar to the case of the first strand, we see that the coefficient (α′u∗ + δ′)/u must be zero
with nonnegligible probability over the randomness in u∗. This is only possible with α′ = δ′ = 0.
We further consider 3 cases of π:

34

• If π = 0, then u = σ and u∗/u is uniform in Ĝ. We see that the coefficient of [~y∗ µ~y∗] is
β′u∗/u, so we must have β′ = 0. Then γ′ 6= 0, since otherwise ~y is the all-zeroes vector, and
the ciphertext would be unconditionally rejected by Integrity.

This implies that Yj = gyσj for some y ∈ Z∗p.

• If π = 1, then u∗/u = 1/σ, while u is uniform in Ĝ when appearing alone. We see that the
coefficient of [~1 µ~1] is γ′/u, so we must have γ′ = 0. Then β′ 6= 0, since otherwise ~y is the
all-zeroes vector and the ciphertext would be rejected by Integrity.

This implies that Yj = (Y ∗j)tσ for some t ∈ Z∗p.

• π 6∈ {0, 1}: First, observe that if µ 6= µ∗, then [~y∗ µ~y∗] is independent of the view constraints,
and we must have β′ = 0. Then α′ = β′ = δ′ = 0, and [~y µ~y] = γ′/u[~1 µ~1]. Since u is
uniformly distributed in Ĝ, we must have γ′ = 0. But then ~y is the all-zeroes vector and the
ciphertext is unconditionally rejected by Integrity.

Therefore we may assume µ = µ∗ if the ciphertext is to pass its integrity checks with non-
negligible probability. We consider the following two constraints simultaneously (simplifying
via α′ = δ′ = 0):

[
logCY,1
logPY

]
?=
[
~y

~y µ~y

]G G
G

~c>1~d>
~e>

=
[
γ′/u 0 β′u∗/u 0

0 γ′/u 0 β′u∗/u

]
~1

~1 µ∗~1
~y∗

~y∗ µ∗~y∗

G G

G

~c>1~d>
~e>

=
[

0 γ′/u 0 β′u∗/u
γ′/u 0 β′u∗/u 0

]
logC1

log(DEµ
∗
)

logC∗Y,1
logP ∗Y

If we multiply through both of these constraints and substitute according to u = σ(u∗)π, we
get the following two polynomials in u∗, which must be simultaneously zero with nonnegligible
probability:

(σ logPY)(u∗)π − (β′σ logP ∗Y)u∗ − (γ′ log(DEµ
∗
)) = 0

(σ logCY,1)(u∗)π − (β′σ logC∗Y,1)u∗ − (γ′ logC1) = 0

Note that these are polynomials in u∗ of degree π, and no terms collect together, as π 6∈ {0, 1}.
We now argue that these two polynomials cannot be simultaneously zero with nonnegligible
probability, unless the ciphertext is degenerate and would be rejected on other grounds:

– If one of the polynomials is not identically zero but has some coefficient equal to zero,
then this polynomial is equivalent to (i.e, has the same roots as) an affine polynomial in
a single variable; either u∗ or (u∗)π or (u∗)π−1. Each of these variables is uniform in Ĝ,
so the equation is satisfied with only negligible probability.

35

– Otherwise, if the two polynomials have all nonzero coefficients and are identical up to
scalar multiplication, then the three pairs of matching coefficients have the same ratios.
In particular, we have the following equality (after cancellation):

log(DEµ
∗
)

logC1
=

logP ∗Y
logC∗Y,1

The challenge ciphertext (including the components P ∗Y and C∗Y,1) is generated after C1,
D, E, and µ∗ are fixed. It is only with negligible probability over the randomness of
AltGenCiph that C∗Y,1 an P ∗Y satisfy this condition. Thus it does not affect the outcome
of our analysis to condition the entire HCCA experiment on this event not happening.

– If the two polynomials have all nonzero coefficients and are not identical up to scalar
multiplication, then some linear combination of them is affine either in the variable
u∗ or in (u∗)π. The two original polynomial equations must have been simultaneously
satisfied with noticeable probability. When both equations hold, then so does any linear
combination of the two. But we have demonstrated a linear combination of the equations
that is affine on a single variable which is distributed uniformly over Ĝ, and thus is
satisfied with only negligible probability.

– Otherwise one polynomial is identically zero. It is only with negligible probability that
AltGenCiph generates a ciphertext with logC∗Y,1 = 0 or logPY 1∗ = 0. Thus our analysis
may be conditioned on these events not happening. We must have β′ = 0 to make the
u∗ coefficient zero (since σ 6= 0 unconditionally). This makes a coefficient in the other
polynomial zero as well. This case overlaps with the first case unless both polynomials
are in fact identically zero. If both are identically zero, then by similar reasoning, we
must have γ′ = 0 (logC1 = 0 only with negligible probability over the key generation).
But when β′ = γ′ = 0, ~y is the all-zeroes vector and the ciphertext is rejected by
Integrity.

We now characterize precisely which queries are accepted by the decryption oracles in the HCCA
experiment, to show that their outputs are independent of b.

• RigDec when b = 0. Then RigDec is the normal Dec oracle. The challenge ciphertext ζ∗ is an
encryption of (m1, . . . ,mn) given by the adversary, and µ∗ = H(f(m1, . . . ,mn)).

– In the π = 0 case, it is straight-forward to see that the ciphertext passes its integrity
check with µ computed from the purported plaintext only if ζ is in the support of
EncPK(·).

– In the π = 1 case, let (m′1, . . . ,m′n) = PurpMsgSK(ζ, u). Then we must have H(f(m1, . . . ,mn)) =
H(f(m′1, . . . ,m′1)). By the collision-resistance of H, this only happens when the two
plaintexts are in the same H-coset. Thus (m1, . . . ,mn) ∗ (m′1, . . . ,m′n)−1 ∈ H, and so
(m′1, . . . ,m′n) is an allowed transformation of (m1, . . . ,mn). It is straight-forward to see
that the remaining components’ integrity checks succeed only if ζ is in the support of
CTrans(ζ∗, ·).

• RigDec when b = 1. Then RigDec first calls RigExtract using µ∗, which are distributed
independently of the adversary’s view.

36

– In the π = 0 case, ciphertexts of this form have a unique fixed (with respect to the
adversary’s view) value µ such that IntegritySK(ζ, µ) succeeds. Since µ∗ is distributed
independently of the adversary’s view, this happens with negligible probability.

– In the π = 1 case, RigExtract accepts only if the purported plaintext of ζ is changed
from ζ∗ via an allowed transformation, and that the integrity constraints pass with the
same µ∗ value. It is straight-forward to see that these conditions hold only if ζ is in the
support of CTrans(ζ∗, ·).

Then RigDec calls the normal Dec procedure:

– The π = 0 case is analagous to the b = 0 case above, it is not affected by the difference
in generation of ζ∗. It accepts only if ζ is in the support of EncPK(·).

– If π = 1, then the ciphertext’s integrity is checked using µ values derived from the
purported plaintext. The purported plaintext is information-theoretically fixed from the
adversary’s view. Only with negligible probability will µ equal the µ∗ value used to
generate ζ∗, which is necessary for Dec to accept with nonnegligible probability.

Thus, RigDec may be replaced by an (unbounded) oracle which does the following on input ζ.

• If ζ is in the support of EncPK(m1, . . . ,mn) then output m1, . . . ,mn.

• Otherwise, if ζ is in the support of CTrans(ζ∗, T) for some T ∈ T , then output T (m∗1, . . . ,m∗n),
where m∗1, . . . ,m∗n is the challenge plaintext given by the adversary in the challenge phase.

By the above argument, the output of this oracle matches that of RigDec on all queries with
overwhelming probability, in both the b = 0 and b = 1 branches of the HCCA experiment. Similarly,
the argument for RigDec when b = 0 implies that we may also replace the Dec oracle given to the
adversary in Phase I with an oracle which simply checks that its input is in the support of EncPK(·).

We show a similar situation for inputs to the GRigExtract(i, ·) oracle:

• In the π = 0 case of an input ciphertext, the given ciphertext ζ is accepted only if its purported
plaintext is an allowed transformation, and its integrity checks pass with respect to the same
values as ζi (the ith output of GRigEnc). It is straight-forward to see that this is only possible
for ζ from the support of CTrans(ζi, ·).
• In the π = 1 case of inputs, we must have µ∗ equal to the µ value used to generate ζi. Note

that the µ value used to generate ζi is information-theoretically fixed given ζi and the public
key (it was created using GenCiph instead of AltGenCiph).

When b = 1, the two sets of µ values are only equal with negligible probability, as µ∗ is chosen
independently of µ.

When b = 0, the µ∗ value is computed via H(f(m∗1, . . . ,m∗n)), where m∗1, . . . ,m∗n is the chal-
lenge plaintext given by the adversary. For the adversary to be given ζi and subsequently be
able to compute (m∗1, . . . ,m∗n) which yield the correct µ value, the adversary must be able to
compute discrete logs in G.

To see the reduction, suppose we are given a random pair g, gµ as input. Then we perform
4 randomized reductions to obtain gj , g

µ
j pairs, and generate a DSCS keypair honestly using

37

these gj values. We can compute a public key component E as well as the value Eµ needed to
generate ζi. For the output of GRigEnc, use this value when generating the output of RigEnc.
The distribution of this ciphertext is correct, as µ is random. When the adversary gives the
challenge plaintext, compute µ′ = H(f(m∗1, . . . ,m∗n)). If gµ

′
= gµ, then we have successfully

computed the discrete log. In a group where the DDH assumption holds, this can only happen
with negligible probability.

Similar to above, we may replace the GRigExtract(i, ·) oracle with an unbounded oracle that
checks whether its input is in the support of CTrans(ζi, ·), and if so outputs the transformation.
Such an oracle is clearly independent of b, and by the above discussion, all of its responses match
that of GRigExtract(i, ·), with overwhelming probability.

Lemma 11. Our construction is HCCA secure, if the DDH assumption holds in G and Ĝ.

Proof. First, by Lemma 5, any adversary’s advantage in the HCCA experiment changes negligibly
when GenCiph is replaced by AltGenCiph to generate the challenge ciphertext. By Lemma 4, this
challenge ciphertext is distributed independently of b.

Next, we may replace all the oracles which use the private key with unbounded variants as
described above. The entire set of responses from these oracles coincides with the original oracles,
with overwhelming probability, so any adversary’s advantage is only negligibly affected by this
modification to the experiment. However, when these modified oracles are used, the adversary’s
entire view (public key, challenge ciphertext, and oracle responses) is independent of b. Thus the
adversary has zero advantage in this modified HCCA experiment. It follows that the adversary’s
advantage in the original experiment is negligible.

Lemma 12. Our construction is unlinkably homomorphic.

Proof. Above, we argued that in the HCCA experiment, with overwhelming probability, the only
ciphertexts accepted by the Dec in Phase I are those which are in the support of EncPK(·). The
unlinkability experiment is a restricted special case of Phase I of the HCCA experiment where there
are no GRigEnc or GRigExtract oracles. So in the unlinkability experiment also, with overwhelm-
ing probability, only ciphertexts in the support of EncPK(·) are accepted by the Dec. Further,
the perfect rerandomization property implies that the adversary has zero advantage in the un-
linkability experiment, conditioned on this event. Thus, since our construction does satisfy the
perfect rerandomization property, the adversary’s advantage in the unlinkability experiment must
be negligible.

38

